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Abstract
We further develop the approach to many-body systems based on finding conditions
of existence of meromorphic solutions to certain linear partial differential and dif-
ference equations which serve as auxiliary linear problems for nonlinear integrable
equations such as KP, BKP, CKP and different versions of the Toda lattice. These
conditions imply equations of the time evolution for poles of singular solutions to the
nonlinear equations which are equations of motion for integrable many-body systems
of Calogero–Moser and Ruijsenaars–Schneider type. A new many-body system is
introduced, which governs dynamics of poles of elliptic solutions to the Toda lattice
of type B.
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1 Introduction

Dynamics of poles of singular solutions to nonlinear integrable equations is a well-
known subject in the theory of integrable systems. Investigations in this direction
were initiated in the seminal paper [1]. In [2, 3], it was shown that poles xi of rational
solutions to the Kadomtsev–Petviashvili (KP) equation move as particles of the many-
body Calogero–Moser system [4–6] with the pairwise potential 1/(xi − x j )2. This
remarkable connection was further generalized to elliptic (double-periodic) solutions
in [7]: Poles xi of the elliptic solutions were shown to move according to the equations
of motion of Calogero–Moser particles with the elliptic interaction potential ℘(xi −
x j ), where℘ is the ellipticWeierstrass℘-function. Thismany-body systemof classical
mechanics is known to be integrable. For a reviewof themodels of theCalogero–Moser
type, see [8].

The correspondence between singular solutions of nonlinear integrable equations
and integrable many-body systems allows for generalizations in various directions.
The extension to the matrix KP equation was discussed in [9]; in this case the poles
and matrix residues at the poles move as particles of the spin generalization of the
Calogero–Moser model known also as the Gibbons–Hermsen model [10]. In the paper
[11] by the authors, the dynamics of poles of elliptic solutions to the (matrix) two-
dimensional Toda lattice was shown to be isomorphic to the relativistic extension of
the Calogero–Moser system known also as the Ruijsenaars–Schneider system [12, 13]
and its version with spin degrees of freedom [11]. Another generalizations concern B-
and C-versions of the KP equation (BKP and CKP). Equations of motion for poles of
elliptic solutions to the BKP and CKP equations were recently obtained in [14] and
[15], respectively. For a review, see [16].

The method suggested in [2, 7] and used in all subsequent works on the subject is
based on the well-known fact that nonlinear integrable equations such as KP, BKP,
CKPand the 2DToda lattice can be represented as compatibility conditions for systems
of certain overdetermined linear problems which are partial differential or difference
equations in two variables (space and time). The suggested scheme of finding the
dynamics of poles consists in substituting the elliptic solution not in the nonlinear
equation itself but in the linear problems for it, using a suitable pole ansatz for the
wave function depending on a spectral parameter.

In this paper, we systematically use another method suggested by one of the authors
in [17] on the example of the KP/Calogero–Moser correspondence and further dis-
cussed in [18, 19]. The key point of this method is existence of meromorphic solutions
to the linear partial differential or difference equations. We call them monodromy free
linear equations. It turns out that the conditions of existence of meromorphic solu-
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tions in the space variable are equivalent to equations of motion for the poles which
are equations of motion for integrable many-body systems of Calogero–Moser and
Ruijsenaars–Schneider type.

We also prove that existence of at least one meromorphic solution implies existence
of a whole family of meromorphic wave solutions depending on a spectral parameter.

For completeness, we include in this paper the analysis of meromorphic solutions
to the linear problems for the KP and Toda lattice equations leading to the Calogero–
Moser and Ruijsenaars–Schneider systems, respectively. (This is contained in the
earlier works [17, 18].) Conditions of existence of meromorphic solutions to the linear
problems for the BKP and CKP equations as well as for the Toda lattice of type C
were not discussed in the literature; in this paper we find them and show that they are
equivalent to the equations of motion for poles of these equations obtained in [14, 15,
22].

The main new result of this paper is the equations of motion (3.59) for poles of
elliptic solutions to the Toda lattice of type B recently introduced in [20]. They have
the form

ẍi +
N∑

k=1, �=i

ẋi ẋk
(
ζ(xik + η) + ζ(xik − η) − 2ζ(xik)

)
−U (xi1, . . . xiN ) = 0,

(1.1)

where dot means the time derivative, xik ≡ xi − xk ,

U (xi1, . . . xiN )

= σ(2η)

⎡

⎣
∏

j �=i

σ(xi j + 2η)σ (xi j − η)

σ (xi j + η)σ (xi j )
−

∏

j �=i

σ(xi j − 2η)σ (xi j + η)

σ (xi j − η)σ (xi j )

⎤

⎦

(1.2)

and σ(x), ζ(x) are the standard Weierstrass functions (see Appendix A). These equa-
tions are obtained from the condition of existence of meromorphic solutions to the
differential–difference auxiliary linear problem for the Toda lattice of type B. We
also show that the same equations can be obtained by restriction of the Ruijsenaars–
Schneider dynamics with respect to the time flow ∂t1 − ∂t̄1 of the system containing
2N particles to the half-dimensional subspace of the 4N -dimensional phase space cor-
responding to the configuration in which the particles stick together joining in pairs
such that the distance between particles in each pair is equal to η. This configuration
is destroyed by the flow ∂t1 + ∂t̄1 but is preserved by the flow ∂t1 − ∂t̄1 (and, hypothet-
ically, by all higher flows ∂tk − ∂t̄k ), and the time evolution in t = t1 − t̄1 of the pairs
with coordinates xi is given by equations (1.1), (1.2). This fact is not so surprising
if we recall that the tau-function τToda(x) of the Toda lattice (whose zeros move as
Ruijsenaars–Schneider particles) is connected with the tau-function τ(x) of the Toda
lattice of type B (whose zeros move according to equations (1.1)) by the relation

τToda(x) = τ(x) τ (x − η) (1.3)
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(see [20]), so zeros of τToda(x) stick together in pairs.
To avoid a confusion, we should stress that what we mean by the Toda lattice of

type B or C is very different from the systems introduced in [23] under similar names.
Our equations are natural integrable discretizations of the BKP and CKP equations,
that is why we found it appropriate to call them “Toda lattices of type B and C.”

The reader should be aware that the notation for coefficients of Laurent expansions
below is valid only throughout each section and the same notation may mean different
things in different sections.We hope that this will not lead to a misunderstanding since
each section is devoted to its own linear equation and the contents do not intersect.

2 Differential equations

2.1 The KP case

We start with a worm-up exercise following [17].
Consider the linear equation

(∂t − ∂2x − 2u)ψ = 0, (2.1)

which is one of the auxiliary linear problems for the KP equation. It is easy to see that
if u(x) has a pole a in the complex x-plane, it must be a second-order pole. Expanding
the left-hand side in a neighborhood of the pole, one can find a necessary condition of
existence of a meromorphic solution in this neighborhood.

Proposition 2.1 If equation (2.1) with

u(x) = − 1

(x − a)2
+ u0 + u1(x − a) + . . . , (2.2)

has a meromorphic in x solution, then the condition

ä + 4u1 = 0 (2.3)

holds, where dot means the time derivative.

Proof Let the expansion of ψ(x) around the point a be of the form

ψ(x) = α

x − a
+ β + γ (x − a) + δ(x − a)2 + . . . . (2.4)

Substituting expansions (2.2), (2.4) in the left-hand side of (2.1), we see that the
highest (third-order)-order poles cancel identically. Equating the coefficients in front
of (x − a)−2, (x − a)−1 and (x − a)0 to zero, we get the conditions
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ȧα + 2β = 0,

α̇ + 2γ − 2u0α = 0,

β̇ − ȧγ − 2u0β − 2u1α = 0,

(2.5)

Taking t-derivative of the first equation, plugging α̇ and β̇ from the second and the
third ones and using the first one again, we obtain the necessary condition (2.3). ��

One can see that this condition encodes equations of motion for the (elliptic in gen-
eral) Calogero–Moser system. Indeed, let u(x) be the doubly-periodic meromorphic
function

u(x) = −
∑

i

℘(x − xi ), (2.6)

where ℘(x) is the Weierstrass ℘-function, then the expansion (2.2) near the pole at
a = xi holds true with

u0 = −
∑

j �=i

℘(xi − x j ), u1 = −
∑

j �=i

℘′(xi − x j ),

so the conditions (2.3) for each xi read

ẍi = 4
∑

j �=i

℘′(xi − x j ), (2.7)

which are the equations of motion for the elliptic Calogero–Moser system.
Next, we show that (2.3) is simultaneously a sufficient condition for local existence

of a meromorphic wave solution to equation (2.1), i.e., a solution depending on a
spectral parameter k with the expansion of the form

ψ(x) = ekx+k2t
(
1 +

∑

s≥1

ξsk
−s

)
, k → ∞. (2.8)

Proposition 2.2 Suppose that condition (2.3) for the pole a of u(x) holds. Then, all
wave solutions of equation (2.1) of the form (2.8) are meromorphic in a neighborhood
of the point a with a simple pole at x = a and regular elsewhere in this neighborhood.

Proof Substitution of the series (2.8) into the equation (2.1) gives the recurrence rela-
tion

2ξ ′
s+1 = ξ̇s − 2uξs − ξ ′′

s , s ≥ 0, ξ0 ≡ 1. (2.9)

In particular, at s = 0 we have

ξ ′
1 = −u. (2.10)
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Let the Laurent expansion of ξs near the pole at x = a be of the form

ξs = rs
x − a

+ rs,0 + rs,1(x − a) + . . . , (2.11)

and the expansion of u(x) be as in (2.2). The solution is meromorphic if the residue
of the right-hand side of (2.9) vanishes:

2 res
x=a

ξ ′
s+1 = ṙs + 2rs,1 − 2u0rs = 0. (2.12)

At s = 0, we have resx=aξ
′
1 = 0 from (2.10).We are going to prove (2.12) by induction

in s. Assume that (2.12) holds for some s, then it is easy to see that the condition (2.3)
implies that it holds for s+1. Indeed, substituting the expansion (2.11) into the equation
and equating the coefficients of (x − a)−2, (x − a)−1 and (x − a)0 to zero, we get the
conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2rs+1 = −rs ȧ − 2rs,0,

ṙs + 2rs,1 − 2u0rs = 0,

2rs+1,1 = ṙs,0 − rs,1ȧ − 2u0rs,0 − 2u1rs .

(2.13)

Substituting them into the right-hand side of (2.12) at s → s + 1, we have:

2 res
x=a

ξ ′
s+2 = ṙs+1 + 2rs+1,1 − 2u0rs+1

= (− 1
2 ṙs ȧ − 1

2rs ä − ṙs,0) + (ṙs,0 − rs,1ȧ − 2u0rs,0 − 2u1rs) + (u0rs ȧ + 2u0rs,0),

where we have used the first and the third equations in (2.13). After cancellations, we
get:

2 res
x=a

ξ ′
s+2 = −1

2
rs(ä + 4u1) − 1

2
ȧ(ṙs + 2rs,1 − 2u0rs) = 0.

(The second term vanishes by the induction assumption, and the first one is zero due
to the condition (2.3).) ��

2.2 The CKP case

Consider the linear equation

(∂t − ∂3x − 6u∂x − 3u′)ψ = 0, (2.14)

which is one of the auxiliary linear problems for the CKP equation.
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Proposition 2.3 Suppose that u(x) in (2.14) has a pole at x = a and equation (2.14)
has a meromorphic solution, then the condition

ȧ + 6u0 = 0 (2.15)

holds, where u0 is the coefficient in the Laurent expansion

u(x) = − 1

2(x − a)2
+ u0 + u1(x − a) + . . . .

(2.16)

Proof We have the expansion near the pole at x = a:

ψ(x) = α

x − a
+ β + γ (x − a) + δ(x − a)2 + . . . .

(2.17)

Substituting the expansions in the left-hand side of (2.14), we see that the highest
(fourth-order)-order poles cancel identically. The necessary condition of cancellation
of the third-order poles is β = 0. Equating the coefficients in front of (x − a)−2,
(x − a)−1 and (x − a)0 to zero, we get the conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αȧ + 6αu0 = 0,

α̇ + 3αu1 + 3δ = 0,

γ ȧ + 6γ u0 = 0.

(2.18)

The first and the third equations are equivalent and lead to the necessary condition
(2.15). ��

Let u(x) be the elliptic function

u(x) = −1

2

∑

i

℘(x − xi ), (2.19)

then the expansion (2.16) near the pole at x = xi holds true with u0 = − 1
2

∑
j �=i ℘(xi

− x j ), so the conditions (2.15) for each xi read

ẋi = 3
∑

j �=i

℘(xi − x j ), (2.20)

which are the equations of motion for poles of elliptic solutions to the CKP equation
derived in [15]. As shown in [15], they are obtained by restriction of the third flow of
the Calogero–Moser system to the submanifold of turning points.
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Next, we show that (2.15) is simultaneously a sufficient condition for local existence
of meromorphic wave solutions to equation (2.14) with the expansion of the form

ψ = ekx+k3t
(
1 +

∑

s≥1

ξsk
−s

)
, k → ∞. (2.21)

Proposition 2.4 Suppose that condition (2.15) for the pole a of u(x) holds. Then, all
wave solutions of equation (2.14) of the form (2.21) are meromorphic in a neigh-
borhood of the point a with a simple pole at x = a and regular elsewhere in this
neighborhood.

Proof Substitution of the series into equation (2.14) gives the recurrence relation

ξ̇s − 3ξ ′
s+2 − 3ξ ′′

s+1 − ξ ′′′
s − 6uξs+1 − 6uξ ′

s − 3u′ξs = 0,

s ≥ −1, ξ−1 ≡ 0, ξ0 ≡ 1. (2.22)

In particular, at s = −1 we have

ξ ′
1 = −2u. (2.23)

It is convenient to represent equation (2.22) in the form

f ′
s = ξ̇s − 6uξs+1 − 3uξ ′

s, fs = 3ξs+2 + 3ξ ′
s+1 + ξ ′′

s + 3uξs . (2.24)

Let the Laurent expansion of ξs near the pole at x = a be

ξs = rs
x − a

+ rs,0 + rs,1(x − a) + rs,2(x − a)2 + . . . , (2.25)

and the expansion of u(x) be as in (2.16). The solution is meromorphic if the residue
of the right-hand side of (2.24) vanishes:

res
x=a

f ′
s = ṙs + 3rs+1,1 + 3rs,2 − 6u0rs+1 + 3u1rs = 0. (2.26)

At s = −1, we have resx=a f ′−1 = 0 from (2.23). We are going to prove (2.26)
by induction in s. Assume that (2.26) holds for some s, then it is easy to see that
the condition (2.15) implies that it holds for s + 1. Indeed, substituting the expansion
(2.25) into the equation and equating the coefficients of (x−a)−3, (x−a)−2, (x−a)−1

and (x − a)0 to zero, we get the conditions
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rs+1 + rs,0 = 0,

3rs+2 + rs ȧ + 3rs+1,0 + 6u0rs = 0,

ṙs + 3rs+1,1 + 3rs,2 − 6u0rs+1 + 3u1rs = 0,

ṙs,0 − rs,1ȧ − 3rs+2,1 − 3rs+1,2 − 6u0rs+1,0 − 6u0rs,1 − 3u1rs+1 = 0.

(2.27)

Substituting them into the right-hand side of (2.26) at s → s + 1, we have:

res
x=a

f ′
s+1 = ṙs+1 + 3rs+2,1 + 3rs+1,2 − 6u0rs+2 + 3u1rs+1

= (2u0rs − rs,1)(ȧ + 6u0) − 2u0(3rs+2

+rs ȧ + 3rs+1,0 + 6u0rs) = 0.

(The second term vanishes because of the second equation in (2.27), and the first one
is zero due to the condition (2.15).) ��

2.3 The BKP case

Consider the linear equation

(∂t − ∂3x − 6u∂x )ψ = 0, (2.28)

which is one of the auxiliary linear problems for the BKP equation.

Proposition 2.5 Suppose that u(x) in (2.28) has a pole at x = a and equation (2.28)
has a meromorphic solution, then the condition

ä + 6u̇0 − 12u1(ȧ + 6u0) − 36u3 = 0 (2.29)

holds, where u0, u1, u3 are coefficients in the Laurent expansion

u(x) = − 1

(x − a)2
+ u0 + u1(x − a) + u2(x − a)2 + u3(x − a)3 + . . . .

(2.30)

Proof We have the expansion near the pole at x = a:

ψ(x) = α

x − a
+ β + γ (x − a) + δ(x − a)2 + ε(x − a)3 + μ(x − a)4 + . . . .

(2.31)

Substituting the expansions in the left-hand side of (2.28), we see that possible fourth-
and third-order poles cancel identically. Equating the coefficients in front of (x−a)−2,
(x − a)−1, (x − a)0 and (x − a) to zero, we get the conditions
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αȧ + 6αu0 + 6γ = 0,

α̇ + 6αu1 + 12δ = 0,

β̇ − γ ȧ − 6γ u0 + 6αu2 + 12ε = 0,

γ̇ − 2δȧ − 12δu0 − 6γ u1 + 6αu3 = 0.

(2.32)

Note that the terms with the coefficientμ in (2.31) whichmight enter the last condition
actually cancel. Taking t-derivative of the first equation, we have

ä + 6u̇0 + 6
γ̇

α
− 6

γ α̇

α2 = 0.

Plugging here α̇ from the second equation and γ̇ from the fourth one, we obtain the
necessary condition (2.29). ��

One can see that this condition encodes equations of motion for the many-body
system obtained in [14] as a dynamical system for motion of poles of elliptic solutions
to the BKP equation. Indeed, let u(x) be the doubly-periodic meromorphic function

u(x) = −
∑

i

℘(x − xi ), (2.33)

then the expansion (2.30) near the pole at x = xi holds true with

u0 = −
∑

j �=i

℘(xi − x j ), u1 = −
∑

j �=i

℘′(xi − x j ), u3 = −1

6

∑

j �=i

℘′′′(xi − x j )

and u̇0 = −∑
j �=i (ẋi − ẋ j )℘′(xi − x j ). Therefore, the conditions (2.29) for each xi

give the equations of motion derived in [14]:

ẍi + 6
∑

j �=i

(ẋi + ẋ j )℘
′(xi − x j ) − 72

∑

j �=k �=i

℘(xi − x j )℘
′(xi − xk) = 0.

(2.34)

(The identity ℘′′′(x) = 12℘(x)℘′(x) is used.) As shown in [21], the same equations
can be obtained by restriction of the third flow of the elliptic Calogero–Moser system
to the subspace of the phase space in which 2N particles stick together in pairs in
such a way that the two particles in each pair are in one and the same point. This
configuration is immediately destroyed by the second flow of the Calogero–Moser
system but is preserved by the third one, and coordinates of the pairs are subject to
equations (2.34).
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Next, we will show that (2.29) is simultaneously a sufficient condition for local
existence of meromorphic wave solutions to equation (2.28) of the form

ψ(x) = ekx+k3t
(
1 +

∑

s≥1

ξsk
−s

)
, k → ∞. (2.35)

Proposition 2.6 Suppose that condition (2.29) for the pole of u(x) holds. Then, all
wave solutions of equation (2.28) of the form (2.35) are meromorphic in a neigh-
borhood of the point a with a simple pole at x = a and regular elsewhere in this
neighborhood.

Proof Substitution of the series into the equation (2.28) gives the recurrence relation

ξ̇s − 3ξ ′
s+2 − 3ξ ′′

s+1 − ξ ′′′
s − 6uξs+1 − 6uξ ′

s = 0, s ≥ −1, ξ−1 ≡ 0, ξ0 ≡ 1.

(2.36)

In particular, at s = −1 we have

ξ ′
1 = −2u. (2.37)

It is convenient to represent equation (2.36) in the form

g′
s = ξ̇s − 6uξs+1 − 6uξ ′

s, gs = 3ξs+2 + 3ξ ′
s+1 + ξ ′′

s . (2.38)

Let the Laurent expansion of ξs near the pole at x = a be

ξs = rs
x − a

+ rs,0 + rs,1(x − a) + rs,2(x − a)2 + rs,3(x − a)3 + . . . , (2.39)

and the expansion of u(x) be as in (2.30). The solution is meromorphic if the residue
of the right-hand side of (2.38) vanishes:

res
x=a

g′
s = ṙs + 6rs+1,1 + 12rs,2 − 6u0rs+1 + 6u1rs = 0. (2.40)

At s = −1, we have res
x=a

g′−1 = 0 from (2.37). As before, we will prove (2.40) by

induction in s. Assume that (2.40) holds for some s, then it is easy to see that the
condition (2.29) implies that it holds for s + 1. Indeed, substituting the expansion
(2.39) into the equation and equating the coefficients of (x −a)−2, (x −a)−1 (x −a)0

and (x − a) to zero, we get the conditions
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3rs+2 + rs ȧ + 6rs+1,0 + 6rs,1 + 6u0rs = 0,

ṙs + 6rs+1,1 + 12rs,2 − 6u0rs+1 + 6u1rs = 0,

ṙs,0 − rs,1ȧ − 3rs+2,1 + 12rs,3 − 6u0rs+1,0 − 6u0rs,1 − 6u1rs+1 + 6u2rs = 0,

ṙs,1 − 2rs,2ȧ − 6rs+2,2 − 12rs+1,3 − 6u0rs+1,1 − 12u0rs,2

−6u1rs+1,0 − 6u1rs,1 − 6u2rs+1 + 6u3rs = 0.

(2.41)

Substituting them into the right-hand side of (2.40) at s → s + 1, we have:

3 res
x=a

g′
s+1 = 3ṙs+1 + 18rs+2,1 + 36rs+1,2 − 18u0rs+2 + 18u1rs+1

= −rs−1(ä + 6u̇0 − 12u1(ȧ + 6u0) − 36u3)

−ȧ(ṙs−1 + 12rs−1,2 + 6rs,1 − 6u0rs + 6u1rs−1)

−6u0(rs ȧ + 3rs+2 + 6rs+1,0 + 6rs,1 + 6u0rs) − 6u1(rs−1ȧ + 3rs+1

+6rs,0 + 6rs−1,1 + 6u0rs−1) = 0.

(The last two terms vanish because of the first equation in (2.41), the second term
vanishes due to the induction assumption, and the first one is zero due to the condition
(2.29).) ��

3 Differential–difference equations

3.1 The Toda lattice case

The 2D Toda lattice equation is the compatibility condition for the linear differential–
difference equations

∂t1ψ(x) = ψ(x + η) + b(x)ψ(x), (3.1)

∂t̄1ψ(x) = v(x)ψ(x − η), (3.2)

where η is a parameter (the lattice spacing). Suppose that b(x) and v(x) are meromor-
phic functions; let us investigate when these equations have meromorphic solutions
in x .

3.1.1 The linear problemwith respect to t1

First we consider the linear problem (3.1):

∂tψ(x) = ψ(x + η) + b(x)ψ(x). (3.3)
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Let b(x) have first-order poles at x = a and x = a − η:

b(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ν

x − a
+ μ0 + O(x − a), x → a

− ν

x − a + η
+ μ1 + O(x − a + η), x → a − η.

(3.4)

Proposition 3.1 Suppose that b(x) in (3.3) has poles at x = a and x = a − η with
expansions near the poles of the form (3.4). If equation (3.3) has a meromorphic
solution with a pole at the point a regular at a ± η, then the condition

ä − ȧ(μ0 + μ1) = 0 (3.5)

holds.

Proof Let the expansion of ψ(x) around the point a be of the form

ψ(x) = α

x − a
+ β + O(x − a), (3.6)

then

∂tψ(x) = αȧ

(x − a)2
+ α̇

x − a
+ O(1).

Substituting the expansions around the point a in the equation, we write:

αȧ

(x − a)2
+ α̇

x − a
+ O(1) =

(
ν

x − a
+ μ0 + . . .

)

(
α

x − a
+ β + . . .

)
.

Equating the coefficients in front of the poles, we obtain the conditions

⎧
⎨

⎩

ν = ȧ,

α̇ = νβ + μ0α.

(3.7)

Around the point a − η, we have:

∂tψ(a − η) + O(x − a + η)

= α

x − a + η
+ β −

( ν

x − a + η
+ μ1 + . . .

)(
ψ(a − η) + (x − a + η)ψ ′(a − η) + . . .

)
.
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Equating the coefficients in front of the terms or order (x −a+η)−1 and (x −a+η)0,
we obtain the conditions

⎧
⎨

⎩

α = νψ(a − η),

∂tψ(a − η) = β − μ1ψ(a − η) − νψ ′(a − η).

(3.8)

Taking the time derivative of the first equation in (3.8) and using (3.7), we get

α̇ = äψ(a − η) + ȧψ̇(a − η), (3.9)

where

ψ̇(a − η) = ∂tψ(a − η) + ȧψ ′(a − η) (3.10)

is the full time derivative of ψ(a − η). Now, combining equations (3.7)–(3.10), we
arrive at the condition (3.5). ��

Suppose now that b(x) is an elliptic function of x having 2N first-order poles in
the fundamental domain at some points x j and at the points x j − η, then it must have
the form

b(x) =
∑

j

ẋ j
(
ζ(x − x j ) − ζ(x − x j + η)

)
. (3.11)

Let a = xi for some i , then the coefficients μ0, μ1 in (3.4) are

μ0 =
∑

k �=i

ẋkζ(xi − xk) −
∑

k

ẋkζ(xi − xk + η),

μ1 =
∑

k �=i

ẋkζ(xi − xk) −
∑

k

ẋkζ(xi − xk − η)

(3.12)

and (3.5) is equivalent to the equation of motion

ẍi +
∑

k �=i

ẋi ẋk
(
ζ(xi − xk + η) + ζ(xi − xk − η) − 2ζ(xi − xk)

)
= 0 (3.13)

of the Ruijsenaars–Schneider model.
Let us show that (3.5) is a sufficient condition for existence of a meromorphic wave

solution to equation (3.3) depending on a spectral parameter k with a pole at x = a
and regular at the points x = a ± η. This solution can be found in the form

ψ(x) = kx/ηekt
(
1 +

∑

s≥1

ξs(x)k
−s

)
, k → ∞. (3.14)
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Proposition 3.2 Suppose that b(x) in (3.3) has poles at x = a and x = a − η with
expansions near the poles of the form (3.4) and condition (3.5) for the pole of b(x)
holds. Then, all wave solutions of equation (3.3) of the form (3.14) are meromorphic
in a neighborhood of the point a with a simple pole at x = a and regular at x = a±η.

Proof Substituting the expansions into the equation, we obtain the recurrence relation
for the coefficients ξs :

ξs+1(x) − ξs+1(x + η) = b(x)ξs(x) − ξ̇s(x), s ≥ 0 (3.15)

. (It is convenient to put ξ0 = 1.) In particular,

ξ1(x) − ξ1(x + η) = b(x). (3.16)

Let the Laurent expansion of ξs near the point a be

ξs(x) = rs
x − a

+ rs,0 + rs,1(x − a) + . . . , x → a. (3.17)

Substituting this into (3.15) with x → a and equating the coefficients at the poles, we
get the recurrence relation

rs+1 = ȧrs,0 + μ0rs − ṙs . (3.18)

Expanding (3.15) near the point x → a − η and equating the coefficients in front of
(x − a + η)−1 and (x − a + η)0, we get

⎧
⎨

⎩

rs+1 = ȧξs(a − η),

rs+1,0 − ξs+1(a − η) = μ1ξs(a − η) + ȧξ ′
s(a − η) + ∂tξs(a − η).

(3.19)

The meromorphic wave solution with the required properties exists if the sum of
residues of the right-hand side of (3.15) at the points x = a and x = a − η is equal to
zero for all s ≥ 0. This sum of residues is given by

Rs = ȧrs,0 + μ0rs − ṙs − ȧξs(a − η).

We are going to prove that Rs = 0 for all s ≥ 0 by induction. This is obviously true
for s = 0 due to equation (3.16). Assume that Rs = 0 for some s, this is our induction
assumption. Using (3.19), we find:

Rs+1 = ȧ
(
rs+1,0 − ξs+1(a − η)

)
+ μ0rs+1 − ṙs+1

=
(
ȧ(μ0 + μ1) − ä

)
ξs(a − η) − ∂t Rs = 0

because the first term vanishes due to the condition (3.5) and the second one vanishes
due to the induction assumption. ��
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3.1.2 The linear problemwith respect to t̄1

Consider now the linear problem (3.2):

∂tψ(x) = v(x)ψ(x − η). (3.20)

Suppose that the function v(x) has a second-order pole at x = a with the expansion

v(x) = ν

(x − a)2
+ μ

x − a
+ O(1), x → a. (3.21)

We also assume that v(x) has a zero at x = a − η: v(a − η) = 0.

Proposition 3.3 Suppose that v(x) in (3.20) has a second-order pole at x = a with
the expansion (3.21) and v(a−η) = 0. If equation (3.20) has a meromorphic solution
with a simple pole at the point a regular at a ± η, then the condition

νä + μȧ2 − ν̇ȧ = 0 (3.22)

holds.

Proof For ψ(x) near the point a, we have

ψ(x) = α

x − a
+ O(1), x → a. (3.23)

Substituting the expansions around the point a in the equation (3.20), we write:

αȧ

(x − a)2
+ α̇

x − a
=

( ν

(x − a)2
+ μ

x − a
+ O(1)

)(
ψ(a − η) + (x − a)ψ ′(a − η) + . . .

)
.

Equating the coefficients in front of the poles, we obtain the conditions

⎧
⎨

⎩

αȧ = νψ(a − η),

α̇ = νψ ′(a − η) + μψ(a − η).

(3.24)

At x = a−η, equation (3.20) gives ∂tψ(a−η) = 0 due to the fact that v(a−η) = 0,
so the full time derivative of ψ(a − η) is

ψ̇(a − η) = ȧψ ′(a − η). (3.25)

Combining the time derivative of the first equation in (3.24) with the second one and
using (3.25), we obtain the condition (3.22). ��
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Suppose that v(x) is an elliptic function of the form

v(x) =
N∏

j=1

σ(x − x j + η)σ (x − x j − η)

σ 2(x − x j )
, (3.26)

then, setting a = xi , we have:

ν = −σ 2(η)
∏

j �=i

σ(xi − x j + η)σ (xi − x j − η)

σ 2(xi − x j )
, (3.27)

μ = ν
∑

k �=i

(
ζ(xi − xk + η) + ζ(xi − xk − η) − 2ζ(xi − xk)

)
, (3.28)

and the condition (3.22) is equivalent to the equation of motion which is the same as
(3.13).

Similarly to the previous case, equation (3.22) is a sufficient condition for local
existence of a meromorphic wave solution to equation (3.20) depending on a spectral
parameter k with a pole at x = a and regular at the points x = a ± η. However, the
arguments need some modifications.

Proposition 3.4 Suppose that v(x) in (3.20) has a second-order pole at x = a with
expansion near the pole of the form (3.21) and v(a ± η) = 0. Let v(x) be of the form

v(x) = eϕ(x)−ϕ(x−η), (3.29)

where ϕ(x) has logarithmic singularities at x = a and x = a − η, so that

ϕ̇(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ȧ

x − a
+ ϕ0 + O(x − a), x → a,

− ȧ

x − a + η
+ ϕ1 + O(x − a + η), x → a − η.

(3.30)

Suppose that condition (3.22) for the pole of v(x) holds. Then, all wave solutions of
equation (3.20) of the form

ψ(x) = k−x/ηekt+ϕ(x)
(
1 +

∑

s≥1

ξs(x)k
−s

)
, k → ∞ (3.31)

are meromorphic in a neighborhood of the point a with a simple pole at x = a and
regular at x = a ± η.

Proof Expanding the equality ∂t log v(x) = ϕ̇(x) − ϕ̇(x − η) near the point x = a
with the help of (3.21) and comparing the coefficients, we get:

ϕ0 − ϕ1 = ν̇

ν
− μ

ν
ȧ. (3.32)
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Substituting the expansions into the equation, we obtain the recurrence relation for
the coefficients ξs :

ξs+1(x − η) − ξs+1(x) = ϕ̇(x)ξs(x) + ξ̇s(x), s ≥ 0. (3.33)

In particular,

ξ1(x − η) − ξ1(x) = ϕ̇(x). (3.34)

The factor eϕ(x) in (3.31) has a pole at x = a and a zero at x = a − η. This means
that the coefficients ξs(x) are regular at x = a and may have a pole at x = a − η. Let
the Laurent expansion of ξs near the point a − η be of the form

ξs(x) = rs
x − a + η

+ rs,0 + rs,1(x − a + η) + . . . , x → a − η. (3.35)

The meromorphic wave solution with the required properties exists if the sum of
residues of the right-hand side of (3.33) at the points x = a and x = a − η is equal to
zero for all s ≥ 0. This can be proved by induction in the same way as for the linear
problem (3.3). ��

3.2 The case of the Toda lattice of type C

TheToda lattice of typeCwas introduced in the paper [22] by the authors. The auxiliary
linear problem has the form

∂tψ(x) = ψ(x + η) + 1

2
ϕ̇(x)ψ(x) + v(x)ψ(x − η), (3.36)

where v(x) = eϕ(x)−ϕ(x−η). We assume that ϕ̇(x) is expanded near the points x = a
and x = a − η as in (3.30) and

v(x) = ν

(x − a)2
+ μ

x − a
+ O(1), x → a. (3.37)

We also note that the relation (3.32) holds.

Proposition 3.5 Suppose that v(x) = eϕ(x)−ϕ(x−η) in (3.36) has a second-order pole
at x = a with the expansion (3.37), v(a−η) = 0 and ϕ̇(x) is expanded near the points
x = a and x = a−η as in (3.30). If equation (3.36) has a meromorphic solution with
a simple pole at the point a regular at a ± η, then the condition

ȧ2 = −4ν (3.38)

holds.
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Proof Let the functionψ(x) have a pole at x = a with the expansion near this point of
the form (3.6). Substituting the expansions near x = a into the equation and equating
the coefficients in front of the highest poles, we get the condition

αȧ + 2νψ(a − η) = 0. (3.39)

The same procedure at the pole at x = a − η leads to the condition

2α = ȧψ(a − η). (3.40)

Combining (3.39) and (3.40), we obtain the condition (3.38). ��
Suppose now that v(x) is the elliptic function (3.26), then, expanding it near the

point a = xi , we see that ν is given by (3.27). Equations (3.38) for any i are then
equivalent to the equations of motion for poles of elliptic solutions to the Toda lattice
of type C:

ẋi = 2σ(η)
∏

j �=i

(σ (xi − x j + η)σ (xi − x j − η))1/2

σ(xi − x j )
. (3.41)

These equations were obtained in [22]. The properly taken limit η → 0 leads to
equations (2.20).

Let us show that (3.38) is a sufficient condition for existence of a meromorphic
wave solution to equation (3.36) depending on a spectral parameter k with a pole at
x = a and regular at the points x = a ± η.

Proposition 3.6 Suppose that v(x) = eϕ(x)−ϕ(x−η) in (3.36) has a second-order pole
at x = a with expansion near the pole of the form (3.37) and v(a − η) = 0. Assume
also that the function ϕ̇(x) has expansion of the form (3.30). If condition (3.22) for
the pole of v(x) holds, then all wave solutions of equation (3.36) of the form

ψ(x) = kx/ηekt
(
1 +

∑

s≥1

ξs(x)k
−s

)
, k → ∞ (3.42)

are meromorphic in a neighborhood of the point a with a simple pole at x = a and
regular at x = a ± η.

Proof Substituting the expansions into the equation, we obtain the recurrence relation
for the coefficients ξs in (3.42):

ξs+1(x) − ξs+1(x + η) = 1

2
ϕ̇(x)ξs(x) − ξ̇s(x) − v(x)ξs−1(x − η), s ≥ 0,

(3.43)

where we set ξ−1 = 0, ξ0 = 1. In particular,

ξ1(x) − ξ1(x + η) = 1

2
ϕ̇(x). (3.44)
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Assuming the expansion of ξs(x) near the point a of the form (3.17), we get from
(3.43) expanded near the this point:

⎧
⎨

⎩

1
2 rs ȧ + νξs−1(a − η) = 0,

rs+1 = 1
2 ȧrs,0 + 1

2 ϕ0rs − ṙs − νξ ′
s−1(a − η) − μξs−1(a − η).

(3.45)

The expansion near the point x = a − η gives:

⎧
⎨

⎩

rs+1 = 1
2 ȧξs(a − η),

ξs+1(a − η) − rs+1,0 = 1
2 ϕ1ξs(a − η) − 1

2 ȧξ ′
s(a − η) − ∂tξs(a − η).

(3.46)

Let

Rs = 1

2
ȧ(rs,0 − ξs(a − η)) + 1

2
ϕ0rs − ṙs − νξ ′

s−1(a − η) − μξs−1(a − η)

be sum of the residues at the points x = a and x = a − η which must be zero. At
s = 0, this is true due to (3.44). Our induction assumption is that Rs = 0 for some s;
let us show that this implies that Rs+1 = 0. We have:

Rs+1 = 1

2
ȧ(rs+1,0 − ξs+1(a − η)) + 1

2
ϕ0rs+1 − ṙs+1 − νξ ′

s(a − η) − μξs(a − η).

Substituting here the recurrence relations (3.45), (3.46), we obtain, after some calcu-
lations and cancellations:

Rs+1 = 1

4

(
(ϕ0−ϕ1)ȧ − 4μ − 2ä

)
ξs(a − η) − 1

4
(ȧ2 + 4ν)ξ ′

s(a − η) − ∂t Rs .

The last two terms are equal to zero by virtue of the induction assumption and the
condition (3.38). As for the first term, we have:

(ϕ0−ϕ1)ȧ − 4μ − 2ä =
( ν̇

ν
− μ

ν
ȧ
)
ȧ − 4μ − 2ä

= (ȧ2 + 4ν)
ν̇ − μȧ

νȧ
− 1

ȧ
∂t (ȧ

2 + 4ν) = 0

by virtue of the condition (3.38). Therefore, Rs+1 = 0 and we have proved the exis-
tence of a meromorphic wave solution. ��
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3.3 The case of the Toda lattice of type B

3.3.1 Existence of a meromorphic solution

The Toda lattice of type B was recently introduced by the authors in [20]. The linear
equation for the first time flow has the form

∂tψ(x) = v(x)(ψ(x + η) − ψ(x − η)). (3.47)

Assume that the function v(x) has a second-order pole at x = a with the expansion

v(x) = ν

(x − a)2
+ μ

x − a
+ O(1), x → a. (3.48)

We also assume that v(x) has zeros at x = a − η and x = a + η:

v(x) =
⎧
⎨

⎩

(x − a − η)V+(a) + O((x−a−η)2), x → a + η,

(x − a + η)V−(a) + O((x−a+η)2), x → a − η.

(3.49)

Proposition 3.7 Suppose that v(x) in (3.47) has a second-order pole at x = a and
zeros at x = a ± η with the expansions (3.48), (3.49). If equation (3.47) has a
meromorphic solution with a simple pole at the point a regular at a ± η, then the
condition

νä + μȧ2 − ν̇ȧ + ν2(V+(a) + V−(a)) = 0 (3.50)

holds.

Proof The principal part of the Laurent expansion of ψ(x) near the point x = a is

ψ(x) = α

x − a
+ O(1), x → a. (3.51)

As x → a, we have from equation (3.47):

αȧ

(x − a)2
+ α̇

x − a
=

( ν

(x − a)2
+ μ

x − a
+O(1)

)

(
ψ(a+η)−ψ(a−η)+(x − a)(ψ ′(a+η)−ψ ′(a−η))+ . . .

)
.

Equating the coefficients in front of the poles, we obtain the conditions

⎧
⎨

⎩

αȧ = ν(ψ(a + η) − ψ(a − η)),

α̇ = μ(ψ(a + η) − ψ(a − η)) + ν(ψ ′(a + η) − ψ ′(a − η)).

(3.52)
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At x = a ± η, equation (3.47) gives:

∂tψ(a ± η) = ∓α V±(a). (3.53)

Therefore,

ψ̇(a ± η) = ∓α V±(a) + ȧψ ′(a ± η). (3.54)

Taking the time derivative of the first equation in (3.52) and combining it with the
other equations, we obtain the condition (3.50). ��

3.3.2 Dynamics of poles of elliptic solutions

Suppose that v(x) is an elliptic function of the form

v(x) =
N∏

j=1

σ(x − x j + η)σ (x − x j − η)

σ 2(x − x j )
, (3.55)

then, setting a = xi , we have:

ν = −σ 2(η)
∏

j �=i

σ(xi − x j + η)σ (xi − x j − η)

σ 2(xi − x j )
, (3.56)

μ = ν
∑

k �=i

(
ζ(xi − xk + η) + ζ(xi − xk − η) − 2ζ(xi − xk)

)
, (3.57)

V±(xi ) = ±σ(2η)

σ 2(η)

∏

j �=i

σ(xi − x j ± 2η)σ (xi − x j )

σ 2(xi − x j ± η)
, (3.58)

and the condition (3.50) is equivalent to the equation of motion

ẍi +
∑

k �=i

ẋi ẋk
(
ζ(xi −xk+η) + ζ(xi −xk−η) − 2ζ(xi − xk)

)

−σ(2η)

⎡

⎣
∏

j �=i

σ(xi −x j +2η)σ (xi −x j − η)

σ (xi − x j +η)σ (xi −x j )
−

∏

j �=i

σ(xi −x j −2η)σ (xi −x j + η)

σ (xi −x j −η)σ (xi −x j )

⎤

⎦ = 0.

(3.59)

As shown below, the properly taken limit η → 0 of this equation coincides with
equation (2.34). In the rational limit, one should substitute ζ(x) → 1/x , σ(x) → x .

InAppendixC,we show that the same equations can be obtained by restriction of the
Ruijsenaars–Schneider dynamics with respect to the time flow ∂t1 − ∂t̄1 of the system
containing 2N particles to the half-dimensional subspace of the 4N -dimensional phase
space corresponding to the configuration in which the particles stick together in pairs
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such that the distance between particles in each pair is equal to η. This configuration
is destroyed by the flow ∂t1 + ∂t̄1 but is preserved by the flow ∂t1 − ∂t̄1 . We conjecture
that it is preserved also by all higher flows ∂tk − ∂t̄k . The time evolution in t = t1 − t̄1
of the pairs with coordinates xi is given by equations (3.59).

3.3.3 The limit � → 0

The “non-relativistic limit” η → 0 in (3.55) yields

v(x) = 1 + η2u(x) + O(η4), (3.60)

where u(x) is given by (2.33). Then, the limit of the difference operator v(x)(eη∂x −
e−η∂x ) is

v(x)(eη∂x − e−η∂x ) = 2η∂x + η3

3

(
∂3x + 6u(x)∂x

)
+ O(η5), (3.61)

i.e., in the next-to-leading order the differential operator ∂3x + 6u∂x participating in
the linear problem for the BKP equation arises (see equation (2.28)). Let us pass to
the variables

X = x + 2ηt, T = η3

3
t, (3.62)

then ∂X = ∂x , ∂T = 3

η3
(∂t − 2η∂x ) and in the limit η → 0 the linear problem

(3.47) becomes ∂Tψ = (∂3X −6u∂X )ψ which is the linear problem (2.28) for the BKP
equation.

Taking the change of variables (3.62) into account, let us find the η → 0 limit of
equation (3.59). We have:

σ(x − xi ) = σ
(
X − 6

η2
T − xi

)
= σ(X − Xi ),

whence Xi = 6

η2
T + xi and ẋi = ∂t xi = −2η + η3

3
∂TXi . Expanding equation (3.59)

in powers of η, we obtain:

η6

9
∂2TXi − 4η2

∑

k �=i

(
1− η2

6
∂TXi

)

(
1− η2

6
∂TXk

)(
η2℘′(Xik)+ η4

12
℘′′′(Xik)+O(η6)

)
−Ui = 0,
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where Xik ≡ Xi − Xk and

Ui = σ(2η)

⎡

⎣
∏

j �=i

σ(Xi j + 2η)σ (Xi j − η)

σ (Xi j + η)σ (Xi j )
−

∏

j �=i

σ(Xi j − 2η)σ (Xi j + η)

σ (Xi j − η)σ (Xi j )

⎤

⎦

= −4η4
∑

j �=i

℘′(Xi j ) + 8η6
∑

j �=i

℘(Xi j )
∑

l �=i

℘′(Xil) − η6
∑

j �=i

℘′′′(Xi j ) + O(η8).

It is easy to see that the terms of order η4 cancel in the equation and in the leading-order
η6 equation (2.34) arises.

3.3.4 Existence of meromorphic wave solutions

Similarly to the previous cases, equation (3.50) is a sufficient condition for local
existence of a meromorphic wave solution to equation (3.47) depending on a spectral
parameter k with a pole at x = a and regular at the points x = a ± η. However,
the proof requires more sophisticated calculations than in the Toda lattice case. To
proceed, we represent v(x) in the form

v(x) = τ(x + η)τ(x − η)

τ 2(x)
(3.63)

which is motivated by the result of [20]. (τ(x) is the tau-function of the Toda lattice
of type B.) We assume that τ(x) has a simple zero at the point a and that it is regular
and nonzero in some neighborhood of this point including the points a ± η:

τ(x) = (x − a)ρ(x − a), (3.64)

where the function ρ(x) is regular and nonzero at x = 0. It depends also on the time
t . Then, the coefficients in (3.48), (3.49) are expressed as

ν = −η2
ρ(η)ρ(−η)

ρ2(0)
, μ = ν

(
ρ′(η)

ρ(η)
+ ρ′(−η)

ρ(−η)
− 2

ρ′(0)
ρ(0)

)
, (3.65)

V±(a) = ±2

η

ρ(0)ρ(±2η)

ρ2(±η)
. (3.66)

It is also convenient to introduce the function

ϕ+(x) = log
τ(x − η)

τ(x)
. (3.67)
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The function ϕ̇+(x) has simple poles at the points x = a and x = a + η with the
expansions

ϕ̇+(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ȧ

x − a
+ ϕ0 + . . . , x → a,

− ȧ

x−a−η
+ ϕ1 + . . . , x → a + η,

(3.68)

where

ϕ0 = ȧ

(
1

η
− ρ′(−η)

ρ(−η)
+ ρ′(0)

ρ(0)

)
+ ρ̇(−η)

ρ(−η)
− ρ̇(0)

ρ(0)
,

ϕ1 = ȧ

(
1

η
+ ρ′(η)

ρ(η)
− ρ′(0)

ρ(0)

)
− ρ̇(η)

ρ(η)
+ ρ̇(0)

ρ(0)
.

(3.69)

It is easy to check that

ϕ0 − ϕ1 = ν̇

ν
− μ

ν
ȧ.

Proposition 3.8 Assume that v(x) in (3.47) is represented in the form (3.63), τ(x) has
a simple zero at a point a and τ(a + η)τ(a − η) �= 0. If condition (3.50) holds, then
all wave solutions of equation (3.47) of the form

ψ(x) = kx/ηekt+ϕ+(x)
(
1 +

∑

s≥1

ξs(x)k
−s

)
, k → ∞, (3.70)

where ϕ+(x) is given by (3.67), are meromorphic in a neighborhood of the point a
with a simple pole at x = a and regular at x = a ± η.

Proof Substituting the series (3.70) into the equation (3.47), we obtain the recurrence
relation for the coefficients ξs :

ξs+1(x + η) − ξs+1(x) = ϕ̇+(x)ξs(x) + ξ̇s(x) + v(x)v(x − η)ξs−1(x − η), s ≥ 0,

(3.71)

where we set ξ−1 = 0, ξ0 = 1. The factor eϕ+(x) in (3.70) has a pole at x = a and a
zero at x = a+η. This means that the coefficients ξs(x) are regular at x = a and may
have a pole at x = a + η. Let the Laurent expansion of ξs near the point a + η be

ξs(x) = rs
x − a − η

+ rs,0 + O(x − a − η) , x → a + η. (3.72)

The meromorphic wave solution with the required properties exists if the sum of
residues of the right-hand side of (3.71) at the points x = a and x = a + η is equal to
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zero for all s ≥ 0. This can be proved by induction in a similar way as before but the
calculations are more involved.

To proceed, we need some properties of the coefficient function v(x)v(x − η) in
(3.71). We have:

v(x)v(x − η) = τ(x − 2η)τ(x + η)

τ(x − η)τ(x)
,

whence

v(x)v(x − η) = νV+(a)

x − a − η
+ O(1), x → a + η, v(x)v(x − η)

∣∣∣
x=a−η

= 0,

(3.73)

v(x)v(x − η) = νV−(a)

x − a
+ �νV−(a) + O(x − a), x → a, (3.74)

where

� = 3

2η
+ ρ′(−2η)

ρ(−2η)
− ρ′(−η)

ρ(−η)
+ ρ′(η)

ρ(η)
− ρ′(0)

ρ(0)
. (3.75)

Expanding equation (3.71) near the point x = a+η, we get, equating the coefficients
in front of the poles:

rs+1 = ȧrs,0 − ϕ1rs − ṙs − νV+(a)ξs−1(a). (3.76)

Similarly, expanding equation (3.71) near the point x = a, we get, equating the
coefficients in front of (x − a)−1 and (x − a)0:

⎧
⎨

⎩

rs+1 = ȧξs(a) + νV−(a)ξs−1(a − η),

rs+1,0 − ξs+1(a) = ξ̇s(a) + ϕ0ξs(a) + νV−(a)ξ ′
s−1(a − η) + νV−(a)�ξs−1(a − η),

(3.77)

where ξ̇s(a) = ȧξ ′
s(a) + ∂tξs(a) is the full time derivative. At the point x = a − η, all

terms in equation (3.71) are regular and the equation gives:

ξs+1(a) − ξs+1(a − η) = ∂tϕ+(a − η)ξs(a − η) + ∂tξs(a − η) (3.78)

. (The last term in (3.71) vanishes at this point.)
Let

Rs = ȧ(rs,0 − ξs(a)) − ϕ1rs − ṙs − νV+(a)ξs−1(a) − νV−(a)ξs−1(a − η)
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be sum of the residues at the left-hand side of (3.71) at the points x = a and x = a+η

which must be zero. It is seen from (3.71) that R1 = 0. Our induction assumption is
that Rs = 0 for some s; let us show that this implies that Rs+1 = 0. We have:

Rs+1 = ȧ(rs+1,0 − ξs+1(a)) − ϕ1rs+1 − ṙs+1 − νV+(a)ξs(a) − νV−(a)ξs(a − η).

A straightforward calculation which uses recurrence relations (3.76), (3.77) and (3.78)
yields:

Rs+1 =
[
ȧ
( ν̇

ν
− μ

ν
ȧ
)

− ä − ν(V+(a) + V−(a))

]
− ∂t Rs

+νV−(a)ξs−1(a − η)
[
ȧ� − ϕ1 − ∂t log(νV

−(a)) + ∂tϕ+(a − η)
]
.

The first two terms vanish by virtue of the condition (3.50) and the induction assump-
tion. Using equations (3.65), (3.66), (3.69) and (3.75), one can show that the third term
also vanishes. Therefore, we have proved that from Rs = 0 it follows that Rs+1 = 0
which implies the existence of a meromorphic wave solution. ��

4 Fully difference equation

The case of fully difference equation was considered by one of the authors in [18] but
we find it appropriate to include it here for completeness.

Let us consider the difference equation

ψt+1(x) = ψt (x + η) + ut (x)ψt (x), ut (x) = τt (x)τt+1(x + η)

τt (x + η)τt+1(x)
(4.1)

which serves as the auxiliary linear problem for the Hirota bilinear difference equation
for the tau-function τt (x) [24, 25].

Proposition 4.1 Let τt (x) have a simple zero at some point at : τt (at ) = 0, τ ′
t (at ) �= 0

and τt (at − η)τt+1(at ) �= 0. Then, the necessary condition that equation (4.1) has a
meromorphic solution with a simple pole at x = at regular at x = at ± η, x = at+1
is

τt+1(at )τt (at − η)τt−1(at + η)

τt+1(at − η)τt (at + η)τt−1(at )
= −1. (4.2)
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Proof Tending x to at+1, at −η and at+1−η in equation (4.1), we obtain the relations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αt+1 = τt (at+1)τt+1(at+1 + η)

τ ′
t+1(at+1)τt (at+1 + η)

ψt (at+1),

αt = − τt (at − η)τt+1(at )

τ ′
t (at )τt+1(at − η)

ψt (at − η),

ψt+1(at+1 − η) = ψt (at+1).

(4.3)

Combining them, we arrive at the condition (4.2). ��
Let τt (x) be an “elliptic polynomial” of the form

τt (x) =
N∏

j=1

σ(x − xtj ) (4.4)

with N simple roots xtj in the fundamental domain, then the conditions (4.2) with
at = xti for each i = 1, . . . , N yield the equations

N∏

j=1

σ(xti − xt+1
j )σ (xti − xtj − η)σ (xti − xt−1

j + η)

σ (xti − xt+1
j − η)σ (xti − xtj + η)σ (xti − xt−1

j )
= −1. (4.5)

These are equations of motion for the discrete time version of the Ruijsenaars–
Schneider system first obtained in [26].

Finally, we will show that (4.2) is a sufficient condition for local existence of a
meromorphic wave solution to equation (4.1) of the form

ψt (x) = kx/ηkt
(
1 +

∑

s≥1

ξ ts (x)k
−s

)
(4.6)

having a simple pole at x = at and regular at x = at ± η, x = at+1.

Proposition 4.2 Assume that τt (x) in (4.1) has a zero at some point at such that
τ ′
t (at ) �= 0, τt (at −η)τt+1(at ) �= 0 and condition (4.2) holds. Then, all wave solutions
to equation (4.1) of the form (4.6) are meromorphic in a neighborhood of the point a
with a simple pole at x = a and regular at x = a ± η.

Proof Substituting the series (4.6) into the equation, we obtain the recurrence relation

ξ t+1
s+1(x) − ξ ts+1(x + η) = ut (x)ξ

t
s (x). (4.7)

Let the expansion of the function ψt (x) near the pole be of the form

ψt (x) = r ts
x − at

+ r ts,0 + O(x − at ). (4.8)
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Tending x to at+1, at − η and at+1 − η in equation (4.7), we obtain the equalities

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r t+1
s+1 = τt (at+1)τt+1(at+1 + η)

τ ′
t+1(at+1)τt (at+1 + η)

ξ ts (at+1),

r ts+1 = − τt (at − η)τt+1(at )

τ ′
t (at )τt+1(at − η)

ξ ts (at − η),

ξ t+1
s (at+1 − η) = ξ ts (at+1),

(4.9)

where we shifted s → s − 1 in the last equation. Combining them and taking into
account the condition (4.2), we see that the two expressions for r ts+1 that follow from
(4.7) actually coincide whence we conclude that the solution of the form (4.6) exists.

��

5 Concluding remarks

In this paper, we have further developed the approach to integrablemany-body systems
based on monodromy free linear equations, i.e., on finding conditions of existence of
meromorphic solutions to linear partial differential and difference equations for all
cases which arise as linear problems for integrable nonlinear equations. Some of them
were previously discussed by one of the authors in [17–19]. We have also shown
that these conditions are simultaneously sufficient conditions for local existence of
meromorphic wave solutions depending on a spectral parameter. These conditions
straightforwardly lead to equations ofmotion for poles of elliptic solutions to nonlinear
integrable equations. It turns out that the dynamics of poles is isomorphic tomany-body
systems of Calogero–Moser type which include the Calogero–Moser system itself, its
relativistic extension (the Ruijsenaars–Schneider system) and a rather exotic system
with three-body interaction found in [14]. We note that the approach of this paper is
the shortest way to obtain the equations of motion. Presumably, all these systems are
integrable as they arise as certain finite-dimensional reductions of integrable nonlinear
systems with infinitely many degrees of freedom. Independent proofs of integrability
exist for theCalogero–Moser andRuijsenaars–Schneider systems,while for the system
introduced in [14] this is still a hypothesis.

Themain new result of this paper is themany-body systemwith equations ofmotion
(1.1), (1.2) representing dynamics of poles of elliptic solutions to the Toda lattice of
type B recently introduced in [20]. This system can be regarded as a kind of relativistic
extension of the system found in [14] with equations of motion (2.34) in the sense
that the former is related to the latter in the same way as the Ruijsenaars–Schneider
system is related to the Calogero–Moser system.

There are some interesting open problems. First, it is not clear whether the system
(1.1), (1.2) is Hamiltonian. Second, a commutation representation for it is not yet
known. Presumably, such commutation representation is of the form of theManakov’s
triple as it is the case for the system (2.34) which arises from (1.1), (1.2) in the η → 0
limit. Last but not least, there is the problem of proving integrability of the system
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(1.1), (1.2). At the moment, we know only one integral of motion which is I =
∑

i

ẋi .

Its conservation ( Ï = 0) can be seen directly from the equations of motion taking into
account that

N∑

i=1

U (xi1, . . . , xiN ) = 0

which follows from the fact that the left-hand side is sum of the residues at the 2N
poles of the elliptic function

f (x) =
N∏

j=1

σ(x − x j + 2η)σ (x − x j − η)

σ (x − x j + η)σ (x − x j )

at the points x = xi , x = xi − η, i = 1, . . . , N .

Acknowledgements The work of A.Z. (Sects. 2.2, 2.3, 3.3) was supported by the Russian Science Foun-
dation under grant 19-11-00062.

Appendix A: TheWeierstrass functions

Throughout the main text, we use the standard Weierstrass functions: the σ -function,
the ζ -function and the ℘-function.

The Weierstrass σ -function with quasi-periods 2ω, 2ω′ such that Im(ω′/ω) > 0 is
defined by the infinite product

σ(x) = σ(x | ω,ω′)

= x
∏

s �=0

(
1 − x

s

)
e
x
s + x2

2s2 , s = 2ωm + 2ω′m′ with integer m,m′. (A1)

It is an odd entire quasiperiodic function in the complex plane. The Weierstrass ζ -
function is defined as

ζ(x) = σ ′(x)
σ (x)

= 1

x
+

∑

s �=0

( 1

x − s
+ 1

s
+ x

s2

)
. (A2)

It is an odd function with first-order poles at the points of the lattice s = 2ωm+2ω′m′
with integer m,m′. The definition of the Weierstrass ℘-function is

℘(x) = −ζ ′(x) = 1

x2
+

∑

s �=0

( 1

(x − s)2
− 1

s2

)
. (A3)

It is an even double-periodic function with periods 2ω, 2ω′ and with second-order
poles at the points of the lattice s = 2ωm + 2ω′m′ with integer m,m′.
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The monodromy properties of the σ -function under shifts by the quasi-periods are
as follows:

σ(x + 2ω) = −e2ζ(ω)(x+ω)σ (x),

σ (x + 2ω′) = −e2ζ(ω′)(x+ω′)σ (x).
(A4)

The ζ -function acquires an additive constant when the argument is shifted by any
quasi-period:

ζ(x + 2ω) = ζ(x) + ζ(ω),

ζ(x + 2ω′) = ζ(x) + ζ(ω′).
(A5)

These constants are related by the identity 2ω′ζ(ω) − 2ωζ(ω′) = π i .

Appendix B: The Ruijsenaars–Schneider model

Here, we collect some facts on the elliptic Ruijsenaars–Schneider system [12] fol-
lowing the paper [13]. The N -particle elliptic Ruijsenaars–Schneider system is a
completely integrable model. The canonical Poisson brackets between coordinates
and momenta are {xi , p j } = δi j . The integrals of motion in involution have the form

Ik =
∑

I⊂{1,...,N }, |I |=k

exp
(∑

i∈I
pi

) ∏

i∈I , j /∈I

σ(xi − x j + η)

σ (xi − x j )
, k = 1, . . . , N . (B1)

It is convenient to put I0 = 1. Important particular cases of (B1) are

I1 = H1 =
∑

i

e pi
∏

j �=i

σ(xi − x j + η)

σ (xi − x j )
(B2)

which is the Hamiltonian H1 of the chiral Ruijsenaars–Schneider model and

IN = exp
( N∑

i=1

pi
)
. (B3)

Let us denote the time variable of the Hamiltonian flow with the Hamiltonian H1
by t1. The velocities of the particles are

ẋi = ∂H1

∂ pi
= epi

∏

j �=i

σ(xi − x j + η)

σ (xi − x j )
, (B4)

123



75 Page 32 of 36 I. Krichever, A. Zabrodin

where dot means the t1-derivative. The Hamiltonian equations ẋi = ∂H1/∂ pi , ṗi =
−∂H1/∂xi are equivalent to the following equations of motion:

ẍi = −
∑

k �=i

ẋi ẋk
(
ζ(xi − xk + η) + ζ(xi − xk − η) − 2ζ(xi − xk)

)

=
∑

k �=i

ẋi ẋk
℘′(xi − xk)

℘ (η) − ℘(xi − xk)
.

(B5)

The properly taken limit η → 0 (the “non-relativistic limit”) gives equations ofmotion
of the elliptic Calogero–Moser system.

One can also introduce integrals of motion I−k as

I−k = I−1
N IN−k =

∑

I⊂{1,...,N }, |I |=k

exp
(
−

∑

i∈I
pi

) ∏

i∈I , j /∈I

σ(xi − x j − η)

σ (xi − x j )
. (B6)

In particular,

I−1 =
∑

i

e−pi
∏

j �=i

σ(xi − x j − η)

σ (xi − x j )
. (B7)

It can be easily verified that equations of motion in the time t̄1 corresponding to the
Hamiltonian H̄1 = σ 2(η)I−1 are the same as (B5).

The “physical” Hamiltonian of the Ruijsenaars–Schneider model is H+ = H1 +
H̄1. Below in Appendix C we consider the Hamiltonian flow corresponding to the
Hamiltonian H− = H1 − H̄1.

Appendix C: How Ruijsenaars–Schneider particles stick together

In this appendix, we show how to restrict the Ruijsenaars–Schneider dynamics of the
N = 2n-particle system to the subspace in which the particles stick together in n pairs
such that

x2i − x2i−1 = η, i = 1, . . . , n. (C1)

We introduce the variables

Xi = x2i−1, i = 1, . . . , n (C2)

which are coordinates of the pairs. Such configuration is destroyed by the H+-
Hamiltonian flow ∂t1 + ∂t̄1 but is preserved by the H−-flow ∂t = ∂t1 − ∂t̄1 , as we
shall see below.
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The Hamiltonian H− reads

H− =
∑

i

e pi
∏

j �=i

σ(xi − x j + η)

σ (xi − x j )
− σ 2(η)

∑

i

e−pi
∏

j �=i

σ(xi − x j − η)

σ (xi − x j )
.

For the velocities ẋi = ∂H−/∂ pi , we have:

ẋ2i−1 = ep2i−1

2n∏

j=1,�=2i−1

σ(x2i−1, j + η)

σ (x2i−1, j )
+ σ 2(η)e−p2i−1

2n∏

j=1,�=2i−1

σ(x2i−1, j − η)

σ (x2i−1, j )
,

ẋ2i = ep2i
2n∏

j=1,�=2i

σ(x2i, j + η)

σ (x2i, j )
+ σ 2(η)e−p2i

2n∏

j=1,�=2i

σ(x2i, j − η)

σ (x2i, j )
,

where xik ≡ xi − xk . Suppose that the momenta remain finite under the restriction to
(C1). Then in terms of coordinates Xi of the pairs, we have from these formulas:

ẋ2i−1 = σ(η)σ (2η)e−p2i−1

n∏

j=1,�=i

σ(Xi j − 2η)

σ (Xi j )
,

ẋ2i = σ(2η)

σ (η)
ep2i

n∏

j=1,�=i

σ(Xi j + 2η)

σ (Xi j )
.

(C3)

The dynamics preserves the configuration (C1) if ẋ2i−1 = ẋ2i , whence we should
require

ep2i−1+p2i = σ 2(η)
∏

j �=i

σ(Xi j − 2η)

σ (Xi j + 2η)
.

Resolving this constraint, we can put

p2i−1 = αi + Pi , p2i = αi − Pi , i = 1, . . . , n, (C4)

where

αi = log σ(η) + 1

2

∑

j �=i

log
σ(Xi j − 2η)

σ (Xi j + 2η)
(C5)

and Pi are arbitrary. We have thus restricted the original 4n-dimensional phase space
F with coordinates {p j , x j }, j = 1, . . . , 2n to the 2n-dimensional subspace P with
coordinates {Pi , Xi }, i = 1, . . . , n corresponding to joining the particles into pairs of
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the form (C1). Equations (C3) are then equivalent to

Ẋi = σ(2η)e−Pi
∏

j �=i

(σ (Xi j − 2η)σ (Xi j + 2η))1/2

σ(Xi j )
. (C6)

Let us now pass to the second set of the Hamiltonian equations, ṗi = −∂H−/∂xi :

ṗi = σ 2(η)e−pi
2n∏

k=1,�=i

σ(xik − η)

σ (xik)

2n∑

j=1,�=i

(
ζ(xi j − η) − ζ(xi j )

)

− epi
2n∏

k=1,�=i

σ(xik + η)

σ (xik)

2n∑

j=1,�=i

(
ζ(xi j + η) − ζ(xi j )

)

+ σ 2(η)

2n∑

l=1,�=i

e−pl
2n∏

k=1,�=l

σ(xlk − η)

σ (xlk)

(
ζ(xil + η) − ζ(xil)

)

−
2n∑

l=1,�=i

e pl
2n∏

k=1,�=l

σ(xlk + η)

σ (xlk)

(
ζ(xil − η) − ζ(xil)

)
.

(C7)

Restricting to the subspace P , we have:

ṗ2i−1=σ(η)σ (2η)e−αi−Pi
n∏

k=1,�=i

σ(Xik − 2η)

σ (Xik)

⎡

⎣
n∑

j=1,�=i

(
ζ(Xi j −2η)−ζ(Xi j )

)
+ζ(η)−ζ(2η)

⎤

⎦

+ σ(η)σ (2η)

n∑

l=1,�=i

e−αl−Pl
n∏

k=1,�=l

σ(Xlk − 2η)

σ (Xlk)

(
ζ(Xil + η) − ζ(Xil)

)

− σ(2η)

σ (η)

n∑

l=1

eαl−Pl
n∏

k=1,�=l

σ(Xlk + 2η)

σ (Xlk)

(
ζ(Xil − 2η) − ζ(Xil − η)

)

+ σ−1(η)eαi+Pi
n∏

k=1,�=i

σ(Xik + η)

σ (Xik − η)
− σ(η)e−αi+Pi

n∏

k=1,�=i

σ(Xik − η)

σ (Xik + η)
.

(C8)

When passing from (C7) to (C8) with the constraint (C1), one encounters expressions
like σ(x2i −x2i−1−η)ζ(x2i −x2i−1−η) which is an indeterminacy of the form 0/0.
To resolve it, one should put x2i −x2i−1 = η + ε and tend ε → 0.
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Taking the time derivative of (C6), we obtain:

Ẍi = −σ(2η)Ṗi e
−Pi

∏

j �=i

(σ (Xi j − 2η)σ (Xi j + 2η))1/2

σ(Xi j )

+1

2

∑

j �=i

Ẋi (Ẋi − Ẋ j )
(
ζ(Xi j − 2η) + ζ(Xi j + 2η) − 2ζ(Xi j )

)
,

where we should substitute Ṗi = −α̇i + ṗ2i−1 from (C8) taking into account (C6):

Ṗi = −α̇i + Ẋi

⎡

⎣
∑

j �=i

(
ζ(Xi j − 2η) − ζ(Xi j )

)
+ ζ(η) − ζ(2η)

⎤

⎦

+
∑

l �=i

Ẋl

(
ζ(Xil + η) − ζ(Xil)

)
−

∑

l

Ẋl

(
ζ(Xil − 2η) − ζ(Xil − η)

)

+ePi
∏

k �=i

σ 1/2(Xik − 2η)σ (Xik + η)

σ 1/2(Xik + 2η)σ (Xik − η)
− ePi

∏

k �=i

σ 1/2(Xik + 2η)σ (Xik − η)

σ 1/2(Xik − 2η)σ (Xik + η)
.

Substituting here

α̇i = 1

2

∑

j �=i

(Ẋi − Ẋ j )
(
ζ(Xi j − 2η) − ζ(Xi j + 2η)

)
,

we obtain, after cancellations:

Ẍi = −
∑

j �=i

Ẋi Ẋ j

(
ζ(Xi j + η) + ζ(Xi j − η) − 2ζ(Xi j )

)

+σ(2η)

⎡

⎣
∏

j �=i

σ(Xi j + 2η)σ (Xi j − η)

σ (Xi j + η)σ (Xi j )
−

∏

j �=i

σ(Xi j − 2η)σ (Xi j + η)

σ (Xi j − η)σ (Xi j )

⎤

⎦ .

(C9)

These are equations (1.1), (1.2).
A similar calculation for ṗ2i leads to the same result. This means that the restriction

to the subspace P is consistent.
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