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Abstract
Motivated by quantum information theory, we introduce a dynamical random density
matrix built out of the sumof k ≥ 2 independent unitaryBrownianmotions. In the large
size limit, its spectral distribution equals, up to a normalising factor, that of the free
Jacobi process associated with a single self-adjoint projection with trace 1/k. Using
free stochastic calculus, we extend this equality to the radial part of the free average
of k free unitary Brownian motions and to the free Jacobi process associated with two
self-adjoint projections with trace 1/k, provided the initial distributions coincide. In
the single projection case, we derive a binomial-type expansion of the moments of
the free Jacobi process which extends to any k ≥ 3 the one derived in Demni et al.
(Indiana Univ Math J 61:1351–1368, 2012) in the special case k = 2. Doing so give
rise to a non normal (except for k = 2) operator arising from the splitting of a self-
adjoint projection into the convex sum of k unitary operators. This binomial expansion
is then used to derive a pde satisfied by the moment generating function of this non
normal operator and for which we determine the corresponding characteristic curves.
As an application of our results, we compute the average purity and the entanglement
entropy of the large-size limiting density matrix.
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1 Introduction andmotivation

1.1 Randommatrices in quantum information theory

Randomness lies at the heart of Shannon’s pioneering work on classical information
theory (see the expository paper [29]). It also plays a key role in quantum information
theory through the use of techniques from random matrix theory. Actually, the latter
open theway to choose typical random subspaces in large-size quantum systemswhich
violate additivity conjectures for minimum output Rényi and von Neumann entropies
(see [5] and references therein). Here, typicality is taken with respect to the uniform
measure in the compact complex Grassmann manifold or equivalently with respect
to the Haar distribution in the group of unitary matrices. Note that this distribution
together with Ginibre random matrices also served in [6] to generate random density
matrices induced from states in bipartite systems (see [22] for similar constructions
of quantum channels).

A natural dynamical version of theHaar distribution in the group of unitarymatrices
is the so-called unitary Brownianmotion [24]. This stochastic process was used in [27]
where the authors introduced and studied a random state drawn from the Brownian
motion on the complex projective space (the row vector of a unitary Brownian motion
up to a phase). There, themain problemwas to write explicitly the joint distributions of
tuples formed by the moduli of the state coordinates. This problemwas entirely solved
in [8] using spherical harmonics in the unitary group. To the best of our knowledge, [8,
27] are the only papers where the unitary Brownian motion is used as a randommodel
in quantum information theory, in contrast to the high occurrence of Haar-distributed
unitary matrices [5]. Moreover, it is tempting and challenging as well to prove finite-
time analogues of important results in quantum information theory proved using Haar
unitary matrices and their Weingarten Calculus (as summarized in [5]).
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In this paper, we appeal once more to the unitary Brownian motion in order to
introduce a stochastic process valued in the space of density matrices [see (1) below].
The large time limit of this process was already constructed in [6] by partially tracing
a pure random state in a bipartite quantum system.

1.2 The dynamical density matrix

Let N ≥ 1 be a positive integer and consider a bipartite quantum system HA ⊗ HB ,
whereHA,HB , are complex N -dimensional Hilbert spaces. If (eAj )

N
j=1, (e

B
j )Nj=1, are

the canonical basis ofHA and HB respectively, then

ψ := 1√
N

N
∑

j=1

eAj ⊗ eBj

is referred to as the Bell or maximally-entangled state. Now, consider k ≥ 2 Haar-
distributed unitary matrices U 1∞(N ), . . . ,Uk∞(N ), and define the vector ψk ∈ HA ⊗
HB by:

ψk(N ) := 1√
N

k
∑

m=1

N
∑

j=1

(

Um∞(N )eAj

)

⊗ eBj = 1√
N

N
∑

j=1

(

k
∑

m=1

Um∞(N )eAj

)

⊗ eBj .

Then the partial trace with respect to HB of the pure state associated with ψk(N )

yields the following reduced state:

˜Wk∞(N ) := (U 1∞(N ) + · · · +Uk∞(N ))(U 1∞(N ) + · · · +Uk∞(N ))�

tr[(U 1∞(N ) + · · · +Uk∞(N ))(U 1∞(N ) + · · · +Uk∞(N ))�]
where tr is the trace operator on the spaceMN (C) of N × N complex matrices. Since
the Haar distribution is the stationary distribution of the unitary Brownian motion, it
is then natural to introduce the following stochastic process valued in the space of
density matrices:

0 ≤ t 	→ ˜Wk
t (N ) := (U 1

t (N ) + · · · +Uk
t (N ))(U 1

t (N ) + · · · +Uk
t (N ))�

tr[(U 1
t (N ) + · · · +Uk

t (N ))(U 1
t (N ) + · · · +Uk

t (N ))�] , (1)

where (U j
t (N ))t≥0, 1 ≤ j ≤ k, are k independent unitary Brownian motions. In

particular, (˜Wk
t (N ))t≥0 interpolates between the completely mixed state IdN/N at

t = 0 (IdN being the identity matrix of size N ) and the stationary state ˜Wk∞(N ). Note

also that since (U j
t (N ))t≥0, 1 ≤ j ≤ k, are Lévy processes in the unitary group with

identical distributions, then

E

{

tr[(U1
t (N ) + · · · +Uk

t (N ))(U1
t (N ) + · · · +Uk

t (N ))�]
}

= kN + k(k − 1)E[tr(U1
2t )]

= kN [1 + (k − 1)e−Nt ],
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where the second equality follows from [23], Example 3.3.
As we shall now explain, introducing this model is not simply a matter of replacing

Haar-distributed matrices by unitary Brownian motions. Indeed, the large-size limit
of ˜W 2

t (N ) for fixed time t bears a close connection to an instance of the so-called free
Jacobi process.

1.3 The large size limit of ˜Wk∞(N) and the free Jacobi process

Recall that independent random matrices behave in the large-size limit, under addi-
tional law-invariance assumptions, as �-free operators (in Voiculescu’s sense) in a
tracial non commutative probability space, say (A , τ ) [26]. For instance, independent
Haar-distributed unitary matrices converge strongly and almost surely as N → ∞ to
Haar-distributed unitary operators (see [4] and references therein). Consequently, the
norm of the operator ˜Wk∞(N ) converges almost surely as N → ∞ to

˜Wk∞ := (U 1∞ + · · · +Uk∞)(U 1∞ + · · · +Uk∞)�

τ [(U 1∞ + · · · +Uk∞)(U 1∞ + · · · +Uk∞)�] ,

where {U j∞, 1 ≤ j ≤ k} is a k-tuple of Haar unitary operators which are �-free in
(A , τ ). Note that

˜Wk∞ = (U 1∞ + · · · +Uk∞)(U 1∞ + · · · +Uk∞)�

k
,

since τ(U j∞) = 0 and since �-freeness entails τ(U j∞(Um∞)�) = τ(U j∞)τ ((Um∞)�) = 0
for any 1 ≤ j 
= m ≤ k. In particular, when k = 2, the invariance of the Haar
distribution shows further that ˜W 2∞/2 is equally distributed as:

(1 +U 1∞)(1 +U 1∞)�

4
= 21 +U 1∞ + (U 1∞)�

4
,

where 1 stands for the unit of A . The spectral distribution of this Hermitian operator
is known to be the arcsine distribution [18] and coincides also with an instance of
the stationary (i.e. t = +∞) distribution of the so-called free Jacobi process [7]. At
any time t > 0, the latter is the squared radial part of the compression PUt Q of a
free unitary Brownian motion (Us)s≥0 by two orthogonal (self-adjoint) projections P
and Q in (A , τ ) which are �-free from (Us)s≥0 [7]. Besides, it was shown in [12]
that the coincidence alluded to above holds even at any time t > 0: if P = Q and if
τ(P) = 1/2 then the spectral distribution of the free Jacobi process PUt PU �

t P (in
the compressed algebra (A , 2τ)) coincides with that of

21 +U2t +U �
2t

4
∈ A . (2)

Since (Us)s≥0 is a unitary free Lévy process with respect to the free multiplicative
convolution on the unit circle [18], then the spectral distribution of (2) coincides with
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that of

(U 1
t +U 2

t )(U 1
t +U 2

t )�

4
, (3)

where (U 1
s )s≥0 and (U 2

s )s≥0 are two free copies of (Us)s≥0.
On the other hand, it was proved in [1] that (Us)s≥0 is the large-size limit of the

time-rescaled Brownian motion in the group of unitary matrices. As a matter of fact,
(3) is the large-size limit N → ∞ of

(U 1
t/N (N ) +U 2

t/N (N ))(U 1
t/N (N ) +U 2

t/N (N ))�

4
.

Up to a scalar random factor, this Hermitian random matrix is nothing else but
(1/2)˜W 2

t/N (N ) which converges almost surely and strongly to

(U 1
t +U 2

t )(U 1
t +U 2

t )�

2[2 + τ(U 1
t (U 2

t )�) + τ(U 2
t (U 1

t )�)] = (U 1
t +U 2

t )(U 1
t +U 2

t )�

4(1 + e−t )
, (4)

where the second equality follows from τ(U 1
t (U 2

t )�) = τ(U 1
t )τ ((U 2

t )�) = e−t [1]. In
a nutshell, the free Jacobi process associated with an orthogonal projection with trace
1/2 is, up to a normalising factor, the large-size limit of ˜W 2

t/N (N ).
The above picture extends to any integer k ≥ 2 as follows. On the one hand,

˜Wk
t/N (N ) converges strongly and almost surely as N → ∞ to the self-adjoint and

unit-trace operator [4]:

˜Wk
t := (U 1

t + · · · +Uk
t )(U 1

t + · · · +Uk
t )�

τ [(U 1
t + · · · +Uk

t )(U 1
t + · · · +Uk

t )�] = (U 1
t + · · · +Uk

t )(U 1
t + · · · +Uk

t )�

k[1 + (k − 1)e−t ] ,

where (U j
s )s≥0, 1 ≤ j ≤ k are free copies of (Us)s≥0 in (A , τ ). In particular, the

following diagram commute:

˜Wk
t/N (N ) t −→ ∞ ˜Wk∞(N )

N→∞
⏐

⏐

�

⏐

⏐

�N→∞

˜Wk
t/N t −→ ∞ ˜Wk∞

.

On the other hand, if

Gk
t := U 1

t + · · · +Uk
t , t ≥ 0,

and if τ(P) = 1/k, then Nica and Speicher’s boxed convolution [28] implies that the
�-moments of Gk

t in (A , τ ) coincide with those of PUt P in the compressed space
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(PA P, kτ). Consequently, their corresponding Brown measures coincide [26] and
so do the spectral distributions of their squared radial parts

Wk
t

k2
:= Gk

t (G
k
t )

�

k2
= (U 1

t + · · · +Uk
t )

k

(U 1
t + · · · +Uk

t )�

k
∈ (A , τ ),

and

(PUt P)(PUt P)� = PUt PU
�
t P ∈ (PA P, kτ).

1.4 Main results

The choice P = Q is not a restriction and is rather a matter of simplicity. Indeed, since
we are dealing with time dynamics (of Burgers-type) instead of stationary (t = +∞)
regimes, we have to match initial data at t = 0 in order to obtain equalities between
spectral distributions at any fixed t > 0. For instance, the operator displayed in (2) and
PUt QPU �

t P share the same spectral distribution in their corresponding probability
spaces when τ(P) = τ(Q) = 1/2 and provided that their moment sequences at
t = 0 coincide [20]. More generally, we shall prove using free stochastic calculus
that for any t > 0, the moment sequences of Wk

t /k2 in (A , τ ) and of PUt QU �
t P in

(PA P, kτ) satisfy the same recurrence relation when τ(P) = τ(Q) = 1/k, k ≥ 2.
We shall also prove that the moment sequence of Wk

t /k2 converge as k → ∞ to
(e−nt )n≥0 for any fixed time t , which contrasts the weak convergence ofWk∞/k to the
Marchenko–Pastur distribution [6]. This contrast is due to the high complexity of the
structure of the �-cumulants of Ut in comparison with those of U∞ [9].

Back to the case P = Q, the equality between the spectral distributions of Wk
t /k2

and of PUt PU �
t P under the assumption τ(P) = 1/k opens the way to compute the

moments of the former by studying those of the latter. Indeed, for any n ≥ 1, τ [(Wk
t )n]

is a linear combination of k2n factors of the form

τ [Ui1
t (Ui2

t )� · · · (Ui2m−1
t )� Ui2m

t ], 1 ≤ m ≤ n, i j ∈ {1, . . . , k}.

Apart from constant factors, those where any index i j occurs at most once may be
computed using themultiplicative Lévy property of the free unitaryBrownianmotions.
However, to the best of our knowledge, the contributions of the remaining factors
may be only computed using the freeness property. In this respect, the complexity of
τ [(Wk

t )n] increase rapidly even for small orders. For that reason, we rather focus on
the moments of PUt PU �

t P and our main result (Theorem 2 below) establishes for
any n ≥ 1 a binomial-type expansion of

kτ [(PUt PU
�
t P)n]

as a linear combination of the moments

τ [(TkUtTkU
�
t ) j ], 0 ≤ j ≤ n,
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where Tk := kP − 1 = T �
k satisfies τ(Tk) = 0. This expansion extends to any integer

k ≥ 3 the one proved in [12] for k = 2 for which T2 = 2P − 1 is unitary and self-
adjoint, which in turn implies that T2UtT2U �

t is distributed as U2t . However, for any
k ≥ 3, Tk is not even normal: it is the sum of (k − 1) unitary operators and satisfies
the relation

(Tk)
2 = (k − 2)Tk + (k − 1)1.

Of course, the constant term corresponding to j = 0 in the obtained binomial-
type expansion is nothing else but the nth moment of the spectral distribution of
PU∞PU �∞P , and may be expressed for instance as a weighted sum of Catalan num-
bers. Surprisingly, the higher order coefficients split as

k(k − 1)n− j

k2n

(

2n

n − j

)

, 1 ≤ j ≤ n,

and are derived after a careful and tricky analysis of several inductive relations.
Nonetheless, it would be interesting to seek a combinatorial proof explaining both
the splitting of these higher order coefficients and the occurrence of the same bino-
mial coefficients as in the k = 2 case.

Once the binomial-type expansion derived, we turn it into a relation between the
moment generating functions of the free Jacobi process at time t > 0 and of TkUtTkU �

t .
Using the partial differential equation (hereafter pde) satisfied by the former and
derived in [7] for arbitrary traces τ(P) and τ(Q), we derive the one satisfied by the
latter and determine its characteristic curves.

At the quantum information theoretical side, our results allow to compute large-
size asymptotics of relevant quantities such as the average purity and the entanglement
entropy of the dynamical density matrix ˜Wk

t/N (N ). In the stationary regime t = +∞,
the former was computed in [6] (see section III.C. there) and amounts to compute
the second moment of the spectral distribution of ˜Wk∞/k. For any fixed time t > 0,
the second moment τ [(˜Wk

t )2] is readily computed from Theorem 2 together with the
freeness property. As a by-product, we recover the large-time limit of the asymptotic
average purity for fixed k and we derive its large-k limit at any fixed time t > 0. Still
in the large-size limit, we derive formulas for the entanglement entropy both in the
stationary and in fixed time regimes. Both expressions involve Gauss hypergeometric
polynomials and the second one expresses the difference between the entanglement
entropy in both regimes as an infinite series of the moments τ [(TkUtTkU �

t ) j ], j ≥ 0,.
The paper is organized as follows. In the next section, we discuss the relation

between the �-moments of (Gk
t )/k and those of the compression PUt P when τ(P) =

1/k. There, we also prove that the moment sequences of the radial parts (Wk
t )/k2

and of PUt Q with τ(P) = τ(Q) = 1/k satisfy the same recurrence relation and
that their limits as k → ∞ is the Dirac mass at e−t . In the third section, we prove
the binomial-type formula for the moments of Jt then turn it into a relation between
moment generating functions. Oncewe do,we deduce a pde for themoment generating
function of TkUtTkU �

t and determine its characteristic curves. The fourth section is
devoted to formulas for the average purity and for the average entanglement entropy
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of the density matrix in the large-size limit. We also include two appendices where
we prove two formulas which we could not find in literature and which we think are
of independent interest. The first formula has the merit to express the moments of the
stationary distribution of the free Jacobi process corresponding to τ(P) = 1/k as a
perturbation of those corresponding to τ(P) = 1/2. In particular, it involves a family
of polynomials with integer coefficients in the variable (k−2) and its derivation relies
on special properties of the Gauss hypergeometric function. As to the second formula,
it expresses the free cumulants of a self-adjoint projection with arbitrary rank as a
difference of two Legendre polynomials.

2 RelatingGt
k and compressions of Ut

2.1 Compression by a free projection and Brownmeasure

Given a collection of operators (a1, . . . , an) in a non commutative probability space
(A , τ ), their joint distribution μa1,...,an is the linear functional which assigns to any
polynomial P in n non commuting indeterminates its trace τ(P(a1, . . . , an)). In this
respect, the Nica–Speicher generalized R-transform [28] allows to relate the joint
distribution of the compressed collection (Pa1P, . . . , Pan P) by a free self-adjoint
projection P in the compressed algebra to μa1,...,an . In particular, when n = 2 and if
a1 = a, a2 = a� thenμa,a� is given by all the �-moments of a andwe shall simply refer
to it as the distribution of a. The following result shows that if τ(P) = 1/k, k ≥ 2,
then the compression of (Ut ,U �

t ) by P amounts to summing k free copies of (Ut ,U �
t )

up to dilation. Though we expect that this result is known among the free probability
community, we did not find it written anywhere and we include it here for the reader’s
convenience. Note also that it reduces to the Nica–Speicher convolution semi-group
when a is self-adjoint.

Proposition 1 Let P be a self-adjoint projection freely independent from {Ut ,U �
t }t≥0

with τ(P) = 1/k, k ≥ 2, and recall the non normal operator:

Gk
t = U 1

t + · · · +Uk
t .

Then, the distribution of PUt P in (PA P, kτ) coincides with that of Gk
t /k in (A , τ ).

Proof Given an operator a ∈ A , let R(μa,a� ) be its generalized R-transform ([28],
section 3.9) and recall that it entirely determines the distribution of a. Then, one has
on the one hand:

R
(

μ 1
k U

1
t +...+ 1

k U
k
t ,( 1k U

1
t )�+...+( 1k U

k
t )�

)

= kR
(

μ 1
k Ut ,

1
k U

�
t

)

due to the �-freeness of (U j
t )kj=1 [28]. On the other hand, [28, Application 1.11] entails

R
(

μPUt P,PU �
t P

) = kR
(

μ 1
k Ut ,

1
k U

�
t

)

,
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where thedistributionμPUt P,PU �
t P is considered in the compressed space (PA P, kτ).

��

The Brown measure of a non normal operator plays a key role in random matrix
theory since it supplies a candidate for the limiting empirical distribution of a non
normal matrix ([26], chapter XI). It is defined through the Fuglede–Fuglede–Kadison
determinant given for any a ∈ A by:

�(a) := exp[τ(log(|a|))] = exp
∫

R

log(u)μ|a|(du) ∈ [0,+∞[,

where |a| = (a�a)1/2 is the radial part of a andμ|a| is its spectral measure. The Brown
measure μa of a is then defined by:

μa := 1

2π
∇2 log�(a − λ1),

where ∇2 denotes the Laplacian taken in the distributional sense, and is uniquely
determined among all compactly-supported measure by its logarithmic potential:

∫

C

log(|λ − z|)μa(dz) = log�(a − λ1).

In a tracial non commutative probability space, the Brown measure is fully deter-
mined by �-moments and one immediately deduces from the previous proposition that
the Brown measures of Gk

t /k and of PUt P coincide when τ(P) = 1/k. In general,
the description of the Brown measure of PUt P is a quite difficult problem: the main
result proved in [10] already provides a Jordan domain containing its support. As a
matter of fact, Proposition 1 offers another way to compute the Brown measure of
PUt P in the particular case τ(P) = 1/k relying on operator-valued free probability
as explained in [3]. However, it turns out that the computations are already tedious
even for k = 2 and as such, we postpone them to a future research work.

In the stationary regime t = +∞, the fact that the R-diagonal operator PU∞P and
the average of k free Haar unitaries share the same Brown measure is transparent from
Haagerup–Laarsen results ([17], examples 5.3 and 5.5) though not being explicitly
pointed out there. Indeed, thismeasure is radial and absolutely continuouswith density
given by [17]:

k − 1

π(1 − |λ|2)2 1(0,1/
√
k)(|λ|)dλ,

with respect to Lebesgue measure dλ. Another approach relying on the so-called
quaternion free probability may be found in [21].

123
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2.2 Radial parts and beyond

If we consider the radial parts of PUt P and of Gk
t /k, then the equality between the

moments of PUt PU �
t P and of Wk

t /k2 may be readily deduced from the moment-
cumulant formula for the compression by a free projection (see Theorem 14.10, [29]).
Actually, if (a1, . . . , am) is a collection of operators inA which is free from P , then

1

τ(P)
τ (Pai1 Pai2 P . . . Pain P) =

∑

π∈NC(n)

κπ [ai1 , . . . , ain ][τ(P)]n−|π |, (5)

for any indices 1 ≤ i1, . . . , in,≤ m. Here NC(n) is the lattice of non crossing
partitions, |π | is the number of blocks of the partition π ∈ NC(n) and κπ is the
multiplicative functional of free cumulants of blocks of π (see Lectures 10 and 11 in
[29] formore details). Specializing (5)with (ai2 j+1 , ai2 j+2) = (Ut ,U �

t ), 0 ≤ j ≤ n−1,
and τ(P) = 1/k, we get:

kτ(PUt PU
�
t P . . . PUt PU

�
t P) =

∑

π∈NC(2n)

κπ [Ut ,U
�
t . . . ,Ut ,U

�
t

︸ ︷︷ ︸

2n

]k|π |−2n . (6)

On the other hand, the moment-cumulant formula (11.8) in [29] entails:

1

k2n
τ [(Wk

t )n] = 1

k2n
∑

π∈NC(2n)

kπ [Gt , (G
k
t )

�, . . . ,Gt , (G
k
t )

�] (7)

where we recall that Gk
t = U 1

t + · · · + Uk
t and Wk

t = Gk
t (G

k
t )

�. But if V is a block
of π then κV is the sum of terms of the form

κ|V |[(U j1
t )ε(1), (U j2

t )ε(2), . . . , (U j2n
t )ε(2n)],

where ε(1), . . . , ε(2n) ∈ {1, �} and 1 ≤ j1, . . . , j2n,≤ k. All these terms vanish due
to the �-freeness of (U j

t )kj=1 except those of the form

κ|V |[(U j
t )ε(1), (U j

t )ε(2), . . . , (U j
t )ε(2n)],

for a single index 1 ≤ j ≤ k. There are k such terms and all give the same contribution

κ|V |[(Ut )
ε(1), (Ut )

ε(2), . . . , (Ut )
ε(2n)],

since U 1
t , . . . ,Uk

t have the same spectral distribution as Ut . Consequently, the RHS
of (7) and (6) are equal.

More generally, we shall prove below that given two orthogonal projections P and
Q which are �-free from (Ut )t≥0, the moments of PUt QU �

t P and those of Wk
t /k2

coincide provided that τ(P) = τ(Q) = 1/k. Our main tool is free stochastic calculus
and we refer to [2, 15] for further details on this calculus. To proceed, recall from
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[1] the stochastic differential equation satisfied by the free unitary Brownian motion
(Ut )t≥0:

dUt = iUtdXt − Ut

2
dt, U0 = 1,

where (Xt )t≥0 is a free additive Brownian motion. Hence, there exists a k-tuple free
additive Brownian motions (X j

t )t≥0, 1 ≤ j ≤ k, which are free in A and such that

dU j
t = iU j

t d X
j
t − U j

t

2
dt, U j

0 = 1. (8)

With the help of the free Itô formula [1], we shall prove:

Theorem 1 For any n ≥ 1, t > 0, set1

sn(t) := τ [(Wk
t )n].

Then,

∂t sn(t) = −nsn(t) + nksn−1(t) + nk
n−2
∑

j=0

sn− j−1(t)s j (t) − n

k

n−2
∑

j=0

sn− j−1(t)s j+1(t),

(9)

where an empty sum is zero.

Proof Using (8), we get

dGk
t = i

k
∑

j=1

U j
t dX

j
t − Gk

t

2
dt

whence

dWk
t = d[Gk

t (G
k
t )

�] = dGk
t (G

k
t )

� + Gk
t (dG

k
t )

� + (dGk
t )((dG

k
t )

�),

where (dGk
t )((dG

k
t )

�) stands for the bracket of the semimartingales dGk
t and (dGk

t )
�.

Since (X j
t )t≥0 are assumed free then

(dX j
t )(dX

m
t ) = δ jmdt, 1 ≤ j,m ≤ k,

so that

dWk
t =

k
∑

j=1

[

(iU j
t )dX j

t (G
k
t )

� + GtdX
j
t (iU

j
t )�

]

+ (k − Wk
t )dt .

1 We omit the dependence on k for sake of clarity.
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Now, borrowing the terminology and the notations of [2], we introduce the bi-
processes:

F j
t := (iU j

t ) ⊗ (Gk
t )

� + (Gk
t ) ⊗ (iU j

t )�, 1 ≤ j ≤ k,

and write:

dWk
t =

k
∑

j=1

F j
t �dX j

t + (k − Wk
t )dt .

Consequently, for any n ≥ 1, Proposition 4.3.2 in [2] entails:

d[(Wk
t )n] = Martingale part +

n−1
∑

j=0

(Wk
t ) j ⊗ (Wk

t )n−1− j�(k − Wk
t )dt

−
k

∑

j=1

∑

m,l≥0
m+l≤n−2

(Wk
t )lU j

t (Gk
t )

�(Wk
t )n−m−l−2τ [(Wk

t )mU j
t (Gk

t )
�]dt

−
k

∑

j=1

∑

m,l≥0
m+l≤n−2

(Wk
t )lGk

t (U
j
t )�(Wk

t )n−m−l−2τ [(Wk
t )mGk

t (U
j
t )�]dt

+
k

∑

j=1

∑

m,l≥0
m+l≤n−2

{

(Wk
t )n−m−2τ [(Wk

t )m+1] + (Wk
t )n−m−1τ [(Wk

t )m]
}

.

Taking the expectation with respect to τ of both sides and differentiating with respect
to the variable t ,2 we get:

∂t sn(t) = −nsn(t) + nksn−1(t)

−
k

∑

j=1

∑

m,l≥0
m+l≤n−2

τ [(Wk
t )n−m−2U j

t (Gk
t )

�]τ [(Wk
t )mU j

t (Gk
t )

�]

−
k

∑

j=1

∑

m,l≥0
m+l≤n−2

τ [(Wk
t )n−m−2Gk

t (U
j
t )�]τ [(Wk

t )mGk
t (U

j
t )�]

+
k

∑

j=1

∑

m,l≥0
m+l≤n−2

{

τ [(Wk
t )n−m−2]τ [(Wk

t )m+1] + τ [(Wk
t )n−m−1]τ [(Wk

t )m]
}

.

2 The state τ is tracial and all the processes are continuous in the strong topology.
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The last (triple) sum yields the following contribution (the summands there do not
depend on the indices j, l):

k
n−2
∑

m=0

(n − m − 1)τ [(Wk
t )n−m−2]τ [(Wk

t )m+1]

+k
n−2
∑

m=0

(n − m − 1)τ [(Wk
t )n−m−1]τ [(Wk

t )m]

= nk
n−2
∑

m=0

τ [(Wk
t )n−m−1]τ [(Wk

t )m],

where the last equality follows from the index change m 	→ n − m − 2. Finally, the
summands

τ [(Wk
t )n−m−2U j

t (Gk
t )

�]τ [(Wk
t )mU j

t (Gk
t )

�], 1 ≤ j ≤ k,

do not depend on j sinceWk
t andGk

t are symmetric (invariant under permutations) and

since the unitary operators U j
t , 1 ≤ j ≤ k, are free and have identical distributions.

As a result,

S1 : =
k

∑

j=1

∑

m,l≥0
m+l≤n−2

τ [(Wk
t )n−m−2U j

t (Gk
t )

�]τ [(Wk
t )mU j

t (Gk
t )

�]dt

=
k

∑

j=1

n−2
∑

m=0

(n − m − 1)τ [(Wk
t )n−m−2U j

t (Gk
t )

�]τ [(Wk
t )mU j

t (Gk
t )

�]dt

= 1

k

n−2
∑

m=0

(n − m − 1)
k

∑

j,l=1

)τ [(Wk
t )n−m−2U j

t (Gk
t )

�]τ [(Wk
t )mUl

t (G
k
t )

�]dt

= 1

k

n−2
∑

m=0

(n − m − 1)τ [(Wk
t )n−m−1]τ [(Wk

t )m+1].

Similarly,

S2 : =
k

∑

j=1

∑

m,l≥0
m+l≤n−2

τ [(Wk
t )n−m−1Gk

t (U
j
t )�]τ [(Wk

t )mGk
t (U

j
t )�]dt

= 1

k

n−2
∑

m=0

(n − m − 1)τ [(Wk
t )n−m−1]τ [(Wk

t )m+1].
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80 Page 14 of 39 T. Hamdi, N. Demni

Performing the index change m 	→ n − m − 2 in S2, we end up with:

S1 + S2 = n

k

n−2
∑

m=0

τ [(Wk
t )n−m−1]τ [(Wk

t )m+1].

Gathering all the contributions above, we obtain (9). ��
Setting rn(t) := sn(t)/k2n = τ [(Wk

t /k2)n], we readily infer from (9):

Corollary 1 For any n ≥ 1,

∂t rn(t) = −nrn(t) + n

k
rn−1(t) + n

k

n−2
∑

j=0

rn− j−1(t)[r j (t) − r j+1(t)]. (10)

The moment relation (10) is an instance of the one derived in Corollary 6.1 in [7].
More precisely, let

Jt := PUt QU �
t P

be the free Jacobi process associated with the self-adjoint projections (P, Q). Viewed
as an operator in the compressed algebra (PA P, τ/τ(P)), its moments

mn(t) = τ(Jnt )

τ (P)
, n ≥ 1, m0(t) = 1,

satisfy the following differential system:

∂tmn(t) = −nmn(t) + nθmn−1(t) + nλθ

n−2
∑

j=0

mn− j−1(t)[m j (t) − m j+1(t)], (11)

where τ(P) = λθ ∈ (0, 1], τ (Q) = θ ∈ (0, 1]. Consequently, if λ = 1, θ = 1/k
then (10) and (11) coincide and in turn both moment sequences coincide provided that
mn(0) = rn(0) for all n ≥ 0.

2.3 Limit as k → ∞

Let U∞ ∈ A be a Haar unitary operator and assume that U∞ is free with {P, Q}. If
τ(P) = τ(Q) = 1/k then the spectral distribution of

J∞ := PU∞QU �∞P

in the compressed algebra (PA P, τ/τ(P)) is given by (see e.g. [7], p. 130):

μ̃k∞(dx) = 1

2π

√

4(k − 1)x − k2x2

x(1 − x)
1[0,4(k−1)/k2](x)dx .
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Its pushforward under the dilation x 	→ kx is readily computed as

μk∞(dx) = 1

2π

√

4k(k − 1)x − k2x2

kx − x2
1[0,4(k−1)/k](x)dx,

and converges weakly to the Marchenko–Pastur distribution of parameter one [6]:

νMP (du) := 1

2π

√

4 − u

u
1[0,4](u)du.

If we denote Wk∞ := (U 1∞ + · · · +Uk∞)(U 1∞ + · · · +Uk∞)� then we can rephrase the
weak convergence above as follows: for any n ≥ 0,

lim
k→∞ lim

t→∞
τ [(Wk

t )n]
kn

= lim
k→∞

τ [(Wk∞)n]
kn

=
∫ 1

0
unνMP (du) = 4n(1/2)n

(n + 1)! . (12)

The normalization by kn may be guessed from the moment-cumulant expansion:

τ [(Wk∞)n] =
∑

π∈NC(2n)

κπ [U∞,U �∞ . . . ,U∞,U �∞
︸ ︷︷ ︸

2n

]k|π |,

since partitions π ∈ NC(2n) with more than (n + 1) blocks have zero contribution.
Indeed, in any such partition, at least one block admits an odd number of elements in
which case the corresponding free �-cumulant vanishes (see [29], Proposition 15.1).

For fixed time t > 0, the situation becomes different since the free �-cumulants
of Ut admit a considerably more complicated structure compared with those of U∞
[9]. In this respect, we can prove the following limiting result under the stronger
normalization k2, which shows that reversing the order of the (k, t) limits in (12) does
not lead to a finite limit.

Proposition 2 For any n ≥ 0, t ≥ 0,

lim
k→∞ τ

(

(Wk
t )n

k2n

)

= [τ(Ut )]
2n = e−nt .

In particular, the free Jacobi process (PUt PU �
t P)t≥0 with τ(P) = 1/k converges

weakly as k → ∞ to the constant e−t in the compressed algebra.

Proof From (6), we readily see that the limit as k → ∞ of kτ(Jnt ) is given by the
(non crossing) partition with 2n blocks. Therefore,

lim
k→∞ τ

(

(Wk
t )n

k2n

)

= c1(Ut )c1(U
�
t ) . . . c1(Ut )c1(U

�
t )

︸ ︷︷ ︸

2n terms

.

Since c1(Ut ) = c1(U �
t ) = τ(Ut ) = e−t/2 (see e.g. [12] and references therein), the

proposition follows. ��
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80 Page 16 of 39 T. Hamdi, N. Demni

3 Analysis of themoments of the free Jacobi process

3.1 Moments binomial-type formula

For sake of simplicity, we restrict our study from now on to the free Jacobi process
(Jt )t≥0 associated with a single projection P . For those interested in a more general
treatment of the free Jacobi process associated with a pair of projections with arbitrary
traces, we recommend referring to [14–16]. Recall from [12] that when τ(P) = 1/2,
themoments of the free Jacobi process are linear combinations of those ofU2t . Indeed,
it was observed there that

2τ(Jnt ) = 1

22n

(

2n

n

)

+ 2

22n

n
∑

j=1

(

2n

n − j

)

τ [(SUt SU
�
t ) j ], (13)

where S = 2P−1 satisfies S = S� = S−1.Moreover, Lemme3.8 in [17] togetherwith
the semi-group property of (Ut )t≥0 show that the spectral distributions of SUt SU �

t
and of U2t coincide. More generally, write:

P = 1

k

k−1
∑

j=0

S j,k, S j,k := e2iπ j(1−P)/k .

Then S j,k is a unitary operator satisfying (S j,k)
k = 1 and

S j,k = 1 + (ω j,k − 1)(1 − P),

where ω j,k = e2iπ j/k is the kth root of unity. Set

Tk := kP − 1 =
k−1
∑

j=1

S j,k .

Then Tk is self-adjoint and (Tk)2 = k(k − 2)P + 1 = (k − 2)Tk + (k − 1)1. In this
respect, we shall prove the following generalization of (13):

Theorem 2 For any k ≥ 2 and any n ≥ 1,

mn(t) = kτ(Jt ) = mn(∞) + k

k2n

n
∑

j=1

(k − 1)n− j
(

2n

n − j

)

τ [(TkUtTkU
�
t ) j ],

where mn(∞) is the nth moment of J∞ in (PA P, kτ), given by (21) and (34).

The proof of this Theorem relies on the following four key lemmas.
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Lemma 1 Let a, b ∈ A be two operators satisfying a2 = (k − 2)a + (k − 1)1,
b2 = (k−2)b+ (k−1)1. Then, the expansion of [(a+1)(b+1)]n is uniquely written
as:

[(1 + a)(1 + b)]n = mn1 +
n

∑

j=1

cn, j (ab)
j +

n−1
∑

j=1

dn, j (ba) j

+
n−1
∑

j=0

en, j (ab)
j a +

n−1
∑

j=0

fn, j (ba) j b (14)

for some integer sequences mn, (cn, j ), (dn, j ), (en, j ), ( fn, j ) satisfying

mn = fn,0 = en,0,

cn, j = fn, j−1 = en, j−1, 1 ≤ j ≤ n,

dn, j = cn, j+1, 1 ≤ j ≤ n − 1.

Proof For sake of clarity, we shall omit the notation 1 in front of the constant terms.
Firstly, the uniqueness follows from the fact that the expansion is a reduced expression.
Now, since a(a + 1) = (k − 1)(a + 1) then

(k − 1)[(a + 1)(b + 1)]n = a[(1 + a)(1 + b)]n

= mna +
n

∑

j=1

cn, j a(ab) j +
n−1
∑

j=1

dn, j a(ba) j +
n−1
∑

j=0

en, j a(ab) j a +
n−1
∑

j=0

fn, j a(ba) j b

= mna + (k − 2)
n

∑

j=1

cn, j (ab)
j + (k − 1)

n−1
∑

j=0

cn, j+1(ba) j b +
n−1
∑

j=1

dn, j (ab)
j a

+
n−1
∑

j=0

en, j [(k − 2)(ab) j a + (k − 1)(ba) j ] +
n

∑

j=1

fn, j−1(ab)
j

= (k − 1)en,0 +
n

∑

j=1

[(k − 2)cn, j + fn, j−1](ab) j + (k − 1)
n−1
∑

j=1

en, j (ba) j

+ (mn + (k − 2)en,0)a +
n−1
∑

j=1

[(k − 2)en, j + dn, j ](ab) j a + (k − 1)
n−1
∑

j=0

cn, j+1(ba) j b.

Multiplying (14) by (k − 1) and using the uniqueness of the coefficients, we readily
get:

mn = en,0, cn, j = fn, j−1, 1 ≤ j ≤ n, en, j = dn, j , 1 ≤ j ≤ n − 1. (15)
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Similarly, b(b + 1) = (k − 1)(b + 1) so that

(k − 1)[(a + 1)(b + 1)]n = [(1 + a)(1 + b)]nb

= mnb +
n

∑

j=1

cn, j (ab)
j b +

n−1
∑

j=1

dn, j (ba) j b +
n−1
∑

j=0

en, j (ab)
j ab +

n−1
∑

j=0

fn, j (ba) j b2

= mnb + (k − 2)
n

∑

j=1

cn, j (ab)
j + (k − 1)

n−1
∑

j=0

cn, j+1(ab)
j a +

n−1
∑

j=1

dn, j (ba) j b

+
n

∑

j=1

en, j−1(ab)
j + (k − 2)

n−1
∑

j=0

fn, j (ba) j b + (k − 1)
n−1
∑

j=0

fn, j (ba) j

= (k − 1) fn,0 +
n

∑

j=1

[(k − 2)cn, j + en, j−1](ab) j + (k − 1)
n−1
∑

j=1

fn, j (ba) j

+ (mn + (k − 2) fn,0)b + (k − 1)
n−1
∑

j=0

cn, j+1(ab)
j a +

n−1
∑

j=1

[(k − 2) fn, j + dn, j ](ba) j b.

The uniqueness property again yields:

mn = fn,0, cn, j = en, j−1, 1 ≤ j ≤ n, fn, j = dn, j , 1 ≤ j ≤ n − 1. (16)

Combining (15) and (16), the lemma is proved. ��

According to Lemma 1, we only need to focus on the sequences (mn)n, (cn, j )1≤ j≤n .
The former is closely related to the moment sequence mn(∞) of μ̃∞. As to the latter,
it satisfies the following relations:

Lemma 2 For any 2 ≤ j ≤ n − 1,

cn+1, j = (k − 1)cn, j + cn, j−1 + (k − 1)2en, j + (k − 1)en, j−1, (17)

while

⎧

⎪

⎨

⎪

⎩

cn+1,n+1 = cn,n = 1

cn+1,n = cn,n−1 + (k − 1) + (k − 1)en,n−1

cn+1,1 = (k − 1)cn,1 + (k − 1)2en,1 + (k − 1)en,0 + mn

. (18)

Proof Follows readily from

[(1 + a)(1 + b)]n+1 = [(1 + a)(1 + b)]n(1 + a + ab),

123



Summing free unitary Brownian motions with applications... Page 19 of 39 80

together with the identities:

(ab) j = (ab) j−1(ab),

(ab) j b = (k − 2)(ab) j + (k − 1)(ab) j−1a,

((ab) j−1a)b = (ab) j ,

((ab) j a)a = (k − 2)(ab) j a + (k − 1)(ab) j ,

((ab) j a)ab = (k − 2)(ab) j+1 + (k − 1)(ab) j b

= (k − 2)(ab) j+1 + (k − 1)(k − 2)(ab) j + (k − 1)2(ab) j−1a.

��

Note that Lemma (1) allows to rewrite (17) and (18) as

{

cn+1, j = 2(k − 1)cn, j + cn, j−1 + (k − 1)2cn, j+1, 2 ≤ j ≤ n + 1,

cn+1,1 = (2k − 1)cn,1 + (k − 1)2cn,2,
(19)

where we set cn, j = 0, j > n. Next, we need the following routine computations to
prove Lemma 4 below and which give our first formula for mn(∞):

Lemma 3 For any n ≥ 1, we have

mn(∞) − mn+1(∞) = (k − 1)n+1

k2n+1 Cn, (20)

where Cn is the nth Catalan number. In particular,

mn(∞) = 1 −
n−1
∑

j=0

(k − 1) j+1

k2 j+1 C j . (21)

Proof

mn(∞) − mn+1(∞) = 1

2π

∫

xn−1/2
√

4(k − 1) − k2x1[0,4(k−1)/k2](x)dx

= 22n+2(k − 1)n+1

2πk2n+1

∫

xn−1/2
√
1 − x1[0,1](x)dx

= 22n(k − 1)n+1

√
πk2n+1

�(n + 1/2)

(n + 1)!
= (k − 1)n+1

k2n+1

(2n)!
(n + 1)!n! = (k − 1)n+1

k2n+1 Cn .

The expression of mn(∞) follows. ��
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Remark 1 Taking the expectation in (14), we infer that mn(∞) = mn/k2n−1. Conse-
quently, the last relation may be written as

k2mn − mn+1 = (k − 1)nCn,

or equivalently,

cn,1 − cn,2 = (k − 1)n−1

n + 1

(

2n

n

)

. (22)

This elementary identity will be used in the proof of Lemma 4 below.

Now, set

Kn,0 := 2(k − 1)

(

cn,1 + (k − 2)
n

∑

l=2

(k − 1)l−2cn,l

)

, n ≥ 1, (23)

where an empty sum is zero. Then

Lemma 4 For any n ≥ 1, we have

Kn,0 = (k − 1)n
(

2n

n

)

. (24)

Proof We proceed by induction: K1,0 = 2(k − 1)c1,1 = 2(k − 1). Next, assume the
result is valid up to order n and write (we recall that cn, j = 0, j > n):

Kn+1,0 = 2(k − 1)

(

cn+1,1 + (k − 2)
n+1
∑

l=2

(k − 1)l−2cn+1,l

)

= 2(k − 1)

(

(2k − 1)cn,1 + (k − 1)2cn,2 + (k − 2)
n+1
∑

l=2

(k − 1)l−2 [

2(k − 1)cn,l

+cn,l−1 + (k − 1)2cn,l+1

])

= 2(k − 1)

(

(2k − 1)cn,1 + (k − 1)2cn,2 + 2(k − 2)
n

∑

l=2

(k − 1)l−1cn,l

+ (k − 2)
n

∑

l=1

(k − 1)l−1cn,l + (k − 2)
n

∑

l=3

(k − 1)l cn,l+1

)

= 2(k − 1)

(

3(k − 1)cn,1 + (k − 1)cn,2 + 4(k − 2)
n

∑

l=2

(k − 1)l−1cn,l

)

= 4(k − 1)Kn,0 − 2(k − 1)2(cn,1 − cn,2).
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Appealing to the induction hypothesis and to the identity (22), we end up with

Kn+1,0 =4(k − 1)(k − 1)n
(

2n

n

)

− 2(k − 1)2
(k − 1)n−1

n + 1

(

2n

n

)

=(k − 1)n+1
(

2n + 2

n + 1

)

,

as desired. ��
We are now ready to prove Theorem 2.

Proof of Theorem 2 Weapply Lemma 1 to a = Tk and b = UtTkU �
t and take the expec-

tation with respect to τ . By the trace property and the fact that τ(Tk) = τ(UtTkU �
t ) =

0, we have

τ((ab) j ) = τ((ba) j ), τ ((ab) j a) = (k − 2)
j

∑

l=1

(k − 1) j−lτ((ab)l) = τ((ba) j b),

whence

τ
([(1 + Tk)(1 +UtTkU

�
t )]n) =mn +

n
∑

j=1

Kn, jτ((TkUtTkU
�
t ) j ) (25)

where

Kn, j =
{

cn, j + dn, j + (k − 2)
∑n−1

l= j (k − 1)l− j (en,l + fn,l), 1 ≤ j ≤ n − 1

1, j = n
.

(26)

Equivalently, Lemma 1 again entails:

Kn, j = cn, j + cn, j+1 + 2(k − 2)
n−1
∑

l= j

(k − 1)l− j cn,l+1

= cn, j + cn, j+1 + 2(k − 2)
n

∑

l= j+1

(k − 1)l−( j+1)cn,l , 1 ≤ j ≤ n.

Appealing further to (19), we obtain

Kn+1, j = (k − 1)2Kn, j+1 + 2(k − 1)Kn, j + Kn, j−1, 1 ≤ j ≤ n + 1, (27)

with the convention Kn, j = 0, j > n and with Kn,0 given by (23). Finally, (27) is
satisfied by the sequence

(k − 1)n− j
(

2n

n − j

)
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as readily seen from the identity

(

n

j

)

+
(

n

j + 1

)

=
(

n + 1

j + 1

)

.

Moreover, Lemma 4 and the obvious value Kn,n = 1, n ≥ 1, show that the boundary
conditions coincide, whence we deduce:

Kn, j = (k − 1)n− j
(

2n

n − j

)

.

Noting that

τ [(PUt PU
�
t )n] = 1

k2n
τ
([(1 + Tk)(1 +UtTkU

�
t )]n),

we are done. ��

Remark 2 (Combinatorial approach) Applying the moment formula with product as
entries, it follows that:

τ(Jnt ) =
∑

NC(2n)

κπ (P, . . . , P
︸ ︷︷ ︸

2n

)τK (π)(Ut ,U
�
t , . . . ,Ut ,U

�
t )).

When τ(P) = 1/2, it is known that the free cumulants of P are given by ([29],
Exercise 11.35):

τ2 j+1(P) = δ j0

2
, τ2 j (P) = (−1) j−1

22 j
C j−1. (28)

It would be interesting to recover (13) using these formulas together with properties
of non crossing partitions. More generally, we can prove (see “Appendix B”) that if
P is a self-adjoint projection with τ(P) = α, then

κ1(P) = α, κn(P) = 1

2(2n − 1)

[

Pn−2(1 − 2α) − Pn(1 − 2α)
]

, n ≥ 2. (29)

where (Pn)n≥0 is the family of Legendre polynomials defined through the Gauss
hypergeometric function by:

Pn(x) = 2F1

(

−n, n + 1, 1; 1 − x

2

)

, x ∈ [−1, 1].
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3.2 pde for themoment generating function

Let

Mt,k(z) := k
∑

n≥0

τ(Jnt )zn, ρt,k :=
∑

n≥1

τ [(TkUtTkU
�
t )n] zn

(k − 1)n
,

be the moment generating functions of Jt in the compressed space (PA P, kτ) and
of TkUtTkU �

t in (A , τ ). Both series have positive convergence radii since the corre-
sponding operators are bounded. From Theorem 2, we deduce the following relation:

Corollary 2 For any k ≥ 2 and any t > 0,

Mt,k(z) = M∞,k(z) + k2
√

k2 − 4(k − 1)z
ρt,k

(

α

[

4(k − 1)z

k2

])

,

where

M∞,k(z) :=
∑

n≥0

mn(∞)zn = 2 − k + √

k2 − 4(k − 1)z

2(1 − z)
, |z| < 1, (30)

is the moment generating function of J∞ and

α(z) = 1 − √
1 − z

1 + √
1 − z

, z ∈ C \ [1,∞[.

Proof It is obvious from Theorem 2 that

Mt,k(z) = M∞,k(z) + k
∑

n≥1

((k − 1)z)n

k2n

n
∑

j=1

(

2n

n − j

)

τ [(TkUtTkU �
t ) j ]

(k − 1) j
.

The expression of M∞,k is already known (see e.g. section 5 in [7]). Now, recall the
following result ([25], p.357): if (an)n≥0, (bn)n≥0 are two real sequences satisfying

bn =
n

∑

j=0

(

2n

n − j

)

a j ,

then

∑

n≥0

bn
wn

4n
= 1 + α(w)

1 − α(w)

∑

n≥0

an[α(w)]n
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whenever both series converge absolutely. Applying this result with

a0 = b0 = 0, a j = τ [(TkUtTkU �
t ) j ]

(k − 1) j
, j ≥ 1, w = 4(k − 1)z

k2
,

and noting that

1 + α(w)

1 − α(w)
= 1√

1 − w
, w ∈ C \ [1,∞[,

conclude the proof. ��
From this corollary, we can derive a pde for ρt,k :

Proposition 3 The moment generating function ρt,k(z) satisfies the pde:

∂tρt,k(z) = −z∂z

[

ρt,k(z) + 4(k − 1) − k2α−1(z)

4(k − 1)(1 − α−1(z))
ρ2
t,k(z)

]

, (31)

in a neighborhood of the origin with the initial condition:

ρ0,k(z) = (k − 1)z(1 − z)

(k − 1 − z)(1 + z − kz)
.

Proof Let

Gt,k(z) := 1

z
Mt,k

(

1

z

)

, |z| > 1,

be the Cauchy–Stieltjes transform of the free Jacobi process PUt PU �
t P with τ(P) =

1/k, and recall from [7] that it satisfies the pde:

∂tGt,k(z) = 1

k
∂z[(k − 2)zGt,k(z) + z(z − 1)G2

t,k(z)].

Then the variable change z 	→ 1/z shows that

∂t Mt,k(z) = − z

k
∂z[(k − 2)Mt,k(z) + (1 − z)M2

t,k(z)]. (32)

Now set Rt,k := Mt,k − M∞,k , then we further get:

∂t Rt,k(z) = − z

k
∂z[(k − 2)Rt,k(z) + 2(1 − z)Rt,k(z)M∞,k + (1 − z)R2

t,k(z)]
= − z

k
∂z[

√

k2 − 4(k − 1)zRt,k(z) + (1 − z)R2
t,k(z)],
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where the first equality follows from the fact that M∞,k is a stationary solution of the
pde (32):

∂z[(k − 2)M∞,k(z) + (1 − z)M2∞,k(z)] = 0,

and the second one follows from (30). Noting that

√

k2 − 4(k − 1)zRt,k(z) = k2ρt,k

(

α

[

4(k − 1)z

k2

])

,

it follows that the map (t, z) 	→ ρt,k(α(z)) satisfies:

∂tρt,k(α(z)) = −z
√
1 − z∂z

[

ρt,k(α(z)) + 4(k − 1) − k2z

4(k − 1)(1 − z)
ρ2
t,k(α(z))

]

.

Next, α is a one-to-one holomorphic map in C \ [1,∞[ onto the open unit disc with
inverse given by:

α−1(z) = 4z

(1 + z)2
.

Moreover

α′(z) = α(z)

z
√
1 − z

whence

[α−1]′(z) = α−1(z)
√
1 − α−1(z)

z
.

The sought pde satisfied by ρt,k(z) follows after few computations. Finally,

ρ0,k(z) =
∑

n≥1

τ [(Tk)2n] zn

(k − 1)n
.

Letting hn := τ [(Tk)n], n ≥ 0, then we can easily prove using the relation T 2
k =

(k − 2)Tk + (k − 1)1 that

hn+2 = (k − 2)hn+1 + (k − 1)hn, h0 = 1, h1 = 0.

This is a generalized Fibonacci sequence for which a Binet formula already exists
[19]:

hn = (k − 1)n + (−1)n(k − 1)

k
, n ≥ 0.
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As a result,

ρ0,k(z) =
∑

n≥1

h2n
zn

(k − 1)n
= (k − 1)z(1 − z)

(k − 1 − z)(1 + z − kz)
.

The proposition is proved. ��
Setting ηt,k(z) := ρt,k(et z) then

∂tηt,k = ∂tρt,k(e
t z) + et z∂zρt,k(e

t z),

yielding

∂tηt,k = −z∂z

[

4(k − 1) − k2α−1(et z)

4(k − 1)(1 − α−1(et z))
η2t,k(z)

]

. (33)

In particular, if k = 2 then

∂tηt,2(z) = −z∂z
[

η2t,2(z)
]

,

while

η0,2(z) = z

1 − z
.

In this case, it is known that ηt,2 is the moment generating function of the free unitary
Brownian motion etU2t [12]:

ηt,2(z) =
∑

n≥1

zn

n
L(1)
n−1(2nt)

where L(1)
n−1 is the (n − 1)th Laguerre polynomial of parameter one. More generally

(i.e. for k ≥ 3), the analysis of the characteristic curves of (31) is quite involved as
shown in the following paragraph.

3.3 Characteristic curves of the pde

Denote

λk(z) := 4(k − 1) − k2α−1(z)

4(1 − α−1(z))
,

so that the pde (31) reads:

∂tρt,k(z) = −z∂z

[

ρt,k(z) + λk(z)

(k − 1)
ρ2
t,k(z)

]

.
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Elementary transformations show that ρ̃t,k(z) := [ρt,k(z)]/(k − 1) satisfies

∂t ρ̃t,k(z) = −z∂z
[

ρ̃t,k(z) + λk(z)ρ̃
2
t,k(z)

]

.

Let z be fixed in a neighborhood of the origin. Then a characteristic curve starting at
z is locally the unique solution of the Cauchy problem:

z′k(t) = z(t)[1 + 2λk(zk(t)) fk(t)], zk(0) = z,

where we set fk(t) := ρ̃t,k(zk(t)). Along such curve, it holds that:

( fk)
′(t) = −z(t)(λk)

′(zk(t)) f 2k (t),

fk(0) = ρ̃t,k(z) = z(1 − z)

(k − 1 − z)(1 + z − kz)
.

Now, set

H(u) := u + 1

u − 1

and note that H is an involution (H−1 = H), H ′(u) = −(H(u) − 1)2/2 and

λk(z) = 1

4
[k2 − (k − 2)2H2(z)].

Then the curve defined by yk(t) := H(zk(t)) solves locally around −1 the Cauchy
problem:

y′
k(t) = 1 − y2k (t)

2

[

1 + k2 − (k − 2)2y2k (t)

2
fk(t)

]

,

yk(0) = z + 1

z − 1
:= y.

Besides,

( fk)
′(t) = − (k − 2)2

4
yk(t)H(yk(t))(yk(t) − 1)2 f 2k (t)

= (k − 2)2(1 − y2k (t))

4
yk(t) f

2
k (t).

Consequently,

y′
k(t)yk(t)

(k − 2)2(1 − y2k (t))

4
f 2k (t) = 1 − y2k (t)

2

[

1 + k2 − (k − 2)2y2k (t)

2
fk(t)

]

( fk)
′(t),
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or equivalently

(k − 2)2

4

[

(y2k )
′(t) f 2k (t) + y2k (t)( f

2
k )′(t)

]

=
[

1 + k2

2
fk(t)

]

( fk)
′(t).

This equation is integrable and yields:

(k − 2)2

4

[

(y2k )(t) f
2
k (t) − y2k (0)( f

2
k )(0)

] =
[

k2

4
f 2k (t) + fk(t) − k2

4
f 2k (0) − fk(0)

]

.

Written differently leads to the functional equation:

λ̃k(y(t)) f
2
k (t) + fk(t) − λ̃k(y) f

2
k (0) − fk(0) = 0,

where we simply wrote

λ̃k(y) := 1

4
[k2 − (k − 2)2y2] = λk(z).

Setting gk(0) := λ̃k(y) f 2k (0) + fk(0), then one has locally:

fk(t) = −1 +
√

1 + 4gk(0)λ̃k(yk(t))

2λ̃k(yk(t))
,

where the principal determination of the square root is considered. It follows that:

y′
k(t) =

√

1 + 4gk(0)λ̃k(yk(t))
1 − y2k (t)

2

= 1 − y2k (t)

2

√

1 + k2gk(0) − (k − 2)2gk(0)(y2k (t)).

Now, consider the indefinite integral

IA,B(u) = 2
∫ u du

(1 − u2)
√
A − Bu2

for two indeterminates (A, B) independent of the variable u. Then

IA,B(u) = 1√
A − B

log

[

(
√
A − Bu2 + √

A − Bu)2

A(1 − u2)

]

,

provided the square root is well-defined (we can take any determination of the loga-
rithm). Taking A = 1 + k2gk(0), B = (k − 2)2gk(0), one gets

IA,B(y(t)) − IA,B(y) = t,
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or after exponentiating this identity:

(
√

A − B(yk(t))2 + √
A − Byk(t))2

A(1 − yk(t)2)
= e

√
A−Bt (

√

A − By2 + √
A − By)2

A(1 − y2)
.

Noting that

fk(0) = − 1 + y

2λ̃k(y)
, 4gk(0) = y2 − 1

λ̃k(y)
,

then A − By2 = 1 + 4gk(0)λ̃k(y) = y2 which in turn entails:

(
√

A − B(yk(t))2 + √
A − Byk(t))2

A(1 − yk(t)2)
= e

√
A−Bt y

2(1 − √
A − B)2

A(1 − y2)

= e
√
A−Bt 1 − √

A − B

1 + √
A − B

.

If we denote the LHS of the second equality ξ2t (
√
A − B), then lengthy computations

yield:

y2k (t) = A(1 − ξ2t (
√
A − B))2

A(1 + ξ2t (
√
A − B))2 − 4Bξ2t (

√
A − B)

= A

(A − B)H2[ξ2t (
√
A − B)] + B

= 1 + k2gk(0)

(1 + 4(k − 1)gk(0))[H2[ξ2t (√1 + 4(k − 1)gk(0)] − 1] + (1 + k2gk(0))
.

The map (−ξ2t ) is the inverse of the Herglotz transform 1 + 2ηt,2 of the spectral
distribution of U2t in a neighborhood of u = 1. As a matter of fact, the map

u 	→ 1 + k2u

(1 + 4(k − 1)u)[H2[ξ2t (√1 + 4(k − 1)u] − 1] + (1 + k2u)

is a locally invertible in a neighborhood of the origin u = 0. Let ζ2t be its inverse then

gk(0) = ζ2t (y
2
k (t)),

whence we end up with:

fk(t) = −1+
√

1+4ζ2t (y2k (t))λ̃k(yk (t))

2λ̃k (yk (t))

= 2 ζ2t [H2(zk (t))]
1+

√
1+ζ2t [H2(zk (t))][k2−(k−2)2H2(zk (t))]

= ρ̃t,k(zk(t)).
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Remark 3 If k = 2 then

y22 (t) = 1

H2[ξ2t (√1 + 4g2(0)] = 1

H2[ξ2t (−y)] = H2[−ξ2t (−y)].

Thus, it holds locally:

y2(t) = H [−ξ2t (−y)] ⇒ z2(t) = (−ξ2t )

(

1 + z

1 − z

)

= zet(1+z)/(1−z).

For fixed t > 0, the map z 	→ z2(t) is known as the �-transform of the spectral
distribution of U2t [1].

4 Application to quantum information: asymptotics of the average
purity and of the entanglement entropy

Starting from a pure state ψ in a bipartite quantum system HA ⊗ HB , the reduced
state corresponding toHA, say ρA ∈ MN (C), is in general mixed. The average purity
of ρA is then defined by tr(ρ2

A) and ranges in the interval [1/N , 1] whose endpoints
correspond respectively to the completely mixed and to pure states.

As far as the dynamical density matrix ˜Wk
t (N ) is concerned, we can use Theorem

(2) together with the freeness property to compute the large-size asymptotic of its
average purity (after time-rescaling t 	→ t/N in order to make the matrix model
converge). Straightforward computations then yield the following expression:

E

{

tr
(

[˜Wk
t/N (N )]

)2
}

≈ 1

N
τ [(Wk

t )2], N → +∞,

= k2

N [1 + (k − 1)e−t ]2m2(t)

= (2k − 1) + 4(k − 1)2e−t + (k − 1)[k2 − (k − 1)(2t + 3)]e−2t

kN [1 + (k − 1)e−t ]2 .

Letting t → +∞, we recover the stationary asymptotic average purity [2− (1/k)]/N
computed in [6]. Fixing t > 0 and letting k → +∞, we rather get:

e−2t = lim
k→+∞m2(t).

The entanglement entropy of the bipartite system is defined as the von Neumann
entropy:

−tr (ρA ln [ρA]) ,

where ln(ρ) is defined through functional calculus. Since ˜Wk
t/N (N ) converges in oper-

ator norm to ˜Wk
t then we define the asymptotic entanglement entropy of ˜Wk

t/N (N ) as
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N → ∞ by:

−τ
(

˜Wk
t ln

[

˜Wk
t

])

,

where we use again the functional calculus. To the best of our knowledge, the asymp-
totic entanglement entropy of ˜Wk∞ has never been computed though it is given by the
integral:

−
∫

x ln(x)μk∞(dx) = − 1

2π

∫

ln(x)

√

4k(k − 1)x − k2x2

k − x
1[0,4(k−1)/k](x)dx

= k

2π

∫

− ln(x)

√

4(k − 1)x − k2x2

1 − x
1[0,4(k−1)/k2](x)dx

Expanding

− ln(x)

1 − x
=

∑

n≥0

(1 − x)n

n + 1
,

one obtains (using Tonelli Theorem) the following expression of the asymptotic entan-
glement entropy in the stationary regime t = +∞:

−
∫

x ln(x)μk∞(dx) = [4(k − 1)]2
2k2π

∑

n≥0

1

n + 1

∫ (

1 − 4(k − 1)

k2
x

)n
√

x(1 − x)1[0,1](x)dx

= (k − 1)2

k2
∑

n≥0

1

n + 1
2F1

(

−n,
3

2
, 3; 4(k − 1)

k2

)

,

where 2F1 is the Gauss hypergeometric function and the second equality follows
from its Euler integral representation ([13], p. 59). In particular, when k = 2, the
corresponding entropy reduces to (one either uses the Beta integral or equivalently the
Gauss hypergeometric Theorem):

−
∫

x ln(x)μ2∞(dx) = �(3)

4�(3/2)

∑

n≥0

�(n + (3/2))

(n + 1)�(n + 3)
= 1√

π

∑

n≥0

�(n + (3/2))

(n + 1)�(n + 3)
.

For fixed time t > 0, the spectral distribution of Jt (and in turn of ˜Wk
t ) is far from

being as simple as in the stationary regime, unless k = 2.Nonetheless, we can compute
the asymptotic entanglement entropy of ˜Wk

t appealing to Theorem 2 and using the
expansion

−x ln(x) = 1 − x +
∑

m≥2

1

m(m − 1)
(1 − x)m, 0 ≤ x ≤ 1,
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which follows readily from

ln(x) = −
∑

m≥1

(1 − x)m

m
.

To this end, we need the following lemma:

Lemma 5 For any m ≥ 2,

τ [(1 − ˜Wk
t )m] = τ

[

(

1 − ˜Wk∞
1 + (k − 1)e−t

)m
]

+ k
m

∑

j=1

(−1) j

k2 j

(

m

j

)

2F1

(

j − m, j + 1

2
, 2 j + 1; 4(k − 1)

k2

)

τ [(TkUtTkU
�
t ) j ].

Proof We use the binomial Theorem together with Theorem 2 to write

τ [(1 − ˜Wk
t )m ] = 1 +

m
∑

n=1

(

m

n

)

(−1)nτ [(˜Wk
t )n]

= 1 +
m

∑

n=1

(

m

n

)

(−k)n

[1 + (k − 1)e−t ]n mn(t)

= τ

[

(

1 − ˜Wk∞
1 + (k − 1)e−t

)m
]

+ k
m

∑

n=1

(

m

n

)

(−1)n

k2n

n
∑

j=1

(k − 1)n− j
(

2n

n − j

)

τ [(TkUt TkU
�
t ) j ]

= τ

[

(

1 − ˜Wk∞
1 + (k − 1)e−t

)m
]

+ k
m

∑

j=1

τ [(TkUt TkU
�
t ) j ]

m
∑

n= j

(−1)n

k2n
(k − 1)n− j

(

m

n

)(

2n

n − j

)

.

Now the duplication formula for the Gamma function entails:

(2n)!
n! = 4n

�(n + 1/2)√
π
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so that

m
∑

n= j

(−1)n(k − 1)n− j
(

m

n

)(

2n

n − j

)

= m!√
πk2 j

m− j
∑

n=0

(−4)n+ j�(n + j + 1/2)

(m − j − n)!n!�(n + 2 j + 1)

(k − 1)n

k2n

= m!(−4) j�( j + 1/2)

(m − j)!√π�(2 j + 1)k2 j

m− j
∑

n=0

(

m − j

n

)

(−1)n( j + 1/2)n
(2 j + 1)n

[

4(k − 1)

k2

]n

= (−1) j

k2 j

(

m

j

) m− j
∑

n=0

( j − m)n

n!
( j + 1/2)n
(2 j + 1)n

[

4(k − 1)

k2

]n

where we used the Pochhammer symbol:

(x)n := �(x + n)

�(x)
, x > 0, ( j − m)n = (−1)n

(m − j)!
(m − j − n)! , 0 ≤ n ≤ m − j .

Since ( j − m)n = 0 for any n > m − j, 1 ≤ j ≤ m, then we recognize the Gauss
hypergeoemetric (terminating) series:

m− j
∑

n=0

( j − m)n

n!
( j + 1/2)n
(2 j + 1)n

[4(k − 1)]n = 2F1

(

j − m, j + 1

2
, 2 j + 1; 4(k − 1)

k2

)

and the lemma is proved. ��

From this lemma, it follows that the asymptotic entanglement entropy may be written
as:

−τ
(

˜Wk
t ln

[

˜Wk
t

])

= ln(1 + (k − 1)e−t ) − (k − 1)e−t

1 + (k − 1)e−t

− 1

1 + (k − 1)e−t
τ
(

˜Wk∞ ln
[

˜Wk∞
])

+ k
∑

m≥2

1

m(m − 1)

m
∑

j=1

(−1) j

k2 j

(

m

j

)

2

F1

(

j − m, j + 1

2
, 2 j + 1; 4(k − 1)

k2

)

τ [(TkUtTkU
�
t ) j ].
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Equivalently,

1

1 + (k − 1)e−t
τ
(

˜Wk∞ ln
[

˜Wk∞
])

− τ
(

˜Wk
t ln

[

˜Wk
t

])

= ln(1 + (k − 1)e−t ) − (k − 1)e−t

1 + (k − 1)e−t

+k
∑

m≥2

1

m(m − 1)

m
∑

j=1

(−1) j

k2 j

(

m

j

)

2F1

×
(

j − m, j + 1

2
, 2 j + 1; 4(k − 1)

k2

)

τ [(TkUtTkU
�
t ) j ].

In particular, when k = 2, the Gauss hypergeometric Theorem entails:

2F1

(

j − m, j + 1

2
, 2 j + 1; 1

)

= ( j + 1/2)m− j

(2 j + 1)m− j
= �(m + 1/2)�(2 j + 1)

�( j + 1/2)�(m + j + 1)

= �(m + 1/2)4 j j !√
π�(m + j + 1)

,

whence

1

1 + e−t
τ
(

˜W 2∞ ln
[

˜W 2∞
])

− τ
(

˜W 2
t ln

[

˜W 2
t

])

= ln(1 + e−t ) − e−t

1 + e−t

+2
∑

m≥2

m!�(m + 1/2)√
πm(m − 1)

m
∑

j=1

(−1) j

�(m + j + 1)(m − j)!τ [(T2UtT2U
�
t ) j ].

Moreover, T2UtT2U �
t is unitary and is distributed as U2t so that:

τ [(T2UtT2U
�
t ) j ] = e− j t

j
L(1)
j−1(2 j t), j ≥ 1,

where L(1)
j−1 is the Laguerre polynomial of index one.

5 Concluding remarks

In this paper, we introduced a dynamical randomdensitymatrix built out of k ≥ 2 inde-
pendent unitary Brownian motions whose large size limit has, up to a normalization,
the same moments as those of the free Jacobi process PUt PU �

t P (in the compressed
algebra) subject to τ(P) = 1/k. Motivated by our previous results proved in [12] valid
for k = 2, we derived for any k ≥ 2 a binomial-type expansion for these moments
where the non normal operator Tk (except when k = 2) plays a key role and extends the
orthogonal symmetry S = 2P − 1 associated with P . We also provided expressions
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for the average purity and for the entanglement entropy of the large-size limiting den-
sity matrix at fixed time t > 0. Our expression for this entropy involves the moments
τ [(TkUtTkU �

t ) j ], j ≥ 0, which do not seem to admit a simple form unless k = 2,
as suggested by the analysis of the characteristic curves of the pde satisfied by their
generating function.

On the other hand, the Lebesgue decomposition of the spectral distribution of Jt for
arbitrary orthogonal projections (P, Q) was obtained in [14]. Specializing Theorem
1.1. there to P = Q with τ(P) = 1/k, we deduce that the corresponding distribution
admits a density (with respect to Lebesgue measure) of the form:

μk
t (x) = 1

2π

gkt
(

2 arccos(
√
x)

)

√
x − x2

,

where gkt is the density of the spectral distributionof theunitary operator SUt SU �
t , τ (S) =

2τ(P) − 1 = (2 − k)/k. Similarly, gkt admits a very complicated expression unless
k = 2.

Finally, it was recently proved in [11] (see eq. (3) there) that

τ [(PQP)n] − τ [((1 − P)(1 − Q)(1 − P))n] = τ(P) + τ(Q) − 1,

for any self-adjoint projections (P, Q) with arbitrary traces τ(P), τ (Q),∈ (0, 1). In
particular, if Q = Ut PU �

t and τ(P) = 1/k then we readily deduce:

τ [((1 − P)Ut (1 − P)U �
t (1 − P))n] = τ [(PUt PU

�
t P)n] + 1 − 2

k
.

Consequently, the moments of the free Jacobi process associated with 1 − P may be
deduced from those of the free Jacobi process associated with P:

k

k − 1
τ [((1 − P)Ut (1 − P)U �

t (1 − P))n] = k

k − 1
τ [(PUt PU

�
t P)n] + k − 2

k − 1
.
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Appendix A. Moments of stationary distribution

In this appendix, we derive another expression of

mn(∞) =
∫

xnμ̃k∞(dx) = 1

2π

∫

xn−1/2

√

4(k − 1) − k2x

(1 − x)
1[0,4(k−1)/k2](x)dx .
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To the best of our best knowledge, formula (34) below never appeared in literature.
Compared to (21), it has the merit to separate the case k = 2 corresponding to the
arcsine distribution from other values k ≥ 3. Our main ingredients are two properties
satisfied by the Gauss hypergeometric function.

To proceed, perform the variable change x = 4(k − 1)y/k2 to write:

mn(∞) = 4n+1(k − 1)n+1

2πk2n+1

∫

yn−1/2
√
1 − y

1 − 4(k − 1)y/k2
1[0,1](y)dy

= 4n(k − 1)n+1

√
πk2n+1

�(n + 1/2)

�(n + 2)
2F1

(

1, n + 1

2
, n + 2; 4(k − 1)

k2

)

= 4n(k − 1)n+1

n!k2n+1

{

(−1)n
√
1 − z

dn

dzn

[

(1 − z)n−1/2
2F1

(

1

2
, 1, 2; z

)]}

z=4(k−1)/k2

= 2
4n(k − 1)n+1

n!k2n+1

{√
1 − z(−1)n

dn

dzn

[

(1 − z)n−1/2

1 + √
1 − z

]}

z=4(k−1)/k2

= 2
4n(k − 1)n+1

n!k2n+1

{√
z
dn

dzn

[

zn−1/2

1 + √
z

]}

z=[(k−2)/k]2

= 2
4n(k − 1)n+1

n!k2n+1

{√
z
dn

dzn

[

zn−1/2 − zn

1 + √
z

]}

z=[(k−2)/k]2

= 2(k − 1)n+1

k2n+1

{(

2n

n

)

− 4n

n!
√
z
dn

dzn

[

zn

1 + √
z

]}

z=[(k−2)/k]2
.

Here, the second equality follows from the Euler integral representation of the Gauss
hypergeometric function, the third and fourth ones follow from the variational formula
(25), p.102 and formula (6), p.101 in [13]. Using direct computations, we readily see
that

dn

dzn

[

zn

1 + √
z

]

= Pn(
√
z)

2n(1 + √
z)n+1

for some polynomial of degree n. For instance

P0(x) = 1,P1(x) = x + 2,P2(x) = 3x2 + 9x + 8,

P3(x) = 15x3 + 60x2 + 87x + 48.

Consequently,

mn(∞) = 2(k − 1)n+1

k2n+1

{(

2n

n

)

− (k − 2)

2n!(k − 1)n+1 k
nPn

(

k − 2

k

)}

, (34)

which reduces for k = 2 to the known formula:

mn(∞) = (2n)!
22n(n!)2 .
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Appendix B. Free cumulants of an orthogonal projection

The first part of the proof of (29) is a routine computation in free probability theory
and we refer the reader to [18] for further details on this machinery. Start with the
Cauchy transform of P:

τ [(z − P)−1] = α

z − 1
+ 1 − α

z
= z + α − 1

z(z − 1)
, z /∈ {0, 1}.

Next, consider the equation

yz2 − z(y + 1) + 1 − α = 0,

for y lying in a neighborhood of zero. Then the K -transform of P reads:

K (y) = y + 1 + √

y2 + 1 − 2y(1 − 2α)

2y
,

and in turn, its R-transform is given by

R(y) = K (y) − 1

y
= 1

2

[

1 +
√

y2 + 1 − 2y(1 − 2α) − 1

y

]

.

It remains to write down the Taylor expansion of the function:

fα : y 	→
√

y2 + 1 − 2y(1 − 2α) − 1

y
.

To this end, we appeal to the generating series of Legendre polynomials:

∞
∑

n=0

Pn(x)y
n = 1

√

1 + y2 − 2xy
, |y| < 1.

Indeed, setting β := 1 − 2α ∈ [−1, 1], one has

[y fα(y)]′ = (y − β)
∑

n≥0

Pn(β)yn

so that

fα(y) =
∑

n≥1

yn

n + 1
[Pn−1(β) − βPn(β)] − β

=
∑

n≥1

yn

2n + 1

[

Pn−1(β) − Pn+1(β)
] − β
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where the last equality follows from the recurrence relation:

(2n + 1)x Pn(x) = (n + 1)Pn+1(x) + nPn−1(x).

Extracting the Taylor coefficients of fα and recalling the definition

R(y) =
∑

n≥0

κn+1(P)yn

we get (29).
Note that since Legendre polynomials are orthogonal with respect to the uniform

distribution in [−1, 1], they are parity preserving. In particular,

P2n+1(0) = 0, P2n(0) = (−1)n
(1/2)n
n! ,

so that one recovers (28) after some computations.
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