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Abstract
The existence of interacting higher-spin theories is tightly constrained by many no-go
theorems. In this paper,we construct a chiral, higher-spin generalization ofYang–Mills
theory in flat space which avoids these no-go theorems and has non-trivial tree-level
scattering amplitudes with some higher-spin external legs. The fields and action are
complex, so the theory is non-unitary and parity-violating, yet we find surprisingly
compact formulae for all-multiplicity tree-level scattering amplitudes in the maxi-
mal helicity violating (MHV) sector, where the two negative helicity particles have
identical but arbitrary spin. This is possible because the theory admits a perturbative
expansion around its self-dual sector. Using twistor theory, we prove the classical inte-
grability of this self-dual sector and show that it can be described on spacetime by an
infinite tower of interacting massless scalar fields. We also give a twistor construction
of the full theory and use it to derive the formula for the MHV amplitude.
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1 Introduction

The study of higher-spin theories is motivated by both practical and theoretical
questions. Massive higher-spin particles play a phenomenological role in describ-
ing composite states (such as those occurring in nuclear resonances of QCD) and
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are a crucial part of the spectrum of string theories. In the massless case, construct-
ing higher-spin gravitational theories is important for understanding the landscape
of possible theories of quantum gravity and has important implications ranging from
holography to conformal bootstrap (see [1–6] for reviews). But on a purely theoretical
level, one can view higher-spin theories as a playground to explore what is—and is
not—possible in the general frameworks of classical and quantum field theory.

Over the last 50 years, it has become clear that this is a theoretical playground with
many rules. The possible array of higher-spin theories is tightly constrained by many
no-go theorems, both for asymptotically flat spacetimes (e.g., [7–9]) and asymptoti-
cally (A)dS spacetimes (e.g., [10–12])—see [3, 4, 13, 14] for overviews. In attempting
to evade these no-go theorems, there is no free lunch: providing an explicit construc-
tion of a higher-spin theory (even at the classical level) usually requires abandoning
at least one feature that we usually think of as desirable for a physically interest-
ing theory, such as locality, unitarity, or manifest covariance. To date, most known
examples of local, massless higher-spin theories are either (quasi-)topological [15–
29] or higher-spin extensions of conformal gravity with higher-derivative equations of
motion [30–32]. Moreover, those higher-spin theories which are defined in flat space
turn out to have trivial S-matrices due to the severe constraints imposed on the interac-
tions by the infinite-dimensional higher-spin symmetry (cf., [28, 33, 34]).1 Depending
on the audience, the triviality of higher-spin scattering can either be an intriguing fea-
ture of—or a compelling reason to ignore—higher-spin theories. In any case, it is an
interesting question to ask: Is there a higher-spin theory in flat space with non-trivial
scattering amplitudes, and if so what properties must it possess in order to avoid the
many familiar constraints and no-go theorems?

In this paper, we study a chiral, higher-spin version of Yang–Mills theory in four-
dimensional flat spacetime which has non-trivial tree-level scattering amplitudes. This
theory has been partially constructed before in the literature [37–39], and our work
builds on these previous investigations. For brevity, we refer to this theory as higher-
spin Yang–Mills (HS-YM): it has many non-standard properties, which allow it to
evade the net of no-go results on higher-spin theories with non-trivial S-matrices. In
particular, the spin-s gauge potentials of the theory live in certain “un-balanced” spin-s
representations of the Lorentz group, which we refer to as chiral representations for
every spin s > 1, making the resulting gauge potentials intrinsically chiral. There are
two on-shell degrees of freedom (i.e., positive and negative helicity) at each spin in
this theory, but only one gauge-invariant field strength, from which the Lagrangian
is constructed. The built-in chiral representations mean that the fields, Lagrangian
and action functional of the theory are complex-valued in real, Lorentzian Minkowski
spacetime.

Having a complex action means that the theory is non-unitary, and the chiral rep-
resentations break parity invariance. On the one hand, this means that HS-YM fails to
have basic properties usually required of physical theories. But, on the other hand, this
ensures that HS-YM falls outside the assumptions of practically every no-go theorem

1 It should be noted that some higher-spin theories with trivial S-matrices do have non-trivial boundary
correlation functions when considered in an AdS background (in the sense that they are not equal to the
correlation functions of a free CFT). For instance, chiral higher-spin gravity in AdS4 is conjectured to be
holographically dual to (a closed subset of) Chern–Simons matter theories [35, 36]
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constraining higher-spin interactions and scattering amplitudes. The chirality of the
theory and higher-spin symmetries mean that in exchange processes, only spin-1 posi-
tive helicity particles can contribute (this is related to gauge invariance of the scattering
amplitudes), although negative helicity particles can have arbitrary spin. Furthermore,
its lack of unitarity and parity are fairly mild: self-dual Yang–Mills, self-dual gravity
and conformal fishnet theory are also non-unitary with complex Lagrangians, but nev-
ertheless encode a rich array of physically relevant information (cf., [40–49] and [50,
51]). In any case, at tree-level one is always free to consider the theory defined in com-
plexified or alternative spacetime signatures (such as Euclidean or (2, 2)-signature),
where the notion of complex fields and Lagrangians is less problematic.

In practical terms, we show that HS-YM has non-trivial scattering amplitudes by
explicitly calculating the tree-level four-point amplitude using the Feynman rules of
the spacetime action. When there are two positive helicity and two negative helicity
external states, we find a non-vanishing amplitude, with the spins of the negative
helicity particles identical but otherwise arbitrary.

In [38], a self-dual subsector of HS-YM was defined, and it is straightforward to
show that the full theory admits a perturbative (i.e., small coupling) expansion around
this subsector. We give a description of self-dual HS-YM in terms of twistor theory
[52, 53], showing that it is classically integrable. A spacetime manifestation of this
is the fact that self-dual HS-YM can be described by an infinite tower of massless,
adjoint-valued scalar fields with cubic interactions; this is a higher-spin generalization
of the Chalmers-Siegel description of self-dual Yang–Mills theory [54], which has
already been written down as a contraction of chiral higher-spin gravity [37].

These facts have several important consequences. Firstly, it means that HS-YM
can be perturbatively expanded around a classically integrable subsector where we
have vanishing tree amplitudes. Theories with such a structure can often be described
in terms of twistor actions,2 classical reformulations of the theory on twistor space
which have enhanced gauge invariance, that is a powerful tool for computing scattering
amplitudes, andHS-YM is no exception. Furthermore, recent results on covariantizing
chiral higher-spin theories [19, 20, 28, 37, 68] using twistor-inspired methods and free
differential algebras [36, 38, 69–71] hint that twistor theory an ideal framework for
constructing local higher-spin theories like HS-YM.

For scattering amplitudes in a helicity grading, the maximal helicity violating
(MHV) configuration, with two negative helicity and arbitrarily many positive helic-
ity external states, represents the first non-trivial perturbation away from self-duality
and can be computed to all multiplicity directly from the twistor action of HS-YM.
Remarkably, this leads to a compact formula for the n-point, color-ordered tree-level
MHV amplitude of HS-YM written in spinor-helicity variables:

AMHV
n = gn−2

2
δ4

(
n∑

a=1

ka

)
〈i j〉2s+2

〈1 2〉 〈2 3〉 · · · 〈n 1〉 , (1.1)

2 Examples include ordinary Yang–Mills theory [55, 56], conformal gravity [55, 57], general relativity
[58], 3-dimensional Yang–Mills–Higgs theory [59] and conformal higher-spin theory [60, 61], as well
as deformations of N = 4 super-Yang–Mills and conformal fishnet theory [62]. There are also twistor
constructions for the interactions of chiral higher-spin gravity [63] and higher-spin generalizations of the
IKKT matrix mode [64–67].
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where g is the (dimensionless) coupling constant of the theory; kμ
a is the on-shell

4-momentum of the ath external particle; and the negative helicity particles i, j have
integer spin s ≥ 1while all others have positive helicity and spin-1.While this formula
can be guessed from n = 3, 4 explicit calculations and checked usingBCFW recursion
[72], the twistor action provides a first-principles derivation of the MHV amplitude.

Besides the explicit construction of HS-YM on spacetime and calculation of tree-
level scattering amplitudes, our main results can be summarized as follows:

Theorem 1: There is a one-to-one correspondence between solutions of the self-
dual HS-YM equations and certain holomorphic vector bundles on twistor space,
implying the classical integrability of the self-dual sector.
Theorem 2: The self-dual sector of HS-YM is described on spacetime by the action

1

2

∞∑
s=1

∫
tr
(
dφ(s) ∧ ∗dφ(s)

)
+ 1

3

∞∑
s=1

∫
μa,a ∧ tr

(
φ(s)

∑
r+t=s+1

dφ(r) ∧ dφ(t)

)
,

(1.2)

where {φ(s)}s=1,...,∞ are scalar functions valued in the adjoint representation of
the gauge group and μa,a := aα aβ dxαα̇ ∧ dxβ

α̇ for aα some constant spinor.
Theorem 3: The classical action of full HS-YM theory is equivalent to an action
functional on twistor space which has a local piece corresponding to the self-dual
sector and a non-local piece encoding non-self-dual interactions.

The paper is structured as follows. Section2 provides a definition of the spacetime
theory for HS-YM and analyses higher-spin propagating degrees of freedom in the
chiral representation. Section3 computes the 3- and 4-point scattering amplitudes of
HS-YM using Feynman rules before presenting the n-point formula (1.1) for tree-
level MHV scattering. Section4 investigates the properties of self-dual HS-YM using
twistor theory, establishing classical integrability of the self-dual sector and providing
descriptions of it both on twistor space and spacetime. In Sect. 5, we give a twistor
action description of full HS-YM and use it to derive our formula for the tree-level
MHV amplitudes. Section6 concludes, and “Appendix A” provides a check on the
MHV formula using BCFW recursion.
Notation: Throughout, we denote SL(2,C) spinor indices of negative chirality by
α, β, . . . = 0, 1 and SL(2,C) spinor indices of positive chirality by α̇, β̇, . . . = 0̇, 1̇.
Spinor indices are raised and lowered using the two-dimensional Levi-Civita symbols:

bα = εαβ bβ, bα = bγ εγβ, εαβ εαγ = δα
γ , (1.3)

and likewise for dotted indices. We often make use of the spinor helicity notation for
SL(2,C)-invariant contractions of spinors:

〈a b〉 := aα bα, [c d] := cα̇ dα̇, (1.4)

where these inner products are skew-symmetric. Totally symmetric combinations of
spinor indices will be denoted by (α1 · · · αk) ≡ α(k), (α̇1 · · · α̇k) ≡ α̇(k), where
symmetrization is always assumed to come with a prefactor of 1

k! .
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Fig. 1 The standard Fronsdal representation (red) versus the chiral representation (blue) of a spin-s gauge
potential (color figure online)

Note added: While this paper was being prepared, we became aware of [73], which
gives an interesting alternative construction of the self-dual sector of HS-YM in terms
of non-projective twistor space.

2 The space-time theory

In four dimensions, a spin-s gauge field is usually thought of as a totally symmetric
rank-s symmetric tensor [74]; exploiting the local isomorphism between the Lorentz
group andSL(2,C), this is equivalent to representing the spin-s gaugefield by anobject
with s un-dotted/negative chirality SL(2,C) spinor indices and s dotted/positive chi-
rality spinor indices. However, there are also “un-balanced” spin-s representations of
the gauge field, which have 2s total but unequal numbers of negative/positive chirality
spinor indices. The price to be paid by working with such un-balanced representations
is that they are not Lorentzian-real, as complex conjugation interchanges the spinor
representations in Lorentzian signature, but in complexified spacetime or in Euclidean
or split signature they are perfectly well defined (Fig. 1).

Following [38], we will be interested in the un-balanced representation which has
2s − 1 un-dotted spinor indices and a single dotted spinor index for each integer
spin s ≥ 1. We refer to this as the chiral representation, although it has also been
called by other names (“maximally un-balanced” or “twistor” representations) in the
literature. We construct a theory whose field content is a higher-spin generalization of
the Yang–Mills gauge potential in the chiral representation:

{
Aαα̇(x), A(αβγ )α̇(x), . . .

} =
∞⋃

s=1

{
Aα(2s−1)α̇

}
, (2.1)

where each of these potentials is valued in the adjoint of some simple Lie algebra g. As
the notation suggests, for each value of s the associated potential is totally symmetric in
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its negative chirality spinor indices, and since it is only these un-dotted spinor indices
which proliferate when s > 1, the theory is intrinsically chiral.

In this section, we review the basic classical structure of this higher-spin Yang–
Mills (HS-YM) theory on space-time, including its field content, gauge symmetries
and degrees of freedom. We note that aspects of this theory have appeared before in
the literature: an action for the self-dual sector was given in [38], and some features
of the full theory were identified in [39].

2.1 Fields & action

From now on, we assume that we areworking either on complexifiedMinkowski space
M, or3 Euclidean R

4. A standard method for compactly encoding higher-spin fields
is to introduce an auxiliary commuting SL(2,C) spinor4 yα and consider “master”
gauge potentials which are polynomials in these auxiliary parameters/variables. We
will adopt a slightly different (but completely equivalent) strategy which treats the
master gauge potential not as a polynomial in yα but as a homogeneous section of a
bundle over M.

To do this, we introduce an auxiliary commuting SL(2,C) spinor λα which is con-
sidered only up to projective rescalings: that is, we identify λα ∼ r λα for any r ∈ C

∗.
This is equivalent to viewing the projective equivalence class [λα] as homogeneous
coordinates on the Riemann sphereP1. In this projective framework, a generic polyno-
mial in λα is not well defined (as it has no fixed weight under the projective scaling).
Therefore, we will require the master gauge field to be a section of the infinite jet
bundle of the holomorphic tangent bundle of the Riemann sphere, J∞(TP

1), which
is homogeneous of degree zero under projective rescalings. We will abuse notation
slightly by abbreviating this bundle to J∞

P1
, and also using this to denote the space of

sections of the bundle.
In this work, we define HS-YM to be a theory of a non-abelian gauge connection

Dαα̇ = ∂αα̇ + Aαα̇(x |λ), (2.2)

where the connection 1-form takes values in 
1(M)⊗ g⊗ J∞
P1
. Explicitly, this means

that Aαα̇ has an expansion of the form

Aαα̇(x |λ) =
∞∑

s=1

Aβ(2s−2)|αα̇(x) λβ(2s−2) ∂s−1
0 , (2.3)

where the spacetime fields {Aβ(2s−2)|αα̇} are valued in some Lie algebra g and ∂0
is the generator of the holomorphic tangent bundle of P1 (i.e., the section which
trivializes the holomorphic tangent bundle). Note that λβ(2s−2) is a convenient notation
for λ(β1 ...λβ2s−2). Since TP

1 ∼= O(2) as holomorphic line bundles, it follows that ∂0

3 It is easy to extend all of our results to R
2,2 as well, but we do not focus on this case here.

4 For Euclidean reality conditions, these become SU(2) spinors.
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has weight −2 in λα , and thus each term in (2.3) is homogeneous of degree zero in
λα , as required.5

Ar In order to define the action of the connectionDαα̇ on objects valued in g⊗ J∞
P1
,

we first define a (somewhat trivial) Lie bracket for sections of g⊗ J k
P1

for any k ∈ N:

[[ f ∂a
0 , g∂b

0 ]] := [ f , g] ∂a+b
0 , (2.5)

where f , g are Lie-algebra valued and [·, ·] is the usual Lie bracket on g. It is easy to
check that (2.5) is itself a Lie bracket, and the connection acts on any adjoint-valued
section � of J∞

P1
as

Dαα̇� := ∂αα̇� + [[Aαα̇, �]]. (2.6)

This enables us to define a field strength associated to the higher-spin gauge connec-
tion:

Fαβ(x |λ) := εα̇β̇

2
[[Dαα̇, Dββ̇ ]] ∈ 
2−(M) ⊗ g ⊗ J∞

P1
, (2.7)

where 
2−(M) are the anti-self-dual (ASD) 2-forms on M. In particular, we only
consider the ASD part of the curvature associated with the partial connection.

Under non-abelian gauge transformations

Aαα̇ → gAαα̇ g−1 − ∂αα̇g g−1, (2.8)

where g is valued in g ⊗ J∞
P1
, the field strength transforms covariantly, Fαβ →

g Fαβ g−1, as expected. It is easy to see that the non-ASD parts of the curvature
of D do not transform covariantly with respect to these gauge transformations as a
result of the underlying chirality of the construction (i.e., growing higher-spin degrees
of freedom in un-dotted chiral representations, but not dotted ones). Thus, we see that
the construction is doubly chiral: using the chiral representation (un-dotted) means
that one only obtains sensible field strength components of corresponding chirality
(ASD).

As it stands, this setup contains too many higher-spin gauge potentials. To see this,
simply expand the coefficients Aβ(2s−2)|αα̇(x) into un-dotted SL(2,C) irreducibles:

Aβ(2s−2)|αα̇(x) = A(β(2s−2)α)α̇(x) + εα(β1 Aβ(2s−3))α̇(x), ∀s > 1. (2.9)

5 More explicitly, the representation of ∂0 provided by treating P
1 as the Riemann sphere with positive-

definite metric is:

∂0 := λ̂α

〈λ λ̂〉
∂

∂λα
, (2.4)

where λ̂α := (λ̄1, −λ̄0) is the antipodal point on P
1.
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That is, for s ≥ 2, the master gauge field contains not one, but two non-abelian spin-s
gauge potentials: Aα(2s−1)α̇ (the desired content) and Aβ(2(s+1)−3)α̇ . It is easy to see
that the superfluous field content decouples from any theory constructed from the Fαβ ,
however. Indeed, Aβ(2s−3)α̇ drops out of Fαβ , and Fαβ is left invariant by the local shift
transformations

Aβ(2s−2)|αα̇(x) → Aβ(2s−2)|αα̇(x) + εα(β1 ϑβ(2s−3))α̇(x), (2.10)

which can be used to remove all of theAβ(2s−3)α̇ components of the partial connection.
So without loss of generality, the master gauge potential can be taken to contain

exactly the field content (2.1):

Aαα̇(x |λ) :=
∞∑

s=1

Aβ(2s−2)αα̇ λβ(2s−2) ∂s−1
0 , (2.11)

as desired. This means that the component expansion of Fαβ is always totally sym-
metric in its un-dotted spinor indices, so that

Fαβ(x |λ) =
∞∑

s=1

F(αβγ (2s−2))(x) λγ (2s−2) ∂s−1
0 , (2.12)

with curvature components at each spin s ≥ 1 given by:

Fα(2s) := ∂(α1
γ̇ Aα(2s−1))γ̇ +

∑
r+t=s+1

[
A(α(2r−1)

γ̇ , Aα(2t−1))γ̇

]
. (2.13)

Note that when s = 1, this story truncates to the usual spinor description of (the ASD
part of) a Yang–Mills gauge field. However, for s > 1 the various higher-spin degrees
of freedom mix with each other through the commutator terms: the gauge potential of
spin s > 1 will generate source terms in the field strengths at s′ > s.

Up to this point, the discussion has been purely kinematical, but we are now ready
to define classical HS-YMwith a spacetime action functional. For this, we require one
additional structure, which is a Möbius-invariant inner product on sections of J∞

P1
—

this is virtually identical to the inner product on the polynomial ringC[yα] introduced
in [38]. Let

f =
∞∑

a=0

fα(2a) λα(2a) ∂a
0 , g =

∞∑
b=0

gα(2b) λα(2b) ∂b
0 , (2.14)

be any two section of J∞
P1
. The required inner product is defined as:

〈· | ·〉 : J∞
P1

× J∞
P1

→ C, 〈 f |g〉 :=
∞∑

a=1

εα(2a)β(2a) fα(2a) gβ(2a). (2.15)
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Here, εα(2a)β(2a) = εα1β1 · · · εα2aβ2a with symmetrization over α and β groups of
indices, respectively.

Armed with this, the HS-YM action is given by

S[A] = − 1

g2

∫
M

d4x tr
〈
Fαβ |Fαβ

〉 = − 1

g2

∞∑
s=1

∫
M

d4x tr
(

Fα(2s) Fα(2s)
)

, (2.16)

where g is the dimensionless coupling constant and tr(· · · ) denotes the trace in g (i.e.,
over the adjoint of the gauge group). Restricting to the s = 1 sector returns a chiral
action which is perturbatively equivalent to standard Yang–Mills theory, as they differ
only by a topological term [54].

There is a nice property of HS-YM which is easily observed from this classical
action, namely, that it admits a perturbative expansion around the self-dual sector
[38]

Fα(2s) = 0, for all s = 1, . . . ,∞. (2.17)

To see this, the action (2.16) can be re-written by introducing a set of higher-spin
Lagrange multiplier fields

Bαβ(x |λ) :=
∞∑

s=1

B(γ (2s−2)|αβ)(x) λγ (2s−2) ∂s−1
0 ∈ 
2−(M) ⊗ g ⊗ J∞

P1
, (2.18)

as

S[A,B] =
∫
M

d4x tr
〈
Bαβ |Fαβ

〉+ g2

4

∫
M

d4x tr
〈
Bαβ |Bαβ

〉
. (2.19)

Note that we do not include any termswhich are not totally symmetric in the expansion
(2.18) of Bαβ ; this is because such terms decouple from the action when the gauge
potential has the form (2.11). At the level of field components, the action (2.19) is
simply

S[A,B] =
∞∑

s=1

∫
M

d4x tr
(

Bα(2s) Fα(2s)
)

+ g2

4

∫
M

d4x tr
(

Bα(2s) Bα(2s)
)

, (2.20)

with field equations

Fαβ = −g2

2
Bαβ, Dαα̇Bαβ = 0. (2.21)

Note that the Lagrange multipliers Bαβ can be integrated out to return (2.16). When
g2 → 0 these equations reduce to the self-duality equations (2.17), along with a set
of linear non-SD fields (given by Bα(2s)) propagating on the SD HS-YM background.
In Sect. 4, we will study the SD sector of HS-YM in some detail, showing that it is
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classically integrable and admits a twistor correspondence, as well as deriving action
functionals (in twistor space and on spacetime) for the purely SD sector.

2.2 Linear theory

To get a better feel for the structure of HS-YM, it is instructive to look at the linear
theory, which is described by the series of free spin-s actions

Sfree[A] = 1

g2

∞∑
s=1

∫
M

Aα(2s−1)α̇ �Aα(2s−1)α̇, (2.22)

after an integration-by-parts, where � is the wave operator. At the linear level, the
action is preserved by the gauge transformations

Aα(2s−1)α̇ → Aα(2s−1)α̇ + ∂(α1|α̇|ξα(2s−2)), (2.23)

and one can proceed to count the on-shell degrees of freedom by imposing a Lorenz
gauge condition

∂α1α̇ Aα1β(2s−2)α̇ = 0. (2.24)

This removes 2s − 1 degrees of freedom from the 4s initially present in Aα(2s−1)α̇ ,
leaving 2s + 1. However, residual gauge transformations which obey �ξα(2s−2) = 0
leave the Lorenz gauge (2.24) intact, so this removes a further 2s − 1 degrees of
freedom, leaving only two on-shell degrees of freedom for HS-YM at each spin s ≥ 1.

This means that rather than working with on-shell polarizations, we can label free
HS-YM fields by their helicity. However, the underlying chirality of HS-YM means
that there is an asymmetry in the definition of positive and negative helicity. A positive
helicity, spin-s HS-YM free field is a gauge potential A(+)

α(2s−1)α̇ whose linearized ASD
curvature vanishes:

∂(α1
γ̇ A(+)

α(2s−1))γ̇ = 0. (2.25)

On the other hand, a negative helicity, spin-s HS-YM free field is defined by a lin-
earizedASD curvature F (−)

α(2s) which obeys the negative helicity zero-rest-mass (z.r.m.)
equation:

∂αα̇ F (−)
αβ(2s−1) = 0. (2.26)

It should be noted that this sort of asymmetric definition is similar to what is encoun-
tered when characterizing helicity states in chiral background fields [75–77].

Momentum eigenstate representations for positive and negative helicity HS-YM
fields will be useful when studying the scattering amplitudes of the theory. Let kαα̇ =
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κακ̃α̇ be an on-shell, massless (complex) 4-momentum. It is natural to follow the
pattern for s = 1 helicity states in the spinor-helicity formalism and define [38]:

A(+)
α(2s−1)α̇ = ζα(2s−1) κ̃α̇

κα1 · · · κα2s−1 ζα(2s−1)
ei k·x , A(−)

α(2s−1)α̇ = κα1 · · · κα2s−1 ζ̃α̇

[κ̃ ζ̃ ] ei k·x , (2.27)

where ζα(2s−1), ζ̃α̇ are constant spinors which obey [ζ̃ κ̃] �= 0 and ζ βα(2s−2)κβ �= 0.
It is easy to show that these states obey (2.25) and (2.26), respectively.6

For the negative helicity state, it is obvious that the choice of ζ̃α̇ is pure gauge, as
it drops out of the linearized ASD field strength:

Fα(2s)[A(−)] = i κα1 · · · κα2s e
i k·x . (2.28)

For the positive helicity state, it is clear that A(+) is independent of the scale of ζ , and
along with the non-degeneracy condition (ζ βα(2s−2)κβ �= 0), this leaves exactly the
residual gauge freedom contained in (2.23) after fixing Lorenz gauge (cf., [78]). In
particular, this means that the choice of ζα(2s−1) is not pure gauge.

Indeed, it is easy to show that the difference between two A(+)s with the same
momentum but different choices of ζα(2s−1) is not a gauge transformation (2.23).
Furthermore, the only gauge-invariant that can be formed from A(+) vanishes, by the
positive helicity condition (2.25). The only exception to these facts is when s = 1, in
which case the field is a positive helicity gluon and the choice of ζα is pure gauge.

This has important consequences for scattering amplitudes of the theory: in general,
the requirement of gauge invariance means that only spin-1 positive helicity states can
be involved, whereas negative helicity states are well defined for arbitrary spin. Once
again, this imbalance arises from the intrinsic chirality of the theory: in HS-YM, the
only gauge-covariant field strength for s > 1 is the ASD one, Fα(2s).

However, the fact that the action (2.16) is gauge-invariant, with two on-shell degrees
of freedom for arbitrary spin, makes the s = 1 constraint for positive helicity fields
somewhat puzzling. Concretely, this is linked with the explicit choice of helicity basis
(2.27). One could imagine that this is simply not the most general choice of helicity
polarizations, and that there is a better choice which extends in a gauge-covariant
way to all spins and helicities. Unfortunately, it is hard to see how (2.27) could be
altered or improved. The choice of the negative helicity polarization seems to be
the only one which is consistent with little group scaling and matches the s = 1
case. The normalization constraint ε

(+)
α(2s−1)α̇ε(−) α(2s−1)α̇ = −1, needed to recover

the completeness relation for the polarization basis (see, e.g., the earlier work [79]
where this unbalanced representation of polarization vectors was introduced), then
essentially fixes the positive helicity polarization to be that given by (2.27). While
not a proof excluding some alternative helicity basis which allows for higher-spin
positive helicity degrees of freedom in the theory, this line of reasoning does seem
very constraining.

6 Note that for the linear gauge potentials (2.27) to have mass-dimension 1 (as required for the theory to
have a single, dimensionless coupling constant, g) a mass scale must be present in the helicity polarizations
for s > 1 [38]. We implicitly absorb this into the constant spinors ζα(2s−1) and ζ̃α̇ throughout.
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Finally, to compute exchanges it will be necessary to have the propagator for HS-
YM fields. With the Lorenz gauge condition (2.24), the only propagator is between
positive and negative helicity states:

〈A(+)
α(2s−1)α̇(k) A(−) β(2s′−1)β̇ (k′)〉 = δ4(k + k′) δs,s′ δs,1

δ
(β1
(α1

· · · δβ2s−1)

α2s−1)
δ
β̇
α̇

k2

= δ4(k + k′) δs,1 δs′,1
δ
β1
α1 δ

β̇
α̇

k2
, (2.29)

where the trivial color structure (given by the Killing form on g) is suppressed. The
constraint that the positive helicity particle has spin-1 (a consequence of gauge invari-
ance) of course collapses the propagator to the usual gluon propagator.

3 Scattering amplitudes

Armed with the spacetime action of HS-YM (2.16) and a helicity basis of momentum
eigenstates for the external fields, we can now proceed to investigate the structure of
scattering amplitudes for this theory. Since the Lagrangian itself is not real-valued
in Lorentzian signature, it makes sense for us to work with complex kinematics,
leading to non-vanishing tree-level 3-point amplitudes. The vertex structure of the
theory and gauge invariance constrains the exchanges to have only spin one at higher
points, although the negative helicity external particles can have arbitrary spin. The
complexity of the action combined with the fact that interactions are always at most
single-derivative means that various no-go theorems prohibiting scattering amplitudes
with higher-spin external legs can be evaded.

3.1 3-point amplitudes

As the external legs of any tree-level scattering amplitude in HS-YM are labeled by
a helicity, these amplitudes can be denoted by Mn(1h1

s1 , . . . , nhn
sn ), where hi = ±

denotes the helicity (positive or negative) of the i th external particle. This means that
tree amplitudes can be helicity-graded by the number of, say, negative helicity external
particles. At 3-points, this means that there are four possible helicity configurations:
(+,+,+), (−,+,+), (−,−,+) and (−,−,−). For unitary theories with Lorentzian
kinematics, it follows that all tree-level 3-point amplitudes vanish for the trivial reason
that

3∑
i=1

ki =
3∑

i=1

κα
i κ̄ α̇

i = 0 ⇒ 〈i j〉 [i j] = 0, ∀i, j ∈ {1, 2, 3}, (3.1)

so all possible kinematic invariants vanish. Note that for complex kinematics, where
the momenta kαα̇

i = κα
i κ̃ α̇

i and κ̃ α̇
i is not the complex conjugate of κα

i , 3-particle
momentum conservation only requires that one chirality of kinematical invariants
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vanish: namely all contractions of the form 〈i j〉, or all of the contractions of the form
[i j]. As a consequence, this allows for potentially non-vanishing 3-point scattering
amplitude configurations (cf., [80]). For instance, in ordinaryYang–Mills, one has non-
vanishing (−,+,+) (i.e., “MHV”) and (−,−,+) (i.e., “MHV”) 3-point amplitudes
with complex kinematics. For Lorentzian-real theories this analytic continuation plays
an important role by giving data with which to seed recursion relations and construct
higher-multiplicity scattering amplitudes with real kinematics [72, 81, 82]. However,
in a complex theory like HS-YM such complex kinematics are natural from the outset.

With this in mind, the tree-level 3-point amplitudes of HS-YM are given by evaluat-
ing the cubic terms in the classical action (2.16) with on-shell external wavefunctions;
this cubic interaction is given by

δ̃(s1 − s2 − s3 + 1) g
∫

d4x tr
(
∂(α1

γ̇ Aα(2s1−1))γ̇

[
Aα(2s2−1)β̇ , Aα(2s3−1)

β̇

])
,

(3.2)

with

δ̃(x) :=
{
0 if x �= 0
1 if x = 0

, (3.3)

a Kronecker delta. The constraint on the spins is required for the integrand to be well
defined. Evaluating this cubic interaction with the momentum eigenstates (2.27)—and
recalling that the constant spinors associated with negative helicity particles can be
chosen arbitrarily—it is easy to see that both M3(1+, 2+, 3+) and M3(1−, 2−, 3−)

vanish for the same reasons as in pure Yang–Mills theory.
This leaves only theMHVandMHVconfigurations as non-vanishing 3-point ampli-

tudes. Although gauge invariance dictates that in general only spin-1 positive helicity
states are allowed, for now we keep the spins arbitrary. In the MHV case, evaluating
the cubic vertex on the momentum eigenstates leads in the first instance to:

M3(1
−
s1 , 2

+
s2 , 3

+
s3) = i g f a1a2a3 δ̃(s1 − s2 − s3 + 1)

[2 3] 〈ζ2 1〉2s2−1 〈ζ3 1〉2s3−1

〈ζ2 2〉2s2−1 〈ζ3 3〉2s3−1 ,

(3.4)

where f abc are the structure constants of the gauge group, the overall momentum
conserving delta function has been stripped off and (without loss of generality) we
have decomposed the positive helicity reference spinors as

ζ
α(2s2−1)
2 = ζ

α1
2 · · · ζ α2s2−1

2 ,

etc. Now, on the support of (complex) momentum conservation, it follows that

〈ζ2 1〉 [1 3] + 〈ζ2 2〉 [2 3] = 0, 〈ζ3 1〉 [1 2] + 〈ζ3 3〉 [3 2] = 0, (3.5)
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which means that the MHV amplitude is equal to

M3(1
−
s1 , 2

+
s2 , 3

+
s3) = i g f a1a2a3 δ̃(s1 − s2 − s3 + 1)

[2 3]2s1+1

[1 2]2s3−1 [3 1]2s2−1 , (3.6)

matching the formula found in [38] for the self-dual sector of HS-YM.
Observe that the highly constraining 3-point kinematics mean that the result is

manifestly gauge-invariant for all spins satisfying the constraint. This is an accident,
unique to 3-point amplitudes (as we will soon see). Imposing the constraints s2 =
s3 = 1 from the start, the remaining spin constraint in (3.6) sets s1 = 1 and the whole
MHV 3-point amplitude collapses to that of pure Yang–Mills.

The 3-point MHV amplitude is evaluated along similar lines, leading to

M3(1
−
s1 , 2

−
s2 , 3

+
s3) = i g

2
f a1a2a3

〈1 2〉2s3

〈2 3〉2s3−1 〈3 1〉2s3−1[
〈1 2〉2s2−1 〈3 1〉2s3−2 δ̃(s1 − s2 − s3 + 1)

+〈1 2〉2s1−1 〈3 2〉2s3−2 δ̃(s2 − s1 − s3 + 1)
]
, (3.7)

where the constraint s3 = 1 has been temporarily ignored. Here, the two terms arise
from the need to symmetrize over the location of the positive helicity particle in the
cubic vertex (3.2). Once again, the constant spinor used to define the positive helicity
polarization drops out of the amplitude, leaving an “accidentally” gauge-invariant
result for all external spins. A striking thing about this MHV amplitude is that it is
not, for generic spins, the helicity conjugate of its MHV counterpart (3.6). This is, of
course, an unavoidable consequence of the chirality of the theory, which leads to a
violation of parity invariance.

When s3 = 1 is imposed (as it should have been from the start), (3.7) simplifies to

M3(1
−
s1 , 2

−
s2 , 3

+
1 ) = i g

2
f a1a2a3

〈1 2〉2
〈2 3〉 〈3 1〉

[
〈1 2〉2s2−1 δ̃(s1 − s2) + 〈1 2〉2s1−1 δ̃(s2 − s1)

]

= i g f a1a2a3 δ̃(s1 − s2)
〈1 2〉2s1+1

〈2 3〉 〈3 1〉 , (3.8)

where both negative helicity external particles must have identical —but otherwise
arbitrary—spin. When s1 = s2 = s3 = 1 the formula reduces to the 3-point MHV
amplitude of pure Yang–Mills, which is the parity conjugate of the MHV with all
spin-one external fields. The reason for this is that when restricted to spin-one gauge
fields, the action (2.16) differs from the Yang–Mills action only by a topological term,
so parity invariance holds perturbatively despite the chirality of the Lagrangian [54].
The same cannot be said of the chiral action of full HS-YM theory, which is clearly
not perturbatively equivalent to any parity-invariant theory.
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3.2 4-point amplitudes

Now, let us turn to the computation of 4-point tree-level scattering amplitudes in
HS-YM. The cubic interactions are extended off-shell and linked together with the
propagator (2.29), with the appropriate spin constraints at each vertex in any given
Feynman diagram. In addition, we have contributions from the quartic contact inter-
action

δ̃(s1 + s2 − s3 − s4) g
2
∫

d4x tr
([

A(α(2s1−1)
γ̇ , Aα(2s2−1))γ̇

] [
Aα(2s3−1)δ̇ , Aα(2s4−1)

δ̇

])
,

(3.9)

with the spin constraint ensuring that the spinor contractions are well defined. Unlike
the 3-point amplitudes, at this stage gauge invariance requires all positive helicity
particles to have spin-1.

Once again, we can proceed by helicity-grading the amplitudes, but the calculation
is further simplified by restricting our attention to color-ordered partial amplitudes. In
particular, it is easy to show that tree-level scattering amplitudes decompose as

Mn(1h1
s1 , . . . , nhn

sn
) = gn−2 δ4

(
n∑

i=1

ki

) ∑
σ∈Sn\Zn

tr(Taσ(1) · · · Taσ(n) )An(σ (1h1
s1 ), . . . , σ (nhn

sn
)),

(3.10)

in terms of a sum over distinct (i.e., non-cyclically related) color-orderings; here Ta

are generators of the gauge group and hi = ± is the helicity of the i th particle. The
functions of the kinematic dataAn are the color-ordered partial amplitudes—knowing
An in any color-ordering thus determines the full amplitude Mn .

Given that we only have non-vanishing 3-point MHV and MHV amplitudes, sim-
ple factorization arguments immediately indicate thatA4(1+, 2+, 3+, 4+) = 0, since
the exchanges involved in such an amplitude vanish while the 4-point contact con-
tribution can be eliminated by making appropriate gauge choices for the constant
reference spinors in the external states. However, the next helicity configuration,
A4(1−, 2+, 3+, 4+), does not a priori vanish. In this color-ordering, the amplitude
receives contributions from exchange diagrams in the s- and t-channels, as well as a
contact term7:

A4(1
−
s1 , 2

+
1 , 3+

1 , 4+
1 ) = Âs

4 + Ât
4 + Âcont

4 .

We first compute the s-channel exchange:

Âs
4 = (−1)3−s1 [12]2−s1 [34] f (ζ2, ζ3, ζ4)

(k1 + k2)2
δ̃(1 − s1), (3.11)

7 Where it is useful, we denote the spin of the i th external particle in a scattering amplitude with a si
subscript inAn .
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where the rational function f depends on the auxiliary spinors of the positive helicity
fields:

f (ζ2, ζ3, ζ4) := 〈ζ2 1〉
〈ζ2 2〉

〈ζ3 4〉
〈ζ3 3〉

〈ζ4 3〉
〈ζ4 4〉

〈ζ3 1〉〈ζ4 2〉
〈ζ3 3〉〈ζ4 4〉

( 〈ζ4 1〉
〈ζ4 2〉

)s1
, (3.12)

which is homogeneous of weight zero in the reference spinors, as required.
Now, as the external positive helicity states are spin-1, choice of the reference

spinors is just residual gauge freedomandwe can set ζ α
2 = ζ α

3 = ζ α
4 = κα

1 , fromwhich
it immediately follows that f (ζ2, ζ3, ζ4) = 0, and thus the s-channel contribution
vanishes Âs

4 = 0. A similar calculation shows that the t-channel contribution also
vanishes: Ât

4 = 0. The only remaining contributions are from the contact interaction;
in this color-ordering the contact contributions are of the form

δ̃(s1 − 1)
〈1 ζ2〉2s1−1 〈ζ4 ζ3〉 〈ζ2 ζ3〉2(1−s1) [ζ̃1 2] [3 4]

[1 ζ̃1] 〈2 ζ2〉 〈3 ζ3〉 〈4 ζ4〉
− (2 ↔ 3). (3.13)

Clearly, this contribution is always proportional to contractions of the form 〈1 ζi 〉 (for
i �= 1), which are killed with the residual gauge fixing ζi = κ1.

Thus, it follows that the amplitude in this helicity configuration vanishes:

A4(1
−
s1 , 2

+
1 , 3+

1 , 4+
1 ) = 0, (3.14)

regardless of the spins of the external fields. Since the only vertices contributing to this
amplitude are the MHV 3-point ones, the computation of this amplitude is the same
as in the purely self-dual theory, and the vanishing of the amplitude is in agreement
with light-cone results for the self-dual sector [83–85].

Next, we come to the 4-point MHV helicity configuration, with two negative and
two positive helicity external fields. Let us begin by computing A4(1−

s1 , 2
−
s2 , 3

+
1 , 4+

1 ).
Once again, in this color-ordering the exchanges are in the s- and t-channels; partially
fixing the residual gauge symmetry so that

ζ α
3 = ζ α

4 = ζ α, (3.15)

subject to 〈ζ 3〉 �= 0 �= 〈ζ 4〉, the s-channel contribution is given by:

Âs
4 = (−1)2−s1−s2

2

〈1 2〉2s1−2 〈ζ 2〉 [ζ̃1|k1 + k2|ζ 〉 [3 4]
[2 1] [1 ζ̃1] 〈3 ζ 〉 〈4 ζ 〉 δ̃(s1 − s2) + (1 ↔ 2).

(3.16)

Here, the remaining spin constraint fixes the two negative helicity particles to have
identical spin, s1 = s2, but otherwise their spin is unconstrained. Similar expressions
arise for the t-channel exchange and contact diagram, all with the same spin constraint.

Upon further fixing the gauge redundancy by setting

ζ α = κα
1 , ζ̃ α̇

1 = κ̃ α̇
4 , (3.17)
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and exploiting 4-momentum conservation, the t-channel and contact contributions are
easily seen to vanish, while s-channel contribution collapses to give the full amplitude

A4(1
−
s , 2−

s , 3+
1 , 4+

1 ) = 〈1 2〉2s+1

〈2 3〉 〈3 4〉 〈4 1〉 (3.18)

for the 4-point MHV amplitude in this color-ordering.
The fact that (3.18) is non-vanishing for generic higher spins s > 1 raises the alarm:

aren’t we violating well-known no-go theorems constraining S-matrices with higher-
spin external states? As alluded to above, the basic properties of HS-YM theory mean
that no-go theorems (e.g., Weinberg’s low energy theorem [7], Weinberg–Witten [9],
Coleman-Mandula [8], etc.) simply do not apply. In particular, the theory is purely
massless, contains no scalars, is parity-violating, non-unitary and its interactions have
at most one derivative. Furthermore, the exchanges themselves are spin-1, so in effect
the MHV amplitude is corresponding to two negative helicity higher-spin fields inter-
acting with a positive helicity pure gluon background. Various subgroups of these
properties violate the assumptions of all no-go theorems constraining the tree-level
S-matrix.

For completeness, we provide the expression for the MHV amplitude of HS-YM in
the color-ordering where the negative helicity particles are not consecutive. Following
similar steps to above, one arrives at the formula

A4(1
−
s1 , 2

+
1 , 3−

s3 , 4
+
1 ) = δ̃(s1 − s3)

〈1 3〉2s1+2

〈1 2〉〈2 3〉 〈3 4〉 〈4 1〉 . (3.19)

Once again, the spins of the external negative helicity particles are identical but oth-
erwise arbitrary.

3.3 n-point MHV amplitudes

Based on the pattern observed at 4-points, it is tempting to conjecture an all-multiplicity
formula for the tree-level scattering amplitudes of HS-YM in theMHVhelicity config-
uration (i.e., two negative helicity higher-spin particles and arbitrarily many positive
helicity external gluons). The natural conjecture is:

An(1+
1 , . . . , i−si

, . . . , j−s j
, . . . , n+

1 ) = δ̃(si − s j )
〈i j〉2si +2

〈1 2〉 〈2 3〉 · · · 〈n 1〉 , (3.20)

where particles i, j have negative helicity. This formula passes several basic consis-
tency checks: it reduces to the well-known Parke–Taylor formula for n-gluon MHV
scattering [86] when s1 = · · · = sn = 1, carries the correct little group weight in each
external particle and has only the usual collinear poles of ordinary Yang–Mills theory.

While directly computing this formula from the Feynman rules of HS-YM is clearly
not tractable, there are other ways of confirming that it is correct. In “Appendix A,” we
confirm (3.20) using BCFW recursion [72] after first showing that HS-YM can indeed
be constructed via on-shell recursion. This is possible because of the inherent chirality
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of the theory, which allows it to evade no-go factorization arguments for higher-spin
theories [80–82, 87]. In Sect. 5, we derive (3.20) directly from theHS-YMaction using
twistor theory.

Before concluding this section, it is worth illustrating, in practical terms, why the
restriction to spin-1 for positive helicity external particles is necessary. One way to test
this is to calculate 4-point amplitudes using the assumption that the reference spinors
ζα(2s−1) can be arbitrarily chosen for s > 1; that is, by assuming that gauge invariance
will be respected. Performing the 4-point MHV calculation and then extrapolating to
higher-multiplicity leads to the formula:

An(1+
s1 , . . . , i−si

, . . . , j−s j
, . . . , n+

sn
) = 〈i j〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉

×
⎡
⎣δ̃

⎛
⎝s j − si − n + 2 +

∑
a �=i, j

sa

⎞
⎠
(

〈i j〉s j −n+1+∑a �=i, j sa∏
b �=i, j 〈 j b〉sb−1

)2

+δ̃

⎛
⎝si − s j − n + 2 +

∑
a �=i, j

sa

⎞
⎠ (

〈i j〉si −n+1+∑a �=i, j sa∏
b �=i, j 〈i b〉sb−1

)2
⎤
⎦ . (3.21)

At first, this may seem like a reasonable formula: it carries the correct little group
weights, obeys the symmetries imposed by the color-ordering, and collapses to (3.20)
when sa = 1 for all a �= i, j . Furthermore, when the two negative helicity particles
are gluons (si = 1 = s j ), the spin constraints become

∑
a �=i, j

sa = n − 2 ⇒ sa = 1, (3.22)

for all a �= i, j , since each sa ≥ 1.
However, the formula (3.21) now has higher-order poles whenever the negative

helicity momenta become collinear with any of the positive helicity momenta, regard-
less of their position in the color-ordering. These are not physical for a colored,
two-derivative local field theory, and the root of these spurious singularities can be
traced back precisely to identifying the positive helicity reference spinors with some
external momenta.

It would, of course, be interesting to explore whether (3.21) can be understood as a
valid scattering amplitude in some non-local context, but this is beyond the scope of
the current paper.

4 Self-dual sector and integrability

We have already identified a self-dual (SD) sector of HS-YM theory, corresponding
to the condition

Fα(2s) = 0, for all s ≥ 1. (4.1)
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For the s = 1 truncation of the theory, these are the familiar self-duality equations
of Yang–Mills theory, which are known to be classically integrable using a variety of
different perspectives (cf., [88–91]). It is natural to ask if the SD sector of HS-YM is
likewise classically integrable.

The scattering amplitude calculations of the previous section hint that this should
be true, as we found that A4(1+, 2+, 3+, 4+) and A4(1−, 2+, 3+, 4+) vanish for
HS-YM. This is indicative of a self-dual sector which is consistent and classically
integrable, respectively.

In this section, we answer the question of the classical integrability of HS-YM in
the affirmative using twistor theory. In particular, we generalize Ward’s theorem [53]
for SD Yang–Mills theory to the higher-spin setting, proving an equivalence between
all SD HS-YM fields and certain integrable holomorphic structures in twistor space.
We then use this construction and holomorphic Chern–Simons theory in twistor space
to arrive at a spacetime description for SD HS-YM as a four-dimensional theory of an
infinite tower of adjoint-valued scalars.

4.1 Twistor theory

Penrose’s twistor theory gives a non-local description of spacetime physics in terms
of complex projective geometry [52] and has now found many different uses across
theoretical and mathematical physics. Rather than provide an extensive review of this
rich subject, we give a brief recap of the features required for the study of HS-YM;
in-depth reviews can be found in [91–96], and we follow the notation of [97].

Let M be complexified Minkowski spacetime; the real spacetimes of various
signatures—Lorentzian R

1,3, Euclidean R
4 and Kleinian R

2,2—sit inside this com-
plexified spacetime as real slices. The (projective) twistor space PT ofM is given by
an open subset of three-dimensional complex projective space P3

PT =
{

Z A = (μα̇, λα) ∈ P
3 | λα �= 0

}
, (4.2)

where

Z A ∼ r Z A, ∀r ∈ C
∗, (4.3)

are homogeneous coordinates on P
3 defined only up to this projective rescaling. We

will denote the equivalence class of such homogeneous coordinates under projective
rescaling as [Z A]. Since λα �= 0 on PT, there is a natural fibration

π : PT → P
1, [Z A] �→ [λα], (4.4)

with λα serving as homogeneous coordinates on the P1 base of the fibration.
The correspondence between PT and M is given by the incidence relations

μα̇ = xαα̇ λα, (4.5)
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which state that each point x ∈ M corresponds to a holomorphic, linearly embedded
Riemann sphere X ∼= P

1 ⊂ PT. Conversely, any point Z A = (μα̇, λα) in twistor
space corresponds to a totally null ASD 2-plane inM, whose tangent vectors have the
form λαvα̇ for fixed λα (given by the choice of Z A) and arbitrary vα̇ . These totally
null ASD 2-planes are called α-planes inM.

There aremany interesting results which follow from this basic non-local geometric
correspondence between PT and M. For our purposes, there are two classic results
which will prove most important. The first of these is the Penrose transform, which
gives an equivalence between solutions of the massless free field (or zero-rest-mass)
equations on M of any integer or half-integer spin, and cohomology classes on PT

[98–100]. More precisely, this takes the form of an isomorphism:

{massless free fields on M of helicity h} ∼= H0,1(PT,O(2h − 2)), (4.6)

where it is assumed that the set of massless free fields comes with some suitable regu-
larity conditions and H0,1(PT,O(2h −2)) denotes the Dolbeault cohomology8 group
of (0, 1)-forms on PT valued in O(2h − 2), the sheaf of holomorphic homogeneous
functions of weight 2h − 2.

The second major result of twistor theory that is crucial for us is the Ward cor-
respondence, which gives a one-to-one correspondence between solutions of the SD
Yang–Mills equations on M and certain holomorphic vector bundles over PT [53].
Our first result is to generalize this correspondence to the SD sector of HS-YM theory.

4.2 Twistor construction of self-dual HS-YM

As one might expect, there is a higher-spin version of the Ward correspondence [53]
for the SD sector of HS-YM:

Theorem 1 There is a one-to-one correspondence between:

• self-dual HS-YM connections with gauge group GL(N ,C), and
• holomorphic bundles V = E ⊗ J∞

P1
→ PT, where E is a rank N bundle which is

topologically trivial on restriction to any line in PT and J∞
P1

is identified with the

infinite jet bundle of the bundle of horizontal vectors of the fibration π : PT → P
1.

Proof First, suppose that we are given a self-dual, GL(N ,C) HS-YM field onM; this
is characterized by the equations (4.1) for each s ≥ 1. Let αZ denote the α-plane
M corresponding to some point Z ∈ PT; tangent vectors of αZ have the form λαvα̇

for fixed λα . Due to the chirality of HS-YM, only the ASD part of the field strength
has a gauge invariant definition, and this is set to zero by SD equations. However, on
restriction to αZ , it follows that any SD HS-YM connection obeys

[[Dαα̇, Dββ̇ ]]
∣∣∣
αZ

= λα λβ vα̇ wβ̇ εαβ

2
[[Dγ

α̇, Dγ β̇ ]] = 0. (4.7)

8 Of course, any realization of the cohomology group H1(PT,O(2h − 2)) will do, but we find it most
useful to work with the Dolbeault representation, following [101].
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In other words, on restriction to an α-plane, the SDHS-YM connection is totally flat—
there is no ambiguity in defining the SD part of the field strength because its restriction
to the α-plane vanishes. Thus, the set of covariantly constant sections valued in the
fundamental representation of GL(N ,C) is a set of constant functions.

Next, define the vector space

V |Z =
{
s(x |λ) valued in CN ⊗ J∞

P1
|Dαα̇s = 0

} ∼= C
N ⊗ J∞

P1
, (4.8)

and making the identification between the auxiliary projective spinor λα on M and
the coordinate on the base of the twistor fibration π : PT → P

1. This provides a
holomorphic construction of the fibers of a vector bundle V = E ⊗ J∞

P1
→ PT of

appropriate rank, and by construction this bundle will be topologically trivial upon
restriction to any twistor line X .

For the converse, given the vector bundle V → PT, the condition of holomorphicity
is equivalent to the bundle being endowed with a partial connection

D̄ : 
0(PT, V ) → 
0,1(PT, V ), D̄2 = 0. (4.9)

Locally, this partial connection can be written in terms of a potential a ∈

0,1(PT,End V ), with

D̄ = ∂̄ + a, a =
∞∑

s=1

a(s) ∂s−1
0 , a(s) ∈ 
0,1(PT,End E ⊗ O(2s − 2)),

(4.10)

subject to

F (0,2)[a] = ∂̄a + [[a, a]] = 0. (4.11)

This is the condition that the partial connection on V is holomorphic. Locally, the
action on sections of V is given by

D̄φ = ∂̄φ + [[a, φ]], (4.12)

for all φ ∈ 
0(PT, V ).
The assumption of topological triviality on any twistor line X , combined with a

“sufficient smallness” assumption on the data a implies that V |X can also be holo-
morphically trivialized (cf., [102, 103]). This implies the existence of a holomorphic
frame

H(x, λ, λ̄) : V |X → C
N ⊗ J∞

P1
, D̄|X H = 0. (4.13)
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Any such holomorphic frame is only unique up to transformations of the form

H → H g(x, λ), g(x, λ) =
∞∑

s=1

gα(2s−2)(x) λα(2s−2) ∂s−1
0 , (4.14)

where the coefficient functions gα(2s−2)(x) are valued in the Lie algebra glN .
In terms of the parametrization (4.10), the condition on the holomorphic frame

reads

∂̄|X H + a|X H = 0. (4.15)

Since a is defined on twistor space, the incidence relations (4.5) ensure that
λα∂αα̇a|X = 0. Furthermore, since λα∂αα̇ is a holomorphic vector field, it follows
that

∂̄|X

(
H−1 λα∂αα̇ H

)
= 0. (4.16)

Thus, H−1 λα∂αα̇ H is a holomorphic sectionofO(1)⊗glN ⊗J∞
P1
.By a straightforward

extension of Liouville’s theorem to weighted, bundle-valued functions, it follows that

H−1 λα∂αα̇ H = λα Aαα̇(x |λ), (4.17)

where

Aαα̇(x |λ) :=
∞∑

s=1

Aα̇(αβ(2s−2))(x) λβ(2s−2) ∂s−1
0 . (4.18)

Under a change of holomorphic frame (4.14), it is easy to see that Dαα̇ = ∂αα̇ + Aαα̇

transforms as (2.8).9 Thus, we recover the field content of HS-YM in terms of the
usual higher-spin gauge connection.

The self-duality condition arises as a consequence of the integrability of the partial
connection: D̄2 = 0 imposes a constraint on the Lax pair λαDαα̇ , which is simply

[[λαDαα̇, λβDββ̇ ]] = 0 ⇔ Fα(2s) = 0 ∀s ≥ 1. (4.19)

Thus, we obtain the SD HS-YM equations from the holomorphic bundle V → PT, as
desired. ��

It is easy to adapt this theorem to other gauge groups, following the usual prescrip-
tions (cf., [95]). For instance, to get gauge group SU(N ), one must supplement the
conditions on V with the requirement that it admit a positive real form and have trivial
determinant line bundle. The theorem also descends to the real slicesR4 andR2,2 (but

9 We have neglected to include the additional terms corresponding to theAβ(2s−3)α̇ in (2.9) in the decompo-
sition, because these can be removed by gauge transformations, or, equivalently, rotations of the holomorphic
frame on twistor space.

123

Page 22 of 43 T. Adamo, T. Tran50



Higher-spin Yang–Mills, amplitudes and self-duality

not to real-valued fields on R
1,3 due to the chirality of the theory and the SD sector).

For Euclidean reality conditions, one requires the real form to be preserved under the
anti-holomorphic involution which acts as the antipodal map on twistor lines, whereas
for split signature the real form must descend to the RP3 real slice of twistor space.

This theorem also implies that:

Corollary 4.1 The SD sector of HS-YM theory is classically integrable.

Proof This follows straightforwardly from the proof of Theorem 1, which equates the
SD equations (4.1) with the integrability condition for an elliptic operator D̄2 = 0
on twistor space. Equivalently, there is an integrable Lax pair associated with the SD
sector, given by λαDαα̇ . ��

4.3 Action functional for the self-dual sector

The self-dual sector of pure Yang–Mills theory has many descriptions in terms of
action functionals in four-dimensions which translate the classical integrability into
a constraint on some auxiliary degrees of freedom. These formulations include the
Chalmers-Siegel action (written in terms of an adjoint-valued scalar) [54] and a
four-dimensional Wess–Zumino–Witten (WZW) model [104]. Using the Ward corre-
spondence, it turns out that these andmany other spacetime actions for SDYang–Mills
can be derived by performing dimensional reductions from holomorphic Chern–
Simons theories on twistor space [46, 105, 106]; these theories require certain choices
of boundary conditions to be well defined. Different gauge choices in twistor space
induce different spacetime descriptions.

In light of Theorem 1, it is natural to ask if similar constructions hold for self-dual
HS-YM. As self-duality is equated with integrability of the partial connection D̄ on a
bundle E ⊗ J∞

P1
→ PT, the natural starting point is an action functional on PT whose

only equation of motion is (4.11): F (0,2)[a] = 0. These are precisely the equations
of motion of a holomorphic Chern–Simons theory for the partial connection D̄ [107,
108]. In general, these theories are only well defined on Calabi–Yau manifolds, where
there is a global section of the canonical bundle to wedge against the holomorphic
Chern–Simons form; since PT is not Calabi–Yau, making sense of the theory requires
choosing some boundary conditions. Here, we only make one such choice; there are
many others which would be interesting to investigate further.

Let us restrict our attention to Euclidean reality conditions, for whichPT ∼= R
4×P

1

and the incidence relations can be inverted

xαα̇ = μ̂α̇ λα − μα̇ λ̂α

〈λ λ̂〉 , (4.20)

where λ̂α = (λ̄1, −λ̄0) and μ̂α̇ = (μ̄1̇, −μ̄0̇). Useful bases for the holomorphic and
anti-holomorphic tangent and cotangent bundles of twistor space are provided with
these reality conditions by [101]:
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∂0 = λ̂α

〈λ λ̂〉
∂

∂λα

, ∂α̇ = − λ̂α ∂αα̇

〈λ λ̂〉 , e0 = 〈λ dλ〉, eα̇ = λα dxαα̇, (4.21)

and

∂̄0 = −〈λ λ̂〉 λα

∂

∂λ̂α

, ∂̄α̇ = λα∂αα̇, ē0 = 〈λ̂ dλ̂〉
〈λ λ̂〉2 , ēα̇ = λ̂α dxαα̇

〈λ λ̂〉 , (4.22)

respectively. With this in mind, we define a holomorphic Chern–Simons form

hCS[a] := tr

(
a ∧ ∂̄a + 2

3
a ∧ [[a ∧ a]]

)

=
∞∑

s=1

tr

(
a(s) ∧ ∂̄a(s) + 2

3
a(s) ∧

∑
r+t=s+1

a(r) ∧ a(t)

)
∂2s−2
0 , (4.23)

which takes values in 
0,3(PT, (J∞
P1

)2), where (J∞
P1

)2 denotes the infinite jet bundle
whose sections are composed of only even powers of ∂0.

To form a holomorphic Chern–Simons action, wemust wedge this against a section

 of 
3,0(PT, (J∞∨

P1
)2), where J∞∨

P1
is the dual of the infinite jet bundle, generated

by e0 in (4.21). The pairing by inner product ι∂0(e
0) ≡ ∂0

¬
e0 = 1 then eliminates all

the generators of the infinite jet bundle and its dual, so that
∧hCS[a] is a (3, 3)-form
which makes sense to integrate over PT.

However, since the canonical bundle of PT is O(−4) as a line bundle, some poles
must be introduced to render
weightless. There are many possible choices (cf., [105,
106]), but here we consider:


 := D3Z

〈a λ〉4
∞∑

s=1

(
e0

〈a λ〉2
)2s−2

, (4.24)

for D3Z := εABC D Z AdZ BdZCdZ D the weight +4 top holomorphic form on PT. In
other words, 
 is defined by having poles (starting at fourth-order) at AA = (0, aα) ∈
PT on twistor space. With this choice, the holomorphic Chern–Simons action

S[a] = 1

2π i

∫
PT


 ∧ hCS[a], (4.25)

is well defined.
Naïvely, the field equations of this action are precisely F (0,2)[a] = 0, as desired.

However, the poles appearing in
mean that in order to have awell-defined variational
problem associated with this action, the twistor gauge potential a(Z) must have zeros
of appropriate order in each term of its infinite jet bundle expansion. In particular, we
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must have that

a =
∞∑

s=1

a(s)∂s−1
0 =

∞∑
s=1

〈a λ〉2s ϕ(s)(Z) ∂s−1
0 , (4.26)

where

ϕ(s) ∈ 
0,1(PT,O(−2) ⊗ g), ∀ s ≥ 1, (4.27)

which can be thought of as a boundary condition on a at the point AA = (0, aα) ∈ PT.
Likewise, infinitesimal gauge transformations of the form a → a+ ∂̄ξ + [[a, ξ ]] must
obey

ξ =
∞∑

s=1

〈a λ〉2s ψ(s)(Z) ∂s−1
0 , ψ(s) ∈ 
0(PT,O(−2) ⊗ g) , (4.28)

to preserve this boundary condition.
Note that we can use this gauge freedom, and the generic existence of a holomorphic

trivialization of the bundle V → PT, to make the partial connection restricted to any
holomorphic curve X pure gauge:

a|X = a0 ē0 = σ̂−1∂̄|X σ̂ , (4.29)

where σ̂ : PT → G ⊗ J∞
P1
, for gauge group G and σ̂−1 is understood to be an inverse

only with respect to the gauge group factor. Now, in the expansion (4.26), we can
impose that each ϕ(s) is harmonic upon restriction to any twistor line, which implies
that [101]

ϕ(s)|X = ē0 φ(s)(x), (4.30)

for {φ(s)(x)} an infinite tower of adjoint-valued functions on R4, one for each spin in
the spectrum of HS-YM.

This allows us to solve for the gauge transformation σ̂ explicitly, taking

σ̂ = exp

[
−

∞∑
s=1

〈a λ〉2s−1 〈a λ̂〉
〈λ λ̂〉 φ(s) ∂s−1

0

]
, (4.31)

where the residual gauge freedom is fixed by the boundary condition σ̂ (x, a) = idG .
The partial connection in this gauge can then be written as

D̄ = ∂̄ + a = σ̂−1
(
∂̄ + a′̇

α ēα̇
)

σ̂ , (4.32)
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where the components of the field equation F (0,2)[a] = 0 along the P1 fibers of the
bundle PT → R

4 dictate that

a′̇
α = λα

∞∑
s=1

Aβ(2s−2)αα̇(x) λβ(2s−2) ∂s−1
0 , (4.33)

for the set of {Aα(2s−1)α̇} adjoint-valued HS-YM gauge potentials on R
4.

Now, from (4.32) it follows that

aα̇ = σ̂−1 (∂̄α̇ + a′̇
α

)
σ̂ , (4.34)

and a straightforward calculation using (4.31) and (4.22) leads to

aα̇ = σ̂−1

[
〈λ a〉

∞∑
s=1

(
〈a λ〉2s−2 aα∂αα̇φ(s) − âα Aαβ(2s−2)α̇ λβ(2s−2)

)
∂s−1
0

+〈λ â〉 aα
∞∑

s=1

Aαβ(2s−2)α̇ λβ(2s−2) ∂s−1
0

]
σ̂ + O

(〈a λ〉2s ∂s−1
0

)
, (4.35)

where “O(〈a λ〉2s ∂s−1
0 )” denotes terms which obey the boundary conditions (4.26).

Removing the terms in (4.35) which violate the boundary conditions imposes

aα Aαβ(2s−2)α̇ = 0, âα Aαβ(2s−2)α̇ λβ(2s−2) = 〈a λ〉2s−2 aα ∂αα̇φ(s), (4.36)

for each s ≥ 1. The solution to these constraints uniquely determines each HS-YM
gauge potential:

Aα(2s−1)α̇(x) = aα(2s−1) aβ ∂βα̇φ(s)(x), (4.37)

in terms of the adjoint-valued scalar function φ(s) at each spin.
It is now possible to feed these expressions back into the holomorphic Chern–

Simons action (4.25) and integrate along the P
1 fibers of twistor space to obtain an

action functional on R4. The details of this computation are exactly the same as in the
pure Yang–Mills case, so we refer the interested reader to [106]; following the steps
in that calculation leads to the action:

S[φ] = 1

2

∞∑
s=1

∫
R4

tr
(
dφ(s) ∧ ∗dφ(s)

)

+1

3

∞∑
s=1

∫
R4

μa,a ∧ tr

(
φ(s)

∑
r+t=s+1

dφ(r) ∧ dφ(t)

)
, (4.38)

where

μa,a := aα aβ dxαα̇ ∧ dxβ
α̇. (4.39)
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The equations of motion for each adjoint-valued scalar are

�φ(s) = −2 aα aβ
∑

r+t=s+1

[
∂α

α̇φ(r), ∂βα̇φ(t)
]
, (4.40)

which correspond precisely to the requirements that the HS-YM fields (4.37) are self-
dual.

This result can be summarized as the following:

Theorem 2 The SD sector of HS-YM on R
4 is equivalent an infinite tower of coupled,

adjoint-valued scalars governed by the action (4.38). Furthermore, this theory is
equivalent to a holomorphic Chern–Simons theory (4.25) on twistor space with volume
form (4.24) and boundary conditions (4.26), in the sense that extrema of the two actions
are in one-to-one correspondence (up to gauge transformations).

Observe that once again, the truncation to s = 1 is self-consistent, in which case
the gauge potential (4.37) and action (4.38) reduce to the Chalmers-Siegel description
of SD Yang–Mills in terms of an adjoint-valued scalar field [54].

We note that (4.40) are equivalent to the light-cone gauge description of SDHS-YM
obtained in [37]. To see this, one simply fixes aα = (0,−1) and denotes10

∂00̇ = ∂+ , ∂11̇ = ∂− , ∂01̇ = ∂̄ , ∂10̇ = −∂ , (4.41)

so that � = ∂+∂− + ∂∂̄ . In this spin frame, (4.40) become

�φ(s) = 2
∑

r+t=s+1

(
∂̄φ(r)∂+φ(t) − ∂+φ(r)∂̄φ(t)

)
, (4.42)

coinciding with the light-cone description of [37]. The presence of the transverse
derivative ∂̄ on the right-hand side of this equation is a hallmark of locality [109].

It is worth emphasizing that the action (4.38) describes the purely SD sector of
HS-YM, and as such it contains no negative helicity degrees of freedom. As in the
analogous description of pure SD Yang–Mills, this means that the price for obtaining
such an action is broken Lorentz invariance (cf., [54, 110, 111]). This breaking of
Lorentz invariance stems from the choice (4.24) of poles for the holomorphic measure
on twistor space, 
.

5 Twistor action for HS-YM

Having established the classical integrability of the SD sector of HS-YM, we now
turn to describing full HS-YM using twistor theory. This is possible because HS-YM
admits a perturbative expansion around the SD sector, as evident when expressed in
terms of a Lagrange multiplier field as in (2.19)–(2.20). It is fairly straightforward to

10 Here, ∂ and ∂̄ are not to be confusedwithDolbeault operators on twistor space. In the interest ofmatching
the light-cone literature, we feel that this abuse of notation is momentarily acceptable.
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construct the associated twistor action following the same recipe for pure Yang–Mills
[55, 56, 112]. With the HS-YM twistor action in-hand, the tree-level MHV amplitudes
are obtained by perturbatively expanding the portion of the action which encodes the
non-SD interactions.

5.1 Twistor action functional

Let us now write down a twistorial description of full (classical) HS-YM by first
recalling its spacetime action functional

S[A,B] =
∞∑

s=1

∫
M

d4x tr
(

Bα(2s) Fα(2s)
)

+ g2

4

∫
M

d4x tr
(

Bα(2s) Bα(2s)
)

. (5.1)

The first set of terms in this action describes the SD sector (and its negative helicity
perturbations), while the second set describes the linear non-SD fluctuations around
SD HS-YM “background.” Using Theorem 1 and the Penrose transform, one infers
that the first set corresponds to a holomorphic BF-action on twistor space:

SSD[a,b] = i

2π

∫
PT

D3Z ∧ tr
(
b ∧ F (0,2)[a]

)
, (5.2)

where b ∈ 
0,1(PT,EndE ⊗ J∞∨
P1

⊗O(−4)). Expanded in J∞∨
P1

, the twistor field b
is

b =
∞∑

s=1

b(s) (e0)s−1, b(s) ∈ 
0,1(PT,EndE ⊗ O(−2s − 2)), (5.3)

where we recall that e0 is “eaten” by inner product with ∂0 (i.e. ∂0
¬

e0 = 1) in (5.2),
so that all projective scalings are respected. The resulting equations of motion for (5.2)
on twistor space read

F (0,2)[a] = 0, D̄b = 0. (5.4)

The first of these corresponds to the SD HS-YM equations, by virtue of Theorem 1,
while the second corresponds to the equations of motion of negative helicity HS-YM
fields in a SD background.

The latter follows from a non-abelian extension of the Penrose transform [100,
113]:{

Bαβ ∈ 
2− ⊗ g ⊗ J∞
P1

obeying Dαα̇Bαβ = 0
} ∼= H0,1

D̄
(PT,EndV ⊗ O(−4)),

(5.5)

where the HS-YM connection Dαα̇ is assumed to be SD and H0,1
D̄

is the Dolbeault

cohomology group defined with respect to D̄ = ∂̄ + a (which obeys D̄2 = 0). Given
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a cohomology class in this group, the spacetime master field is constructed by an
integral formula

Bαβ(x |λ) =
∫

X
Dλ′ ∧ λ′

α λ′
β H−1(x, λ′)b|X H(x, λ′)

∞∑
s=1

(
〈λ λ′〉2 ∂0 e′

0

)s−1
,

(5.6)

where11 Dλ′ ≡ 〈λ′ dλ′〉, λ′ is the homogeneous coordinate on X ∼= P
1 (which is

integrated over) and λ plays the role of the auxiliary parameter in the spacetimemaster
field Bαβ . To see that this indeed solves the desired equation of motion, one uses the
definition of the holomorphic frame, which implies λ′

αD
αα̇ H(x, λ′) = 0, so that

Dαα̇Bαβ(x |λ) =
∫

X
Dλ′ ∧ λ′

α λ′
βD

αα̇ H−1(x, λ′)b|X H(x, λ′)
∞∑

s=1

(
〈λ λ′〉2 ∂0 e′

0

)s−1

=
∫

X
Dλ′ ∧ λ′

β H−1(x, λ′)
(
λ′
α∂αα̇b|X

)
H(x, λ′)

∞∑
s=1

(
〈λ λ′〉2 ∂0 e′

0

)s−1

= 0, (5.7)

with the final equality following because λ′
α∂αα̇b|X = 0 as a consequence of the

incidence relations.
The non-abelian twistor integral formula (5.6) also suggests how to formulate the

non-SD interactions of HS-YM non-locally on twistor space

I [a,b] =
∫

M×P1×P1

d4x Dλ1 Dλ2 〈λ1 λ2〉2 P12

× tr
[

H−1(x, λ1)b(x, λ1) H(x, λ1) H−1(x, λ2)b(x, λ2) H(x, λ2)
]
,

(5.8)

where the integral is taken over two copies of the same line in twistor space along with
integration over themoduli spaceM of these lines. The objectP12 is a “spin projector,”
valued in J∞

P1,1
⊗ J∞

P1,2
whose role is to absorb the factors of J∞∨

P1
associated to each

insertion of b. It is defined by the requirements that it is holomorphic and has no
scaling weight in λ1 or λ2.

The non-local twistor action (5.8) can be “compressed” further by denoting bi ≡
b(x, λi ) and introducing the holomorphic Wilson line [103, 114]

UX (λi , λ j ) := H(x, λi ) H−1(x, λ j ), (5.9)

11 From now on, when 〈λ dλ〉 serves as part of an integration measure, as opposed to a generator of J∞ ∨
P1

which is always contracted away by inner products with generators of J∞
P1

, it will always be denoted by

Dλ rather than e0.
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associated to the partial connection D̄ = ∂̄ + a on the bundle V → PT. These
holomorphic Wilson lines act by parallel transport with respect to D̄ for which they
are formal Green’s functions on the twistor lines X :

UX (λi , λ j ) : V |X ,λ j → V |X ,λi , UX (λi , λi ) = idg, (5.10)

where

D̄|Xi UX (λi , λ j ) = idg δ̄(〈λi λ j 〉), δ̄(z) := 1

2π i
∂̄

(
1

z

)
.

Here, idg is the identity in the adjoint representation of the gauge group.
In practical terms, the holomorphicWilson loop canbe represented as a path-ordered

exponential

UX (λi , λ j ) = P exp

(
−
∫

X
ωi j ∧ a

)
, (5.11)

where ωi j is a meromorphic differential on P
1 valued in J∞∨

P1
with an infinite series

of higher-order poles:

ωi j (λ) := Dλ

2π i

〈λi λ j 〉
〈λi λ〉 〈λ λ j 〉

∞∑
s=1

(
e0 〈λi λ j 〉

〈λi λ〉 〈λ λ j 〉
)s−1

. (5.12)

The path-ordering symbol P means that the holomorphicWilson line can be expanded
as an infinite series

UX (λi , λ j ) = idg +
∞∑

m=1

(−1)m
m∏

k=1

〈λi λ j 〉Dλk ak

〈λk−1 λk〉 〈λk λk+1〉
∞∑

sk=1

(
e0k 〈λi λ j 〉

〈λi λk〉 〈λk λ j 〉

)sk−1

,

(5.13)

where λ0 ≡ λi and λm+1 ≡ λ j .
With these definitions, (5.8) becomes

I [a,b] =
∫

M×P1×P1

d4x Dλ1 Dλ2 〈λ1 λ2〉2 P12 tr
[
b1 UX (λ1, λ2)b2 UX (λ2, λ1)

]
,

(5.14)

and we define the full twistor action:

S[a,b] = SSD[a,b] + g2

4
I [a,b]. (5.15)
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It is easy to see that this action is invariant under gauge transformations

a → g a g−1 − ∂̄g g−1, b → g b g−1, (5.16)

for any homogeneous function g(Z) on PT valued in g⊗ J∞
P1
, since the holomorphic

Wilson line transforms as

UX (λ1, λ2) → g(x, λ1) UX (λ1, λ2) g−1(x, λ2). (5.17)

The action also enjoys another local symmetry which acts only on the field b:

b → b + D̄f, f ∈ 
0(PT,O(−4) ⊗ g ⊗ J∞∨
P1

). (5.18)

It is now possible to establish the following result:

Theorem 3 The twistor action (5.15) is equivalent to HS-YM theory onR4, in the sense
that solutions to its field equations are in one-to-one correspondence with solutions
to the field equations of HS-YM (up to spacetime gauge transformations). Further-
more, the twistor action and HS-YM actions take the same value when evaluated on
corresponding field configurations.

Proof The proof follows exactly the same steps as in the construction of the twistor
action for pure Yang–Mills theory [55, 56]. The gauge freedom (5.16)–(5.18) is used
to put the twistor fields a,b into “harmonic” gauge

∂̄∗|Xa|X = 0 = ∂̄∗|Xb|X , (5.19)

where ∂̄∗|X is the adjoint of the ∂̄-operator restricted to any twistor line. Since a and b
are (0, 1)-forms onPT, it follows on dimensional grounds that ∂̄|Xa|X = 0 = ∂̄|Xb|X ,
so the gauge condition (5.19) is equivalent to

�Xa|X = 0 = �Xb|X , (5.20)

where �X is the Laplacian on P
1. As H1(P1,O) = 0, this implies that a|X = 0.

Residual gauge transformations must then respect

∂̄∗|X ∂̄|Xg(Z) = 0 ⇒ g(Z) = g(x |λ) ∈ 
0(R4, g ⊗ J∞
P1

),

∂̄∗|X ∂̄|X f(Z) = 0 ⇒ f(Z) = 0,
(5.21)

with the last relation following from H0(P1,O(−4)) = 0. Thismeans that the residual
gauge transformations are precisely the expected spacetime gauge transformations of
HS-YM.

Now, in this gauge, the twistor fields can be expanded as [101]

a = aα̇ ēα̇ , (5.22a)
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b = bα̇ ēα̇ +
∞∑

s=1

(2s + 1)
Bα(2s)(x) λ̂α(2s)

〈λ λ̂〉2s
ē0 (e0)s−1 , (5.22b)

with the components aα̇ , bα̇ as yet unconstrained. First, consider the portion of the
action corresponding to SSD; evaluated on the fields (5.22) in harmonic gauge this is:

SSD = i

2π

∫
PT

D3Z ∧ D3 Ẑ

〈λ λ̂〉4 tr

[
bα̇ ∂̄0aα̇

+
∞∑

s=1

(2s + 1)
Bα(2s) λ̂α(2s)

〈λ λ̂〉2s

(
∂̄β̇a(s) β̇ − 1

2

∑
r+t=s+1

[a(r)

β̇
, a(t) β̇ ]

)]
.

(5.23)

Clearly, the field components bα̇ enter only as Lagrange multipliers. Integrating them
out imposes ∂̄0aα̇ = 0, which by the usual extension of Liouville’s theorem implies
that

a(s)
α̇ = Aα(2s−1)α̇(x) λα(2s−1), for all s ≥ 1. (5.24)

The P1 degrees of freedom in (5.23) can now be integrated out (cf., [56, 115]), leaving
the desired

SSD =
∞∑

s=1

∫
R4

d4x tr
(

Bα(2s) Fα(2s)
)

, (5.25)

for the SD part of the HS-YM action.
The non-local part of the twistor action is also easily evaluated in the harmonic

gauge (5.22). Since a|X = 0 in this gauge, the holomorphic Wilson lines become
trivial, UX (λ1, λ2) = idg, so the action reduces to

I =
∫

R4×P1×P1

d4x Dλ1 Dλ2 〈λ1 λ2〉2 P12 tr (b1 b2) . (5.26)

Now, the requirements of homogeneity and holomorphicity uniquely fix the spin pro-
jector to be diagonal

P12 =
∞∑

s=1

〈λ1 λ2〉2s−2 (∂0 1 ∂0 2)
s−1 , (5.27)

which further simplifies the action to

I =
∞∑

s=1

(2s + 1)2
∫

R4×P1×P1

d4x
Dλ1 ∧ Dλ̂1

〈λ1 λ̂1〉2s+2

Dλ2 ∧ Dλ̂2

〈λ2 λ̂2〉2s+2
〈λ1 λ2〉2s
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× λ̂
α(2s)
1 λ̂

β(2s)
2 tr

(
Bα(2s) Bβ(2s)

)
. (5.28)

Once again, the two P
1 factors can be integrated out (cf., [56, 115]), leaving

I =
∞∑

s=1

∫
R4

d4x tr
(

Bα(2s) Bα(2s)
)

, (5.29)

as desired.
This establishes that the twistor action (5.15) is literally equivalent to the spacetime

HS-YM action in the harmonic gauge. Since the twistor action is itself gauge invariant,
this completes the proof. ��

5.2 MHV amplitudes from twistor space

It is natural to ask what a twistor description of HS-YM theory is actually good for.
There are many potential answers to this question, but one that we pursue here is that
twistor actions provide an easy way to obtain all-multiplicity scattering amplitude
formulae for the MHV sector, as this is the first non-trivial scattering sector as we
perturb away from self-duality. In particular, the classical generating functional for
the tree-level MHV amplitudes is given by the non-local term in the twistor action,
considered as a multi-linear functional of on-shell (i.e., ∂̄-closed) twistor fields—see
[75–77] for further explanation of this fact, which applies to any twistor action of the
generic form SSD + (coupling)2 I .

Using the perturbative expansion of the holomorphicWilson line (5.13), this frame-
work provides a twistorial formula for the n-point MHV amplitude:

AMHV
n := An(1+

s1 , . . . , i−si
, . . . , j−s j

, . . . , n+
sn

)

=
∫

d4x Pi j |si ,s j

〈λi λ j 〉6−n+∑a �=i, j sa b(si )
i b

(s j )

j Dλi Dλ j

〈λ1 λ2〉 〈λ2 λ3〉 · · · 〈λn λ1〉
∏

b �=i j

Dλb a(sb)
b

〈λi λb〉sb−1 〈λb λ j 〉sb−1 ,

(5.30)

where Pi j |si ,s j denotes the portion of the spin projector that selects the spins si and
s j for the negative helicity twistor representatives, ensuring that the integrand of this
expression is homogeneous of degree zero in each point on the twistor line.

Now, in the presence of additional insertions on P
1, the spin projector is

Pi j =
∞∑

si ,s j =1

∂
si −1
0 i ∂

s j −1
0 j δ̃(si − s j ) δ̃

⎛
⎝2 − n +

∑
a �=i, j

sa

⎞
⎠ 〈λi λ j 〉2si −2, (5.31)

as dictated by homogeneity, holomorphicity and gauge invariance in each of the pos-
itive helicity insertions. Feeding this into (5.30), the spin constraints set all of the
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positive helicity external states to have spin-1, leaving

AMHV
n = δ̃(si − s j )

∫
d4x

〈λi λ j 〉2si +2 b(si )
i b

(s j )

j Dλi Dλ j

〈λ1 λ2〉 〈λ2 λ3〉 · · · 〈λn λ1〉
∏

b �=i j

Dλb a(1)
b , (5.32)

as the expression of the MHV amplitude on twistor space.
Now, to obtain a formula in momentum space we can simply evaluate (5.30) on

momentum eigenstate representatives [116]:

a(sb)
b =

∫
C∗

dtb

t2sb−1
b

δ̄2(κb − tb λ) ei tb [μ b], b �= i, j,

b(sc)
c =

∫
C∗

dtc t2sc+1
c δ̄2(κc − tc λ) ei tc [μ c], c = i, j,

(5.33)

where the holomorphic delta functions are defined by

δ̄2(z) := 1

(2π i)2
∧

α=0,1

∂̄

(
1

zα

)
. (5.34)

Inserting these representatives into (5.30) and using the explicit form of the spin
projector (5.31), all of the integrals can be performed algebraically. In particular, the
scale integrals in tb, tc and P

1 integrals are all performed against the holomorphic
delta functions appearing in the twistor representatives, and the spacetime integration
simply results in a momentum conserving delta function. This leaves

AMHV
n = (2π)4 δ4

(
n∑

m=1

km

)
δ̃(si − s j )

〈i j〉2si +2

〈1 2〉 〈2 3〉 · · · 〈n 1〉 , (5.35)

exactly matching the earlier claim (3.20) for n-point MHV scattering in HS-YM.

6 Discussion

In this paper, we considered higher-spin Yang–Mills (HS-YM) theory: a non-abelian,
chiral gauge theory with higher-spin degrees of freedom which extends previous con-
structions in the literature [37–39] away from the purely self-dual sector. The theory
has a complex action in real Lorentzian Minkowski spacetime, meaning that it is non-
unitary and parity-violating, and its interaction vertices never contain more than a
single spacetime derivative. Remarkably, these properties are enough for the theory to
have non-vanishing higher-spin tree-level scattering amplitudes. The self-dual sector
of the theory is classically integrable, and we used a twistor manifestation of this fact
to explicitly construct the MHV tree-amplitudes of the theory.

While the non-unitarity and parity-violation of HS-YM are physically undesirable,
it is surprising that such an otherwise fairly well-behaved theory (local, with only
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cubic and quartic interactions) has non-trivial scattering amplitudes. This contrasts
with the widespread belief that non-trivial higher-spin scattering in flat spacetime
requires some element of non-locality (cf., [28, 83, 117–119]); it seems that the “get-
out-of-jail-free” card in the case of HS-YM is the intrinsic chirality of the fields, which
enables an interacting theory to be constructed with only single-derivative vertices.
Metaphorically speaking, if local higher-spin theorieswith trivial scattering amplitudes
(such as chiral higher-spin gravity [19, 20, 28] or self-dual HS-YM [37, 38]) live on
a “local island” in the space of higher-spin theories, surrounded by a sea of non-local
theories, then HS-YM lives on some sort of chiral buffer zone between the two. This
buffer zone is characterized by taking perturbative deformations of theories which live
on the island; the HS-YM studied in this paper is clearly one example of a theory in
the buffer zone, and there should be other examples, such as the higher-spin gauge
theory induced by the IKKT matrix model [64, 67]. It would be very interesting to
generate further examples of such buffer zone theories, along with their explicitly
non-vanishing scattering amplitudes.

There are many other open questions and directions to explore following on from
this work. In the first instance, another perspective on the restriction to spin-1 positive
helicity degrees of freedom is desirable. Formulating HS-YMon the light-cone, where
the need to make explicit choices for the polarization basis is removed, could shed
light on this, as well as providing an independent check on our results.

All of the considerations in this paper have been classical; we have said nothing
about the quantum consistency of HS-YM. A warm-up to answering this larger ques-
tion would be to consider the quantum integrability of self-dual HS-YM; it is expected
that SD HS-YMwill have non-vanishing all-positive helicity 1-loop scattering ampli-
tudes that represent an anomaly to integrability, or equivalently, an anomaly in the
twistor description of the self-dual sector [42, 46, 49]. In any case, this anomaly will
boil down to a partition function-like calculation involving a sum over the degrees of
freedom in the theory. Using zeta function regularization to treat the spectral sum (cf.,
[120]), this will lead to 2

∑∞
s=1 1 = 2ζ(0) = −1 and hence a non-vanishing anomaly.

It would seem that an easy way to kill this anomaly would be to couple HS-YMwith a
complex scalar, with a term likeDαα̇�Dαα̇�̄ in the Lagrangian. It would be interesting
to consider this in more detail, both in spacetime and on twistor space.

It may also be interesting to explore HS-YM in the context of flat space, or celes-
tial, holography (see [121, 122] for reviews). For pure Yang–Mills theory and gravity,
it has been shown that the classical infinite-dimensional symmetry algebras associ-
ated with the self-dual sectors have a natural manifestation on the celestial sphere in
terms of local operators and their operator product expansions [123, 124], and that
these emerge naturally from the twistor descriptions of the self-dual sectors [125].
Recently, it has been shown that Moyal deformations of the self-dual theories lead to
enhancements of these classical symmetry algebras to their “quantum”deformations—
although the theories under consideration are still tree-level or 1-loop exact [126–128].
It has already been observed that these deformations are most naturally linked to a
chiral higher-spin enhancement of the spacetime theories (rather than anything truly
quantum mechanical), and self-dual HS-YM—and its twistor description—provides
a first explicit realization of this fact. But more generally, it would be fascinating to
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explore how HS-YM and its scattering amplitudes fit into the recent proposals for
higher-spin holography in asymptotically flat spacetimes [129, 130].
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Appendix A: BCFW recursion

In this appendix, we prove the all-multiplicity formula for MHV scattering (3.20)
in HS-YM using on-shell recursion relations. While formally non-unitary, due to
its complex Lagrangian, HS-YM is still a local, one-derivative field theory, which
means that its tree-level scattering amplitudes will be meromorphic functions of the
external kinematics with only simple poles corresponding to exchanged momenta.
This means that tree-amplitudes of HS-YM could be recursively constructed using
on-shell relations such as BCFW recursion [72]. The only other required property
(besides those already mentioned) is that the tree-amplitudes have sufficient fall-off
under large values of the deformation parameter, z, used to define the recursion.

For theMHVhelicity configuration of interest, it suffices to show that there is always
a BCFW deformation under which the amplitude dies off at least as quickly as z−1.
Without loss of generality, we will consider n-point amplitudes for which particles
j and n have negative helicity, with all others having positive helicity. Consider a
deformation of the external kinematics for which

κα
1 → κ̂α

1 (z) := κα
1 + z κα

n ,

κ̃ α̇
n → ˆ̃κα̇

n (z) := κ̃ α̇
n − z κ̃ α̇

1 ,
(A.1)
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which maintains overall momentum conservation and keeps each external particle on-
shell. Since particle 1 has positive helicity and n has negative helicity, we abbreviate
this choice of deformation by calling it a “[−+〉-shift.” A color-order partial scattering
amplitude with deformed kinematics is denoted by An(z).

The structure of the deformation and thepropagator (2.29) ofHS-YMtheory ensures
that, just as in ordinary Yang–Mills, the only z-dependence in any particular Feynman
tree diagram contributing toAn(z) enters through the vertices and propagators which
join the two deformed external legs. Any such propagator will have a denominator
which depends on a subset of the external momenta, I ⊂ {1, . . . , n}, containing one of
1 or n—all other propagators are clearly independent of z. Without loss of generality,
such a propagator will contribute a denominator of the form

K̂ 2
I (z) =

⎛
⎜⎜⎝k̂1(z) +

∑
i∈I
i �= j

ki

⎞
⎟⎟⎠

2

=
(∑

i∈I

ki

)2

− 2 z 〈n|K I |1], (A.2)

since momentum conservation can always be used to ensure that 1 ∈ I . Hence, the
propagators of any diagram only contribute constant or z−1 factors to the large-z
behavior of the amplitude. Interaction vertices can contribute, at most, factors of z, so
the worst possible contribution to an amplitude, arising from k cubic vertices linking
the legs 1 and n with k −1 propagators, will scale linearly z (this is the same argument
as ordinary Yang–Mills [72]).

The only other z-dependence comes from the external polarization vectors of par-
ticles 1 and n. From (2.27), it is easy to see that these behave as

ε
(+)
1αα̇(z) = ζ1α κ̃1 α̇

〈1̂(z) ζ 〉 ∼ 1

z
, (A.3a)

ε
(−)
n α(2sn−1)α̇(z) = κn α(2sn−1) ζ̃n α̇

[n̂(z) ζ̃ ] ∼ 1

z
, (A.3b)

ensuring that An(z) ∼ z−1 as |z| → ∞, as required.
We can now prove that the HS-YMMHV amplitude (3.20) obeys the BCFW recur-

sion relation using the [−+〉-shift and induction. Just like in pure Yang–Mills, the
MHV configuration is the homogeneous term in the recursion, meaning that only a
single term, corresponding to pinching of a 3-point MHV amplitude, contributes at
each order in the recursion:

AMHV
n (1+

s1 , 2
+
s2 , 3

+
1 , . . . , j−s j

, . . . , n−
sn

) = AMHV
3

(
1̂+

s1 (z
∗), 2+

s2 , −K̂ −
1 (z∗)

) 1

〈1 2〉 [2 1]
×AMHV

n−1

(
K̂ +
1 (z∗), 3+

1 , . . . , j−s j
, . . . , n̂−

sn
(z∗)

)
,

(A.4)
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where

K̂ αα̇(z) = κα
1 κ̃ α̇

1 + κα
2 κ̃ α̇

2 + z κα
n κ̃ α̇

1 (A.5)

and

z∗ := −〈1 2〉
〈n 2〉 , (A.6)

is the critical value of the deformation parameter associated with this factorization
channel. Note that we allow for generic external spins on the MHV factor, as the
3-point amplitude (3.6) is well defined even with higher-spin positive helicity legs.

We have already established that the formula (3.20) is correct for n = 4 by direct
Feynman diagram calculations, so we proceed to use induction and assume that it also
holds for n − 1. With this inductive hypothesis, the constituents of (A.4) become

AMHV
3

(
1̂+

s1(z
∗), 2+

s2 ,−K̂ −
1 (z∗)

)
= δ̃(2 − s1 − s2)

[1 2]3
[K̂ 1]2s2−1 [2 K̂ ]2s1−1

,

(A.7)

and

AMHV
n−1

(
K̂ +
1 (z∗), 3+

1 , . . . , j−s j
, . . . , n̂−

sn
(z∗)

)
= δ̃(s j − sn)

〈 j n〉2s j +2

〈K̂ 3〉 · · · 〈n − 1 n〉 〈n K̂ 〉 ,
(A.8)

where K̂ αα̇(z∗) ≡ K̂ α K̂ α̇ for

K̂ α := 〈1 n〉
〈2 n〉 κα

2 , K̂ α̇ := κ̃ α̇
1 + 〈2 n〉

〈1 n〉 κ̃ α̇
2 . (A.9)

Feeding all of this back into (A.4) and observing that the spin constraint in (A.7) sets
s1 = s2 = 1, we obtain

AMHV
n = δ̃(s j − sn)

〈 j n〉2s j +2

〈1 2〉 〈2 3〉 · · · 〈n 1〉 , (A.10)

which is precisely the desired formula.
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50. Gürdoğan, O., Kazakov, V.: New integrable 4D quantum field theories from strongly deformed

planar N = 4 supersymmetric Yang–Mills theory. Phys. Rev. Lett. 117(20), 201602 (2016).
arXiv:1512.06704. [Addendum: Phys.Rev.Lett. 117, 259903 (2016)]

51. Chicherin, D., Korchemsky, G. P.: The SAGEX review on scattering amplitudes, Chapter 9: integra-
bility of amplitudes in fishnet theories. arXiv:2203.13020

52. Penrose, R.: Twistor algebra. J. Math. Phys. 8, 345 (1967)
53. Ward, R.S.: On Selfdual gauge fields. Phys. Lett. A 61, 81–82 (1977)
54. Chalmers, G., Siegel, W.: The Selfdual sector of QCD amplitudes. Phys. Rev. D 54, 7628–7633

(1996). arXiv:hep-th/9606061
55. Mason, L.J.: Twistor actions for non-self-dual fields: a derivation of twistor-string theory. JHEP 10,

009 (2005). arXiv:hep-th/0507269
56. Boels, R., Mason, L.J., Skinner, D.: Supersymmetric Gauge Theories in Twistor Space. JHEP 02, 014

(2007). arXiv:hep-th/0604040
57. Adamo, T., Mason, L.: Conformal and Einstein gravity from twistor actions. Class. Quantum Grav.

31(4), 045014 (2014). arXiv:1307.5043
58. Sharma, A.: Twistor action for general relativity. arXiv:2104.07031
59. Adamo, T., Skinner, D., Williams, J.: Minitwistors and 3d Yang–Mills–Higgs theory. J. Math. Phys.

59(12), 122301 (2018). arXiv:1712.09604
60. Hähnel, P., McLoughlin, T.: Conformal higher spin theory and twistor space actions. J. Phys. A

50(12), 485401 (2017). arXiv:1604.08209
61. Adamo, T., Hähnel, P., McLoughlin, T.: Conformal higher spin scattering amplitudes from twistor

space. JHEP 04, 021 (2017). arXiv:1611.06200
62. Adamo, T., Jaitly, S.: Twistor fishnets. J. Phys. A 53(5), 055401 (2020). arXiv:1908.11220
63. Tran, T.: Toward a twistor action for chiral higher-spin gravity. arXiv:2209.00925
64. Ishibashi, N., Kawai, H., Kitazawa, Y., Tsuchiya, A.: A Large N reduced model as superstring. Nucl.

Phys. B 498, 467–491 (1997). arXiv:hep-th/9612115
65. Sperling, M., Steinacker, H.C.: Covariant 4-dimensional fuzzy spheres, matrix models and higher

spin. J. Phys. A 50(37), 375202 (2017). arXiv:1704.02863

123

Page 40 of 43 T. Adamo, T. Tran50

http://arxiv.org/abs/1607.06379
http://arxiv.org/abs/1811.12333
http://arxiv.org/abs/2205.15293
http://arxiv.org/abs/1710.00270
http://arxiv.org/abs/2105.12782
http://arxiv.org/abs/2107.04500
http://arxiv.org/abs/hep-ph/9312333
http://arxiv.org/abs/hep-ph/9312276
http://arxiv.org/abs/hep-th/9611127
http://arxiv.org/abs/hep-th/9811140
http://arxiv.org/abs/1610.01457
http://arxiv.org/abs/2111.08879
http://arxiv.org/abs/2201.02595
http://arxiv.org/abs/2208.06334
http://arxiv.org/abs/2208.12701
http://arxiv.org/abs/1512.06704
http://arxiv.org/abs/2203.13020
http://arxiv.org/abs/hep-th/9606061
http://arxiv.org/abs/hep-th/0507269
http://arxiv.org/abs/hep-th/0604040
http://arxiv.org/abs/1307.5043
http://arxiv.org/abs/2104.07031
http://arxiv.org/abs/1712.09604
http://arxiv.org/abs/1604.08209
http://arxiv.org/abs/1611.06200
http://arxiv.org/abs/1908.11220
http://arxiv.org/abs/2209.00925
http://arxiv.org/abs/hep-th/9612115
http://arxiv.org/abs/1704.02863


Higher-spin Yang–Mills, amplitudes and self-duality

66. Sperling, M., Steinacker, H.C.: The fuzzy 4-hyperboloid H4
n and higher-spin in Yang–Mills matrix

models. Nucl. Phys. B 941, 680–743 (2019). arXiv:1806.05907
67. Steinacker, H., Tran, T.: A Twistorial description of the IKKT-matrix model. arXiv:2203.05436
68. Ponomarev, D.: Off-shell spinor-helicity amplitudes from light-cone deformation procedure. JHEP

12, 117 (2016). arXiv:1611.00361
69. Sharapov, A., Skvortsov, E., Sukhanov, A., Van Dongen, R.: Minimal model of chiral higher spin

gravity. arXiv:2205.07794
70. Sharapov, A., Skvortsov, E., Van Dongen, R.: Chiral higher spin gravity and convex geometry.

arXiv:2209.01796
71. Sharapov, A., Skvortsov, E., Sukhanov, A., Van Dongen, R.: More on chiral higher spin gravity and

convex geometry. arXiv:2209.15441
72. Britto, R., Cachazo, F., Feng, B.,Witten, E.: Direct proof of tree-level recursion relation inYang–Mills

theory. Phys. Rev. Lett. 94, 181602 (2005). arXiv:hep-th/0501052
73. Herfray,Y., Krasnov,K., Skvortsov, E.: Higher-Spin self-dualYang–Mills and gravity from the twistor

space. arXiv:2210.06209
74. Fronsdal, C.: Massless fields with integer spin. Phys. Rev. D 18, 3624 (1978)
75. Mason, L.J., Skinner, D.: Gravity, twistors and the MHV formalism. Commun. Math. Phys. 294,

827–862 (2010). arXiv:0808.3907
76. Adamo, T., Mason, L., Sharma, A.: Gluon scattering on self-dual radiative gauge fields.

arXiv:2010.14996
77. Adamo, T., Mason, L., Sharma, A.: Graviton scattering in self-dual radiative space-times.

arXiv:2203.02238
78. Kaparulin, D.S., Lyakhovich, S.L., Sharapov, A.A.: Consistent interactions and involution. JHEP 01,

097 (2013). arXiv:1210.6821
79. Krasnov, K., Shtanov, Y.: Chiral perturbation theory for GR. JHEP 09, 017 (2020). arXiv:2007.00995
80. Benincasa, P., Cachazo, F.: Consistency conditions on the S-matrix of massless particles.

arXiv:0705.4305
81. Benincasa, P., Conde, E.: On the tree-level structure of scattering amplitudes of massless particles.

JHEP 11, 074 (2011). arXiv:1106.0166
82. Benincasa, P., Conde, E.: Exploring the S-matrix of massless particles. Phys. Rev. D 86, 025007

(2012). arXiv:1108.3078
83. Skvortsov, E.D., Tran, T., Tsulaia, M.: Quantum chiral higher spin gravity. Phys. Rev. Lett. 121(3),

031601 (2018). arXiv:1805.00048
84. Skvortsov, E., Tran, T., Tsulaia,M.:More on quantum chiral higher spin gravity. Phys. Rev.D 101(10),

106001 (2020). arXiv:2002.08487
85. Skvortsov, E., Tran, T.: One-loop finiteness of chiral higher spin gravity. JHEP 07, 021 (2020).

arXiv:2004.10797
86. Parke, S.J., Taylor, T.R.: An amplitude for n Gluon scattering. Phys. Rev. Lett. 56, 2459 (1986)
87. McGady, D.A., Rodina, L.: Higher-spin massless S-matrices in four-dimensions. Phys. Rev. D 90(8),

084048 (2014). [arXiv:1311.2938]
88. Yang, C.N.: Condition of selfduality for SU(2) gauge fields on Euclidean four-dimensional space.

Phys. Rev. Lett. 38, 1377 (1977)
89. Atiyah, M.F., Ward, R.S.: Instantons and algebraic geometry. Commun. Math. Phys. 55, 117–124

(1977)
90. Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Y.I.: Construction of instantons. Phys. Lett. A 65,

185–187 (1978)
91. Mason, L.J., Woodhouse, N.M.J.: Integrability, Selfduality, and Twistor Theory. Oxford University

Press, Oxford (1991)
92. Penrose, R., MacCallum, M.A.H.: Twistor theory: an approach to the quantization of fields and

space-time. Phys. Rep. 6, 241–316 (1972)
93. Penrose, R., Rindler,W.: Spinors and Space-Time. CambridgeMonographs onMathematical Physics,

vol. 1. Cambridge University Press, Cambridge, UK (1985)
94. Penrose, R., Rindler,W.: Spinors and Space-Time, vol. 2 of CambridgeMonographs onMathematical

Physics. Cambridge University Press, Cambridge (1988)
95. Ward, R.S., Wells, R.O.: Twistor Geometry and Field Theory. Cambridge Monographs on Mathe-

matical Physics, vol. 8. Cambridge University Press, Cambridge (1991)
96. Dunajski, M.: Solitons, Instantons, and Twistors. Oxford University Press, Oxford (2010)

123

Page 41 of 43 50

http://arxiv.org/abs/1806.05907
http://arxiv.org/abs/2203.05436
http://arxiv.org/abs/1611.00361
http://arxiv.org/abs/2205.07794
http://arxiv.org/abs/2209.01796
http://arxiv.org/abs/2209.15441
http://arxiv.org/abs/hep-th/0501052
http://arxiv.org/abs/2210.06209
http://arxiv.org/abs/0808.3907
http://arxiv.org/abs/2010.14996
http://arxiv.org/abs/2203.02238
http://arxiv.org/abs/1210.6821
http://arxiv.org/abs/2007.00995
http://arxiv.org/abs/0705.4305
http://arxiv.org/abs/1106.0166
http://arxiv.org/abs/1108.3078
http://arxiv.org/abs/1805.00048
http://arxiv.org/abs/2002.08487
http://arxiv.org/abs/2004.10797
http://arxiv.org/abs/1311.2938


       

97. Adamo, T.: Lectures on twistor theory. PoS Modave 2017, 003 (2018). arXiv:1712.02196
98. Penrose, R.: Solutions of the zero-rest-mass equations. J. Math. Phys. 10, 38–39 (1969)
99. Eastwood, M.G., Penrose, R., Wells, R.O.: Cohomology and massless fields. Commun. Math. Phys.

78, 305–351 (1981)
100. Baston, R.J., Eastwood, M.G.: The Penrose Transform: Its Interaction with Representation Theory.

Clarendon Press, Oxford (1989)
101. Woodhouse, N.M.J.: Real methods in twistor theory. Class. Quantum Gravity 2, 257–291 (1985)
102. Sparling, G.A.J.: Dynamically broken symmetry and global Yang–Mills in Minkowski space. In:

Mason, L.J., Hughston, L.P. (eds.) Further Advances in Twistor Theory, vol. 231, ch. 1.4.2. Pitman
Research Notes in Mathematics (1990)

103. Mason, L.J., Skinner, D.: The complete planar S-matrix of N=4 SYM as a Wilson loop in twistor
space. JHEP 12, 018 (2010). [arXiv:1009.2225]

104. Donaldson, S.K.: Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable
vector bundles. Proc. Lond. Math. Soc. 50, 1–26 (1985)

105. Costello,K.: Topological strings, twistors andSkyrmions.WesternHemisphereColloquiumonGeom-
etry and Physics, (2020)

106. Bittleston, R., Skinner, D.: Twistors, the ASD Yang–Mills equations, and 4d Chern–Simons theory.
arXiv:2011.04638

107. Witten, E.: Chern–Simons gauge theory as a string theory. Prog. Math. 133, 637–678 (1995).
[arXiv:hep-th/9207094]

108. Thomas, R.P.: Gauge theories on Calabi–Yau manifolds. PhD thesis, University of Oxford, (1997)
109. Metsaev, R.R.: Cubic interaction vertices of massive and massless higher spin fields. Nucl. Phys. B

759, 147–201 (2006). arXiv:hep-th/0512342
110. Leznov, A.N., Mukhtarov, M.A.: Deformation of algebras and solution of selfduality equation. J.

Math. Phys. 28, 2574–2578 (1987)
111. Parkes, A.: A Cubic action for selfdual Yang–Mills. Phys. Lett. B 286, 265–270 (1992).

arXiv:hep-th/9203074
112. Adamo, T., Mason, L.: MHV diagrams in twistor space and the twistor action. Phys. Rev. D 86,

065019 (2012). arXiv:1103.1352
113. Ward, R.S.: Self-dual space-timeswith cosmological constant. Commun.Math. Phys. 78, 1–17 (1980)
114. Bullimore,M., Skinner,D.:Holomorphic linking, loop equations and scatteringAmplitudes inTwistor

space. arXiv:1101.1329
115. Koster, L.: Form factors and correlation functions in N = 4 super Yang-Mills theory from twistor

space. PhD thesis, Humboldt U., Berlin, Inst. Math., (2017). arXiv:1712.07566
116. Adamo, T., Bullimore, M., Mason, L., Skinner, D.: Scattering amplitudes andWilson loops in twistor

space. J. Phys. A 44, 454008 (2011). arXiv:1104.2890
117. Roiban, R., Tseytlin, A.A.: On four-point interactions in massless higher spin theory in flat space.

JHEP 04, 139 (2017). arXiv:1701.05773
118. Taronna, M.: On the non-local obstruction to interacting higher spins in flat space. JHEP 05, 026

(2017). arXiv:1701.05772
119. Ponomarev, D.: A note on (Non)-locality in holographic higher spin theories. Universe 4(1), 2 (2018).

arXiv:1710.00403
120. Beccaria, M., Tseytlin, A.A.: On higher spin partition functions. J. Phys. A 48(27), 275401 (2015).

arXiv:1503.08143
121. Pasterski, S., Pate, M., Raclariu, A.-M.: Celestial Holography, in 2022 Snowmass Summer Study,

vol. 11, (2021). arXiv:2111.11392
122. McLoughlin, T., Puhm, A., Raclariu, A.-M.: The SAGEX review on scattering amplitudes, chapter

11: soft theorems and celestial amplitudes. arXiv:2203.13022
123. Guevara, A., Himwich, E., Pate,M., Strominger, A.: Holographic symmetry algebras for gauge theory

and gravity. JHEP 11, 152 (2021). arXiv:2103.03961
124. Strominger, A.: w1+∞ algebra and the celestial sphere: infinite towers of soft graviton, photon, and

gluon symmetries. Phys. Rev. Lett. 127(22), 221601 (2021)
125. Adamo, T., Mason, L., Sharma, A.: Celestial w1+∞ Symmetries from Twistor Space. SIGMA 18,

016 (2022). arXiv:2110.06066
126. Monteiro, R.: Celestial chiral algebras, colour-kinematics duality and integrability. arXiv:2208.11179
127. Bu, W., Heuveline, S., Skinner, D.: Moyal deformations, W1+∞ and celestial holography.

arXiv:2208.13750

123

Page 42 of 43 T. Adamo, T. Tran50

http://arxiv.org/abs/1712.02196
http://arxiv.org/abs/1009.2225
http://arxiv.org/abs/2011.04638
http://arxiv.org/abs/hep-th/9207094
http://arxiv.org/abs/hep-th/0512342
http://arxiv.org/abs/hep-th/9203074
http://arxiv.org/abs/1103.1352
http://arxiv.org/abs/1101.1329
http://arxiv.org/abs/1712.07566
http://arxiv.org/abs/1104.2890
http://arxiv.org/abs/1701.05773
http://arxiv.org/abs/1701.05772
http://arxiv.org/abs/1710.00403
http://arxiv.org/abs/1503.08143
http://arxiv.org/abs/2111.11392
http://arxiv.org/abs/2203.13022
http://arxiv.org/abs/2103.03961
http://arxiv.org/abs/2110.06066
http://arxiv.org/abs/2208.11179
http://arxiv.org/abs/2208.13750


Higher-spin Yang–Mills, amplitudes and self-duality        

128. Guevara, A.: Towards gravity from a color symmetry. arXiv:2209.00696
129. Ponomarev, D.: Towards higher-spin holography in flat space. arXiv:2210.04035
130. Ponomarev, D.: Chiral higher-spin holography in flat space: the Flato–Fronsdal theorem and lower-

point functions. arXiv:2210.04036

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Page 43 of 43 50

http://arxiv.org/abs/2209.00696
http://arxiv.org/abs/2210.04035
http://arxiv.org/abs/2210.04036

	Higher-spin Yang–Mills, amplitudes and self-duality
	Abstract
	1 Introduction
	2 The space-time theory
	2.1 Fields & action
	2.2 Linear theory

	3 Scattering amplitudes
	3.1 3-point amplitudes
	3.2 4-point amplitudes
	3.3 n-point MHV amplitudes

	4 Self-dual sector and integrability
	4.1 Twistor theory
	4.2 Twistor construction of self-dual HS-YM
	4.3 Action functional for the self-dual sector

	5 Twistor action for HS-YM
	5.1 Twistor action functional
	5.2 MHV amplitudes from twistor space

	6 Discussion
	Acknowledgements
	Appendix A: BCFW recursion
	References




