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Abstract
We construct a family of staggered Virasoro modules which are isomorphic to those
constructed by Cromer. Using these staggered Virasoro modules, we verify the limit
formulas of the logarithmic couplings given by Vasseur, Jacobsen and Saleur. Further-
more by using the formula of the norm of logarithmic primary proved by Yanagida,
we present explicit formulas for the logarithmic couplings of these staggered Virasoro
modules.
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Mathematics Subject Classification 81R10

1 Introduction

Logarithmic conformal field theories have been actively studied in both physics and
mathematics in recent years. Unlike the case of rational conformal field theories, loga-
rithmic conformal field theories admit indecomposablemodules onwhich theVirasoro
zero-mode L0 acts non-semisimply. These indecomposable modules are called stag-
gered modules or logarithmic modules and appear in the field of statistical mechanics,
such as critical percolation and dilute polymers [5, 19, 23], and in the theory of fusion
rules, such as the Nahm–Gaberdiel–Kausch algorithm [3, 6, 9] (there are also studies
on the Virasoro fusion rules from the Schramm–Loewner evolution processes [13]).
For each staggered module, an important invariant called logarithmic coupling can
be defined [15] and it has been found that the value of the logarithmic coupling fixes
the staggered module up to isomorphism [14]. There are many studies related to the
logarithmic couplings. Let us briefly review a few of them. In the case of the Virasoro
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minimal models M(2, p), Mathieu and Ridout show that the logarithmic couplings
can be written by combinatorial product [16]. In the paper [22], Vasseur, Jacobsen
and Saleur derive limit formulas for the logarithmic couplings by studying in detail
certain two point functions with deformation parameters. In the paper [4], Cromer also
derive certain combinatorial formulas of the logarithmic couplings by using free field
realization techniques. Recently, Nivesvivat and Ribault derive explicit formulas for
the logarithmic couplings from the direction of the Liouville theory [18].

Let p+ and p− be coprime integers such that p− > p+ ≥ 2, and let

cp+,p− := 1 − 6
(p+ − p−)2

p+ p−

be the central charge of the minimal model M(p+, p−). In this paper we examine the
logarithmic couplings of certain staggered modules whose central charge are cp+,p− .
In Sect. 3.1, we construct certain staggered modules F(τ ) whose L0 nilpotent rank
two by gluing certain Fock modules, and define certain finite length submodules P(τ )

as the quotients of F(τ ). We see that these staggered modules F(τ ) are isomorphic
to those constructed by Cromer [4]. In Sect. 3.2, we rederive the limit formula of the
logarithmic couplings given by Vasseur, Jacobsen and Saleur [22] using the staggered
modules F(τ ). Furthermore, by using the results in [24], we present explicit formulas
for the logarithmic couplings of the staggeredmodules P(τ ). These results are stated in
Theorem3.2.As an application of the proofs of these theorems, in Sect. 3.3we consider
the structure of a slightly more complex staggered modules whose L0 nilpotent rank
two.

2 The structure of Fockmodules

Recall that the Virasoro algebra L is the Lie algebra over C generated by Ln(n ∈ Z)

and C (the central charge) with the relation

[Lm, Ln] = (m − n)Lm+n + m3 − m

12
Cδm+n,0, [Ln,C] = 0.

Fix two coprime integers p+, p− such that p− > p+ ≥ 2, and let

cp+,p− := 1 − 6
(p+ − p−)2

p+ p−

be the central charge of the minimal model M(p+, p−). In this paper we consider
Virasoro modules on which C acts as cp+,p− · id. In this section we briefly review the
structure of Fock modules whose central charges are cp+,p− in accordance with [12]
and [21] (see also [7]).
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2.1 Fockmodules

The Heisenberg Lie algebra

H =
⊕

n∈Z
Can ⊕ CKH

is the Lie algebra whose commutation is given by

[am, an] = mδm+n,0KH, [KH,H] = 0.

Let

H± =
⊕

n>0

Ca±n, H0 = Ca0 ⊕ CKH, H≥ = H+ ⊕ H0.

For any α ∈ C, let C|α〉 be the one dimensional H≥ module defined by

an|α〉 = δn,0α|α〉 (n ≥ 0), KH|α〉 = |α〉.

For any α ∈ C, the bosonic Fock module is defined by the following induced
module

Fα = IndHH≥C|α〉.

Let

a(z) =
∑

n∈Z
anz

−n−1

be the bosonic current. Then we have the following operator expansion

a(z)a(w) ∼ 1

(z − w)2
.

We define the energy-momentum tensor

T (z) := 1

2
: a(z)a(z) : +ρ

2
∂a(z), ρ :=

√
2p−
p+

−
√
2p+
p−

.

where : is the normal order product. The Fourier modes of T (z) = ∑
n∈Z Lnz−n−2

generate the Virasoro algebra whose central charge is cp+,p− .
By the energy-momentum tensor T (z), each Fock module Fα has the structure of a

Virasoro module whose central charge is cp+,p− . The L0 weight of the highest weight
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vector |α〉 is given by

L0|α〉 = 1

2
α(α − ρ)|α〉.

Let us denote

hα := 1

2
α(α − ρ).

For any α ∈ C, the Fock module Fα has the following L0 weight decomposition

Fα =
⊕

n∈Z≥0

Fα[n], Fα[n] := {v ∈ Fα \ {0} | L0v = (hα + n)v},

where each weight space Fα[n] has a basis

{a−λ|α〉 | λ � n}

with a−λ = a−λk · · · a−λ1 for a partition λ = (λ1, . . . , λk).
We define the following conformal vector in F0

T = 1

2

(
a2−1 + ρa−2

)
|0〉.

Definition 2.1 The Fock module F0 carries the structure of a Z≥0-graded vertex oper-
ator algebra, with

Y (|0〉, z) = id, Y (a−1|0〉, z) = a(z), Y (T , z) = T (z).

We denote this vertex operator algebra by Fρ .

2.2 The structure of Fockmodules

We set α± = ±√
2p∓/p±. For r , s, n ∈ Z we introduce the following symbols

αr ,s;n = 1 − r

2
α+ + 1 − s

2
α− +

√
2p+ p−
2

n

For r , s, n ∈ Z, we set

Fr ,s;n = Fαr ,s;n , hr ,s;n := 1

2
αr ,s;n(αr ,s;n − ρ).

For any h ∈ C, let L(h) be the irreducible Virasoro module whose highest weight is
h and the central charge C = cp+,p− · id. For r , s, n ∈ Z, let L(hr ,s;n) = Lr ,s;n . For
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1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we set

r∨ := p+ − r , s∨ := p− − s.

Before describing the structure of Fock modules, let us introduce the notion of socle
series.

Definition 2.2 Let M be a finite length Virasoro module. Let Soc(M) be the socle
of M , that is Soc(M) is the maximal semisimple submodule of M . Since M is finite
length, we have the sequence of the submodule

0 ≤ Soc1(M) ≤ Soc2(M) ≤ · · · ≤ Socn(M) = M

such that Soc1(M) = Soc(M) and Soci+1(M)/Soci (M) = Soc(M/Soci (M)). We
call such a sequence of the submodules of M the socle series of M .

The following proposition is due to Feigin and Fuchs [7].

Proposition 2.1 As the Virasoro module, there are four cases of socle series for the
Fock modules Fr ,s;n ∈ Fρ − mod:

1. For each 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, n ∈ Z, we have

0 ≤ Soc1(Fr ,s;n) ≤ Soc2(Fr ,s;n) ≤ Soc3(Fr ,s;n) = Fr ,s;n

with

Soc1(Fr ,s;n) = Soc(Fr ,s;n) =
⊕

k≥0

Lr ,s∨;|n|+2k+1,

Soc2(Fr ,s;n)/Soc1(Fr ,s;n)

=
⊕

k≥a

Lr ,s;|n|+2k ⊕
⊕

k≥1−a

Lr∨,s∨;|n|+2k,

Fr ,s;n/Soc2(Fr ,s;n) =
⊕

k≥0

Lr∨,s;|n|+2k+1,

where a = 0 if n ≥ 0 and a = 1 if n < 0.
2. For each 1 ≤ s ≤ p− − 1, n ∈ Z, we have

0 ≤ Soc1(Fp+,s;n) ≤ Soc2(Fp+,s;n) = Fp+,s;n

with

Soc1(Fp+,s;n) = Soc(Fp+,s;n) =
⊕

k≥0

L p+,s∨;|n|+2k+1,

Soc2(Fp+,s;n)/Soc1(Fp+,s;n) =
⊕

k≥a

L p+,s;|n|+2k

where a = 0 if n ≥ 1 and a = 1 if n < 1.
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3. For each 1 ≤ r ≤ p+ − 1, n ∈ Z, we have

0 ≤ Soc1
(
Fr ,p−;n

) ≤ Soc2
(
Fr ,p−;n

) = Fr ,p−;n

with

Soc1
(
Fr ,p−;n

) = Soc
(
Fr ,p−;n

) =
⊕

k≥0

Lr ,p−;|n|+2k,

Soc2
(
Fr ,p−;n

)
/Soc1

(
Fr ,p−;n

) =
⊕

k≥a

Lr∨,p−;|n|+2k−1

where a = 1 if n ≥ 0 and a = 0 if n < 0.
4. For each n ∈ Z, the Fock module Fp+,p−;n is semi-simple as a Virasoro module

Soc
(
Fp+,p−;n

) = Fp+,p−;n =
⊕

k≥0

L p+,p−;|n|+2k .

For the four groups of Fock modules in Proposition 2.1, we call the first group of
Fock modules “braided-type", the second and third groups of Fock modules “chain-
type" and the last group of Fock modules “semisimple-type".

2.3 Screening operators and Felder complex

As detailed in [20], we can define the non-trivial screening currents

Q[r ]
+ (z) ∈ HomC(Fr ,k;l , F−r ,k;l)[[z, z−1]], r ≥ 1, k, l ∈ Z,

Q[s]
− (z) ∈ HomC(Fk,s;l , Fk,−s;l)[[z, z−1]], s ≥ 1, k, l ∈ Z.

These fields satisfy the following operator product expansion

T (z)Q[•]
± (w) = Q[•]

± (w)

(z − w)2
+ ∂wQ[•]

± (w)

z − w
+ · · ·

In particular zero modes

Resz=0Q
[r ]
+ (z)dz = Q[r ]

+ ∈ HomC(Fr ,k, F−r ,k), r ≥ 1, k ∈ Z,

Resz=0Q
[s]
− (z)dz = Q[s]

− ∈ HomC(Fk,s, Fk,−s), s ≥ 1, k ∈ Z

commute with every Virasoro mode. These zero modes are called screening operators.
For 1 ≤ r ≤ p+, 1 ≤ s ≤ p− and n ∈ Z, we define the followingVirasoromodules
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1. For 1 ≤ r < p+, 1 ≤ s ≤ p−, n ∈ Z

Kr ,s;n;+ = ker
(
Q[r ]

+ : Fr ,s;n → Fr∨,s;n+1

)
,

Xr∨,s;n+1;+ = im
(
Q[r ]

+ : Fr ,s;n → Fr∨,s;n+1

)
.

2. For 1 ≤ r ≤ p+, 1 ≤ s < p−, n ∈ Z

Kr ,s;n;− = ker
(
Q[s]

− : Fr ,s;n → Fr ,s∨;n−1

)
,

Xr ,s∨;n−1;− = im
(
Q[s]

− : Fr ,s;n → Fr ,s∨;n−1

)
.

The following propositions are due to Felder [8].

Proposition 2.2 The socle series of Kr ,s;n;± and Xr ,s;n;± are given by:

1. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1 and n ∈ Z, we have

0 ≤ SK1;± := Soc(Kr ,s;n;±) ≤ SK2;± := Kr ,s;n;±
0 ≤ SX

1;± := Soc(Xr ,s;n;±) ≤ SX
2;± := Xr ,s;n;±

such that

n ≥ 0 n ≤ −1

SK1;+ =
⊕

k≥1

Lr ,s∨;n+2k−1, SK1;+ =
⊕

k≥1

Lr ,s∨;−n+2k−1,

SK2;+ =
⊕

k≥1

Lr ,s;n+2(k−1), SK2;+ =
⊕

k≥1

Lr ,s;−n+2k,

SX
1;+ =

⊕

k≥1

Lr ,s∨;n+2k, SX
1 =

⊕

k≥1

Lr ,s∨;−n+2(k−1),

SX
2;+ =

⊕

k≥1

Lr ,s;n+2k−1, SX
2;+ =

⊕

k≥1

Lr ,s;−n+2k−1,

n ≥ 1 n ≤ 0

SK1;− =
⊕

k≥1

Lr ,s∨;n+2k−1, SK1;− =
⊕

k≥1

Lr ,s∨;−n+2k−1,

SK2;− =
⊕

k≥1

Lr ,s;n+2(k−1), SK2;− =
⊕

k≥1

Lr ,s;−n+2k,

SX
1;− =

⊕

k≥1

Lr ,s∨;n+2(k−1), SX
1;− =

⊕

k≥1

Lr ,s∨;−n+2k,

SX
2;− =

⊕

k≥1

Lr∨,s∨;n+2k−1, SX
2;− =

⊕

k≥1

Lr∨,s∨;−n+2k−1,

where SK2;± = SK2;±/SK1;± and SX
2;± = SX

2;±/SX
1;±.
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2. For 1 ≤ r ≤ p+ − 1, s = p−, n ∈ Z, we have

Xr ,p−;n = Soc(Fr ,p−;n).

3. For r = p+, 1 ≤ s ≤ p− − 1, n ∈ Z, we have

X p+,s;n = Soc(Fp+,s;n).

Proposition 2.3 1. For 1 ≤ r < p+, 1 ≤ s < p− and n ∈ Z the screening operators

Q[r ]
+ and Q[r∨]

+ define the Felder complex

· · · −→ Fr∨,s;n−1
Q[r∨]

+−−−→ Fr ,s;n
Q[r ]

+−−→ Fr∨,s;n+1 −→ · · · .

This complex is exact everywhere except in Fr ,s = Fr ,s;0 where the cohomology
is given by

kerQ[r ]
+ /imQ[r∨]

+  Lr ,s;0.

2. For 1 ≤ r < p+, 1 ≤ s < p− and n ∈ Z the screening operators Q[s]
− and Q[s∨]

−
define the Felder complex

· · · −→ Fr ,s∨;n+1
Q[s∨]

−−−−→ Fr ,s;n
Q[s]

−−−→ Fr ,s∨;n−1 −→ · · · .

This complex is exact everywhere except in Fr ,s = Fr ,s;0 where the cohomology
is given by

kerQ[s]
− /imQ[s∨]

−  Lr ,s;0.

3. For 1 ≤ r < p+ and n ∈ Z the screening operators Q[r ]
+ and Q[r∨]

+ define the
Felder complex

· · · −→ Fr∨,p−;n−1
Q[r∨]

+−−−→ Fr ,p−;n
Q[r ]

+−−→ Fr∨,p−;n+1 −→ · · ·

and this complex is exact.

4. For 1 ≤ s < p− and n ∈ Z the screening operators Q[s]
− and Q[s∨]

− define the
Felder complex

· · · −→ Fp+,s∨;n+1
Q[s∨]

−−−−→ Fp+,s;n
Q[s]

−−−→ Fp+,s∨;n−1 −→ · · · .

and this complex is exact.
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3 Staggered Virasoromodules

In this section, we construct certain staggered modules by gluing bosonic Fock mod-
ules and, by using these staggered modules, we rederive the limit formulas of the
logarithmic couplings given by Vasseur, Jacobsen and Saleur [22] (see also [11, 18]).
Furthermore, by using the formula of the norm of logarithmic primary proved by
Yanagida [24], we give explicit formulas for the logarithmic couplings. We see that
the staggeredVirasoromodulewhichwill be constructed in this section are isomorphic
to those constructed by Cromer [4]. In this section, we identify any Virasoro modules
that are isomorphic among each other.

3.1 Construction of certain staggeredVirasoromodules

We set

Ap+,p− := { αr ,s;n | r , s, n ∈ Z }.

Let U (L) be the universal enveloping algebra of the Virasoro algebra.

Definition 3.1 1. WedefineT ↘
p+,p− to be the subset of A2

p+,p− such that every element

τ = (α1, α2) ∈ A2
p+,p− satisfies the following conditions:

• hα1 < hα2 .
• The two Fock modules Fα1 and Fα2 are contained in the same Felder complex
given in Proposition 2.3 and adjacent to each other as

· · · −→ Fα1

Qτ−→ Fα2 −→ · · · ,

where we denote the screening operator from Fα1 to Fα2 by Qτ .

2. We define T ↗
p+,p− to be the subset of A2

p+,p− such that every element τ =
(α1, α2) ∈ A2

p+,p− satisfies the following conditions:

• hα1 > hα2 .
• The two Fock modules Fα1 and Fα2 are contained in the same Felder complex
given in Proposition 2.3 and adjacent to each other as

· · · −→ Fα1

Qτ−→ Fα2 −→ · · · ,

where we denote the screening operator from Fα1 to Fα2 by Qτ .

3. We define Tp+,p− = T ↘
p+,p− � T ↗

p+,p−

Let â be the dual of the zero mode a0 defined by

[am, â] = δm,0id. (3.1)
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For any α, β ∈ C, let us identify eβâ |α〉 = |α + β〉.
Fix any τ = (α1, α2) ∈ Tp+,p− . Let v be any L0-homogeneous vector of Fα1 and

let A ∈ U (L) be any L0-homogeneous element. Let hα1 +n1 and n2 be the L0-weight
of v and A, respectively. For any ε ∈ C

×, let us consider the following operator

[Qτ , e
−εâ Aeεâ] = Qτ e

−εâ Aeεâ − e−t â Aeεâ Qτ

on Fα1 , where Fα ∈ Fρ −mod for all α ∈ C. Note that [Qτ , e−εâ Aeεâ]v ∈ Fα2 [n1 +
n2 + hα1 − hα2 ]. Let us write [Qτ , e−εâ Aeεâ]v as

[Qτ , e
−εâ Aeεâ]v =

∑

λ�N1,2

fλ(ε)a−λ|α2〉,

where fλ(ε) are some polynomials of ε and N1,2 = n1 + n2 + hα1 − hα2 . Since
[Qτ , A] = 0, we can see that every fλ(ε) is divisible by ε. Then we define

lim
ε→0
ε �=0

1

ε

[
Qτ , e

−εâ Aeεâ
]
v :=

∑

λ�N1,2

(ε−1 fλ(ε)|ε=0)a−λ|α2〉.

We introduce the following C-linear operators.

Definition 3.2 For any τ = (α1, α2) ∈ Tp+,p− , we define the following C-linear
operator


τ (A) = lim
ε→0
ε �=0

1

ε

[
Qτ , e

−εâ Aeεâ
]
, for A ∈ U (L),

where Fα1+ε, Fα2+ε ∈ Fρ − mod for all ε ∈ C.

Proposition 3.1 For any τ = (α1, α2) ∈ Tp+,p− , the operator 
τ satisfies the follow-
ing the properties of the derivative


τ (AB) = 
τ (A)B + A
τ (B), A, B ∈ U (L).

Proof For any A, B ∈ U (L), we have

[
Qτ , e

−εâ ABeεâ]

= [
Qτ , e

−εâ Aeεâ · e−εâ Beεâ]

= [
Qτ , e

−εâ Aeεâ]e−εâ Beεâ + e−εâ Aeεâ[Qτ , e
−εâ Beεâ]

= [
Qτ , e

−εâ Aeεâ]B + A[Qτ , e
−εâ Beεâ]

+ [
Qτ , e

−εâ Aeεâ](e−εâ Beεâ − B) + (e−εâ Aeεâ − A)
[
Qτ , e

−εâ Beεâ].

Dividing both sides by ε and taking the limit, we have the property of the derivative.
��
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For any τ = (α1, α2) ∈ Tp+,p− , set

F(τ ) = Fα1 ⊕ Fα2 .

Definition 3.3 Fix any τ = (α1, α2) ∈ Tp+,p− . For A ∈ U (L), we define the following
operator Jτ (A) on F(τ ):

Jτ (A) =
{
A + 
τ (A) on Fα1 ,

A on Fα2 .

By Proposition 3.1, we obtain the following proposition.

Proposition 3.2 For any τ = (α1, α2) ∈ Tp+,p− , we have

Jτ (AB) = Jτ (A)Jτ (B), for any A, B ∈ U (L).

By this proposition, we see that Jτ defines a structure of Virasoro module on F(τ ).
We denote this Virasoro module by (F(τ ), Jτ ). Let us compute the Jτ (Ln) action of
the Virasoro module (F(τ ), Jτ ).

Proposition 3.3 For any τ = (α1, α2) ∈ Tp+,p− and n ∈ Z, the Jτ (Ln) action on the
vector subspace Fα1 ⊂ F(τ ) is given by

Jτ (Ln) = Ln + [Qτ , an].

Proof Note that the ordinary action of Ln on the Fock modules in Fρ −mod is given
by

Ln = 1

2

∑

m∈Z
: aman−m : −1

2
ρ(n + 1)an . (3.2)

Let v be any nonzero vector of Fα1 . Then, by (3.1), (3.2) and [Qτ , Ln] = 0, we have

(Jτ (Ln) − Ln)v = 
τ (Ln)v

= lim
ε→0

1

ε
Qτ e

−εâ Lne
εâv − lim

ε→0

1

ε
e−εâ Lne

εâ Qτ v

= lim
ε→0

1

ε
Qτ εanv − lim

t→0

1

ε
εanQτ v

= [Qτ , an]v.

��
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Remark 3.1 Fix any τ = (α1, α2) ∈ T ↗
p+,p− . In [4], Cromer define the operator

Vn = 1

α2 − α1
[an, Qτ ]

and define the structure of a Virasoro module on Fα1 ⊕ Fα2 as

J ′
τ (Ln) =

{
Ln + Vn on Fα1 ,

Ln on Fα2 .

From Proposition 3.3, we see that the Virasoro modules (F(τ ), Jτ ) and (F(τ ), J ′
τ )

are isomorphic.

By Proposition 3.3, we see that (F(τ ), Jτ ) has the structure of a staggered Virasoro
module whose L0-nilpotent rank two. In the following, we define a finite length sub-
module of the staggered module (F(τ ), Jτ ).

Noting Proposition 2.1, we define the following symbols.

Definition 3.4 1. For any τ = (α1, α2) ∈ T ↘
p+,p− , let Sτ be the Shapovalov element

Sτ = L
hα2−hα1−1 + · · · ∈ U (L) \ {0}

satisfying Sτ |α1〉 = 0.
2. For any τ = (α1, α2) ∈ T ↗

p+,p− , let Sτ be the Shapovalov element

Sτ = L
hα1−hα2−1 + · · · ∈ U (L) \ {0},

which gives the singular vector in Fα2 [hα1 − hα2 ].
For τ = (α1, α2) ∈ T ↘

p+,p− and ε ∈ C
×, let us consider the vector e−εâ Sτ |α1+ε〉 ∈

Fα1 , where Fα1+ε ∈ Fρ − mod. Let us write

e−εâ Sτ |α1 + ε〉 =
∑

λ�hα2−hα1

fλ(ε)a−λ|α1〉,

where fλ(ε) are some polynomials of ε. Since Sτ |α1〉 = 0, we can see that every fλ(ε)
is divisible by ε. Then we define

lim
ε→0

ε−1e−εâ Sτ |α1 + ε〉 :=
∑

λ�hα2−hα1

(ε−1 fλ(ε) |ε=0)a−λ|α1〉 ∈ Fα1 .

By the Jantzen filtration of the Fockmodule Fα1 (cf. [7, 12]), we can see that this vector
is nonzero and becomes a cosingular vector in Fα1 [hα2 − hα1 ]. Thus, by Proposition
2.2, we have Qτ (vτ ) ∈ C

×|α2〉 (cf. [8]).
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Definition 3.5 For any τ = (α1, α2) ∈ Tp+,p− , we define the following vector:

vτ :=
{
limε→0 ε−1e−εâ Sτ |α1 + ε〉 ∈ Fα1 τ ∈ T ↘

p+,p− ,

|α1〉 τ ∈ T ↗
p+,p− .

(3.3)

Definition 3.6 For τ ∈ Tp+,p− , we define the following finite length submodule of
(F(τ ), Jτ )

P(τ ) := Jτ (U (L)).vτ .

Since Qτ (vτ ) �= 0, we see that every P(τ ) has L0 nilpotent rank two, and

Jτ (Sτ σ (Sτ ))vτ �= 0,

where σ is an anti-involution of U (L) defined by σ(Ln) = L−n(n ∈ Z). Thus every
P(τ ) is an extension between certain two highest weight Virasoro modules.

3.2 The logarithmic couplings of P(�)

We review the definition of the logarithmic couplings (see [3, 14] for general cases).
Fix any τ = (α1, α2) ∈ T ↘

p+,p− . LetV (hα1) andV (hα2) be any highestweightmodules
whose highest weights are hα1 and hα2 , respectively. Assume that there exists a non-
trivial staggered module satisfying

0 → V (hα1)
ι−→ Eτ

p−→ V (hα2) → 0.

Let x0 be the highest weight vector of V (hα1) such that 〈ι(x0), ι(x0)〉 = 1, and let y0
be the highest weight vector of V (hα2). Let x = ι(x0) and fix any L0-homogeneous
vector y ∈ Eτ such that p(y) = y0. Then we have

(L0 − hα2)y = cSτ x, σ (Sτ )y = β ′x,

where c( �= 0) and β ′ are some constants. We then define β(Eτ ) by

β(Eτ ) = β ′

c
. (3.4)

One can check that this β(Eτ ) is a unique constant independent of the choice of y. The
β(Eτ ) is called the logarithmic coupling of Eτ or the indecomposability parameter of
Eτ .

In the following, let us determine the logarithmic coupling of P(τ ) for any τ =
(α1, α2) ∈ Tp+,p− . Before that, let us introduce the formula of the norm of logarithmic
primary proved by Yanagida [24] as follows.

Let M(h, cp+,p−) be the Verma module of the Virasoro algebra whose highest
weight and the central charge are h ∈ C and C = cp+,p− · id. Let |h〉 be the highest
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weight vector of M(h, cp+,p−). Note that, for r , s ≥ 1, M(hr ,s;0, cp+,p−) has the
singular vector whose L0-weight is hr ,s;0 + rs. Let Sr ,s ∈ U (L) be the Shapovalov
element corresponding to this singular vector, normalized as

Sr ,s |hr ,s;0〉 = (Lrs−1 + · · · )|hr ,s;0〉.

For r , s ≥ 1 and h ∈ C, let us consider the value 〈h|σ(Sr ,s)Sr ,s |h〉, where we
choose a norm of the highest weight vector |h〉 ∈ M(h, cp+,p−) as 〈h|h〉 = 1. We can
see that this value is a polynomial of h and is divisible by (h−hr ,s;0). A more detailed
value is given by the following theorem.

Theorem 3.1 ([24]) For r , s ≥ 1 and h ∈ C,

〈h|σ(Sr ,s)Sr ,s |h〉 = Rr ,s(h − hr ,s;0) + O((h − hr ,s;0)2),

where Rr ,s is given by

Rr ,s = 2
∏

(k,l)∈Z2,
1−r≤k≤r ,1−s≤l≤s,

(k,l) �=(0,0),(r ,s)

(
k

(
p+
p−

)− 1
2 + l

(
p+
p−

) 1
2
)

.

We obtain the following limit and combinatorial formulas of the logarithmic cou-
pling β(P(τ )).

Theorem 3.2 Fix any τ = (α1, α2) ∈ Tp+,p− and let (r , s) be the element in Z
2≥1

such that Sτ = Sr ,s . Then the logarithmic coupling β(P(τ )) is given by the following
formula:

1. In the case of τ ∈ T ↘
p+,p− , the logarithmic coupling of P(τ ) is given by

β(P(τ )) = −
d
dε

〈α1 + ε|σ(Sτ )Sτ |α1 + ε〉|ε=0
d
dε

(hα2+ε − hα1+ε)|ε=0

= 1

2

2α1 − ρ

α1 − α2
Rr ,s,

(3.5)

where we choose a norm of the highest weight vector |α〉 as 〈α|α〉 = 1 for any
Fock modules Fα .

2. In the case of τ ∈ T ↗
p+,p− , the logarithmic coupling of P(τ ) is given by

β(P(τ )) = −
d
dε

〈α2 + ε|σ(Sτ )Sτ |α2 + ε〉|ε=0
d
dε

(hα1+ε − hα2+ε)|ε=0

= 1

2

2α2 − ρ

α2 − α1
Rr ,s .

(3.6)
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Proof Weonly prove (3.5). (3.6) can be proved in the sameway. Fix any τ = (α1, α2) ∈
T ↘
p+,p− . Note that Qτ |α1〉 = 0. Then, from Proposition 3.3 and (3.3), we have

(Jτ (L0) − hα2)vτ = (α1 − α2)Qτ (vτ ),

Jτ (σ (Sτ ))vτ = σ(Sτ )vτ ,

Jτ (Sτ )|α1〉 = Qτ (vτ ).

(3.7)

Thus, by (3.7) and the definition of the logarithmic couplings (3.4), we obtain

β(P(τ )) = −(α2 − α1)
−1 d

dε
〈α1|σ(Sτ )e

−εâ Sτ e
εâ |α1〉|ε=0

= −(α2 − α1)
−1 d

dε
〈α1|e−εâσ(Sτ )Sτ e

εâ |α1〉|ε=0. (3.8)

Note that

d

dε
hα+ε |ε=0 = 2α − ρ

2
(3.9)

for any α ∈ C. Thus, by (3.8), we obtain the limit formula

β(P(τ )) = −
d
dε

〈α1 + ε|σ(Sτ )Sτ |α1 + ε〉|ε=0
d
dε

(hα2+ε − hα1+ε)|ε=0
. (3.10)

Let (r , s) be the element in Z2≥1 such that Sτ = Sr ,s . Then, by Theorem 3.1 and (3.9),
we have

d

dε
〈α1 + ε|σ(Sτ )Sτ |α1 + ε〉|ε=0 = 1

2
(2α1 − ρ)Rr ,s .

Therefore, by (3.10), we obtain

β(P(τ )) = 1

2

2α1 − ρ

α1 − α2
Rr ,s .

��
Corollary 3.1 For any τ = (α1, α2) ∈ T ↘

p+,p− , let τ∨ = (ρ − α2, ρ − α1) ∈ T ↗
p+,p− .

Then we have β(P(τ )) = β(P(τ∨)).

Remark 3.2 In [4], Cromer derive certain summation formulas of the logarithmic cou-
plings β(P(τ )). It would be an interesting problem to see if our formula can be derived
directly from theirs.

For example, noting Proposition 2.1, let us compute some values of β(P(τ )) in the
case of (p+, p−) = (2, 3):
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1. For τ = (α1,1;0, α1,2;−1),

β(P(τ )) = 1

2

2α1,1;0 − ρ

α1,1;0 − α1,2;−1
R1,1 = −1

2
.

2. For τ = (α1,2;0, α1,1;−1),

β(P(τ )) = 1

2

2α1,2;0 − ρ

α1,2;0 − α1,1;−1
R1,2 = − 5

18
.

3. For τ = (α1,1;−1, α1,2;−2),

β(P(τ )) = 1

2

2α1,1;−1 − ρ

α1,1;−1 − α1,2;−2
R3,1 = −420.

4. For τ = (α1,2;−1, α1,1;−2),

β(P(τ )) = 1

2

2α1,2;−1 − ρ

α1,2;−1 − α1,1;−2
R3,2 = −10780000

243
.

5. For τ = (α1,2;0, α1,2;1),

β(P(τ )) = 1

2

2α1,2;0 − ρ

α1,2;0 − α1,2;1
R1,2 = 10

27
.

These values coincide with the logarithmic couplings β1,4, β1,5, β1,7, β1,8 and β3,1 in
[3], respectively (see [16, 22] for other values of logarithmic couplings, but note that
the normalization of the Shapovalov elements Sr ,s is different from our case).

3.3 Other rank two staggeredmodules

In the following we present a slightly more complex staggered modules whose L0
nilpotent rank two.

Note that, unlike the chain type Fock modules, every braided type Fock module is
included in two different Felder complex given in Proposition 2.3. Let T br

p+,p− be the
subset of Tp+,p− consisting any element τ = (α1, α2) such that Fα1 is braided type.
We set

ϒp+,p− := {
((α1, α2), (α

′
1, α

′
2)) ∈ T br

p+,p− × T br
p+,p− | α1 = α′

1 ∧ α2 �= α′
2

}
.

Fix any (τ, τ ′) = ((α1, α2), (α1, α
′
2)) ∈ ϒp+,p− . We set

F(τ, τ ′) = Fα1 ⊕ Fα2 ⊕ Fα′
2
.
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For A ∈ U (L), we define the following operator Jτ,τ ′(A) on F(τ, τ ′):

Jτ,τ ′(A) =
{
A + 
τ (A) + 
τ ′(A) on Fα1,

A on Fα2 ⊕ Fα′
2
.

Then, by Proposition 3.1, we have

Jτ,τ ′(AB) = Jτ,τ ′(A)Jτ,τ ′(B), for any A, B ∈ U (L).

Thus we see that Jτ,τ ′ defines the structure of a Virasoro module on F(τ, τ ′). Similar
to Proposition 3.3, we have the following proposition.

Proposition 3.4 For any (τ, τ ′) = ((α1, α2), (α1, α
′
2)) ∈ ϒp+,p− and n ∈ Z, the

Jτ,τ ′(Ln) action on the vector subspace Fα1 ⊂ F(τ, τ ′) is given by

Jτ,τ ′(Ln) = Ln + [Qτ , an] + [Qτ ′, an].

Definition 3.7 For (τ, τ ′) ∈ ϒp+,p− , we define the following finite length submodule
of the staggered module (F(τ, τ ′), Jτ,τ ′)

P(τ, τ ′) := Jτ,τ ′(U (L)).vτ ,

where vτ is the vector of Fα1 defined by (3.3).

We define the subset ϒMin
p+,p− ⊂ ϒp+,p− as

ϒMin
p+,p− = {((αr ,s;0, αr∨,s;1), (αr ,s;0, αr ,s∨;−1)) | 1 ≤ r < p+, 1 ≤ s < p−}.

Theorem 3.3 For any (τ, τ ′) ∈ ϒMin
p+,p− , P(τ, τ ′) has two subquotients whose loga-

rithmic couplings are the same as those of P(τ ) and P(τ ′), respectively.

Proof Fix any element

(τ, τ ′) = ((αr ,s;0, αr∨,s;1), (αr ,s;0, αr ,s∨;−1)) ∈ ϒMin
p+,p− .

Let us consider the staggered module P(τ, τ ′). By Proposition 3.4, we have

(Jτ,τ ′(L0) − hr∨,s;1)vτ = −rα+Q[r ]
+ (vτ ) − sα−Q[s]

− (vτ ), (3.11)

where vτ ∈ Fr ,s;0 is defined by (3.3). By using Theorem 3.1 we have

Jτ,τ ′(Sr ,sσ(Sr ,s))vτ = 1

2
(2αr ,s;0 − ρ)Rr ,s(Q

[r ]
+ (vτ ) + Q[s]

− (vτ )). (3.12)
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By (3.11) and (3.12), we see that P(τ, τ ′) has two submodules Jτ,τ ′(U (L)).Q[r ]
+ (vτ )

and Jτ,τ ′(U (L)).Q[s]
− (vτ ), and the logarithmic couplings of the quotient modules

P(τ, τ ′)/Jτ,τ ′(U (L)).Q[s]
− (vτ ), P(τ, τ ′)/Jτ,τ ′(U (L)).Q[r ]

+ (vτ )

are the same as those of P(τ ) and P(τ ′), respectively. ��

4 Future works

In this paper, we have constructed the infinite length staggered Virasoro modules
(F(τ ), Jτ ) and (F(τ, τ ′), Jτ,τ ′) using certain limit operations. We have not examined
the detailed subquotient structure of these staggered modules. If we try to investigate
the structure of these staggered modules directly from the definitions, we will have to
calculate the actions of any modes of the screening currents Q[•]

± (z). The results of
classification for isomorphism classes of staggered modules by [14] are considered
important to avoid the difficulties of direct calculation.

It is known that there is a constant difference between the logarithmic coupling
β(λ) associated with a given rank two staggered module λ and a certain constant β̃(λ)

characterizing the two point function 〈ψλ(z)ψλ(w)〉 [3, 10], where ψλ(z) is the field
which generates λ. As shown in [10, 22], this constant β̃(λ) also has a limit formula
similar to β(λ). It is an interesting problem to examine the explicit formula of β̃(λ) in
the case of λ = F(τ ). We believe that the value of the image of the screening operators
[4, 17, 21] is important to investigate this problem.

We believe that our limit method is valid for other models as well. For example, in
the case of staggered modules of N = 1 superconformal minimal models [2], we can
construct certain staggered Neveu–Schwarz modules, by gluing Neveu–Schwarz Fock
modules. The theory of admissible Jack polynomials [1] is considered to be important
to investigate the logarithmic couplings of these staggered Neveu–Schwarz modules.
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