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Abstract
In this short article, we propose a full large N asymptotic expansion of the probability
that the mth power of a random unitary matrix of size N has all its eigenvalues in a
given arc-interval centered in 1 when N is large. This corresponds to the asymptotic
expansion of a Toeplitz determinant whose symbol is the indicator function of several
intervals having a discrete rotational symmetry. This solves and improves a conjecture
left opened by the author in Marchal (Lett Math Phys 110:211–258, 2020). It also
provides a rare example of the explicit computation of a full asymptotic expansion
of a genus g > 0 classical spectral curve, including the oscillating non-perturbative
terms, using the topological recursion.
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1 Introduction and summary of the results

Toeplitz determinants of size N and their large N asymptotic expansions are classical
problems in probability in relation with the spectrum of random unitary matrices.
Indeed, it is well known that the Toeplitz determinant with symbol f :

DN ( f ) = det
(
Tp,q = tp−q( f )

)
1≤p,q≤N (1.1)
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with discrete Fourier coefficients given by:

tk( f ) = 1

2π

∫ 2π

0
f (eiθ )e−ikθdθ , ∀ k ∈ Z (1.2)

can be alternatively written as:

DN ( f ) = 1

(2π)N N !
∫

[−π,π ]N
dθ1 . . . dθN

(
N∏

k=1

f (eiθk )

)
∏

1≤p<q≤N

∣∣∣eiθp − eiθq
∣∣∣
2

(1.3)
In particular, the N -dimensional integrand corresponds to the distribution of the eigen-
values of a randomunitarymatrix of size N (i.e., theCircularUnitaryEnsemble (CUE))
with an external potential characterized by the symbol f . Toeplitz determinants can be
studied using orthogonal polynomials and Riemann–Hilbert problems (See [26] for a
recent and accessible overview). They are also determinantal point processes and thus
have strong relations with integrable systems (See [40] for a review) and Fredholm
determinants (See [5] and references therein). Situations similar to the case studied
in this article are [19] where the authors considered the probability for the sine point
process to have any number of gaps, while large gaps asymptotics in dimension two
(involving random normal matrices) have recently been studied in [9].

Many results regarding Toeplitz determinants are available in the literature since
the notion of Toeplitz determinants dates back to O. Toeplitz [46, 47] in 1907. The
first important result in the case of regular and strictly positive symbols are those of
Szegö [44] in 1915. These results have been refined by many authors [29, 30, 45, 48]
up to Johansson work [31] giving rise to the strong Szegö theorem:

ln DN ( f ) = N

2π

∫ 2π

0
ln f (eiθ ) dθ +

∞∑

j=1

j(ln f ) j (ln f )− j + o(1) (1.4)

whenever f satisfies
∑∞

j=1| j ||(ln f ) j |2 < +∞.
However, when the symbol is not regular enough or not strictly positive, the asymp-

totic expansion differs from the one above and much progress has been made during
the past decades in the study of these cases. For example, Fisher–Hartwig singularities
(i.e., isolated zeros or singular points on the unit circle) have been dealt with by many
authors [1, 4, 12, 16, 17, 28] using orthogonal polynomials and Riemann–Hilbert
problems.

The case of a symbol equal to the indicator function of an interval, i.e., f = 1[α,β],
corresponding to the gap probability in random unitary matrices, has been stud-
ied by H. Widom in [49] and refined in [18, 22]. Finally, the full asymptotic
expansion was presented in [37] (Theorem 2.3). Coefficients of the asymptotic
expansion are directly related to the output of the topological recursion defined
by B. Eynard and N. Orantin [25] applied to the genus 0 classical spectral curve
y2 = 1

cos2
( |β−α|

4

)
(1+x2)2

(
x2−tan2

( |β−α|
4

)) . Symbols supported on a single interval with

singular points inside the support have recently been studied in [32].
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Finally, in the past years, progress has been made in the case of a symbol supported
on a union of intervals (known as the multi-cut case). The theoretical form of the
asymptotic expansion was proved in [6, 8] generalizing similar results available for
the one-cut case [7]. The first leading coefficients have been obtained in the case of
two intervals [3, 10]. Leading terms, including the constant terms, have been obtained
in Airy and Sine kernels determinants on two large intervals in respectively [34] and
[27]. Oscillatory terms in the case of the Airy kernel have also been computed in [2].
When the symbol is an indicator function on a union of intervals, i.e., f = 1 m⋃

k=1
[αk ,βk ]

,

only the first two leading terms are known. In particular, a general formula for the
constant term is still missing and very few is known. In [37], a conjecture in the case
when the symbol has an additional discrete rotational symmetry was proposed for the
constant term.

The main result of this article is to prove the conjecture left opened in [37] and
propose a full large N asymptotic expansion of the Toeplitz determinant DN (m, ε)

with symbol fm,ε = 1m−1⋃

k=0

[
2πk
m − πε

m , 2πkm + πε
m

] in Theorem 2.1. The proof is based on a

combination of a result of B. Fahs [26] factorizing the initial Toeplitz determinant and
results of [37] in the one interval case. As a byproduct, we obtain the full large N
asymptotic expansion of the probability that themth power of a random unitary matrix
of size N denoted UN (i.e., a random Haar distributed N × N unitary matrix) has all
its eigenvalues closed to 1 (See Corollary 3.1). In the end, we may sum up our main
results by:

DN ( fm,ε) = P

(
||U m

N − IN ||2 ≤ √
2 sin

πε

2

)

= P

(
All eigenvalues of U m

N belong to
{
eit , t ∈ [−πε, πε]

})

N=n1m+n2=
n1→∞ n21m ln

(
sin

πε

2

)
+ 2n1n2 ln

(
sin

πε

2

)
− m

4
ln n1

+m

(
1

12
ln 2 − 3 ζ ′(−1)

)
− m

4
ln
(
cos

πε

2

)
+ n2 ln

(
sin

πε

2

)
− n2

4n1

−
∞∑

l=1

⎛

⎝mF (l+1)
Top. Rec.(ε) − n2

8l
+ n2

l−1∑

j=1

(
2l − 1

2 j − 1

)
F ( j+1)
Top. Rec.(ε)

⎞

⎠ 1

n2l1

+n2

∞∑

l=1

⎛

⎝− 1

4(2l + 1)
+

l∑

j=1

(
2l

2 j − 1

)
F ( j+1)
Top. Rec.(ε)

⎞

⎠ 1

n2l+1
1

+ o(n−∞
1 )

(1.5)

where ||.||2 is the Euclidean norm, N = n1m + n2 is the Euclidean division of N

by m and
(
F (k)
Top. Rec.(ε)

)

k≥0
are the free energies associated to the genus 0 classical

spectral curve

y2 = 1

cos2
(

πε
2

)
(1 + x2)2

(
x2 − tan2

(
πε
2

))
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computed by the topological recursion of [25] (See (2.8) for the first free energies that
are also presented in full details in [37]). Note also that the first terms of (1.5), up to
O
(
N−1

)
, where obtained by B. Fahs in [26].

This complements existing results on powers of random unitary matrices [11, 20,
21, 33, 36] and might lead to sharper control when no symmetry arise. The result is
also interesting for the topological recursion community. Indeed, the classical spectral
curve associated to the symbol fm,ε is of genus g = m − 1 (See Proposition 2.1).
Obtaining an explicit expression for the full asymptotic expansion of the partition
function of a classical spectral curve of strictly positive genus is known to be a very
difficult problem for which no other example are currently known. Thus, the present
article provides the first example of an arbitrary genus spectral curve for which the
full asymptotic expansion, including the non-perturbative oscillatory terms can be
computed up to any order by the means of topological recursion. In particular, it opens
the way to similar cases where discrete symmetries shall be used efficiently to reduce
an impractical strictly positive spectral curve problem to a mere implementation of
the topological recursion on a genus zero classical spectral curve.

2 Asymptotic expansion of Toeplitz determinants of an indicator
function with discrete rotational symmetry

2.1 Definitions and existing results

Definition 2.1 Let m ≥ 1, ε ∈ (0, 1) and N ≥ 1. Let C be the unit circle. We define:

Im(ε) =
m−1⋃

k=0

[
2πk

m
− πε

m
,
2πk

m
+ πε

m

]
, Cm(ε) = {eiθ , θ ∈ Im(ε)} ⊂ C

In other words, Cm(ε) corresponds to the union ofm arc-intervals of size 2πε
m centered

at
(
γk = e

2π ik
m

)m−1

k=0
. The corresponding Toeplitz determinant is defined by:

DN (m, ε) = 1

(2π)N N !
∫

Im (ε) N
dθ1 . . . dθN

∏

1≤p<q≤N

∣∣∣eiθp − eiθq
∣∣∣
2

= DN ( fm,ε) with fm,ε = 1Im (ε)

= det
(
Tp,q = tp−q(m, ε)

)
1≤p,q≤N

with t0(m, ε) = ε and tk(m, ε) = ε sinc
(

πεk
m

)
δk ≡ 0 [m] for k �= 0. Note in particular

that DN (1,mε) = DN (1[−πε,πε]) is independent of m. By convention, we also set
D0(m, ε) = 1 for any values of m and ε.1

1 Note that the definition of the Toeplitz determinant DN (m, ε) remains unchanged by any global rotation
of the angles (i.e., θi → θi +α for all i ∈ �1, N�). In particular, in [37], form even, all angles where shifted
by 2π

2m so that the function θ → tan θ
2 could be applied on all intervals defining Im(ε).
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Fig. 1 Illustration (in green) of the set Cm (ε) for m = 5 (left) or m = 6 (right) (color figure online)

Note that Cm(ε) is invariant under the rotation z → ze
2π i
m (Fig. 1). It may be

represented graphically:
The correspondence between the Toeplitz determinant and the N -dimensional inte-

gral is straightforward and details can be found in [37] with additional reformulations
of the problem. Note also that the determinant formulation (with a Toeplitz matrix
having lots of vanishing entries) is particularly convenient for numerical simulations.
In [37], it was proved using results of [8] that the Toeplitz determinant DN (m, ε) has
a full large N asymptotic expansion related to the topological recursion of [25]:

Proposition 2.1 The Toeplitz determinant DN (m, ε) has the following large N asymp-
totic expansion:

DN (m, ε)
N→∞= NN+ 1

4m

N ! exp

( ∞∑

k=−2

N−k F {k}
ε


)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

j≥0

∑

l1,...,l j≥1
k1,...,k j≥−2
j∑

i=1
(li+ki )>0

N
−
(

j∑

i=1
(li+ki )

)

j !

⎛

⎝
j⊗

i=1

F {ki },(li )
ε


li !

⎞

⎠ · ∇
⊗
(

j∑

i=1
li

)

ν

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�−Nε


(
0
∣
∣F {−2},(2)

ε


)

+o(N−∞) (2.1)

where ε
 = ( 1m , . . . , 1
m

)t
. The coefficients

(
F {k}

ε


)

k≥−2
are related to the free energies

(
F (g)

)
g≥0 computed from the topological recursion applied to the classical spectral

curve:
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• If m = 2r + 1 is odd:

y2 = λr

r−1∏

j=−r

(
x − tan

(
jπ

2r+1 + π
2(2r+1)

))2

(1 + x2)2
r∏

k=−r

(
x2 − tan2

(
πk

2r+1 + πε
2(2r+1)

)) with λr =

r−1∏

k=0
cos4

(
πk

2r+1 + π
2(2r+1)

)

r∏

k=−r
cos2

(
πk

2r+1 + πε
2(2r+1)

)

(2.2)
• If m = 2s is even:

y2 =
x2

s−1∏

k=1

(
x2 − tan2

(
πk
2s

))2

(1 + x2)2
s∏

k=−(s−1)

(

x2 − tan2

(
π
(
k− 1

2

)

2s + πε
4s

)) with λs

=

s−1∏

k=1
cos2

(
π
(
k− 1

2

)

2s

)

s∏

k=−(s−1)
cos2

(
π
(
k− 1

2

)

2s − πε
4s

) (2.3)

by:

∀ k ≥ −1 : F {2k}
ε
 = −F (2k+2) + f2k with f2k independent of ε

∀ k ≥ −1 : F {2k+1}
ε
 = f2k+1 with f2k+1 independent of ε

The expression of
(
f j
)
j≥1 can be obtained from the limit ε → 0 of DN (m, ε) given

by equation 3.34 of [37].

In the former proposition, � is the Siegel theta function:

�γ (ν,T) =
∑

k∈Zg

exp

(
−1

2
(k + γ )t · T · (k + γ ) + νt · (k + γ )

)

and F {2k},(l)
ε are defined as the l th derivative of the coefficient F {2k}

ε relatively to the
filling fractions ε = (ε1, . . . , εm)t ∈ {u ∈ (Q+)m /

∑m
i=1ui = 1}. We stress here that

large N asymptotic expansions presented in this article (denoted with o(N−∞) as in
[8]) are to be understood as asymptotic expansions up to any arbitrary large negative
power of N as defined in [8].

Remark 2.1 In the former proposition, quantities
(
F (g)

)
g≥0 are computed by the stan-

dard topological recursion of [25] applied to the genus 0 classical spectral curve (2.2).
For example, the leading orders F (0) and F (1) are given by

F (0) = 1

m
ln
(
sin

πε

2

)
, F (1) = −m

4
ln
(
cos

πε

2

)

123
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Remark 2.2 The expression

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

j≥0

∑

l1,...,l j≥1
k1,...,k j≥−2
j∑

i=1
(li+ki )>0

N
−
(

j∑

i=1
(li+ki )

)

j !

⎛

⎝
j⊗

i=1

F {ki },(li )
ε


li !

⎞

⎠ · ∇
⊗
(

j∑

i=1
li

)

ν

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�−Nε


(
0
∣
∣F {−2},(2)

ε


)

in (2.1) is presented in details in [6]. In particular equations 1.29, 1.31 and 1.32 of [6]
provide the first two orders and details. Since the expressions are rather long and of
no particular interest for the present work, we choose not to reproduce them here.

As one can see, the asymptotic expansion of DN (m, ε) presented in Proposition 2.1
is rather complicated. In [37], the discrete rotational symmetry of the problemwas used
to obtain an exact expression for the classical spectral curve and to obtain the optimal
(uniform) filling fraction vector ε
. Unfortunately, no simplification of the Siegel Theta
function could be made. In practice, only the first two leading coefficients are easily
computable using Proposition 2.1 and one only gets:

ln DN (m, ε) = N 2

m
ln
(
sin
(πε

2

))
− m

4
ln N + O(1) (2.4)

2.2 A full large N asymptotic expansion of DN(m, �)

In [26], B. Fahs observed that the rotational invariance can be used in a much stronger
way. Indeed, at the level of Toeplitz determinants we have:

Proposition 2.2 (Factorization of DN (m, ε) (Proposition 1.1.3 of [26])) Let N ≥ 1
and write N = n1m + n2 with n2 ∈ �0,m − 1� the Euclidean division of N by m2.
Then,

DN (m, ε) = Dn1(1,mε)m−n2Dn1+1(1,mε)n2

= Dn1(1[−πε,πε])m−n2Dn1+1(1[−πε,πε])n2

In other words, the Toeplitz determinant DN (m, ε) onm intervals can be expressed
only in terms of the Toeplitz determinant with symbol given by the indicator function
on a single interval I = [−πε, πε]. It turns out that the large N asymptotic expansion
of the one interval case is completely known:

2 Note that n1 and n2 depends on N (n2 a periodic function of N with period m while n1 =
⌊
N
m

⌋
) but we

shall not write down the dependence explicitly for clarity.
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Proposition 2.3 (Asymptotic expansion of Dn(1[−πε,πε]) (Theorem 2.3 of [37])) For
m ≥ 1 and ε ∈ (0, 1), we have:

ln Dn(1[−πε,πε])
n→∞= n2 ln

(
sin
(πε

2

))
− 1

4
ln n − 1

4
ln
(
cos
(πε

2

))

+3 ζ ′(−1) + 1

12
ln 2 −

∞∑

g=2

F (g)
Top. Rec.(ε)n

2−2g + o(n−∞)

(2.5)

where the coefficients
(
F (g)
Top. Rec.(ε)

)

g≥2
are the free energies associated to the genus

0 classical spectral curve

y2 = 1

cos2
(

πε
2

)
(1 + x2)2

(
x2 − tan2

(
πε
2

)) (2.6)

Combining Propositions 2.2 and 2.3 allows for the computation of the full large N
asymptotic expansion of DN (m, ε). Using the identity:

1

(1 + x)l
= 1 +

∞∑

k=1

(
k + l − 1

l − 1

)
(−1)k xk , ∀ l ≥ 1 and |x | < 1

a straightforward but tedious computation gives our main theorem:

Theorem 2.1 (Asymptotic expansion of DN (m, ε)) Let m ≥ 1 and write N = n1m +
n2 with n2 ∈ �0,m − 1� the Euclidean division of N by m. Then,

ln DN (m, ε)
N=mn1+n2=
n1→∞ n21m ln

(
sin

πε

2

)
+ 2n1n2 ln

(
sin

πε

2

)
− m

4
ln n1

+m

(
1

12
ln 2 − 3 ζ ′(−1)

)
− m

4
ln
(
cos

πε

2

)
+ n2 ln

(
sin

πε

2

)
− n2

4n1

−
∞∑

l=1

⎛

⎝mF (l+1)
Top. Rec.(ε) − n2

8l
+ n2

l−1∑

j=1

(
2l − 1

2 j − 1

)
F ( j+1)
Top. Rec.(ε)

⎞

⎠ 1

n2l1

+n2

∞∑

l=1

⎛

⎝− 1

4(2l + 1)
+

l∑

j=1

(
2l

2 j − 1

)
F ( j+1)
Top. Rec.(ε)

⎞

⎠ 1

n2l+1
1

+ o(n−∞
1 )

(2.7)

where
(
F (k)
Top. Rec.(ε)

)

k≥0
are the free energies associated to the genus 0 classical

spectral curve

y2 = 1

cos2
(

πε
2

)
(1 + x2)2

(
x2 − tan2

(
πε
2

))

123
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computed by the topological recursion of [25]. For example, the first free energies are
given by:

F (0)
Top. Rec.(ε) = ln 2 − ln

(
sin

πε

2

)

F (1)
Top. Rec.(ε) = 1

4
ln
(
cos
(πε

2

))

F (2)
Top. Rec.(ε) = 1

64
− 1

32
tan2

(πε

2

)

F (3)
Top. Rec.(ε) = − 1

256
− 1

128
tan2

(πε

2

)
− 5

128
tan4

(πε

2

)
(2.8)

Remark 2.3 Computations of F (0)
Top. Rec.(ε) and F (1)

Top. Rec.(ε) in (2.8) are presented in

details in Appendix A of [37]. Computations of F (2)
Top. Rec.(ε) and F (3)

Top. Rec.(ε) require
the computation of the first orders of the topological recursion of [25]. Intermediate
steps are provided in “Appendix A” for completeness.

Using the determinant formulation (Fig. 2), we may test the large N asymptotic
expansion with the finite N numerical computations or the Toeplitz determinant:

Remark 2.4 Note that the asymptotic expansion (2.7) recovers (2.4). Indeed, since
n1 = ⌊ N

m

⌋
and n2 = N −m

⌊ N
m

⌋
, the asymptotic expansion (2.7) can also be written

as:

ln DN (m, ε)
N→∞= N 2 ln

(
sin

πε

2

)
− m

4
ln N + m

4
lnm + m

(
1

12
ln 2 − 3 ζ ′(−1)

)

−m

4
ln
(
cos

πε

2

)
−
(
N − m

⌊
N

m

⌋)(
N − 1 − m

⌊
N

m

⌋)
ln
(
sin

πε

2

)
+ o(1)

(2.9)

In particular, this form provides the constant term of the large N asymptotic expansion
of ln DN (m, ε). This constant term was already obtained prior to this work by B. Fahs
(Cf. eq. 1.61 of [26]). It also verifies Conjecture 3.1 of [37].

Remark 2.5 The asymptotic expansion presented in Theorem 2.1 is performed in terms
of large n1 and fixed n2. However, one may easily obtain an asymptotic expansion
in terms of N and n2 using the fact that N = n1m + n2. Indeed, one can get the
asymptotic expansion expressed in terms of N and n2 by simply replacing n1 into
N
m

(
1 − n2

N

)
in (2.7), expand all corresponding quantities at large N and reorder the

series expansion. For example, powers like n−l
1 provide

∑∞
j=0

( j+l−1
l−1

) n j
2m

l

N j+l and ln n1

provides ln N − lnm+∑∞
k=1

nk2
kNk . Since the final expression is more complicated than

(2.7), we do not see sufficient interest to write it down (the first orders being given by
(2.9)).

123
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Fig. 2 Numerical computations of ε →
(
DN (m, ε) − [n21 m ln

(
sin πε

2
)+ 2n1n2 ln

(
sin πε

2
)− m

4 ln n1 +
m
(

1
12 ln 2 − 3 ζ ′(−1)

)
− m

4 ln
(
cos πε

2
) + n2 ln

(
sin πε

2
) − n2

4n1
+ n2

8n21
− m

n21
F(2)
Top. Rec.(ε) − n2

12n31
+

2n2
n31

F(2)
Top. Rec.(ε) + n2

16n41
− 3n2

n41
F(2)
Top. Rec.(ε)

]) n41
m for m = 5, N ∈ �90, 100� (colored dots). The black

curve is ε → F(3)
Top. Rec.(ε) = − 1

256 − 1
128 tan2

(
πε
2
) − 5

128 tan4
(
πε
2
)
. Colors of the points correspond

to the different values of n2 ({0, 1, 2, 3, 4} are respectively matched with {blue, red, green, pink, yellow}
(color figure online)

3 Corollary for unitary matrices and discussion

3.1 Application to powers of random unitary matrices

The connection between theToeplitz determinant (1.3) and the eigenvalues of a random
unitary matrix of size N provides the following corollary:

Corollary 3.1 Let UN be a random unitary matrix of size N drawn from the Haar
measure on the set of unitary matrices and let ε ∈ (0, 1). Let m ≥ 1 be a given integer
and write N = n1m + n2 the Euclidean division of N by m. Then, the probability

pN ,m(ε) = P

(
||U m

N − IN ||2 ≤ √
2 sin

πε

2

)

= P
(
All eigenvalues of U m

N belong to C1(ε)
)

equals DN (m, ε) and thus has a full large N asymptotic expansion given by Theo-
rem 2.1.
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Proof Let
(
u1 = eiθ1 , . . . , uN = eiθN

)
be the eigenvalues ofU m

N with (θ1, . . . , θN ) ∈
[0, 2π ]N . For a diagonalizable matrix A of size N , it is well-known that ||A||2
corresponds to Max j∈�1,N�{|λ j | , λ j eigenvalues of A}. Thus, ||U m

N − IN ||2 =
Max j∈�1,N�

{√
2
∣∣∣sin

(
θ j
2

)∣∣∣
}
. For θ ∈ [0, 2π ], the inequality

√
2
∣∣sin

(
θ
2

)∣∣ ≤√
2 sin

(
πε
2

)
is equivalent to 0 ≤ sin

(
θ
2

) ≤ sin
(

πε
2

)
because sin θ

2 is always non-
negative. This inequality is equivalent to θ ∈ [0, πε] or θ

2 ∈ [
π − πε

2 , π
]
, i.e.,

θ ∈ [0, πε] ∪ [2π − πε, 2π ]. Hence, ||U m
N − IN ||2 ≤ √

2 sin
(

πε
2

)
is equivalent

to say that for all j ∈ �1, N�: eiθ j ∈ C1(ε). Finally, this is equivalent to say that

all eigenvalues

(
e
iθ j
m

)

1≤ j≤N
of UN belong to Cm(ε) whose probability is given by

DN (m, ε). ��

We observe that Proposition 2.2 is compatible with the well-known results that for
m > N , the eigenvalues ofU m

N are i.i.d. random variables distributed uniformly on the
unit circle [20]. Indeed, in Proposition 2.2, this corresponds to n1 = 0 and n2 = N ,
so that the factorization provides:

∀m > N : DN (m, ε) = D0(1,mε)m−N D1(1,mε)N =
(∫ πε

−πε

dθ

2π

)N

= εN

(3.1)

Note that this case is not covered by the large N expansion given by Theorem 2.1.

3.2 Interest for the topological recursion formalism

Theorem 2.1 is interesting from the topological recursion perspective. Indeed, the
classical spectral curve associated to the problem is given by (2.2) and the expected
asymptotic expansion for such a spectral curve is given in Proposition 2.1. In general,
the presence of a Theta function makes the expansion very difficult to compute in
practice when the genus of the spectral curve is not 0. In our case, it turns out that
the discrete rotational symmetry of the problem allows for the explicit computation
because of the factorization 2.2. This implies that the Eynard–Orantin differentials
and free energies associated to the genus m − 1 classical spectral curve (2.2) can be
expressed completely in terms of the ones produced by the topological recursion on
the classical spectral curve of genus 0 given by (2.6). Note that the relation between
both sets is non-trivial and corresponds to matching (2.1) with (2.7) at each order
in N−k in the expansion. To the knowledge of the author, no known other examples
of such correspondence are known. Thus, it would be interesting to see if one can
obtain such results directly from the topological recursion formalism. In particular,
one could expect some kinds of factorization of the recursion kernel in such a way
that this correspondence can be tracked down at each step of the recursion. This
could provide a general technique to take benefit from symmetries in the topological
recursion formalism as initiated in [23] in a different context.
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Finally, the results are also interesting in the context of quantization of classical
spectral curves using the topological recursion. Indeed, the quantization method pro-
posed in [24, 38, 39] in relation with Lax pairs and integrable systems implies the
use of formal 1

N -transseries when the genus of the classical spectral curve in nonzero
(when the genus is vanishing, it reduces to standard formal power series or WKB
series). These 1

N -transseries include oscillatory terms and the construction is still at
the formal level. But current works [14, 15, 41–43] suggest that one may resum these
1
N -transseries to obtain analytic objects and thus recover rigorously equalities similar
to (2.7) in a general way. In this context, the present work could a non-trivial check of
arbitrary genus for these resummation techniques and shed some light on how to deal
properly with 1

N -transseries.

3.3 Possible generalizations

It is natural to wonder if the results presented in this article may be generalized or
extended in other ways. We list here some of the possibilities.

• m depending on N : The large N asymptotic expansion given in Theorem 2.1
is performed for a fixed value of m. It is natural to wonder if such asymptotic
expansions could be extended to situationswhenm depends on N , i.e., sequences of
integers (mN )N≥1. If the sequence of integers converges, then there exists N0 ∈ N

such that for all N ≥ N0, mN = M ∈ N. Hence, the results presented in this
article trivially apply for N ≥ N0 and so does the large N asymptotic expansion
of Theorem 2.1 with m replaced by M . Other regimes when mN → +∞ or mN

periodic could be studied. However, we recall here that when mN > N then the
Toeplitz determinant trivially equals εN . Interesting sequences are for example
strictly increasing sequences (mN )N≥1 with mN = o(N ). In such situations, the
factorization of Proposition 2.2 still holds with N = n1(N )mN + n2(N ) with
n2(N ) < mN at each step (we added the dependence in N of n1 and n2 for
clarity). Thus, we get

ln DN (m, ε) = (mN − n2(N )) ln Dn1(N )(1[−πε,πε])
+n2(N ) ln Dn1(N )+1(1[−πε,πε])

Note that if mN = o(N ) then n1(N )
n→∞→ +∞ so that the asymptotic expansion

of both ln Dn1(N )(1[−πε,πε]) and ln Dn1(N )+1(1[−πε,πε]) is still given by Propo-
sition 2.3 with n1(N ) (resp. n1(N ) + 1) replacing n. One finally need to multiply
these expansions bymN −n2(N ) (resp. n2(N )) and order the asymptotic expansion
properly. However, the main difficulty is that (n2(N ))N≥1 is no longer necessary
bounded. Indeed, the sequence (n2(N ))N≥1 may or may not be bounded or peri-
odic depending on the choice of (mN )N≥1. Regarding the situation, one has to
choose some appropriate sets of parameters to express the asymptotic expansion
nicely, but the present strategy presented in this article still holds.

• Non-integer powers of unitary matrices: Another natural generalization is to con-
sider real powers of unitary matrices:U t

N with t ∈ R+ and consider the probability
that all its eigenvalues are located in C1(ε)as in [36]. This question is equivalent
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to ask for the eigenvalues ofUN to be located in a union of arc-intervals (the exact
expression is given in equation 4.3 of [36]). However, unlike the present case, the
discrete rotational symmetry does not apply so the factorization of the Toeplitz
determinant fails. Nevertheless, the asymptotic expansion of Theorem 2.1 may be
naively generalized by setting m = t , n1 = ⌊ N

t

⌋
and n2 = N − ⌊ N

t

⌋
t . It would

be interesting to study if the first orders of the asymptotic expansion obtained with
this adaptation are still correct.

• β-CUE generalization: Finally onemay consider the same problem but withmatri-
ces drawn from the β-CUE, i.e., DN (m, ε, β) = 1

(2π)N N !
∫
Im (ε) N

dθ1 . . . dθN
∏

1≤p<q≤N

∣∣eiθp − eiθq
∣∣2β . In this case, an asymptotic expansion similar to Propo-

sition 2.1 is known [8]. However, this case cannot be written in terms of Toeplitz
determinants and thus the present strategy cannot be carried out. The only possible
cases for which one may hope some simple generalizations of the present strategy
are β ∈ { 12 , 2

}
because connections with bi-orthogonal polynomials and Pfaffian

exist. However, on the topological recursion side, β �= 1 implies drastic changes
[13, 35] in the recursion even for genus 0 spectral curves and much less is known
in this situation.
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Appendix A: Topological recursion details in the one-cut case

In this section, we list the intermediate steps obtained in the computation of the topo-
logical recursion of [25] applied to the classical spectral curve of genus 0 given by
(2.6) that may be parametrized globally as:

x(z) = 1

2
tan
(πε

2

)(
z + 1

z

)

y(z) = 8z3

sin
(

πε
2

)
(z − 1)(z + 1)

((
tan2 πε

2

)
z4 + 2

(
tan2 πε

2 + 2
)
z2 + tan2 πε

2

)

(A.1)

with the global involution z̄ = 1
z . The parametrization implies that there are two

simple branchpoints at z = 1 and z = −1. The definition of the topological recursion
in this particular case is presented in Appendix B of [37]. It provides the following
intermediate steps:

ω
(0)
2 (z1, z2) = dz1 dz2

(z1 − z2)2
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ω
(1)
1 (z) = z

2(z − 1)2(z + 1)2 cos πε
2

ω
(0)
3 (z) = 0

ω
(0)
4 (z) = 0

ω
(1)
2 (z1, z2) = z21z

2
2 + z21 + z22 + 4z1z2 + 1

4
(
cos πε

2

)2
(z1 − 1)2(z1 + 1)2(z2 − 1)2(z2 + 1)2

ω
(2)
1 (z) = z

((
13 tan2 πε

2 + 4
)
z4 + (10 tan2 πε

2 + 28
)
z2 + 13 tan2 πε

2 + 4
)

32
(
cos πε

2

)
(z + 1)4(z − 1)4

ω
(1)
3 (z1, z2, z3) = (z1z2 + z1z3 + z2z3 + 1)(z1z2z3 + z1 + z2 + z3)

(
cos πε

2

)3
(z21 − 1)2(z22 − 1)2(z23 − 1)2

ω
(3)
1 (z) = z

(
cos πε

2

)
(z2 − 1)6

( (
413 tan4

πε

2
+ 268 tan2

πε

2
+ 8
)

(z8 + 1)

+
(
580 tan4

πε

2
+ 1880 tan2

πε

2
+ 688

)
(z6 + z2)

+
(
1614 tan4

πε

2
+ 2904 tan2

πε

2
+ 2208

)
z4
)

(A.2)
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