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Abstract
We generalize the notion of an anomaly for a symmetry to a noninvertible symmetry
enacted by surface operators using the framework of condensation in 2-categories.
Given a multifusion 2-category, potentially with some additional levels of monoidal-
ity, we prove theorems about the structure of the 2-category obtained by condensing a
suitable algebra object. We give examples where the resulting category displays grou-
plike fusion rules and through a cohomology computation, and find the obstruction
to condensing further to the vacuum theory. As a consequence, we show that every
symmetric fusion 2-category admits a fiber 2-functor to 2SVec.

Keywords Fusion 2 categories · Condensation · Noninvertible symmetry · Spectral
sequences

Mathematics Subject Classification 18M15 · 18M20 · 18N10

1 Introduction

One of the most exciting prospects of generalized symmetries is the study of nonin-
vertible symmetry operators. These are topological but instead of having a grouplike
composition, their interactions are described by a general higher category. For grou-
plike global symmetries, the anomaly determines whether or not the symmetry can
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be gauged. The classification of such anomalies is well known to be captured by an
invertible theory one dimension higher. Further, they can be classified using spectral
sequences for group cohomology, and,more generally, for cobordisms as formalized in
[23, 40]. Provided the anomaly vanishes, the gauging procedure will in general reshuf-
fle the topological content, and in some cases add new richness into the theory in the
form of noninvertible operators [6, 39]. When gauging discrete abelian groups, what
manifests is a dual group, which upon gauging takes us back to the original theory. The
notion of condensation was introduced in [24] as a generalization of gauging, which
applies to noninvertible symmetries. One particularly useful perspective of condens-
ing a symmetry involves starting from the vacuum theory and proliferating in space
(or perhaps in some subspace) a network of operators for that symmetry which fill
out a new phase [5, 46]. Since this procedure is fully topological, one can imagine
running this procedure backward and constructing a topological boundary between
some phase and the vacuum. If one can go back and forth with no obstruction, then
the symmetry is non-anomalous.

The purpose of this article is to generalize the notion of an anomaly for a sym-
metry, to an anomaly for a noninvertible symmetry. We will focus on noninvertible
surface operators, for which the natural mathematical setting is a 2-category. For other
applications of 2-categories in the physics literature, we refer the reader to [2–4, 44].
In general, the 2-category C can have more structure such as a braiding, where the
braiding takes place along the morphisms of C, or a syllepsis, and we will consider
both cases. If one is in a setting were the surfaces are fully symmetric, we will show
that a higher analogue of Deligne’s theorem in [16] holds. More precisely, it was first
announced in [35] that for any symmetric fusion 2-category S, there exists a fiber
2-functor Fib : S → 2SVec to the 2-category of super-2-vector spaces. In this sense,
in the fully symmetric case, there is no obstruction to condensing all the operators,
if we allow for emergent fermions. In this work, we will consider both the cases of
condensing to 2Vec, the 2-category of 2-vector spaces, and to 2SVec, where the latter
involves working fermionically by condensing a fermionic algebra. This is the non-
invertible analogue of being able to gauge a symmetry. In this article, we are mainly
concerned with theories that have surface operators belonging to a fusion 2-category
C that can at least braid with each other, but are not fully symmetric. Since C is not
fully symmetric, there is no universal target that all the operators can condense to. We
instead consider a related question which involves finding a subcategory of surface
operators that enjoy more levels of monoidality than the general surface operators
in the ambient category. One such example is given by the extra data of the afore-
mentioned syllepsis, which can be thought of as anomaly cancellation data associated
with the braiding.1 It is then a meaningful question to ask what happens to the ambi-
ent category upon condensing the subcategory. While working in a 2-category, if it so
happens that there exists a procedure to go to the vacuum theory, then there will be
no anomalies for any noninvertible symmetry, as all of them will have been “gauged."
This idea will be useful in theories of gravity where it is expected that, not only there

1 The additional level of monoidality means that the surface can secretly ascend to a higher dimension. For
example, surfaces can braid in four total dimensions, but the data of being sylleptic mean that some set of
surfaces can lift to five dimensions.

123



Gauging noninvertible defects: a 2-categorical perspective Page 3 of 42 36

are no global symmetries, but also no noninvertible symmetries. For more on global
symmetries arising in gravitational settings, see [1, 20, 21, 31, 49].

Building on the work of the first author [13, 14], the main results of this article are
proven in Sect. 3. More precisely, we present the result of condensing noninvertible
surfaces in an ambient 2-category, with subsequent corollaries involving changing the
properties of the condensation monad, also called separable algebra.

Theorem A ForB a braided multifusion 2-category, condensing a braided separable
algebra B inB results in a multifusion 2-category.

Theorem B For S a sylleptic multifusion 2-category, condensing a symmetric sepa-
rable algebra B inS results in a braided multifusion 2-category.

Theorem C ForS a sylleptic multifusion 2-category, condensing a symmetric separa-
ble algebra B in the symmetric center ofS results in a sylleptic multifusion 2-category.
Further, if S is symmetric, then condensing B yields a symmetric multifusion 2-
category.

The auxiliary results of this article build off the main theorems by exploring partic-
ularly nice cases where the resulting category after condensation is “grouplike,” in
addition to being braided, or sylleptic. We call these categories strongly fusion, and
the operator content is essentially captured by the surfaces [33]. The reader interested
in applications of the main theorems can go to Sect. 4 for explicit examples of conden-
sations within 2-categories, which in the right setting yield strongly fusion categories.
In particular, we show that every symmetric fusion 2-category can be condensed to
a symmetric strongly fusion 2-category. For theories described by strongly fusion 2-
categories, the obstruction to condensing to the vacuum is given by a cohomology
class, which we compute when the 2-category is braided. In addition, we show that
the obstruction to condense a symmetric strongly fusion 2-category to the 2-category
of super-2-vector spaces vanishes, thereby establishing the following result:

Theorem D Every symmetric fusion 2-category admits a fiber 2-functor to 2SVec.

The above theorem categorifies [16].
We now outline the contents of this article: In Sect. 2, we explain the graphical

calculus used for braided, sylleptic, and symmetric monoidal 2-categories. We also
discuss algebras and the relationship between modules and condensation. In Sect. 3,
we prove the main theorems about braided or sylleptic monoidal 2-category and the
result of condensing separable algebras that are, respectively, braided or symmetric.
We examine specific examples of condensing separable algebras in connected and
disconnected 2-categories that are interesting for physical applications in Sect. 4; we
find that in some cases, the 2-category becomes strongly fusion. In Sect. 5, we per-
form cohomology computations for theories described by the braided and symmetric
strongly fusion 2-categories and report on the obstruction to condensing the theory to
the vacuum.
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2 Preliminaries on 2-Categories

2.1 Graphical Calculus

We begin by setting up the fundamental definitions and explaining the computational
language of string diagrams. We work within a monoidal 2-category C with monoidal
unit I and monoidal product � in the sense of Definition 2.3 of Schommer-Pries
[47]. Thanks to the coherence theorem of Gurski [28], we may assume without loss
of generality that C is strict cubical (in the sense that it satisfies the conditions of
Definition 2.26 of Schommer-Pries [47]). In this setting, we use the graphical calculus
of Garner and Schulman [26], as described in [13] (see also [11]). In particular, we
will often omit the monoidal product � from our notation. In addition, identity 1-
morphisms are denoted using the symbol 1. Further, the interchanger is depicted using
by the string diagram below on the left, and its inverse by that on the right:

, .

The lines represent 1-morphisms, and their composition is read from top to bottom.
The string diagrams are then read from left to right, and the coupons represent 2-
morphisms. The regions between the lines represent objects of the 2-category, which
are specified uniquely by the 1-morphisms.

We also need to recall the graphical conventions related to 2-natural transformations
from Garner and Schulman [26]. In the present article, these will exclusively be used
for the braiding, which will be introduced below. Let F,G : A → B be two (weak)
2-functors, and let τ : F ⇒ G be 2-natural transformation. This means that for every
object A in A, we have a 1-morphism τA : F(A) → G(A), and for every 1-morphism
f : A → B in A, we have a 2-isomorphism

F(A) G(A)

F(B) G(B),

F( f )

τA

G( f )

τB

τ f

The collection of these 2-isomorphisms has to satisfy the obvious coherence rela-
tions. In our graphical language, we will depict the 2-isomorphism τ f using the
following diagram on the left, and its inverse using the diagram on the right:

, .

2.1.1 Braided Monoidal 2-Categories

LetB be a braided monoidal 2-category in the sense of Definition 2.3 of Schommer-
Pries [47]. In particular, C is a monoidal 2-category, so that we use I to denote its
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monoidal unit, and � to denote its monoidal product. The coherence theorem of
Gurski [29] allows us to assume that B is a semi-strict braided monoidal 2-category.
In particular, the underlying monoidal 2-category is strict cubical. Further, B comes
equipped with a braiding b, which is an adjoint 2-natural equivalence given on objects
A, B inB by

bA,B : A�B → B�A.

Further, there are two invertible modifications R and S, which are given on the objects
A, B,C of B by

ABC BCA,

BAC

b

b1
R

1b

ABC CAB

ACB

b2

1b
S

b1

where the subscript in b2 records that the braiding occurs between the first two objects
on the left and the next ones. On the other hand, b means that the braiding occurs
between the first object on the left and the next ones. These two modifications are
subject to the following relations:

a. For all objects A, B,C, D inB, we have

= (1)

in HomB(ABCD, BCDA).

b. For all objects A, B,C, D inB, we have

= (2)

in HomB(ABCD, DABC),

c. For all objects A, B,C, D inB, we have

= (3)

in HomB(ABCD,CDAB),
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d. For all objects A, B,C inB, we have

= (4)

in HomB(ABC,CBA),

e. For all objects A inB, the adjoint 2-natural equivalences

bA,I : A�I → I�A and bI ,A : I�A → A�I

are the identity adjoint 2-natural equivalences,
f. For all objects A, B,C inB, the 2-isomorphisms RA,B,C and SA,B,C are equal to

the identity 2-isomorphism whenever either A, B, or C is equal to I .

In each of the HomB above, the first set of objects is given by the top most region
bound by 1-morphism, and the second set of objects is given by the bottom most
region.

2.1.2 Sylleptic and Symmetric Monoidal 2-Categories

Our work will also involve sylleptic monoidal 2-categories (see Definition 2.3 of
Schommer-Pries [47]), and these are braided monoidal 2-categories equipped with
an additional structure called a syllepsis. Without loss of generality, we may assume
that every sylleptic monoidal 2-category S semi-strict. (This follows from a slight
generalization of Gurski and Osorno [30].) This means thatS is a semi-strict braided
monoidal 2-category equipped with an invertible modification σ given on the objects
A, B of S by

AB AB.

BA
b

σ

b

Furthermore, the invertible modification σ satisfies the following relations:

a. For all objects A, B,C of S, we have

= (5)

in HomB(ABC, ABC),
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b. For all objects A, B,C of S, we have

= (6)

in HomB(ABC, ABC),

c. For all objects A, B of S, the 2-isomorphisms σA,B is the identity 2-morphism
whenever either A or B is equal to I .

We give a physical interpretation of syllepsis for surfaces, namely two surfaces existing
in 5d braid by passing one around each other in a 2 parameter family. The surfaces
can exchange the order of which one is on top by going into the fifth dimension and
using the syllepsis.

Finally, wewill also consider symmetricmonoidal 2-categories. Thanks to themain
result ofGurski andOsorno [30], every symmetricmonoidal 2-category is equivalent to
a semi-strict symmetric monoidal 2-category that is to a semi-strict sylleptic monoidal
2-category S as defined above, whose syllepsis satisfies

σB,A ◦ bA,B = bA,B ◦ σA,B, (7)

for every object A, B inS. Physically speaking, if the surface operators have enough
freedom to move around each other, such as in six ambient spacetime dimensions,
then this is automatic.

2.2 Algebras andModules

Let C be a strict cubical monoidal 2-category. We recall the definition of an algebra
in C expressed using our graphical calculus from Décoppet [13]. These objects were
introduced under the name pseudo-monoidal in [8]. The definition of an algebra in an
arbitrary monoidal 2-category using our graphical conventions may be found in [11].

Definition 2.1 An algebra in C consists of:

(1) An object A of C;
(2) Two 1-morphisms m : A�A → A and i : I → A;
(3) Three 2-isomorphisms

A A

AA,
i1

λ
m

AAA AA

AA A,

1m

m1

m

m

μ
AA

A A,

m
ρ

1i

satisfying:
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36 Page 8 of 42 T. D. Décoppet, M. Yu

a.

=

,

(8)

b.

=

.

(9)

Let us now recall the definition of a right A-module in C from [13]. Once again the
definition in a general monoidal 2-category may be found in [11].

Definition 2.2 A right A-module in C consists of:

(1) An object M of C;
(2) A 1-morphism nM : M�A → M ;
(3) Two 2-isomorphisms

MAA MA

MA M,

1m

nM1

nM

nM

νM
MA

M M,

nM

ρM
1i

satisfying:

a.

=

,

(10)

b.

=

.

(11)

The definitions of a right A-module 1-morphism and that of a right A-module 2-
morphism in Cmay be found in [13]. These objects assemble into a 2-category as was
proven in lemma 3.2.10 of [11].
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Lemma 2.3 Let A be an algebra in a monoidal 2-category C. Right A-modules, right
A-module 1-morphisms, and right A-module 2-morphisms form a 2-category, which
we denote by ModC(A).

2.3 Higher Condensations and Separable Algebras

We now briefly review the notions of 2-condensations and 2-condensation monads.
These notions were introduced in [24] as the categorifications of the notions of split
surjection and idempotent.

Definition 2.4 A 2-condensation in a 2-category C consists of two objects A and B,
togetherwith two1-morphisms f : A � B : g, and two2-morphismsφ : f ◦g ⇒ I dB
and γ : I dB ⇒ f ◦ g, such that φ · γ = I dIdB .

The data of 2-condensation as in the above definition induce a 2-condensation monad
on the object A.

Definition 2.5 A2-condensationmonad inC is an object A togetherwith a 1-morphism
e : A → A and 2-morphismsμ : e◦e → e and δ : e → e◦e, such thatμ is associative,
δ is coassociative, the Frobenius relations holds, and μ · δ = I de.

We say that a 2-condensation monad can be split, if it can be extended to a 2-
condensation. There is also a categorification of the concept of idempotent complete
1-category. Before we review this definition, let us recall that a 2-category C is locally
idempotent complete if for all objects A, B ∈ C, the 1-category homC(A, B) is idem-
potent complete.

Definition 2.6 We say that a 2-category is Karoubi complete if it is locally idempotent
complete, and every 2-condensation monad can be split.

Physically, this means that any surface that arises as a condensation defect, i.e., a
network of lower dimensional objects, is included in the 2-category.

The 2-category C is locally finite semisimple if homC(A, B) is a finite semisimple
C-linear 1-category (i.e., an abelian C-linear 1-category with finitely many isomor-
phism classes of simple object and in which every object decomposes as a finite
direct sum of simple objects). We say that an object A of C is simple if the identity
1-morphism I dA is a simple object of the 1-category EndC(A).

Definition 2.7 A finite semisimple 2-category is a locally finite semisimple 2-category
that has adjoints for 1-morphisms, is Karoubi complete, has direct sums for objects,
and has finitely many equivalence classes of objects.

Finite semisimple 2-categorieswere introduced in [17].We have recalled an equivalent
version of their definition (see theorem 3.1.7 [24]). Through proposition 1.4.5 of [17],
any object in a finite semisimple 2-category is the direct sum of finitely many simple
objects, i.e., surfaces.

Let us recall the following definition from [15]. Thanks to Sect. 2.2 of [15], this is
equivalent to the original definition given in [17].
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Definition 2.8 A multifusion 2-category is a finite semisimple rigid monoidal 2-
category. A fusion 2-category is a multifusion 2-category whose monoidal unit is
a simple object.

Further, in a finite semisimple 2-category, two simple objects that have a nonzero
1-morphism between them are organized into the same component of C, denoted by
π0(C), due to the categorical Schur’s lemma (see Proposition 1.2.19 of Douglas and
Reutter [17]). In other words, π0(C) only remembers objects up to condensation. We
review the following definition from [33], due to its prevalence in Sect. 4:

Definition 2.9 A multifusion 2-category C is bosonic strongly fusion if the braided
fusion 1-category�C = EndC(1C) is equivalent toVec. It is fermionic strongly fusion
if �C � SVec.

In such a 2-category C, the main result of [33] shows that π0(C) has grouplike fusion
rules.

Definition 2.5 has been categorified further in [24] where the authors define an
n-condensation monad for any n. Examples of 3-condensation monads are given by
separable algebras in a monoidal 2-category as defined below. It is also convenient to
introduce the notion of a rigid algebra, which can be traced back to Gaitsgory [25].
Rigid algebras are a weakening of separable algebras and were first considered in the
setting of fusion 2-categories in [32]. We also point out that both of these definitions
are thoroughly unpacked in Sect. 2.1 of Décoppet [13].

Definition 2.10 An algebra A in a monoidal 2-category C is called rigid if the multipli-
cation map m : A�A → A has a right adjoint m∗ as an A-A-bimodule 1-morphism.
A rigid algebra A in C is called separable if the counit εm : m ◦m∗ ⇒ I dA witnessing
that m∗ is right adjoint to m as an A-A-bimodule 1-morphism has a section as an
A-A-bimodule 2-morphism.

We will see the separability property appear in the theorems in Sect. 3. In fact,
these results hold more generally for any 3-condensation monad. For later use, we
also record the following result, which is given by combining together Proposition
3.1.2 of Décoppet [13] and Corollary 2.2.3 of Décoppet [10].

Proposition 2.11 Let A be a separable algebra in a fusion 2-category C. Then, the
2-category ModC(A) is a finite semisimple 2-category.

The physical picture for condensing surfaces in a 2-category involves finding some
gapped boundary of the initial 2-category C, and then possibly triggering another
condensation in order to map to 2SVec, see Fig. 1. This bulk boundary point of view
has been given the name of a “quiche,” in [22]. The tensor unit of the boundary can
be identified with a separable algebra A in C, and we denote it as ModC(A), the 2-
category of A-modules in C. From this point of view, condensation along a specific
direction of spacetime builds modules which usually causes the resulting 2-category
to lose a level of monoidality, this is reflected in Theorems A and B. Theorem C,
however, maintains the sylleptic property due to the extra condition of being in the
symmetric center. For a description of condensation in 1-categories where modules
are explicitly built, see [42, 51].
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Fig. 1 This gives a three dimensional view of condensing the algebra A, taking place in a 2-category C.
The resulting boundary is the category ModC(A), and 2SVec represents the “fermionic vacuum”

2.4 Relative Tensor Product

Wenow recall the definition of the relative tensor product over an algebra in amonoidal
2-category given in Sect. 3 of [14]. These definitions will be important for the proofs
of the main theorems in Sects. 3.2 and 3.3. We also give sufficient criterion for the
2-category of bimodules over an algebra to carry a monoidal structure.

Let us now fix an algebra A in a fusion 2-category C, together with M a right A-
module in C, and N a left A-module in C (for which we use the notations of Appendix
A ofDécoppet [13]).We begin by defining A-balanced 1-morphisms and 2-morphisms
out of the pair (M, N ).

Definition 2.12 Let C be an object of C. An A-balanced 1-morphism (M, N ) → C
consists of:

(1) A 1-morphism f : M�N → C in C;
(2) A 2-isomorphism

MAN MN

MN C,

1l N

nM1

f

f

τ f

satisfying:

a.

=

,

(12)
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b.

=

.

(13)

Definition 2.13 Let C be an object of C, and f , g : (M, N ) → C be two A-balanced
1-morphisms. An A-balanced 2-morphism f ⇒ g is a 2-morphism γ : f ⇒ g in C
such that

=
.

(14)

Definition 2.14 The relative tensor product of M and N over A, if it exists, is an
objectM�AN ofC together with an A-balanced 1-morphism tA : (M, N ) → M�AN
satisfying the following 2-universal property:

(1) For every A-balanced 1-morphism f : (M, N ) → C , there exists a 1-morphism
˜f : M�AN → C in C and an A-balanced 2-isomorphism ξ : ˜f ◦ tA ∼= f .

(2) For any 1-morphisms g, h : M�AN → C in C, and any A-balanced 2-morphism
γ : g ◦ tA ⇒ h ◦ tA, there exists a unique 2-morphism ζ : g ⇒ h such that
ζ ◦ tA = γ .

The following result was established in theorem 3.1.6 of [14].

Theorem 2.15 Let A be a separable algebra in a Karoubi complete monoidal 2-
category C. Then, the relative tensor product of any right A-module M and any left
A-module N exists.

Using this result, it was shown in theorem 3.2.8 of [14] that the relative tensor
product over A endows the 2-category BimodC(A) of A-A-bimodules in the Karoubi
complete 2-category C with a weak monoidal structure. In particular, all the relevant
structures were exhibited using the 2-universal property of the relative tensor product
over multiple separable algebras.

3 Braided and symmetric algebras

3.1 Definitions

LetB be a semi-strict braidedmonoidal 2-category. The definition of a braided algebra
in a braided monoidal 2-category, also called braided pseudo-monoid, can be traced
back to [8]. Below we review this definition using the graphical calculus that we have
previously introduced. We refer the reader to [43] for a version of this definition, resp.
the next one, in a completely general braided, resp. sylleptic, monoidal 2-category.
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Definition 3.1 A braided algebra in B consists of:

(1) An algebra (B,m, i, λ, μ, ρ) inB;
(2) A 2-isomorphisms

AA

AA A,

m
β

b

m

satisfying:

a.

=

,
(15)

b.

=

.
(16)

c.

=
.

(17)

LetS be a semi-strict sylleptic monoidal 2-category. The definition of a symmetric
algebra in S, also called symmetric pseudo-monoid, first appeared in [8]. We review
this definition using our graphical calculus.
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Definition 3.2 A symmetric algebra in S is a braided algebra (B,m, i, λ, μ, ρ, β)

such that

= I dm . (18)

Example Braided algebras in the symmetric fusion2-category2Vec are exactly braided
monoidal finite semisimple 1-categories. Symmetric algebras in the symmetric fusion
2-category 2Vec are exactly symmetric monoidal finite semisimple 1-categories.

3.2 The 2-category of modules over a braided algebra

As before, we take B to be a semi-strict braided monoidal 2-category. Furthermore,
we will assume throughout that B is a Karoubi complete 2-category.

Lemma 3.3 Let B a braided algebra inB. There is a 2-functor

Ind+ : ModB(B) → BimodB(B),

which is fully faithful on 2-morphisms.

Proof Let M be a right B-module. The underlying right B-module of I nd+(B) is
given by B. In the notations of [13], the left B-module structure on I nd+(B) is given
by the 1-morphism

lM : B�M
b−→ M�B

nM−→ M

together with the 2-isomorphisms

λM :=

,

κM :=

.

Further, the compatibility between the left and the right actions is given by the 2-
isomorphism
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βM :=

.

Given a right B-module 1-morphism f : M → N , the underlying right B-module
1-morphismof the B-B-module 1-morphism I nd+( f ) is f . Its left B-module structure
is given by

χ f :=

.

Given a right B-module 2-morphism γ : f ⇒ g, it is easy to check that γ is a B-
B-bimodule 2-morphism I nd+( f ) ⇒ I nd+(g), so that we can set I nd+(γ ) = γ .
It follows readily from the definitions that I nd+ defines a strict 2-functor. Moreover,
note that I nd+ is fully faithful on 2-morphisms by construction. 	

Remark When constructing the 2-functor I nd+, we have used the braiding b of B.
Instead, we could have used its adjoint equivalence b•, and so doing obtained a 2-
functor I nd− : ModB(B) → BimodB(B).

Proposition 3.4 Let B a braided separable algebra in B. Then, ModB(B) is a
monoidal 2-category with monoidal unit B.

Proof Thanks to Lemma 3.3, we can view ModB(B) as a sub-2-category of
BimodB(B). For convenience, we will assume that this sub-2-category is replete.
Now, as was recalled in Sect. 2.4, the monoidal structure of BimodB(B) is given
by the relative tensor product �B , which is defined using the 2-universal property
reviewed in Definition 2.14.

Given M and N two right B-modules, we want to show that the B-B-bimodule
M�BN is actually an object of the sub-2-categoryModB(B). In order to prove this,
we need to unfold the definition of the left B-module structure on M�BN . Let us
write t : M�N → M�BN , together with τ t : t ◦ (M�l N ) ∼= t ◦ (nM�N ), for the
2-universal B-balanced 1-morphism as in Definition 2.14. Furthermore, note that for
any C in B, C�t equipped with C�τ t is a 2-universal B-balanced 1-morphism. By
remark 3.2.3 of [14], the 1-morphism lM�B N : B�(M�BN ) → M�BN is induced
by the 2-universal property of B�t applied to the solid arrow diagram

B�M�N B�(M�BN )

M�N M�BN ,

(nM◦b)1

1t

lM�B N

t

υl
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where the left bottom composite 1-morphism is equippedwith the obvious B-balanced
structure. The 1-morphism nN�BM : (M�BN )�B → M�BN is defined similarly.
But, the 2-isomorphism

(t ◦ 1nN ◦ R−1) · (τ t
−1 ◦ b1) : t ◦ (nM�N ) ◦ (b�N ) ∼= t ◦ (M�nN ) ◦ b

is B-balanced. Thanks to the 2-universal property of the relative tensor product, this
means that there exists a 2-isomorphism θ : lM�B N ∼= nM�B N ◦ b. Furthermore,
it also follows from the 2-universal property that θ promotes the identity right B-
module 1-morphism on M�BN to a B-B-bimodule 1-equivalence from M�BN to
I nd+(M�BN ). This proves that the objects of ModB(B) are closed under �B . A
similar argument shows that the 1-morphisms of ModB(B) are closed under �B ,
which concludes the proof. 	

Remark We emphasize that ModB(B) is not a braided 2-category in general, as can
be seen from Example 3.2. Further, we also note that our proof of Proposition 3.4
only used the existence of the relative tensor product over B for any B-B-bimodules
in B. We refer the reader to Remark 3.2.11 of Décoppet [14] for a more thorough
discussion. An analogous comment can be made with regard to Lemmas 3.3 and 3.5.

In order to prove our next theorem, we need the following technical lemma.

Lemma 3.5 The 2-functor F : B → ModB(B) given by sending the object C in B
to C�B with its canonical right B-module structure is monoidal.

Proof Let C and D be two objects of B. Firstly, note that C�D�B satisfies the
2-universal property of (C�B)�B(D�B) in BimodB(B). More precisely, the B-B-
bimodule 1-morphism

uC,D : C�B�D�B
1b1−−→ C�D�B�B

11m−−→ C�D�B

admits a canonical B-balanced structure given by

τ uC,D :=

and satisfies the conditions of Definition 2.14. In particular, this yields B-B-bimodule
1-equivalences eC,D : (C�B)�B(D�B) � (C�D)�B for every C and D in B
together with a B-balanced B-B-bimodule 2-ismorphism ζC,D as in the following
diagram:

123



Gauging noninvertible defects: a 2-categorical perspective Page 17 of 42 36

C�B�D�B C�D�B

(C�B)�B(D�B).

uC,D

tCB,DB
ζC,D eC,D

Secondly, observe that for any two 1-morphisms f : C → E and g : D → F in
B, the B-B-bimodule 2-isomorphism

υ f ,g :=

is B-balanced. Thus, thanks to the 2-universal property of the relative tensor product,
we can use the 2-isomorphisms υ f ,g to promote the collection of the B-B-bimodule
1-equivalences eC,D for varying C and D to a 2-natural equivalence e.

Using the 2-universal property of the relative tensor product repeatedly (together
with the variants over multiple algebras considered in Sect. 3.2 of Décoppet [14]),
one constructs the remaining data necessary to endow F with a monoidal structure,
and prove that they satisfy the relevant axioms fromDefinition 2.5 of Schommer-Pries
[47]. 	

Theorem 3.6 Let B be a braided multifusion 2-category, and B a braided separable
algebra in B. Then, ModB(B) is a multifusion 2-category.

Proof The 2-categoryModB(B) is finite semisimple thanks to Proposition 2.11. Fur-
ther, we have shown in Proposition 3.4 that it admits a monoidal structure. It therefore
only remains to prove that it has duals. But, as B is a multifusion 2-category, it has
right and left duals. In particular, every object in the image of F : B → ModB(B)

has a right and a left dual. But, it was shown in Lemma 3.1.1 of [13] that every right
B-module M is the splitting of a 2-condensation monad (inModB(B)) supported on
M�B = F(M). Thence, it follows from Lemma 5.5 of [9] that M has a right and a
left dual and thereby concludes the proof. 	


Following Sect. 5.2 ofDécoppet [14], we say that a separable algebra B is connected
if its unit 1-morphism i : I → B is simple. Under the equivalence

HomB(B, B) � HomB(I , B)

of Lemma 3.2.13 of Décoppet [11], we have I dB �→ i . Thus, B is a simple right
B-module if and only if B is a connected algebra. Combined with the above theorem,
this yields the following corollary.
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Corollary 3.7 LetB be a braided multifusion 2-category, and B a connected braided
separable algebra inB. Then, ModB(B) is a fusion 2-category.

Example Let B be a braided multifusion 1-category, that is a braided separable alge-
bra in 2Vec. Then, Mod2Vec(B) = Mod(B) is the multifusion 2-category of finite
semisimple right B-module 1-categories with monoidal structure given by �B the
relative Deligne tensor over B. The braided separable algebra B is braided if and only
if B is a fusion 1-category, in which case Mod(B) is a fusion 2-category. Finally, we
note that it follows from a slight variant of proposition 2.4.7 of [15] that Mod(B) is
braided if and only if B is symmetric.

3.3 The 2-Category of Modules over a Symmetric Algebra

In this section, we give sufficient conditions for the 2-category of modules over a
braided algebra to be itself braided. We also explain when the 2-category of modules
is sylleptic or symmetric.

Theorem 3.8 Let S be a Karoubi complete sylleptic monoidal 2-category and B a
symmetric separable algebra inS. Then,ModS(B) is a braidedmonoidal 2-category.

Proof Without loss of generality, we may assume that S is semi-strict. Our first task
is to endow the monoidal 2-category ModS(B) with a braiding˜b. To this end, let M
and N be two right B-modules, and write

tM,N : M�N → M�BN and tN ,M : N�M → N�BM

for the 2-universal B-balanced right B-module 1-morphisms with structure 2-
isomorphisms τ t . We claim that the 1-morphism tN ,M ◦ bM,N : M�N → N�BM
in S can be upgraded to a B-balanced right B-module 1-morphism. Namely, the
B-balanced structure is given by the 2-isomorphism

τ t◦b :=

.

In order to check that τ t◦b satisfies axiom a of Definition 2.14, we use the diagrams
depicted in Appendix A.1. Figure2 depicts the right-hand side of Eq. (12). By moving
the indicated coupons to the top along the blue arrows, we arrive at Fig. 3. Then,
using Eq. (12) for τ t on the blue coupons brings us to Fig. 4. At this point, we use the
definition of κM given in the proof of Lemma 3.3 on the blue coupon, which leads
us to contemplate Fig. 5. Moving the coupon labeled 11β−1 to the left along the blue
arrow, and then using Eq. (4) on the green coupons brings us to Fig. 6. We arrive
at Fig. 7 by moving the blue coupons to the left along the blue arrows. Moving the
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coupon labeled 1R−1 to the right along the blue arrow and then applying Eq. (6) on
the green coupons bring us to Fig. 8. By moving the coupon labeled 1S to the right
along the blue arrow and then making use of Eq. (5) on the green coupons bring us to
Fig. 9. Using Eq. (3) on the blue coupons, we arrive at Fig. 10. We obtain Fig. 11 by
applying Eq. (1) on the blue coupons, using Eq. (2) on the green coupons, and moving
the coupon labeled 1β−11 to the right along the red arrow. Then, using Eq. (4) on the
blue coupons and Eq. (18) on the green coupons, we arrive at Fig. 12. Finally, we get
to Fig. 13, which depicts the left-hand side of Eq. (12), by moving the coupon labeled
R to the right along the blue arrow and the coupon labeled β−111 to the left along the
green arrow. Furthermore, Eq. (13) for τ t◦b follows from Eq. (13) for τ t together with
the fact that R, S, σ are modifications, combined with axiom f of Definition 2.1.1 and
axiom c of Definition 2.1.2.

Moreover, the right B-module structure on tN ,M ◦ bM,N is given by the 2-
isomorphism

ψ t◦b :=

.

Thus, by the 2-universal property of tM,N , the solid arrow diagram below can be filled
by a B-balanced right B-module 2-isomorphism ξM,N :

M�N M�BN

N�M N�BM .

bM,N

tM,N

˜bM,N

tN ,M

ξM,N

Furthermore, as bM,N is a 1-equivalence, the 2-universal property implies that the
1-morphism˜bM,N is also an equivalence. Using the 2-universal property of the relative
tensor product over B again, we find that the collection of the 1-equivalences ˜bM,N

assembles to form a 2-natural equivalence ˜b. We upgrade ˜b to an adjoint 2-natural
equivalence by appealing to the 2-universal property.

We also have to construct invertiblemodifications ˜R and˜Switnessing the coherence
of the braiding˜b on ModS(B). As the monoidal structure on ModS(B) is not strict
cubical, we need to use the fullyweak definition of thesemodifications given in Fig. 2.3
of Schommer-Pries [47]. Let M , N , and P be three right B-modules, in order to
construct the right B-module 2-isomorphism ˜RM,N ,P we use the 2-universal property
of the relative tensor product over two algebras following Definition 3.2.6 of Décoppet
[14]. More precisely, let us consider the 3-dimensional commutative diagram whose
back and front are depicted below:
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N�M�P N�M�P

M�N�P N�P�M

(N�BM)�B P N�B(M�B P)

(M�BN )�B P N�B(P�BM),

M�B(N�B P) (N�B P)�BM

1bb1

α

∃!˜R
1˜b˜b1

α

˜b

α

N�M�P N�M�P

M�N�P N�P�M

M�N�P N�P�M

(M�BN )�B P N�B(P�BM).

M�B(N�B P) (N�B P)�BM

R

1bb1

b

α

˜b

α

All the vertical 1-morphisms are 2-universal (B, B)-balanced right B-module 1-
morphisms, and all the square faces are filled by (B, B)-balanced right B-module
2-isomorphisms thanks to either the proof of Lemma 3.2.7 of Décoppet [14] or the
construction of ˜b given above. Thus, thanks to the 2-universal property of the rel-
ative tensor product, there exists a unique right B-module 2-isomorphism ˜R such
that the whole 3-dimensional prism is commutative. Furthermore, the collection of
these assignments assemble into an invertible modification as can been seen using the
2-universal property of the relative tensor product over two algebras. The invertible
modification ˜S is constructed similarly.

Finally, one has to check that ˜R and ˜S together with the modifications supplied by
the monoidal structure ofModS(B) satisfy the equations given in figures C.7 through
C.14 of Schommer-Pries [47] hold. This follows from the 2-universal property of the
relative tensor product over three and four algebras explained in the Proof of Theorem
3.2.8 of Décoppet [14]. 	


Proposition 3.9 LetS be a Karoubi complete sylleptic monoidal 2-category, and B a
symmetric separable algebra inS. Then, themonoidal 2-functor F : S → ModS(B)

of Lemma 3.5 is braided.

Proof Let C and D be any objects of S. Using the notations of Lemma 3.5 and
Theorem 3.8, we can consider the following diagram:
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CBDB (CB)�B(DB) CDB

DBCB (DB)�B(CB) DCB.

ζ

b2

t

u

˜b

e

b1

t

u

ξ

e
ζ−1

∃!ε (19)

Further, the outer square can be filled using the B-balanced right B-module 2-
isomorphism ς given by:

ς :=

.

Thus, thanks to the 2-universal property of the relative tensor product over B, the
right-hand side square of the commutative diagram (19) can be filled by a right B-
module 2-isomorphism ε such that its full composite is equal to ς . Further, it follows
from the same 2-universal property that the collection of these 2-isomorphism defines
an invertible modification. Finally, one checks that the axioms of Definition 2.5 of
Schommer-Pries [47] hold for ε using the 2-universal property of the relative tensor
product over one and two algebras. 	


Note that ModS(B) is not sylleptic in general. Nonetheless, under favorable cir-
cumstances, this is in fact the case. We begin by recalling the following definition
from Sect. 5.3 of Crans [7].

Definition 3.10 Let S be a sylleptic fusion 2-category. The symmetric center of S,
denoted by Z(3)(S), is the full sub-2-category of S on those objects C such that

σD,C ◦ bC,D = bC,D ◦ σC,D

for every D in S.

Remark It follows immediately from the definitions that Z(3)(S) is a (semi-strict)
symmetric monoidal 2-category (see also Theorem 5.2 of Crans [7]).

Proposition 3.11 LetS be a Karoubi complete sylleptic monoidal 2-category, and B
a symmetric separable algebra in Z(3)(S). Then, ModS(B) is a sylleptic monoidal
2-category.
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Proof Without loss of generality, wemay assume thatS is semi-strict.We have already
endowed the 2-categoryModS(B)with a braidedmonoidal structure.Moreover, using
the notation of the proof of Theorem 3.8, for every right B-modules M and N in S,
we can consider the following right B-module 2-isomorphism

M�N M�BN

N�M N�BM

M�N M�BN .

b

t

˜b

σ

b

t

ξ

˜b

t

ξ

The above right B-module 2-isomorphism is B-balanced. In order to see this, we
use the diagrams depicted in Appendix A.2. Figure14 depicts the left-hand side of
Eq. (14) of Definition 2.13 for the above 2-isomorphism. Applying Eq. (14) for ξ on
the blue coupons brings us to Fig. 15. By inserting the definition of τ t◦b given in the
proof of Theorem 3.8, we arrive at Fig. 16. Then, using Eq. (14) for ξ on the blue
coupons leads us to Fig. 17. Inserting the definition of τ t◦b once again, we get to
Fig. 18. In order to get to Fig. 19, we first use the equation given in Definition 3.10 on
the blue coupons and the strand immediately on top of it and then move the left most
coupon labeled σ along the green arrow. Then, applying Eq. (5) on the blue coupons
brings to Fig. 20. Using Eq. (6) on the blue coupons, followed by moving the freshly
created coupon labeled σ down along the green arrow, and cancelling the pair of red
coupons brings us to Fig. 21. But, Fig. 21 depicts the right-hand side of Eq. (14), so
the proof of the claim is finished.

Then, thanks to the 2-universal property of the relative tensor product, this yields a
2-isomorphism σ̃M,N as in the diagram below

M�BN M�BN .

N�BM
˜b

σ̃

˜b

Further, it follows from the 2-universal property of the relative tensor product
that the collection of the 2-isomorphisms σ̃M,N for varying M and N defines an
invertible modification. Finally, one has to check that σ̃ defines a syllepsis on the
braided monoidal 2-category ModS(B), i.e., that the equations given in Figs. C.15
and C.16 of Schommer-Pries [47] hold. This follows from the 2-universal property of
the relative tensor product over one and two algebras explained in Sect. 3 of Décoppet
[14]. 	


We now consider the case when S is symmetric monoidal.
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Corollary 3.12 Let S be a Karoubi complete symmetric monoidal 2-category and B
a symmetric separable algebra in S. Then, ModS(B) is a symmetric monoidal 2-
category.

Proof IfS is symmetric, then Z(3)(S) = S, which implies thatModS(B) is syllep-
tic. Further, it follows from the definition of the syllepsis that ModS(B) is in fact
symmetric if S is symmetric. 	

Lemma 3.13 Let S be a Karoubi complete sylleptic monoidal 2-category and B a
symmetric separable algebra in Z(3)(S). Then, the braided monoidal functor F :
S → ModS(B) of Proposition 3.5 is sylleptic. In particular, if S is symmetric, then
F is symmetric.

Proof The first part follows from the construction and the 2-universal property of the
relative tensor product over B. The last part is immediate as a symmetric monoidal
2-functor is nothing but a sylleptic monoidal 2-functor between symmetric monoidal
2-categories (see Definition 2.5 of Schommer-Pries [47]). 	

Remark Analogously to what was noted in remark 3.2, the proofs of all the above
results in this section only used the existence of the relative tensor product over B for
any B-modules in S.

Finally, ifS is a sylleptic multifusion 2-category, Proposition 3.11 can be strength-
ened. We begin by the following lemma.

Lemma 3.14 Let S be a sylleptic fusion 2-category. Then, its symmetric center
Z(3)(S) is generated under direct sums by the union of some of the connected com-
ponents of S. In particular, it is a symmetric fusion 2-category, and it contains the
connected components of the identity of S.

Proof Observe that, by definition,Z(3)(S) is a full sub-2-category ofS. Further, note
thatZ(3)(S) is closed under taking direct sums. Now, let S be an object ofZ(3)(S).We
wish to prove that if T is a simple object ofS given by the splitting of a 2-condensation
monad on S, then T is in Z(3)(S). Given an arbitrary object C in S, it follows from
the 2-universal property of the splitting of a 2-condensation monad that the syllepsis
σT ,C and σC,T are completely determined by σS,C and σC,S . But, by hypothesis, we
have σC,S ◦ bS,C = bS,C ◦ σC,S , so that σC,T ◦ bT ,C = bT ,C ◦ σC,T , which proves the
claim. The second part follows from the observation that a connected component of a
finite semisimple 2-category is necessarily a finite semisimple 2-category. 	

Proposition 3.15 LetS be a sylleptic multifusion 2-category and B a symmetric sep-
arable algebra in Z(3)(S). Then, we have

Z(3)(ModS(B)) � ModZ(3)(S)(B).

Proof It follows from the construction that the syllepsis on ModS(B) is con-
structed from the syllepsis on S. In particular, there is a symmetric monoidal
inclusion ModZ(3)(S)(B) ⊆ Z(3)(ModS(B)). On the other hand, the free 2-functor
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F : S → ModS(B) is sylleptic monoidal. In particular, for any object C of
S, F(C) is in Z(3)(ModS(B)) if and only if C is in Z(3)(S). But, every object
of ModS(B) is the splitting of a 2-condensation monad supported on an object
of the form F(C) for some C in S by Lemma 3.1.1 of Décoppet [13]. Further,
Z(3)(ModS(B)) is a union of connected components of ModS(B) by Lemma 3.14,
so that Z(3)(ModS(B)) � ModZ(3)(S)(B) as desired. 	


4 Specific 2-category of modules

In this section, we will examine the 2-categories of right modules associated with
specific algebras. This can be thought of as condensing a 3-condensation monad.
In order to be applicable to physical theories, we will consider the cases when the
ambient 2-category is either totally disconnected or connected. In both cases, we will
work bosonically and fermionically, where the later means that we work with super-2-
categories. A subset of surface operators can be assembled to form a separable algebra
as in the previous section; we may thus apply the theorems above to understand the
effect of the condensation. Throughout, we work over the complex numbers (or any
algebraically closed field of characteristic zero); we use G to denote a finite group,
and E to denote a finite abelian group.

4.1 Totally disconnected 2-category

4.1.1 Bosonic case

Starting with the simplest case, suppose that the fusion 2-category of surface operators
and their interactions is given by 2Vec[G], the 2-category ofG-graded 2-vector spaces.
In particular, the (equivalence classes of) simple objects are given byVecg with g ∈ G.
We can consider the algebra Vec[G] in 2Vec[G] given by �g∈GVecg , the sum of the
equivalence classes of simple objects.

Lemma 4.1 The left 2Vec[G]-module 2-category 2Vec is equivalent to
Mod2Vec[G](Vec[G]), where Vec[G] is the fusion 1-category of G-graded vector
spaces viewed as an algebra in 2Vec[G] with the canonical grading. Further, Vec[G]
is a separable algebra.

Proof It is easy to check directly that Mod2Vec[G](Vec[G]) � 2Vec as left 2Vec[G]-
module 2-categories. Further, one can check directly thatVec[G] is a separable algebra
in 2Vec[G]. Alternatively, this follows from Theorem 3.2.4 and Corollary 3.3.7 of
Décoppet [13]. 	


Before moving on to the general case, we establish the following technical result.
Recall from Décoppet [11] that a left 2Vec[G]-module 2-category is 2-category
equipped with a left action by 2Vec[G]. Note that this is equivalent to the data of
an action of the group G. In particular, given a left 2Vec[G]-module 2-category M,
we can consider the 2-categoryLModM(Vec[G]) of leftVec[G]-modules inM, given
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by gauging the G-action on M. If M is a finite semisimple 2-category, the G-action
permutes the set of connected components of M.

Proposition 4.2 Let M be a finite semisimple left 2Vec[G]-module 2-category. Then,
we have

π0(LModM(Vec[G])) ∼= π0(M)/G.

Proof We claim that it suffices to prove this result for M an indecomposable finite
semisimple left 2Vec[G]-module 2-category. Namely, it follows from lemma 5.2.3 of
[14] that every finite semisimple left 2Vec[G]-module 2-category M can be decom-
posed into a finite direct sum M � �n

i=1Mi of indecomposable ones. From this, it
follows that there is a bijection π0(M) ∼= ∐n

i=1 π0(Mi ) of sets compatible with the
G-actions. This establishes the claim of sufficiency.

Now, note that it follows from the definition that a finite semisimple left 2Vec[G]-
module 2-category is indecomposable if and only if the action of G on π0(M) is
transitive. Thus, it only remains to prove that ifM is an indecomposable finite semisim-
ple left 2Vec[G]-module 2-category, then π0(ModM(Vec[G])) = ∗.

To see this, note that thanks to Theorem 5.1.2 of Décoppet [11], there exists an
algebra A in 2Vec[G] such that M � Mod2Vec[G](A). Furthermore, by Theorem
5.4.7 of Décoppet [11], the algebra A is in fact rigid. But rigid algebras in 2Vec[G]
are precisely G-graded multifusion 1-categories, so that A is an G-graded multifusion
1-category. Moreover, as M is indecomposable, A is indecomposable as a G-graded
multifusion 1-category (see Corollary 5.2.7 of Décoppet [14]).

By inspection, there are equivalences of 2-categories

LModM(Vec[G]) � Bimod2Vec[G](Vec[G], A) � Mod2Vec(A),

where on the right-hand side, we view A as a multifusion 1-category. Thus, by Propo-
sition 2.3.5 of Décoppet [12], it is enough to prove that A is indecomposable as a
multifusion 1-category. (A multifusion 1-category is “connected” in the sense of Defi-
nition 2.3.1 of Décoppet [12] if and only if it is indecomposable.) Finally, observe that
a decomposition of A into a direct sum of two nonzero multifusion 1-categories would
automatically be compatible with the G-grading. This is impossible by construction
so we are done. 	


If G = E is a finite abelian group, then 2Vec[E] is braided fusion 2-category.
Further, the algebra Vec[E] is actually braided. It is therefore sensible to consider the
case when the 2-category of all surfaces is a braided fusion 2-category B, equipped
with a braided monoidal inclusion 2Vec[E] ⊆ B. This allows us to view the separable
algebra Vec[E] in 2Vec[E] as living in B, and we can investigate the properties of
2-category obtained by the condensation ofVec[E] inB. The following result follows
from Theorem 3.6, the above proposition, and Lemma 3.5.

Corollary 4.3 Given B a braided fusion 2-category and 2Vec[E] ⊆ B a braided
monoidal inclusion, the 2-category ModB(Vec[E]) obtained by condensing Vec[E]
is a fusion 2-categorywithπ0(ModB(Vec[E])) ∼= π0(B)/E.Moreover, the canonical
2-functor B → ModB(Vec[E]) is monoidal.
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In particular, the condensation reorganizes the 2-categoryB by identifying the con-
nected components of surfaces which are related by the action of E . This is effectively
gauging the E action on the components. The resulting fusion 2-category is in general
not braided.

Example Consider 2Vec[Z4], with simple objects labeled by {Vec0,Vec1,Vec2,Vec3}
and fusion given by addition mod 4. Suppose we condense the algebra Vec0 � Vec2,
which isVec[Z2], the simplemodules are then given byVec0�Vec2, andVec1�Vec3.
As there is no 1-morphism between them, Mod2Vec[Z4](Vec[Z2]) has two connected
components. On the other hand, one sees that π0(2Vec[Z4])/Z2 has the same two
connected components.

Remark Wegive an example for which the 2-functor in Corollary 4.3 is not necessarily
braided, and takeB = Z(2Vec[Z2]), the Drinfeld center of 2Vec[Z2], equipped with
the canonical inclusion 2Vec[Z2] ⊆ Z(2Rep(Z2)). We can then condense the algebra
Vec[Z2] and get

ModZ(2Vec[Z2])(Vec[Z2]) � 2Rep(Z2).

Further, the monoidal 2-functor Z(2Vec[Z2]) → ModZ(2Rep(Z2))(Vec[Z2]) of
Lemma 3.5 is identified with the monoidal forgetful 2-functor Z(2Rep(Z2)) →
2Rep(Z2), which is not braided.

The next result follows from Proposition 3.11, Lemma 3.13, and Proposition 4.2.

Corollary 4.4 Let S be a sylleptic fusion 2-category, with an inclusion 2Vec[E] ⊆
Z(3)(S), then ModS(Vec[E]) is a sylleptic fusion 2-category such that
π0(ModS(Vec[E])) ∼= π0(S)/E. Furthermore, the canonical monoidal 2-functor
S → ModS(Vec[E]) is sylleptic.

4.1.2 Fermionic case

We mirror the bosonic case and first consider the fusion 2-category 2SVec[G] of G-
graded super-2-vector spaces. In order to condense 2SVec[G] to 2SVec, it is enough
to consider the bosonic algebra Vec[G] given by the canonical monoidal inclusion
2Vec[G] ⊆ 2SVec[G]. By direct inspection, we find that Mod2SVec[G](Vec[G]) �
2SVec.

Let us now comment on the braided case.Namely, ifG = E is a finite abelian group,
then 2SVec[E] is a braided fusion 2-category. We can therefore considerB a braided
fusion 2-category containing 2SVec[E]. But, the inclusion 2Vec[E] ⊆ 2SVec[E] is
braided, so this is exactly in the setup of Corollary 4.3. Similar remarks hold for the
sylleptic and symmetric cases.

4.2 Connected category

Let B be a braided fusion 2-category, then EndB(1), the endomorphisms of the
identity surface, is a symmetric fusion 1-category, so that B0 = Mod(EndB(1)) is
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a symmetric fusion 2-category (see [15]). Here, B0 denotes the identity component
and is a prime candidate for a condensation.

4.2.1 Bosonic case

Suppose that B0 = 2Rep(G), i.e., the surfaces in the identity component of B form
the fusion 2-category 2Rep(G). Here, we think of 2Rep(G) as the 2-category of
finite semisimple 1-categories equipped with a G-action. One such object is given
by Vec[G] with the canonical G-action. In this description, the monoidal product of
two finite semisimple 1-categories C andD equipped with G-actions is given by their
Deligne tensor product C � D equipped with the diagonal G-action. The fusion 2-
category 2Rep(G) is connected, which means that all the surfaces arise as networks
of lines. We write ϕ for the symmetric algebra Fun(G,Vec) in 2Rep(G). We note
that the underlying object of ϕ is Vec[G]. In the setting of fusion 1-categories, this
corresponds to considering the symmetric algebra C[G]∗ inside Rep(G). A module
for ϕ is thus a way for the lines to end at the boundary.

We also point out that there is another model for 2Rep(G), given byMod(Rep(G))

(see Lemma 1.3.8 of Décoppet [14]). In the fermionic case, only this second model
is available. It is therefore necessary to give an alternative description of ϕ in this
model. The symmetric fusion 1-category Vec equipped with the canonical symmetric
monoidal functorRep(G) → Vec defines a symmetric algebra inMod(Rep(G)). This
algebra is separable thanks to Theorem 3.2.4 and Proposition 3.3.3 of Décoppet [13]
and Theorem 2.3 of Etingof et al. [19]. Moreover, under the equivalence of Lemma
1.3.8 of Décoppet [14], the algebra Vec in Mod(Rep(G)) corresponds to the algebra
ϕ in the first model. It follows thatMod2Rep(G)(ϕ) � ModMod(Rep(G))(Vec) � 2Vec.

Proposition 4.5 LetB be a braided fusion 2-category with 2Rep(G) � B0 as braided
fusion 2-categories. Then, condensing the braided separable algebra ϕ in B yields
a strongly fusion 2-category ModB(ϕ) equipped with a monoidal 2-functor B →
ModB(ϕ).

Proof All but the strongly fusion part follow from Theorem 3.6. We claim that
ModB(ϕ)0 = 2Vec, so that ModB(ϕ) is strongly fusion. Note that ϕ is an alge-
bra in 2Rep(G) � B0. By Corollary 2.3.6 of [15], this implies that the underlying
object in B of any simple right ϕ-module is supported in a single connected compo-
nent ofB. This shows thatModB(ϕ)0 � Mod2Rep(G)(ϕ)0 � 2Vec. This finishes the
proof of the claim. 	

Remark In the fusion 2-category 2Rep(G), the algebra ϕ is actually symmetric, but
we cannot view ϕ as a symmetric algebra in B; this requires extra data in the ambi-
ent braided fusion 2-category B. Therefore, ϕ is treated as a braided algebra when
considered inB.

We give a physical explanation as to why condensing in the identity component in
Proposition 4.5 was sufficient to make B strongly fusion: The objects in the identity
component ofB are related to the identity surface by 2-condensations but if the identity
component was condensed to just 2Vec via ϕ, then all the 1-morphisms are trivial, and
hence, the 2-category is strongly fusion.
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Remark Categorifying the main result of Kirillov [41] andMüger [45], we expect that
if B is braided fusion 2-category with 2Rep(G) � B0, then the fusion 2-category
ModB(ϕ) admits a G-crossed braided structure.

LetS be a sylleptic multifusion 2-cateogry. As a consequence of Lemma 3.14, we
find that any inclusion 2Rep(G) ⊆ S of sylleptic fusion 2-categories automatically
includes in the symmetric center of S. Namely, 2Rep(G) is necessarily contained in
the component of the identity ofS. Combining this observation with Proposition 3.11
and Lemma 3.13 yields the following result.

Corollary 4.6 LetS be a sylleptic fusion 2-category. Suppose that there is an inclusion
S � 2Rep(G), thenModS(ϕ) is a sylleptic strongly fusion 2-category. Furthermore,
the canonical monoidal 2-functor S → ModS(ϕ) is sylleptic.

Remark We make a small physical point regarding the above corollary. Consider a
setting in (3+1)d but not limited to considering only topological theories. The surface
operators can be nontrivial even if the line operators have been condensed, as in the
situation of Corollary 4.6. If we are in a purely topological (3+1)d setting, then there
are actually no surface operators either because surfaces detect lines in this dimension.
This means we are just in a situation of bosonic Dijkgraaf–Witten theory.

4.2.2 Fermionic case

We consider the fusion 2-category 2Rep(G, z) := Mod(Rep(G, z)), where z is an
emergent fermion inG, that is a central element of order 2.We are viewing 2Rep(G, z)
as so because there is no fermionic analogue of the model for 2Rep(G) that was used
in Sect. 4.2.1. We define the symmetric separable algebra ϕ := SVec in 2Rep(G, z).
More precisely, ϕ denotes SVec equipped with the canonical forgetful symmetric
monoidal functor Rep(G, z) → SVec. Let us examine the result of condensing ϕ. In
this case, there is no obstruction to condensing to the vacuum.

Lemma 4.7 As left 2Rep(G, z)-module 2-categories, we have 2SVec � Mod2Rep(G,z)

(ϕ), where SVec is viewed as an algebra in 2Rep(G, z) via Rep(G, z) → SVec.

Proof This follows from Example 3.2.5 of Décoppet [11]. 	

Physically, we find that condensing ϕ gives a local fermion. The next proposition

follows using a variant of the proof of Proposition 4.5, with a slight change to ϕ.

Proposition 4.8 LetB be a braided fusion 2-category, and assumeB0 � 2Rep(G, z)
as braided fusion 2-categories. Then, condensing the algebra ϕ = SVec inB yields a
fermionic strongly fusion 2-category ModB(ϕ) equipped with a monoidal 2-functor
B → ModB(ϕ).
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5 Strongly fusion computations

5.1 Braided strongly fusion 2-categories

In the previous section, we have seen examples of strongly fusion 2-categories aris-
ing from condensations. It was shown in [33] that such 2-categories have grouplike
fusion rules. Said differently, a strongly fusion 2-category is a “grouplike” extension of
operators in different dimensions [34, 38]. In particular, their classification essentially
boils down to a cohomology computation problem. We now consider the case where
our fusion 2-category is strongly fusion and only braided. For instance, this is what
happens to a sylleptic fusion 2-category whenwe condense the algebra ϕ in the subcat-
egory B0 = 2Rep(G). Fermionic braided strongly fusion 2-categories are classified
by supercohomology [50], and we expect that the cases we discuss here cover all the
examples of braided strongly fusion2-categories, butwedonot prove this fact.Namely,
in general, one ought to consider supercohomology with twisted coefficients, but we
expect that this is not necessary for braided fermionic strongly fusion 2-categories.
On the other hand, braided bosonic strongly fusion 2-categories with finite abelian
group of surfaces given by E are completely classified by H5(E[2];C×). This holds
because this cohomology theory has no twisted variant.

The classification of the physical theories described by braided strongly fusion
2-categories proceeds by identifying those fusion 2-categories that are related by a
topological boundary. More precisely, fixing a finite abelian group of surfaces E , the
associated physical theories are classified by generalized cohomology. In the fermionic
case, the relevant spectrum of coefficients is SW•(pt), the super–Witt spectrum [36].
Its homotopy groups in low degrees are recalled below in (23). In the bosonic case, the
classification requires twisted equivariant cohomology. We now discuss these compu-
tations in more detail.

5.1.1 Fermionic case

Let B be a braided fermionic strongly fusion 2-category, and write E for the finite
abelian group of connected components. Physically, E is the group of “fundamental”
surfaces in B that do not arise as condensations. Further, such braided fusion 2-
categories can be constructed by deforming the coherence structure of 2SVec[E]
using a class in the supercohomology group SH5(E[2]). Here and in what follows,
E[2] denotes the second Eilenberg–MacLane space of E , and we note that the number
in brackets denotes the codimension associated with the objects with fusion rules
given by the group E . In fact, all braided fermionic strongly fusion 2-categories arise
via this construction, but we do not prove this fact. On the other hand, the (3 + 1)d
theory associated withB has no codimension one operators that do not arise through
a condensation. By remote detectability [36], which says that every object must link
topologically with another object of the appropriate dimension, this is the same as
assuming that there are no nontrivial point operators in the theory. Then, the obstruction
to condensing the theory associated with B to the vacuum is given by a class in
SW•(E[2]). Now, if the group SW•(E[2]) vanishes, the theory associated withB is
automatically Morita equivalent to the vacuum. Our goal is to understand for which
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abelian groups E the cohomology group SW5(E[2]) does not vanish. More precisely,
there is a canonical map SH5(E[2]) → SW•(E[2]), which corresponds to taking the
theory associated with a braided fermionic strongly fusion 2-category. We argue that
the image of this map is non-trivial in general.

Since the fusion 2-category B is strongly fusion, there are no nontrivial lines, but
we still have {1, f } in SVec from the fermionic nature of the 2-category.We denote the
condensation surface arising from f as c which has fusion rule c2 = 1. The content
of the fusion 2-category forms a higher group extension

(C×[4]. Z2
︸︷︷︸

{1, f }
[3]. Z2

︸︷︷︸

{1,c}
[2]).E[2] , (20)

where the component C×[4] means “three form C× symmetry.” Such extensions
are classified by SH5(E[2]), which can be computed with the knowledge that the
supercohomology of a point is built out of three layers:

SH0(pt) = C×, SH1(pt) = Z2, SH2(pt) = Z2, (21)

We note in passing that these groups agree with the first three layers of spin cobordism.
Then, there is a canonical map SH• → SW•. Assuming thatB is classified by a class
in SH5(E[2]), the associated fermionic theory can be condensed to the vacuum exactly
if the image of this class in SW•(E[2]) is trivial. In order to understand for which
groups E this can happen, we use the following Atiyah–Hirzebruch spectral sequence

Hi (E[2]; SW j (pt)) ⇒ SW i+ j (E[2]). (22)

The homotopy groups of SW•(pt) in low degrees are given by

SW0(pt) = C× , SW1(pt) = Z2 , SW2(pt) = Z2 ,

SW3(pt) = 0 , SW4(pt) = SW , SW5(pt) = 0 , SW6(pt) = 0 . (23)

In degree 4, SW gives the Witt group of slightly degenerate braided fusion 1-
categories. If E has no 2-torsion, then we find that SW5(E[2]) = SH5(E[2]) =
H5(E[2];C×). But, it follows from Eilenberg and MacLane [18] that the right most
group is trivial, so that there are non-trivial theories in this case. On the other hand, we
can assume that E is 2-torsion. Then, we see that in total degree 5, there are interest-
ing nonzero contributions to the E2-page of the spectral sequence. We first consider
E = Z2k . The E2 page for (22) is then given by
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Ei j
2 =

j

0 0 0 . . .

0 0 0 . . .

SW SW 0 hom(SW,Z2) . . .

0 0 0 0 0 . . .

Z2 Z2 0 hom(E,Z2) Ext(E,Z2) Quad (E,Z2) . . .

Z2 Z2 0 hom(E,Z2) Ext(E,Z2) Quad (E,Z2) Ext(E, hom(E,Z2))

C× C× 0 ̂E 0 Quad (E,C×) Ext(E, hom(E,C×))

0 1 2 3 4 5 i,

(24)

where Quad denotes the group of quadratic forms. In addition, the d2 differentials are
given by

d2 :Ei,2
2 = Hi (Z2[2] ;Z2) → Ei+2,1

2 = Hi+2(Z2[2] ;Z2) X �→ Sq2 X

d2 :Ei,1
2 = Hi (Z2[2] ;Z2) → Ei+2,0

2 = Hi+2(Z2[2] ;C×) X �→ (−1)Sq
2 X .

(25)

This implies that the E3 page is given by

Ei j
3 =

j

0 0 0 . . .

0 0 0 . . .

SW SW 0 SW2 . . .

0 0 0 0 0 . . .

Z2 Z2 0 0 0 . . .

Z2 Z2 0 0 0 0 . . .

C× C× 0 Z2 0 Z2 0 Z2

0 1 2 3 4 5 6 i .

(26)

Therefore, SW5(Z2k [2]) = 0, so that the theory associated with B with E = Z2k

can be condensed to the vacuum.
If E is a product of groups, we use the fact that for any generalized cohomology

theory h• computed on pointed spaces X and Y , we have

h•(X × Y ) = h•(pt) ⊕˜h•(X) ⊕˜h•(Y ) ⊕˜h•(X ∧ Y ), (27)

where ˜h represents reduced cohomology. We can see that the contribution of
˜SW5

(Z2k [2] ∧ Z2k [2]) to SW5(Z2k [2] × Z2k [2]) is nontrivial by comparing it
with ˜�5

Spin(Z2k [2] ∧ Z2k [2]). Spin cobordism gives the group of maps from the
spin bordism groups into C× and when evaluated on a point gives �•

Spin(pt) =
{C×, Z2, Z2, 0, C×, 0, 0, 0, . . .} in low degrees. We claim that it is sufficient to
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show that ˜�5
Spin(Z2k [2] ∧ Z2k [2]) does not vanish. Namely, the bottom three lay-

ers of �•
Spin(pt) agree with those of SW•(pt), and a fortiori with those of SH•(pt),

as was shown in [24, 36]. Furthermore, these layers are the only ones that we need

to consider in order to compute ˜SW5
(Z2k [2] ∧ Z2k [2]) = SH5(Z2k [2] ∧ Z2k [2]).

Here, it is crucial that we are using reduced cohomology. We have a quick-and-
dirty way to check that ˜�5

Spin(Z2k [2] ∧ Z2k [2]) is nonzero, via the Adams spectral
sequence. There are two classes in degree 5, each giving free A(1)-summands
in H•(B(Z2k [2] × Z2k [2]);Z2), so by Margolis’ theorem, the corresponding two
Z2 summands on the E2-page of the Adams spectral sequence do not admit or receive
any differentials. Thus, ˜�5

Spin(Z2k [2]∧Z2k [2]) is nontrivial. More generally, this also
implies that if E is any group which contains a product of two 2-torsion groups, then

the map SH5(E[2]) → ˜SW5
(E[2]) has nonzero image.

5.1.2 Bosonic case

In order to classify the bosonic theories associated with braided bosonic strongly
fusion 2-categories, it is convenient to work with the associated fermionic theories.
This is analogous to how working with an algebra over the real numbers is equivalent
to working with the complexified algebra together with the Galois action of ZT

2 ,
given by complex conjugation. In this sense, the action of ZT

2 provides the necessary
data to descend a complex algebra into a real one. The categorification of this classical
setup was introduced in [37]. Namely, for symmetric fusion 1-categories, the algebraic
closure of Vec is given by SVec and the Galois higher group Gal(SVec/Vec) is given
by ZF

2 [1]. This higher group agrees with the physical phenomenon of spin statistics,
which says that fermions reverse sign under 360 degree rotation. Then,Galois descent
asserts that the theory associated with a braided bosonic strongly fusion 2-categoryB
is completely described by the ZF

2 [1]-equivariant theory associated withB� 2SVec.
We can study the later using the equivariant Atiyah–Hirzebruch spectral sequence.

In general, the group of surfaces ofB is given by a finite abelian group E . We begin
by showing that W5(pt) does not vanish. That is, we wish to understand the twisted
SW•-cohomology with E2 page given by:

Hi (ZF
2 [2];SW j (pt)) ⇒ SW i+ j (ZF

2 [2]) = W i+ j (pt). (28)

To arrive at the last equality, we use the fact that W• is the fixed point spectrum of
SW• under the action of ZF

2 [1]. The E2 page is then given by:
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Ei j
2 =

j

0 0 0 . . .

SW SW 0 SW2 . . .

0 0 0 0 0 0 0
Z2 Z2 0 Z2 Z2 Z2 Z2

2 Z2
2 . . .

Z2 Z2 0 Z2 Z2 Z2 Z2
2 Z2

2 . . .

C× C× 0 Z2 0 Z4 Z2 Z2 Z2 Z2

0 1 2 3 4 5 6 7 8 i .

(29)

The d2 differentials are the twisted analogue of (35)

d2 :Ei,2
2 = Hi (Z2[2] ;Z2) → Ei+2,1

2 = Hi+2(Z2[2] ;Z2) X �→ Sq2 X + ι2X

d2 :Ei,1
2 = Hi (Z2[2] ;Z2) → Ei+2,0

2 = Hi+2(Z2[2] ;C×) X �→ (−1)Sq
2 X+ι2X ,

(30)

and we find the E3 page is given by

Ei j
3 =

j

0 0 0 . . .

SW SW 0 SW2 . . .

0 0 0 0 0 0 0
Z2 0 0 Z2 0 0 Z2 . . .

Z2 0 0 0 Z2 0 0 . . .

C× C× 0 0 0 Z4 Z2 0 0 0
0 1 2 3 4 5 6 7 8 i .

(31)

The d5 differential from (0, 4) records the obstruction to minimal modular extensions.
It sends a class in SW to 0 if the minimal modular extension exists, and to 1 if it
does not exist [36]. The main result of Johnson-Freyd and Reutter [32] shows that the
possible d5 vanishes. We therefore find that W5(pt) ∼= Z2.

Now, let us consider any finite abelian group E . It follows from (27) that

W5(E[2]) ∼= W5(pt) ⊕˜SW5
(E[2]) ⊕ ˜SW5(ZF

2 [2] ∧ E[2]).

It follows from what we have argued above in the fermionic case that the canonical

map H5(E[2];C×) → ˜SW5
(E[2]) is nonzero for a general finite abelian group E . As

a consequence, the theory associatedwith a braided bosonic strongly fusion 2-category
cannot be condensed to the vacuum in general.

Before moving on the case of symmetric strongly fusion 2-categories, let us briefly
remark that, in Sect. 4, we have also considered examples when the condensation
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yields a sylleptic strongly fusion 2-category. The computations for the theories asso-
ciated with these 2-categories were performed in [38], where the object of study was
topological (4 + 1)d theories.

5.2 Symmetric strongly fusion 2-categories

We now analyze the structure of symmetric strongly fusion 2-categories. More pre-
cisely, we will show below that every symmetric strongly fusion 2-category admits
a fiber 2-functor to 2SVec. In the process, we will also show that every symmet-
ric fermionic strongly fusion 2-category is completely determined by its groups of
connected components. These computations establish the 2-Deligne theorem for sym-
metric fusion 2-categories. Namely, it follows from Corollary 4.6 together with the
obvious fermionic analogue that every symmetric fusion 2-category admits a fiber
2-functor to a strongly fusion 2-category. Putting the above discussion together, we
obtain the following theorem, which is a categorification of Deligne [16].

Theorem 5.1 Every symmetric fusion 2-category admits a fiber 2-functor to 2SVec.

We point out that this result was first announced in [35]. In addition, we expect that the
above theorem can be used to classify symmetric fusion 2-categories. More precisely,
every symmetric fusion 2-category should be equivalent to the symmetric monoidal
2-category of finite semisimple 2-representation of a “super-2-group.”

5.2.1 Fermionic case

LetS be a symmetric fermionic strongly fusion 2-category, and let us denote by E its
abelian group of connected components. We now wish to understand what additional
data besides E , if any, need to be supplied to recover S. We begin by describing S×
the Picard sub-2-category of S, that is the maximal sub-2-category on the invertible
objects and morphisms.

It has been established in [27] that the homotopy theory of symmetric monoidal
2-categories for which all objects and morphisms are invertible is equivalent to that of
spectra with homotopy groups concentrated in degrees 0, 1, and 2. In particular, the
Picard 2-category S× fits into the following fiber sequence of spectra

2SVec× → S× → HE → �2SVec×,

where HE denotes the Eilenberg–MacLane spectrum associated with E . In particu-
lar, S× is completely determined by the map of spectra HE → �2SVec×. Up to
homotopy, such maps are classified by the group SH7(E[4]).

In order to compute the group SH7(E[4]), we invoke the Atiyah–Hirzebruch spec-
tral sequence with the E2-page:

Hi (E[4]; SH j (pt)) �⇒ SHi+ j (E[4]). (32)

We will show that the degree seven supercohomology group SH7(E[4]) vanishes for
any finite abelian group E . Firstly, it follows from Eilenberg and MacLane [18] that
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H7(E[4];C×) = 0 if E has no 2-torsion. In addition, theHurewicz theorem shows that
SH7(E[4]) can only be non-trivial if E has 2-torsion. We start with the case E = Z2k ;
as explained in [48], the cohomologyH•(Z2k [n],Z2) is a polynomial ringZ2[SqI (ιn)]
where the generator ιn ∈ Hn(Z2k [n];Z2) is in degree n, and I = (i1, i2, . . . , im)

runs over all sequences such that i j ≥ 2i j+1 of excess e(I ) < n. This quantity is
defined as e(I ) = i2 − ∑

j≥3 i j and SqI x = Sqi1 Sqi2 . . . Sqim x . If im = 1, then

SqI x = Sqi1 Sqi2 . . . Sqim−1 βk x where βk denotes the k-th power Bockstein for the
short exact sequence

0 → Z2 → Z2k+1 → Z2k → 0. (33)

The E2 page for (32) in terms of the generators then takes the form

Ei j
2 =

j

Z2 Z2 0 0 0 ι4 βk ι4 Sq2 ι4 . . .

Z2 Z2 0 0 0 ι4 βk ι4 Sq2 ι4 (Sq3 ι4, Sq2 βk ι4)

C× C× 0 0 0 (−1)ι4 0 (−1)Sq
2 ι4 (−1)Sq

2 βk ι4

0 1 2 3 4 5 6 7 8 i .

(34)

The d2 differentials are given by:

d2 :Ei,2
2 = Hi (Z2k [4] ;Z2) → Ei+2,1

2 = Hi+2(Z2k [4] ;Z2) X �→ Sq2 X

d2 :Ei,1
2 = Hi (Z2k [4] ;Z2) → Ei+2,0

2 = Hi+2(Z2k [4] ;C×) X �→ (−1)Sq
2 X ,

(35)

and there are d2’s leaving the entries in bidegrees (4, 2) and (4, 1) that carry the
generator ι4 to Sq2 ι4 and are isomorphisms. Additionally, there are d2 differentials
leaving the entries in bidegrees (5, 1) and (5, 2) which are isomorphisms. In total
degree seven, the E3 page converges to the E∞ page andwe see that SH7(Z2k [4]) = 0.
If E is a product of groups, we can use (27), where the spaces are fourth Eilenberg–
MacLane spaces of groups that are 2-torsion. Then, the term corresponding to˜h•(X ∧
Y ) for supercohomology will only begin to contribute in degree 8, and everything else
vanishes. In summary, we have shown that SH7(E[4]) = 0 for any group E .

This implies that S× ∼= 2SVec× × E as symmetric monoidal 2-categories. In
particular, BSVec×E is a full symmetric monoidal sub-2-category ofS. But BSVec×
E contains an object in every connected component ofS, so that itsCauchy completion
Cau(BSVec×E) � 2SVec[E] is equivalent toS as a symmetricmonoidal 2-category.
Thus, we obtain the following result.

Proposition 5.2 Every symmetric fermionic strongly fusion 2-category is of the form
2SVec[E] for some finite abelian group E.

In particular, every symmetric strongly fusion 2-category admits a fiber 2-functor to
2SVec.
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5.2.2 Bosonic case

For a symmetric bosonic strongly fusion 2-category, the obstruction to condensing
to the symmetric fusion 2-category to 2Vec is given by a class in H7(E[4];C×).
The group Hn+m+1(E[n];C×) may be thought of as parameterizing the ways for m
spacetime dimensional objects to fuse in n ambient dimensions with fusion rule E .
A computation of this cohomology group can be found in [18] where the authors
obtained H7(E[4];C×) = ̂(E2) , with E2 the 2-torsion subgroup of E , and for a group
Awe denote ̂A = hom(A,C×). Even though this cohomology group is not necessarily
trivial, the computation in Sect. 5.2.1 shows that if we work in a fermionic setting,
then there is no obstruction to the existence of a fiber 2-functor to 2SVec. In particular,
any symmetric bosonic strongly fusion 2-category admits a fiber 2-functor to 2SVec,
which concludes the proof of Theorem 5.1.

Data Availability Statement No datasets were generated or analyzed during the research that resulted in
this paper.

Appendix A. Diagrams

A.1. Proof of Theorem 3.8

See Appendix Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.

Fig. 2 Axiom a (Part 1)

Fig. 3 Axiom a (Part 2)
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Fig. 4 Axiom a (Part 3)

Fig. 5 Axiom a (Part 4)

Fig. 6 Axiom a (Part 5)

Fig. 7 Axiom a (Part 6)
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Fig. 8 Axiom a (Part 7)

Fig. 9 Axiom a (Part 8)

Fig. 10 Axiom a (Part 9)

Fig. 11 Axiom a (Part 10)

123



Gauging noninvertible defects: a 2-categorical perspective Page 39 of 42 36

Fig. 12 Axiom a (Part 11)

Fig. 13 Axiom a (Part 12)

A.2. Proof of Proposition 3.11

See Appendix Figs. 14, 15, 16, 17, 18, 19, 20, and 21.

Fig. 14 Balanced structure (Part
1)

Fig. 15 Balanced structure (Part
2)
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Fig. 16 Balanced structure (Part
3)

Fig. 17 Balanced structure (Part
4)

Fig. 18 Balanced structure (Part 5)

Fig. 19 Balanced structure (Part 6)

123



Gauging noninvertible defects: a 2-categorical perspective Page 41 of 42 36

Fig. 20 Balanced structure (Part 7)

Fig. 21 Balanced structure (Part
8)
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