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Abstract
As mentioned in Biondini et al. (Commun Math Phys 348:475–533, 2016), the com-
plete theory of the inverse scattering transform for the multi-component focusing
nonlinear Schrödinger equation with nonzero boundary conditions still remains open.
In this paper, we attempt to investigate the above problem with a particular class
of nonzero boundary conditions. The direct problem is shown to be well posed for
potential q such that q(·, t) − q± lies in the L1,1(R±) space. By introducing two
modified Lax pairs and generalized cross product operations in C

N+1, the analytic-
ity properties and the symmetries of a complete set of eigenfunctions and scattering
data are obtained. The inverse problem is characterized in terms of a 3 × 3 block
matrix Riemann–Hilbert problem, whose solution exists uniquely due to the growth
conditions at branch points and the symmetries of jump matrices, residue conditions
and asymptotics at two infinities of Riemann surface. In the reflectionless case, some
special solutions including soliton and breather are displayed.
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1 Introduction

As one of the most important theories in the nonlinear integrable PDEs over the last 50
years, the inverse scattering transform (IST) was pursuedmostly for the zero boundary
conditions (ZBCs), i.e., the potentials vanish for large spatial variable. However, recent
studies have shown that the nonzero boundary conditions (NZBCs) are relevant to the
research of modulation instability and the generation mechanism of rogue wave [1–4].
From a mathematical viewpoint, such problems are less well characterized. Following
that, a nature issue is to formulate the IST in the NZBCs cases. Specifically, we focus
on the N -component nonlinear Schrödinger (NLS) equation

iqt + qxx + 2κqq†q = 0, q = (q1, . . . , qN )T , (1.1)

where κ = ±1 means the focusing (resp. defocusing) case. It is well known that
the scalar version is referred to as the celebrated NLS equation and the 2-component
case as the Manakov system. There are two main motivations for studying the multi-
component case.

On the one hand, the N -component NLS equation not only possesses some remark-
ably rich symmetries but also arises in many physical fields such as nonlinear optics,
fluid mechanics, plasmas physics and multi-component Bose-Einstein condensates
[5–8]. On the other hand, let us recall the research works about the IST for the N -
component NLS equation. The scalar case with ZBCs was developed in Ref. [9] (see
also Refs. [10–13]), the 2-component case was dealt in Ref. [7], and the theory can be
extended to any multi-component NLS equations with ZBCs in a straightforward way
[14, 15]. Unlike the case of ZBCs, the IST with NZBCs is more complicated because
the spectral parameter lies in the two-sheeted Riemann surface rather than the complex
plane. The early work for the NLS equation with NZBCs was shown in Refs. [16, 17]
and was revisited in Refs. [18–21]. The work about the defocusing Manakov system
was accomplished in Ref. [22] and developed in Ref. [23]. The focusing Manakov
system with NZBC was studied in Ref. [24] using similar methods. By generaliz-
ing the tensor approach, important advance in the multi-component defocusing NLS
equation with NZBCs was outlined in Ref. [25]. Recently, a more rigorous analysis
of the IST for the 3-component defocusing NLS equation with NZBC was presented
in Ref. [26], and it was pointed out that for the multi-component focusing NLS equa-
tion with NZBCs, the complete theory of the inverse scattering transformation is still
open. Unfortunately, the above methods can not be applied directly to the arbitrary
N -component focusing NLS equation with NZBCs. Despite several development has
been established in Refs. [23–26], there are still some crucial problems, in which the
most important ones are the symmetry of jump matrix, the existence and uniqueness
of the solution for Riemann–Hilbert (RH) problem, the verification of reconstruction
formula. Furthermore, it is well known that the focusing NLS equation and the defo-
cusingNLS equation are fundamentally different, the IST for the focusing case ismuch
more involved than the defocusing case because there are four different fundamental
domains of analyticity instead of two.
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The purpose of this work is to overcome some challenging difficulties and to present
a characterization of the IST for the N -component focusing NLS equation

iqt + qxx + 2qq†q − 2q20q = 0, N ≥ 2, q0 > 0, (1.2)

with NZBCs for large |x |:

lim
x→±∞ q(x, t) = q± = q0eiθ± , for any fixed t ∈ R

+, (1.3)

where q0 is a constant complex valued vector of modulus q0, θ± ∈ [0, 2π). Indeed, by
two gauge transformations q(x, t) → q(x, t)e−2iq20 t and q(x, t) → q0q(q0x, q20 t),
Eq. (1.2) can be converted into the N -component focusing NLS equation (1.1) and the
multi-component Gross–Pitaevskii equation iqt +qxx +2qq†q−2q = 0, respectively.
In addition, given theU (N ) invariance of Eq. (1.2), without loss of generality, q0 can
be chosen to be the form q0 = (0, . . . , 0

︸ ︷︷ ︸

N−1

, q0)T .

As it will be shown, when it comes to focusing the N -component focusing NLS
equation with NZBCs, the analysis process becomes extremely difficult, so we have
to introduce some new concepts and new tools. The innovation of this paper is mainly
reflected in the following aspects: (i) Instead of the method in Ref. [18], two modified
Lax pairs are first used to set up the Volterra integral equations and investigate the
analyticity properties of the scattering matrix entries. In addition, compared with
Ref. [18], a slightly weaker nonzero boundary condition is required in this context.
(ii) Instead of the tensor approach, a generalized cross product operation in C

N+1,
consistent with the common cross product operation in R

3, is introduced to generate
the auxiliary eigenfunctions. The decompositions of the auxiliary eigenfunctions and
the symmetries of a complete set of eigenfunctions are established by virtue of the
adjugate matrix. Especially, some essential identities, which may be also useful to the
ISTs, are proved for the first time. (iii) Unlike the cases with ZBCs or the scalar cases
with NZBCs, it does not seem obvious for the multi-component cases with NZBCs
that the inverse problem can be solved uniquely. In this paper, the existence and the
uniqueness of the solution for the inverse problem are proved by virtue of Zhou’s
vanishing Lemma (see Refs. [27, 28]), and the reconstruction formula is verified by
the dressing method (see Ref. [29]).

The organization of this paper is as follows: In Sect. 2, we prove that the direct
scattering problem is well defined for potential q such that q(·, t) − q± lies in the
appropriate functional space. As a consequence, we obtain the integral representations
for the scattering data and establish the analyticity of the eigenfunctions and the
scattering data. In Sect. 3, we prove that the solution of the N -component focusing
NLS equation with NZBCs can be expressed in terms of the unique solution of a
3× 3 block matrix RH problem, which is directly formulated by a combination of the
eigenfunctions and the scattering data. In the reflectionless case, some exact solutions
are obtained in Sect. 4.
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Fig. 1 (Left) The regions D+ (shaded) and D− (white) in the complex z-plane. (Right) The oriented
contours for the RH problem

The following basic notations will be used throughout this paper: We denote by z̄

the complex conjugate of a complex number z, and denote ẑ = − q20
z . When used with

a matrixA, Ā denotes the element-wise complex conjugate,AT denotes the transpose,
A† denotes the conjugate transpose. In addition, we use A∗ to denote the adjugate of
a square matrix A. We use I and 0 to denote an appropriately sized identity and zero
matrix, respectively. For any (matrix-valued) function f (z), we denote f̃ (z) = f (z̄).
Let

D1 = {z ∈ C|Imz > 0, |z| > q0} , D2 = {z ∈ C|Imz < 0, |z| > q0} ,

D3 = {z ∈ C|Imz < 0, |z| < q0} , D4 = {z ∈ C|Imz > 0, |z| < q0} ,

C
± = {z ∈ C|Imz ≷ 0} , C0 = {z ∈ C||z| = q0},

�± = R ∪ (C∓ ∩ C0), � = R ∪ C0.

Furthermore, for a set D in the complex plane C, D̄ represents its closure. For an
(N+1)-order squarematrixA, without otherwise specified,wewrite it in block formas
A = (A1,A2,A3), whereA1 represents thefirst column,A3 represents the last column,
and A2 represents the rest of columns. The notation A(z) holds for z ∈ (D1,D2,D3),
means that A1(z), A2(z) and A3(z) hold for z ∈ D1, D2 and D3, respectively. Also,
sometimes, A is rewritten in another block form as

A =
⎛

⎝

A11 A12 A13
A21 A22 A23
A31 A32 A33

⎞

⎠ ,

where A11 and A33 are scalar.

123



Inverse scattering transformation for the N-component focusing... Page 5 of 47 23

2 Direct problem

2.1 Lax pair, Riemann surface and uniformization

The N -component focusing NLS equation (1.2) admits the Lax pair:

ψx = Uψ, ψt = Vψ, (2.1)

with

U(x, t; k) = −ikσ + Q, V(x, t; k) = 2ik2σ − 2kQ − iσ(Qx − Q2 − q20 I),

(2.2)

σ =
(

1 0
0 −I

)

, Q(x, t) =
(

0 −q†

q 0

)

, (2.3)

where q = (q1, . . . , qN )T , and k is a constant spectral parameter. In order to introduce
the Jost solutions, it is necessary to study the asymptotic spectral problems

φx = U±φ, φt = V±φ, (2.4)

with

U± = −ikσ + Q±, Q± =
(

0 −q†±
q± 0

)

, (2.5a)

V± = 2ik2σ − 2kQ± + iσQ2± + iq20σ. (2.5b)

The eigenvalues of U± are ±iλ and ik (with multiplicity N − 1), the eigenvalues of
V± are ±2ikλ and −i(k2 + λ2) (with multiplicity N − 1), where

λ(k) =
√

k2 + q20 . (2.6)

We fix the branch cut [−iq0, iq0], from which
√

k2 + q20 is well defined by set-

ting arg(k ± iq0) ∈ [−π
2 , 3π

2 ). The two branches, λI ,I I = ±
√

k2 + q20 , do not
get mixed up with each other, but are interchanged in passing from one edge of
the cut [−iq0, iq0] to the other. By gluing the two copies with cut, it can be com-
pactified a two-sheeted Riemann surface ϒ = {

(k, λ) ∈ C
2|λ2 = k2 + q20

}

, where
ϒI ,I I = {(

k, λI ,I I
) ∈ C

2
}

represents the first (resp. second) sheet. The multi-valued
function λ = λ(k) becomes a single valued function λ = λ(P) of a point P on the
Riemann surface ϒ : if P = (k, λ) ∈ ϒ , then λ(P) = λ (the projection on the the
λ-axis). Define the uniformization map z : ϒ 
→ C,

z(k, λ) = k + λ, (2.7)
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whose inverse map is

k = 1

2

(

z + ẑ
)

, λ = 1

2

(

z − ẑ
)

, (2.8)

where ẑ = − q20
z . Note that, the branch cut is mapped onto C0, the first (resp. second)

sheet is mapped onto the exterior (resp. interior) of C0, z(k, λI )z(k, λI I ) = −q20 ,
z(∞I ) = ∞, z(∞I I ) = 0, where ∞I (resp. ∞I I ) represents the point at infinity in
sheet I (resp. I I ) (see [19, 24] for further details).

It is easy to see that two solution matrices of the asymptotic spectral problems (2.4)
read

φ±(x, t; z) = E±(z)ei�(x,t;z), (2.9)

where

E±(z) = I − i

z
σQ± =

⎛

⎜

⎝

1 0 iq̄±
z

0 I 0
iq±
z 0 1

⎞

⎟

⎠ , q± = q0e
iθ± , (2.10)

and �(x, t; z) is an (N + 1) × (N + 1) matrix defined by

�(x, t; z) = diag(θ1(x, t; z), θ2(x, t; z), . . . , θ2(x, t; z)
︸ ︷︷ ︸

N−1

,−θ1(x, t; z)),

(2.11)

θ1(x, t; z) = −λx + 2kλt, θ2(x, t; z) = kx − (k2 + λ2)t . (2.12)

Indeed, each column of E±(z) is a common eigenvector of U± and V±, respectively,
and

det(E±(z)) = 1 + q20
z2

� γ (z), (2.13)

E±(z)E†
±(z̄) = E†

±(z̄)E±(z) = diag(γ (z), 1, . . . , 1
︸ ︷︷ ︸

N−1

, γ (z)) � H(z). (2.14)

2.2 Jost solutions and scatteringmatrix

We look for two fundamental solution matrices ψ±(x, t; z), which also known as Jost
solutions, of (2.1) that satisfies the boundary conditions

ψ±(x, t; z) = φ±(x, t; z) + o(1), x → ±∞, z ∈ (�±,R, �±). (2.15)

The reason we are interested especially in (�±,R, �±) is that ψ±(x, t; z) are oscilla-
tory rather than exponentially decreasing or increasing for large |x |.
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Introduce the modified eigenfunctions

μ±(x, t; z) = ψ±(x, t; z)e−i�(x,t;z), (2.16)

by which two equivalent forms are obtained as follows:

(E−1± μ±)x = [i�,E−1± μ±] + E−1± �Q±μ±, (2.17a)

(E−1∓ μ±)x = [i�,E−1∓ μ±] + E−1∓ �Q∓μ±, (2.17b)

where �(z) = diag(−λ, k, . . . , k
︸ ︷︷ ︸

N−1

, λ), �Q± = Q − Q±, the (x, t; z)-dependence is

omitted for brevity. Equation (2.17) is equivalent to

(e−ix�E−1± μ±eix�)x = e−ix�E−1± �Q±μ±eix�, (2.18a)

(e−ix�E−1∓ μ±eix�)x = e−ix�E−1∓ �Q∓μ±eix�. (2.18b)

Integrating (2.18a) from ±∞ to x , and noting the asymptotics

μ± = E± + o(1), x → ±∞, (2.19)

we find that μ± satisfy the Volterra integral equations

μ± = E± +
∫ x

±∞
E±ei(x−y)�E−1± �Q±μ±e−i(x−y)�dy. (2.20)

Also, integrating (2.18b) from 0 to x , we state

μ± = E∓eix�E−1∓ μ±(0, t; z)e−ix� +
∫ x

0
E∓ei(x−y)�E−1∓ �Q∓μ±e−i(x−y)�dy.

(2.21)

Splicing (2.20) and (2.21) together, we arrive at

μ± = E± +
∫ x

±∞
E±ei(x−y)�E−1± �Q±μ±e−i(x−y)�dy, x ∈ R

±, (2.22a)

μ± = E∓eix�E−1∓ μ±(0, t; z)e−ix�

+
∫ x

0
E∓ei(x−y)�E−1∓ �Q∓μ±e−i(x−y)�dy, x ∈ R

∓, (2.22b)

where μ(0, t; z) obtained from (2.22a) is used at the initial condition in (2.22b).

Remark 2.1 The reason we introduce two equivalent modified Lax pairs or Volterra
integral equations is that �Q± /∈ L1(R), which presents some difficulties for investi-
gating the analyticities of μ±(x, t; z) for x ∈ R. In Refs. [23, 24], only considering
the integral equation (2.20), one needs another method in Ref. [18] to analyze the
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analyticity properties of the scattering matrix entries. However, one can avoid such a
problem by combining two equivalent modified Lax pairs.

Remark 2.2 For all x ∈ R,

E±(z)eix�(z)E−1± (z) =
⎛

⎜

⎝

ze−iλx−ẑeiλx
2λ 0 − iq̄±(e−iλx−eiλx )

2λ
0 eikx I 0

iq±(e−iλx−eiλx )
2λ 0 zeiλx−ẑe−iλx

2λ

⎞

⎟

⎠ . (2.23)

At z = ±iq0, although the matrices E±(z) are degenerate, the expressions
E±(z)eix�(z)E−1± (z) remain finite as z → ±iq0,

lim
z→iq0

E±(z)eix�(z)E−1± (z) =
⎛

⎝

1 + q0x 0 −q̄±x
0 e−q0x I 0

q±x 0 1 − q0x

⎞

⎠ ,

lim
z→−iq0

E±(z)eix�(z)E−1± (z) =
⎛

⎝

1 − q0x 0 −q̄±x
0 eq0x I 0

q±x 0 1 + q0x

⎞

⎠ .

In the following, we must prove that the Jost solutions or the modified ones are well
defined. Set

L1(R±) =
{

F(x) ∈ C
N
∣

∣

∣

∣

∫

R±
‖F(x)‖1dx < +∞

}

,

L1, j (R±) =
{

F(x) ∈ C
N
∣

∣

∣

∣

∫

R±
(1 + |x |) j‖F(x)‖1dx < +∞

}

,

and ‖ · ‖1 is the L1 vector norm.

Theorem 2.3 Suppose that q(·, t) − q± ∈ L1,1(R±), μ+(x, t; z) is analytic for
z ∈ (D2,C

+, D3) and μ−(x, t; z) is analytic for z ∈ (D1,C
−, D4). Meanwhile,

μ+(x, t; z) is continuous up to (�+,R, �+) and μ−(x, t; z) is continuous up to
(�−,R, �−).

Proof We only give the proofs about μ−1(x, t; z) and μ−2(x, t; z), the rest of the
theorem is proved similarly. Firstly, we consider μ−1(x, t; z). Let

G±(x; z) =
⎛

⎜

⎝

z−ẑe2iλx
2λ 0 − iq̄±(1−e2iλx )

2λ
0 eizx I 0

iq±(1−e2iλx )
2λ 0 ze2iλx−ẑ

2λ

⎞

⎟

⎠ . (2.24)

Case i: x ∈ R
−. It follows from (2.22a) that

μ−1(x, t; z) =
⎛

⎝

1
0
iq−
z

⎞

⎠+
∫ x

−∞
G−(x − y; z)�Q−(y, t)μ−1(y, t; z)dy. (2.25)
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We introduce a Neumann series μ−1(x, t; z) = ∑∞
n=0 μn(x, t; z) for the solution of

(2.25), where

μ0(x, t; z) =
⎛

⎝

1
0
iq−
z

⎞

⎠ , μn+1(x, t; z) =
∫ x

−∞
K1(x, y, t; z)μn(y, t; z)dy,

K1(x, y, t; z) = G−(x − y; z)�Q−(y, t). (2.26)

As z ∈ D1, G−(x − y; z) is analytic and continuous up to the boundary ∂D1. In the
integrand y ≤ x , so if z ∈ D1 ∪ �−, by maximum modulus principle, we conclude
that

‖G−(x − y; z)‖1 ≤ c1(1 + |x − y|) ≤ c1(1 + |y|), c1 = max{1, 2q0}.
(2.27)

Consequently,

‖K1(x, y, t; z)‖1 ≤ c1(1 + |y|)‖q(y, t) − q−‖1. (2.28)

By induction, we can prove that

‖μn(x, t; z)‖1 ≤ 2

n!
(

c1

∫ x

−∞
(1 + |y|)‖q(y, t) − q−‖1dy

)n

≤ 2cn1
n! ‖q(·, t) − q−‖nL1,1(R−)

. (2.29)

It follows that the infinite series converges absolutely and uniformly by comparison
with an exponential series,

∥

∥

∥

∥

∥

∞
∑

n=0

μn(x, t; z)
∥

∥

∥

∥

∥

1

≤ 2 exp(c1‖q(·, t) − q−‖L1,1(R−)), for all x ∈ R
−, z ∈ D1 ∪ �−.

(2.30)

It is easy to use the uniform convergence of the Neumann series to prove that
μ−1(x, t; z) is in fact a solution of the Volterra equation (2.25) whenever z ∈ D1∪�−.
The uniqueness of this solution follows by the fact that a certain power of the operator
∫ x
−∞ K1(x, y, t; z)(·)dy is a contraction operator. Note that, μ0(x, t; z) is analytic for
z ∈ D1 and continuous up to the boundary ∂D1. As n ≥ 1, for z ∈ D̄1,

‖K1(x, y, t; z)μn−1(y, t; z)‖1 ≤ 2cn1
(n − 1)! (1 + |y|)‖q(y, t)

−q−‖1‖q(·, t) − q−‖n−1
L1,1(R−)

, (2.31)
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by Lebesgue dominated convergence theorem,

lim
z→z0

z,z0∈D̄1

∫ x

−∞
K1(x, y, t; z)μn−1(y, t; z)dy =

∫ x

−∞
K1(x, y, t; z0)μn−1(y, t; z0)dy.

(2.32)

This provesμn(x, t; z) is a continuous function of z in D̄1. Suppose thatμn−1(x, t; z)
is analytic for z ∈ D1, let C be a piecewise-smooth closed curve contained in D1.
Thus,

∮

C
μn(x, t; z)dz =

∮

C

∫ x

−∞
K1(x, y, t; z)μn−1(y, t; z)dydz. (2.33)

The estimate (2.31) yields the above integrand lies in L1(R−×C). ByFubini’s theorem
and Cauchy’s integral theorem, we have

∮

C
μn(x, t; z)dz =

∫ x

−∞

∮

C
K1(x, y, t; z)μn−1(y, t; z)dzdy = 0. (2.34)

ByMorera’s theorem,μn(x, t; z) is analytic for z ∈ D1. Since a uniformly convergent
series of analytic functions converges to an analytic function, μ−1(x, t; z) is analytic
for z ∈ D1. Also, μ−1(x, t; z) is continuous in D̄1 respect to z.

Case ii: x ∈ R
+. It follows from (2.22b) that

μ−1(x, t; z)
1 + |x | = G+(x; z)

1 + |x | μ−1(0, t; z)

+
∫ x

0

1 + |y|
1 + |x |G+(x − y; z)�Q+(y, t)

μ−1(y, t; z)
1 + |y| dy.

(2.35)

We introduce a Neumann series μ−1(x,t;z)
1+|x | = ∑∞

n=0 νn(x, t; z) for the solution of
(2.35), where

ν0(x, t; z) = G+(x; z)
1 + |x | μ−1(0, t; z), νn+1(x, t; z) =

∫ x

0
K2(x, y, t; z)νn(y, t; z)dy,

K2(x, y, t; z) = 1 + |y|
1 + |x |G+(x − y; z)�Q+(y, t).

(2.36)

As z ∈ D1 ∪ �−, similar to (2.27), we have

‖G+(x; z)‖1 ≤ c1(1 + |x |), ‖G+(x − y; z)‖1 ≤ c1(1 + |x − y|) ≤ c1(1 + |x |).
(2.37)
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Therefore,

‖ν0(x, t; z)‖1 ≤ 2c1 exp(c1‖q(·, t) − q−‖L1,1(R−)) � c2(t), (2.38)

‖K2(x, y, t; z)‖1 ≤ c1(1 + |y|)‖q(y, t) − q+‖1. (2.39)

For all x ∈ R
+, z ∈ D1 ∪ �−, we obtain the uniform convergence

∥

∥

∥

∥

μ−1(x, t; z)
1 + |x |

∥

∥

∥

∥

1
=
∥

∥

∥

∥

∥

∞
∑

n=0

νn(x, t; z)
∥

∥

∥

∥

∥

1

≤ c2(t) exp(c1‖q(·, t) − q+‖L1,1(R+)).

(2.40)

Similarly, μ−1(x, t; z) is well defined in D1 ∪ �− respect to z, analytic for z ∈ D1
and continuous up to the boundary ∂D1.

Secondly, we consider μ−2(x, t; z). Let

Ĝ±(x; z) =
⎛

⎜

⎝

ze−izx−ẑe−iẑx

2λ 0 − iq̄±(e−izx−e−iẑx )
2λ

0 I 0
iq±(e−izx−e−iẑx )

2λ 0 ze−iẑx−ẑe−izx

2λ

⎞

⎟

⎠ . (2.41)

Note that,

lim
z→−iq0

Ĝ±(x; z) =
⎛

⎝

(1 − q0x)e−q0x 0 −q̄±xe−q0x

0 I 0
q±xe−q0x 0 (1 + q0x)e−q0x

⎞

⎠ , (2.42)

as z ∈ R,

∣

∣

∣

∣

∣

iq±(e−izx − e−iẑx )

2λ

∣

∣

∣

∣

∣

≤ 1, (2.43)

∣

∣

∣

∣

∣

ze−izx − ẑe−iẑx

2λ

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

e−izx + ẑ(e−izx − e−iẑx )

2λ

∣

∣

∣

∣

∣

≤ 3. (2.44)

Case i: x ∈ R
−. It follows from (2.22a) that

μ−2(x, t; z) =
⎛

⎝

0
I
0

⎞

⎠+
∫ x

−∞
Ĝ−(x − y; z)�Q−(y, t)μ−2(y, t; z)dy. (2.45)
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We introduce a Neumann series μ−2(x, t; z) = ∑∞
n=0 μ̂n(x, t; z) for the solution of

(2.45), where

μ̂0(x, t; z) =
⎛

⎝

0
I
0

⎞

⎠ , μ̂n+1(x, t; z) =
∫ x

−∞
K̂1(x, y, t; z)μ̂n(y, t; z)dy,

K̂1(x, y, t; z) = Ĝ−(x − y; z)�Q−(y, t).

(2.46)

Ĝ−(x−y; z) is analytic for z ∈ C
−\{−iq0} and continuous inC−∪R. In the integrand

y ≤ x , so if z ∈ C
− ∪ R, by maximum modulus principle, we conclude that

‖Ĝ−(x − y; z)‖1 ≤ 4. (2.47)

Consequently,

‖K̂1(x, y, t; z)‖1 ≤ 4‖q(y, t) − q−‖1. (2.48)

By induction, we can prove that

‖μ̂n(x, t; z)‖1 ≤ 4n

n!
(∫ x

−∞
‖q(y, t) − q−‖1dy

)n

≤ 4n

n! ‖q(·, t) − q−‖nL1(R−)
.

(2.49)

It follows that the infinite series converges absolutely and uniformly by comparison
with an exponential series,

∥

∥

∥

∥

∥

∞
∑

n=0

μ̂n(x, t; z)
∥

∥

∥

∥

∥

1

≤ exp(4‖q(·, t) − q−‖L1(R−)), for all x ∈ R
−, z ∈ C

− ∪ R.

(2.50)

It is easy to use the uniform convergence of the Neumann series to prove that
μ−2(x, t; z) is a solution matrix of the Volterra equation (2.45) whenever z ∈ C

− ∪R.
The uniqueness of this solution follows by the fact that a certain power of the operator
∫ x
−∞ K̂1(x, y, t; z)(·)dy is a contraction operator. Note that, μ̂0(x, t; z) is analytic for
z ∈ C

− and continuous up to the boundary R. As n ≥ 1, for z ∈ C
− ∪ R,

‖K̂1(x, y, t; z)μ̂n−1(y, t; z)‖1 ≤ 4n

(n − 1)! ‖q(y, t) − q−‖1‖q(·, t) − q−‖n−1
L1(R−)

,

(2.51)
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by Lebesgue dominated convergence theorem,

lim
z→z0

z,z0∈C−∪R

∫ x

−∞
K̂1(x, y, t; z)μ̂n−1(y, t; z)dy =

∫ x

−∞
K̂1(x, y, t; z0)μ̂n−1(y, t; z0)dy.

(2.52)

This proves μ̂n(x, t; z) is a continuous function of z in C
− ∪ R. Suppose that

μ̂n−1(x, t; z) is analytic for z ∈ C
−, let C be a piecewise-smooth closed curve con-

tained in C−. Thus,
∮

C
μ̂n(x, t; z)dz =

∮

C

∫ x

−∞
K̂1(x, y, t; z)μ̂n−1(y, t; z)dydz. (2.53)

The estimate (2.51) yields the above integrand lies in L1(R−×C). ByFubini’s theorem
and Cauchy’s integral theorem, we have

∮

C
μ̂n(x, t; z)dz =

∫ x

−∞

∮

C
K̂1(x, y, t; z)μ̂n−1(y, t; z)dzdy = 0. (2.54)

ByMorera’s theorem, μ̂n(x, t; z) is analytic for z ∈ C
−. Since a uniformly convergent

series of analytic functions converges to an analytic function, μ−2(x, t; z) is analytic
for z ∈ C

−. Also, μ−2(x, t; z) is continuous in C− ∪ R respect to z.
Case ii: x ∈ R

+. It follows from (2.22b) that

μ−2(x, t; z) = Ĝ+(x; z)μ−2(0, t; z) +
∫ x

0
Ĝ+(x − y; z)�Q+(y, t)μ−2(y, t; z)dy.

(2.55)

We introduce a Neumann series μ−2(x, t; z) = ∑∞
n=0 ν̂n(x, t; z) for the solution of

(2.55), where

ν̂0(x, t; z) = Ĝ+(x; z)μ−2(0, t; z),
ν̂n+1(x, t; z) =

∫ x

0
K̂2(x, y, t; z)ν̂n(y, t; z)dy,

K̂2(x, y, t; z) = Ĝ+(x − y; z)�Q+(y, t).

(2.56)

As z ∈ C
− ∪ R, similar to (2.47), we have

‖Ĝ+(x; z)‖1 ≤ 4. (2.57)

Therefore,

‖ν̂0(x, t; z)‖1 ≤ 4 exp(4‖q(·, t) − q−‖L1(R−)) � c3(t), (2.58)
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‖K̂2(x, y, t; z)‖1 ≤ 4‖q(y, t) − q+‖1. (2.59)

For all x ∈ R
+, z ∈ C

− ∪ R, we obtain the uniform convergence

‖μ−2(x, t; z)‖1 =
∥

∥

∥

∥

∥

∞
∑

n=0

ν̂n(x, t; z)
∥

∥

∥

∥

∥

1

≤ c3(t) exp(4‖q(·, t) − q+‖L1(R+)).

(2.60)

Similarly, μ−2(x, t; z) is well defined inC− ∪R respect to z, analytic for z ∈ C
− and

continuous up to the boundary R. �
Remark 2.4 Unlike what happens for the defocusing case, the defect of analyticity
for the focusing N -component NLS equation does not increase with the number of
components. In fact, for any N ≥ 2, one has exactly N analytic eigenfunctions in each
of the domains D1, . . . , D4, and hence, only one additional eigenfunction per each of
the domain is required to obtain a fundamental set of analytic solutions.

Lemma 2.5 Under the same hypotheses as in Theorem 2.3, for all z in the interior of
their corresponding domains of analyticity, μ±2(x, t; z) are bounded for all x ∈ R,
μ±1(x, t; z) and μ±3(x, t; z) are bounded for x ∈ R

±, μ±1(x,t;z)
1+|x | and μ±3(x,t;z)

1+|x | are

bounded for x ∈ R
∓.

Proof The first column ofμ−(x, t; z) follows from (2.30) and (2.40), andμ−2(x, t; z)
follows from (2.50) and (2.60). The rest of this lemma is obtained similarly. �

Theorem 2.3 shows thatμ±(x, t; z) are continuous up to (�±,R, �±), respectively.
Moreover, formally differentiating the Volterra integral equation (2.22) with respect
to z and performing a similar Neumann series analysis, one can show the following:

Corollary 2.6 Under the same hypotheses as in Theorem 2.3, ∂zμ±(x, t; z) are con-
tinuous for z ∈ (�±,R, �±).

Remark 2.7 It follows trivially from the above theorem that the columns ofψ±(x, t; z)
have the same analyticity properties as μ±(x, t; z). Moreover, if q(·, t) − q± ∈
L1(R±), the modified eigenfunctions μ±(x, t; z) are also are analytic for z ∈
(D2,C

+, D3), (D1,C
−, D4), respectively. However, μ±1(x, t; z) and μ±3(x, t; z)

are not continuous at the branch points ±iq0. Furthermore, noting that q(·, t) − q±
is needed to be lied in L1,2(R±) in Ref. [18], in this context, we require a slightly
weaker condition q(·, t) − q± ∈ L1,1(R±).

In the following, we will introduce the scattering matrix. Observing the traceless
nature ofQ(x, t)−Q±, by Abel’s Theorem, we arrive at ∂x det(E

−1± (z)μ±(x, t; z)) =
0. Therefore, we may compute the determinant of E−1± (z)μ±(x, t; z) with the limit
x → ±∞. Consequently, equation (2.19) implies

det(μ±(x, t; z)) = det(E±(z)) = γ (z), z ∈ R, (2.61)
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i.e.,

det(ψ±(x, t; z)) = γ (z)ei(N−1)θ2(x,t;z), z ∈ R. (2.62)

Since both ψ+(x, t; z) and ψ−(x, t; z) are the fundamental solutions of the Lax pair
(2.1), there exists a (N + 1) × (N + 1) matrix s(z) independent of x and t such that

ψ−(x, t; z) = ψ+(x, t; z)s(z), (2.63)

where

s(z) =
⎛

⎝

s11(z) s12(z) s13(z)
s21(z) s22(z) s23(z)
s31(z) s32(z) s33(z)

⎞

⎠ (2.64)

is usually referred to as the scattering matrix. Taking the determinants of both sides
of (2.63) and recalling (2.62), we state

det(s(z)) = 1, z ∈ R. (2.65)

Let

S(z) = s−1(z) =
⎛

⎝

S11(z) S12(z) S13(z)
S21(z) S22(z) S23(z)
S31(z) S32(z) S33(z)

⎞

⎠ , (2.66)

thus,

ψ+(x, t; z) = ψ−(x, t; z)S(z). (2.67)

Evaluating (2.63) at (+∞, 0), recalling (2.16) and (2.22), we conclude that

s(z) = E−1+ (z)μ−(0, 0; z) +
∫ +∞

0
e−ix�(z)E−1+ (z)�Q+(x, 0)μ−(x, 0; z)eix�(z)dx .

(2.68)

Similarly,

S(z) = E−1− (z)μ+(0, 0; z) −
∫ 0

−∞
e−ix�(z)E−1− (z)�Q−(x, 0)μ+(x, 0; z)eix�(z)dx .

(2.69)

From Theorem 2.3, Lemma 2.5 and the above integral representations (2.68)–(2.69),
we can obtain the following theorem obviously.
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Corollary 2.8 Under the same hypotheses as in Theorem 2.3, s11(z), s13(z), s31(z)
and s33(z) are well defined in �−\{iq0}, S11(z),S13(z),S31(z) and S33(z) are well
defined in �+\{−iq0}, the remainder of scattering coefficients are well defined in R.
Furthermore, the following scattering coefficients can be analytically continued to the
corresponding regions:

s11(z) : D1, s22(z) : C−, s33(z) : D4, (2.70a)

S11(z) : D2, S22(z) : C+, S33(z) : D3. (2.70b)

2.3 Auxiliary eigenfunctions

In order to pose the inverse problem, that is, to formulate an (N + 1) × (N + 1)
matrix RH problem, we need to have a complete set of analytic eigenfunctions in
any given domain Dj , j = 1, . . . , 4. However, only N of the columns of μ+(x, t; z)
and μ−(x, t; z) are analytic in Dj . To offset the incompleteness of analyticity, we
introduce a “generalized cross product" for vectors in C

N+1 as follows:

Definition 2.9 (Generalized cross product) For all u1, . . . ,uN ∈ C
N+1, let

G[u1, . . . ,uN ] =
N+1
∑

j=1

det(u1, . . . ,uN , e j )e j , (2.71)

where {e1, . . . , eN+1} represents the standard basis for RN+1.

Specially, as N = 2, G[u1,u2] = u1 × u2, represents the common cross product
in R3. Like this case, G[·] is also multi-linear and totally antisymmetric.

Lemma 2.10 For any A ∈ C
(N+1)×(N+1), B ∈ C

n×n(n ≤ N ), 1 ≤ l ≤ N − n + 1,
then

N
∑

j=1

G[u1, . . . ,u j−1,Au j ,u j+1, . . . ,uN ] =
(

trace(A)I − AT
)

G[u1, . . . ,uN ],

(2.72a)

G[u1, . . . ,ul−1, (ul , . . . ,ul+n−1)B,ul+n, . . . ,uN ] = det(B)G[u1, . . . ,uN ].
(2.72b)

Proof Set

F(t;u,A) = G[(I + tA)u1, . . . , (I + tA)uN ]. (2.73)

Since det(I + tA) is continuous for t ∈ R, there exists a positive number δ such that
I + tA is non-degenerate for |t | < δ. The definition of G[·] yields the left-hand side
of (2.72a)
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∑

j=1

NG[u1, . . . ,u j−1,Au j ,u j+1, . . . ,uN ] = dF(t;u,A)

dt

∣

∣

∣

∣

t=0
. (2.74)

On the other hand, for |t | < δ,

F(t;u,A) =
N+1
∑

j=1

det((I + tA)u1, . . . , (I + tA)uN , e j )e j

= det(I + tA)

N+1
∑

j=1

det(u1, . . . ,uN , (I + tA)−1e j )e j

� f (t;A)F1(t;u,A).

(2.75)

Indeed,
d f (t;A)

dt

∣

∣

∣

∣

t=0
= trace(A), (2.76)

dF1(t;u,A)

dt

∣

∣

∣

∣

t=0
= −

N+1
∑

j=1

det(u1, . . . ,uN ,Ae j )e j

= −
N+1
∑

j=1

det(u1, . . . ,uN ,

N+1
∑

l=1

(eleTl )Ae j )e j

= −
N+1
∑

j=1

det(u1, . . . ,uN ,

N+1
∑

l=1

(eTl Ae j )el)e j

= −
N+1
∑

l=1

det(u1, . . . ,uN , el)
N+1
∑

j=1

e j (eTl Ae j )
T

= −
N+1
∑

l=1

det(u1, . . . ,uN , el)
N+1
∑

j=1

(e jeTj )A
T el

= −AT
N+1
∑

l=1

det(u1, . . . ,uN , el)el

= −ATG[u1, . . . ,uN ]. (2.77)

The right-hand side of (2.72a)
trace(A)G[u1, . . . ,uN ] − ATG[u1, . . . ,uN ]

= d f (t;A)

dt

∣

∣

∣

∣

t=0
F1(0;u,A) + f (0;A)

dF1(t;u,A)

dt

∣

∣

∣

∣

t=0

= dF(t;u,A)

dt

∣

∣

∣

∣

t=0
.

(2.78)
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In addition, the identity (2.72b) is the trivial result of Definition 2.9. �
Remark 2.11 InRefs. [23, 24, 26], four identities always are introduced to construct the
auxiliary eigenfunctions inC3 orC4.However, verifying four similar identities directly
in higher dimensional space will bring us a heavy calculation burden. Fortunately,
combining with the differential operation of determinant function, we have proved the
identity (2.72a), which is essential to construct the auxiliary eigenfunctions, especially
in the arbitrary N -component case. In addition, those identities in Refs. [23, 24, 26]
are the special cases of (2.72a).

Indeed, observing thatQT = −Q̄, by virtue of the identity (2.72a), we can directly
verify the following fact.

Proposition 2.12 Suppose that ψ1(x, t; z), . . . , ψN (x, t; z) are N arbitrary solution
vectors of the Lax pair (2.1), then

�(x, t; z) = ei(N−1)θ2(x,t;z)G[ψ̃1(x, t; z), . . . , ψ̃N (x, t; z)] (2.79)

is a solution vector of the Lax pair (2.1), where ψ̃ j (x, t; z) = ψ j (x, t; z̄) for j =
1, . . . , N.

The above functions ψ̃ j (x, t; z) ( j = 1, . . . , N + 1) are also called the adjoint Jost
solutions, the analyticity of which can be derived obviously by Riemann–Schwarz
symmetry principle. Note that, a simple relation exists between the adjoint Jost solu-
tions and the Jost solutions of the original Lax pair (2.1):

Lemma 2.13 Under the same hypotheses as in Theorem 2.3, as z ∈ R,

γ jN+1ψ±, jN+1(x, t; z) = ei(N−1)θ2(x,t;z)G[ψ̃±, j1(x, t; z), . . . , ψ̃±, jN (x, t; z)],
(2.80a)

γ jN+1ψ̃±, jN+1(x, t; z) = ei(1−N )θ2(x,t;z)G[ψ±, j1(x, t; z), . . . , ψ±, jN (x, t; z)],
(2.80b)

where

γ j =
{

1, j = 1, N + 1,

γ (z), j = 2, . . . , N ,
(2.81)

and ( j1, . . . , jN+1) is an even permutation of (1, . . . , N+1),ψ±, j and ψ̃±, j represent
the j-th columns of ψ± and ψ̃±, respectively.

Definition 2.14 Introducing four new solutions of the original Lax pair (2.1):

χ1(x, t; z) = ei(N−1)θ2(x,t;z)G[ψ̃+1(x, t; z), ψ̃−2(x, t; z)], (2.82a)

χ2(x, t; z) = ei(N−1)θ2(x,t;z)G[ψ̃−1(x, t; z), ψ̃+2(x, t; z)], (2.82b)

χ3(x, t; z) = ei(N−1)θ2(x,t;z)G[ψ̃+2(x, t; z), ψ̃−3(x, t; z)], (2.82c)
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χ4(x, t; z) = ei(N−1)θ2(x,t;z)G[ψ̃−2(x, t; z), ψ̃+3(x, t; z)], (2.82d)

we called χ1(x, t; z), . . . , χ4(x, t; z) the auxiliary eigenfunctions. Analogous to the
Jost eigenfunctions, the auxiliary eigenfunctions have a modified form

m j (x, t; z) = χ j (x, t; z)eiθ1(x,t;z), j = 1, 2, (2.83a)

m j (x, t; z) = (−1)Nχ j (x, t; z)e−iθ1(x,t;z), j = 3, 4. (2.83b)

Considering the ψ±’s corresponding domains of analyticity, by Riemann–Schwarz
symmetry principle, we state

Lemma 2.15 Under the same hypotheses as in Theorem 2.3, as j = 1, . . . , 4, the
auxiliary eigenfunction χ j (x, t; z) and the modified formm j (x, t; z) are analytic for
z ∈ Dj and continuous up to the boundary ∂Dj , respectively.

2.4 Symmetries

Similar to the scalar case and the 2-component case, the scattering problem admits two
symmetries corresponding to the involutions: (k, λ) → (k̄, λ̄) and (k, λ) → (k,−λ),
i.e., in terms of uniformization variable z: z → z̄ and z → ẑ. Indeed, there is also
another symmetry corresponding to z̄ → ẑ or z → ˆ̄z, which can be obtained by
combining the first two symmetries.

2.4.1 First symmetry: z → z̄

Proposition 2.16 If ψ(x, t; z) is a matrix solution of the Lax pair (2.1), then

∂x (ψ
†(x, t; z̄)ψ(x, t; z)) = ∂t (ψ

†(x, t; z̄)ψ(x, t; z)) = 0. (2.84)

The above statement is a straightforward consequence of the symmetries of the Lax
pair (2.1). Considering the asymptotic conditions as in (2.15) for ψ±(x, t; z), we
deduce

ψ
†
±(x, t; z̄)ψ±(x, t; z) = H(z). (2.85)

Especially,

ψ
†
+1(x, t; z̄)ψ+2(x, t; z) = 0, z ∈ D1, (2.86a)

ψ
†
−1(x, t; z̄)ψ−2(x, t; z) = 0, z ∈ D2, (2.86b)

ψ
†
−3(x, t; z̄)ψ−2(x, t; z) = 0, z ∈ D3, (2.86c)

ψ
†
+3(x, t; z̄)ψ+2(x, t; z) = 0, z ∈ D4. (2.86d)
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According to (2.63) and (2.67), we state

s(z) = H−1(z)ψ†
+(x, t; z̄)ψ−(x, t; z), S(z) = H−1(z)ψ†

−(x, t; z̄)ψ+(x, t; z). (2.87)

Consequently, the scattering matrices s(z) and S(z) satisfy the symmetry

s(z) = H−1(z)S†(z̄)H(z). (2.88)

Componentwise,

s12(z) = S†21(z̄)
γ (z) , s21(z) = γ (z)S†12(z̄), z ∈ R, (2.89a)

s23(z) = γ (z)S†32(z̄), s32(z) = S†23(z̄)
γ (z) , z ∈ R, (2.89b)

s13(z) = S31(z̄), s31(z) = S13(z̄), z ∈ �−\{iq0}. (2.89c)

Particularly,

S11(z̄) = s11(z) = 1

γ (z)
ψ

†
+1(x, t; z̄)ψ−1(x, t; z), z ∈ D̄1\{iq0}, (2.90a)

S†22(z̄) = s22(z) = ψ
†
+2(x, t; z̄)ψ−2(x, t; z), z ∈ C̄−, (2.90b)

S33(z̄) = s33(z) = 1

γ (z)
ψ

†
+3(x, t; z̄)ψ−3(x, t; z), z ∈ D̄4\{iq0}. (2.90c)

2.4.2 Second symmetry: z → ẑ

Proposition 2.17 Ifψ(x, t; z) is amatrix solution of the Lax pair (2.1), so isψ(x, t; ẑ).
Considering the asymptotic conditions in (2.15) for ψ±(x, t; z), we find

ψ±(x, t; z) = ψ±(x, t; ẑ)�±(z), (2.91)

where

�±(z) =
⎛

⎜

⎝

0 0 iq̄±
z

0 I 0
iq±
z 0 0

⎞

⎟

⎠ . (2.92)

In particular,

ψ±1(x, t; z) = iq±
z ψ±3(x, t; ẑ), z ∈ D̄2 (resp. D̄1), (2.93a)

ψ±3(x, t; z) = iq̄±
z ψ±1(x, t; ẑ), z ∈ D̄3 (resp.D̄4), (2.93b)

ψ±2(x, t; z) = ψ±2(x, t; ẑ), z ∈ C̄±, (2.93c)
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which implies the auxiliary eigenfunctions satisfy the symmetries

m1(x, t; z) = iq̄+
z m4(x, t; ẑ), z ∈ D̄1, (2.94a)

m2(x, t; z) = iq̄−
z m3(x, t; ẑ), z ∈ D̄2. (2.94b)

Combining (2.63), (2.67) with (2.91), we find

s(ẑ) = �+(z)s(z)�−1− (z), S(ẑ) = �−(z)S(z)�−1+ (z). (2.95)

Componentwise,

s12(z) = − iz

q+
s32(ẑ), s21(z) = iq−

z
s23(ẑ), z ∈ R, (2.96a)

s32(z) = − iz

q̄+
s12(ẑ), s23(z) = iq̄−

z
s21(ẑ), z ∈ R, (2.96b)

s13(z) = q̄−
q+

s31(ẑ), s31(z) = q−
q̄+

s13(ẑ), z ∈ �−\{iq0}, (2.96c)

s11(z) = q−
q+

s33(ẑ), z ∈ D̄1\{iq0}, (2.96d)

s22(z) = s22(ẑ), z ∈ C̄−, (2.96e)

s33(z) = q̄−
q̄+

s11(ẑ), z ∈ D̄4\{iq0}. (2.96f)

A similar set of relations obviously holds for the components of S(z),

S12(z) = − iz

q−
S32(ẑ), S21(z) = iq+

z
S23(ẑ), z ∈ R, (2.97a)

S32(z) = − iz

q̄−
S12(ẑ), S23(z) = iq̄+

z
S21(ẑ), z ∈ R, (2.97b)

S13(z) = q̄+
q−

S31(ẑ), S31(z) = q+
q̄−

S13(ẑ), z ∈ �+\{−iq0}, (2.97c)

S11(z) = q+
q−

S33(ẑ), z ∈ D̄2\{−iq0}, (2.97d)

S22(z) = S22(ẑ), z ∈ C̄+, (2.97e)

S33(z) = q̄+
q̄−

S11(ẑ), z ∈ D̄3\{−iq0}. (2.97f)

2.4.3 Combined symmetry

In the inverse problem, the following reflection coefficients will appear,

ρ1(z) = s21(z)
s11(z)

= γ (z)
S†12(z̄)

S11(z̄)
, z ∈ R, (2.98a)
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ρ2(z) = s31(z)
s11(z)

= S13(z̄)

S11(z̄)
, z ∈ �−\{iq0}, (2.98b)

ρ3(z) = s32(z)s
−1
22 (z) = 1

γ (z)
S†23(z̄)(S

†
22(z̄))

−1, z ∈ R. (2.98c)

Considering the transform z → ẑ, we have

ρ1(ẑ) = − iz

q̄+
s23(z)
s33(z)

= − izγ (z)

q̄+
S†32(z̄)

S33(z̄)
, z ∈ R, (2.99a)

ρ2(ẑ) = q+
q̄+

s13(z)
s33(z)

= q+
q̄+

S31(z̄)

S33(z̄)
, z ∈ �−\{iq0}, (2.99b)

ρ3(ẑ) = iq+
z

s12(z)s
−1
22 (z) = iq+

zγ (z)
S†21(z̄)(S

†
22(z̄))

−1, z ∈ R.

(2.99c)

From (2.87)–(2.90), it follows that

ρ1(z) = γ (z)
ψ

†
+2(z̄)ψ−1(z)

ψ
†
+1(z̄)ψ−1(z)

, z ∈ R, (2.100a)

ρ2(z) = ψ
†
+3(z̄)ψ−1(z)

ψ
†
+1(z̄)ψ−1(z)

, z ∈ �−\{iq0}, (2.100b)

ρ3(z) = ψ
†
+3(z̄)ψ−2(z)[γ (z)ψ†

+2(z̄)ψ−2(z)]−1, z ∈ R. (2.100c)

The above expressions together with Corollary 2.6 give the following

Corollary 2.18 Under the same hypotheses as in Theorem 2.3, and suppose that none
of the zeros of s11(z) and det(s22(z)) occurs on �−, then ρ1(z), ρ3(z) ∈ C1(R) and
ρ2(z) ∈ C1(�−).

Remark 2.19 For z ∈ R, it follows trivially from S(z)s(z) = I that

S11(z)(S31(z)s12(z) + S32(z)s22(z) + S33(z)s32(z)) = 0, (2.101a)

S31(z)(S11(z)s12(z) + S12(z)s22(z) + S13(z)s32(z)) = 0, (2.101b)

the subtraction of which yields

ρ3(z) = s32(z)s
−1
22 (z) = S31(z)S12(z) − S11(z)S32(z)

S11(z)S33(z) − S13(z)S31(z)
. (2.102)

Equations (2.98) and (2.99) allow us to conclude

ρ3(z) = q+ρ2( ˆ̄z)ρ†
1(z̄) − iẑρ†

1(
ˆ̄z)

γ (z)(q̄+ − q+ρ2(z̄)ρ2( ˆ̄z))
, (2.103)
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which implies the scattering coefficients ρ1(z), ρ2(z) and ρ3(z) are not independent.

2.5 Behavior at branch points

In order to properly specify growth conditions for the RH problem, we should analyze
the behaviors of the eigenfunctions and the scattering data near the branch points. It fol-
lows from Theorem 2.3 and Lemma 2.15 that μ−1(x, t; z), μ+2(x, t; z), μ−3(x, t; z),
m1(x, t; z) andm4(x, t; z)are well defined and continuous at the branch point z = iq0,
μ+1(x, t; z), μ−2(x, t; z), μ+3(x, t; z), m2(x, t; z) and m3(x, t; z) are well defined
and continuous at the branch point z = −iq0. Furthermore, it follows from (2.15) that
all of the above eigenfunctions are nonzero at the branch points.

From (2.87), it follows that the scattering coefficients s11(z), s13(z), s31(z) and
s33(z) have a pole at the branch point z = iq0.

Corollary 2.20 Under the same hypotheses as in Theorem 2.3, as z → iq0,

(z − iq0)s11(z) = O(1), (z − iq0)s13(z) = O(1),

(z − iq0)s31(z) = O(1), (z − iq0)s33(z) = O(1).
(2.104)

Similarly, the scattering coefficients S11(z), S13(z), S31(z) and S33(z) have a pole at
the branch point z = −iq0.

Corollary 2.21 Under the same hypotheses as in Theorem 2.3, as z → −iq0,

(z + iq0)S11(z) = O(1), (z + iq0)S13(z) = O(1),

(z + iq0)S31(z) = O(1), (z + iq0)S33(z) = O(1).
(2.105)

Considering the asymptotics for the columns of ψ±(x, t;∓iq0) as x → ±∞, respec-
tively, we state

ψ−1(x, t; iq0) = eiθ−ψ−3(x, t; iq0), ψ+1(x, t;−iq0) = −eiθ+ψ+3(x, t;−iq0).

(2.106)

It follows trivially from (2.87), (2.98) and (2.106) that

lim
z→iq0

ρ2(z) = lim
z→iq0

ρ2(ẑ) = −eiθ+ , (2.107)

which implies that the jump matrices in Sect. 3 are not singular at ±iq0.

2.6 Asymptotic behavior as z → ∞ and z → 0

In the context of ISTwith ZBCs, we need to investigate the asymptotic behaviors of the
eigenfunctions and the scattering data as the spectral parameter approaches infinity.
However, since two points ∞1 and ∞2 at infinity on the Riemann surface ϒ are
mapped to infinity and zero in the complex z plane, respectively, we should consider
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the asymptotics both as z → ∞ and z → 0. Substituting the Wentzel–Kramers–
Brillouin expansions of the columns of the modified Jost solutions into (2.17) and
collecting the terms O(z j ) as in Ref. [18], or substituting the formal expansions
μ±(x, t; z) = ∑∞

j=1 μ
( j)
± (x, t; z) into the Volterra integral equation (2.22) as in Ref.

[21], we obtain the following asymptotics:

Lemma 2.22 Suppose that q(·, t) − q± ∈ L1,1(R±) and q(·, t) is continuously dif-
ferentiable with qx (·, t) ∈ L1(R±), as z → ∞ in the appropriate regions that each
column is well defined,

μ±(x, t; z) =
(

1 iq†(x,t)
z

iq(x,t)
z I

)

+ O(z−1). (2.108)

Similarly, as z → 0 in the appropriate regions that each column is well defined,

μ±1(x, t; z) =
⎛

⎝

q†(x,t)q±
q20
iq±
z

⎞

⎠+ O(1), (2.109a)

μ±2(x, t; z) =
(

− iz
q20
q†(x, t)

I

)

(ε1, . . . , εN−1) + O(z), (2.109b)

μ±3(x, t; z) =
( iq̄±

z
q(x,t)
q±

)

+ O(1), (2.109c)

where {ε1, . . . , εN } represents the standard basis for RN .

Consequently, we can calculate the asymptotics of m j ( j = 1, . . . , 4) by the
definitions (2.82) and (2.83) of the auxiliary eigenfunctions and the modified ones,
respectively.

Corollary 2.23 Under the same hypotheses as in Lemma 2.22, as z → ∞ in the
appropriate regions that each column is well defined,

m1(x, t; z) =
⎛

⎜

⎝

iq†(x,t)εN
z

0
1

⎞

⎟

⎠+ O(z−1), (2.110a)

m2(x, t; z) =
⎛

⎜

⎝

iq†(x,t)εN
z

0
1

⎞

⎟

⎠+ O(z−1). (2.110b)

Similarly, as z → 0 in the appropriate regions that each column is well defined,

m3(x, t; z) =
⎛

⎜

⎝

q†(x,t)εN
q̄−
0
iq−
z

⎞

⎟

⎠+ O(1), (2.111a)
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m4(x, t; z) =
⎛

⎜

⎝

q†(x,t)εN
q̄+
0
iq+
z

⎞

⎟

⎠+ O(1). (2.111b)

Remark 2.24 Indeed, by virtue of the symmetries (2.93) and (2.94), Eqs. (2.109) and
(2.111) can be obtained directly from Eqs. (2.108) and (2.110), respectively.

Next, it follows from the asymptotics in Lemma 2.22 and the scattering relation (2.90)
that the scattering matrix entries have the asymptotic behaviors:

Corollary 2.25 Under the same hypotheses as in Lemma 2.22, as z → ∞ in the
appropriate regions that each column is well defined,

s11(z) = 1 + O(z−1), S11(z) = 1 + O(z−1), (2.112a)

s22(z) = I + O(z−1), S22(z) = I + O(z−1). (2.112b)

Similarly, as z → 0 in the appropriate regions that each column is well defined,

s22(z) = I + O(z), S22(z) = I + O(z), (2.113a)

s33(z) = q+
q−

+ O(z), S33(z) = q−
q+

+ O(z). (2.113b)

Lemma 2.22 together with (2.100) immediately implies the following:

Corollary 2.26 Under the same hypotheses as in Lemma 2.22, as z → ∞,

ρ1(z) = O(z−1), ρ2(z) = O(z−1), ρ3(z) = O(z−1). (2.114)

3 Inverse problem

For z ∈ Dj , j = 1, . . . , 4, an extra analytic eigenfunction χ j (x, t; z) is generated
by virtue of the generalized cross product. Therefore, μ±(x, t; z) and {χ j (x, t; z)}41
make up a complete set of analytic eigenfunctions for solving the inverse problem. In
the following, we will introduce a new operator and several identities, which play a
key role in decomposing the auxiliary eigenfunctions and expressing symmetries.

3.1 Decomposition of the auxiliary eigenfunctions

Definition 3.1 For all u1, . . . ,uN+1 ∈ C
N+1, define

G [u1, . . . ,uN+1] = −
N+1
∑

l=1

N+1
∑

j=1

det

(

u e j
eTl 0

)

e jeTl , (3.1)
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where u = (u1, . . . ,uN+1). Consequently, the l-th column of G [u1, . . . ,uN+1] reads
l = 1, . . . , N + 1,

Gl [u1, . . . ,uN+1] = G [u1, . . . ,uN+1]el = −
N+1
∑

j=1

det

(

u e j
eTl 0

)

e j .

(3.2)

By direct calculations, it is easy to verify the following relation among the adjugate
matrix (·)∗, the generalized cross product G[·] and the operator G [·],

u∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(−1)NGT [u2, . . . ,uN+1]
(−1)N−1GT [u1,u3 . . . ,uN+1]

...

(−1)N+1− jGT [u1, . . . ,u j−1,u j+1, . . . ,uN+1]
...

GT [u1, . . . ,uN ]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= G T [u1, . . . ,uN+1].

(3.3)

Lemma 3.2 For all u ∈ C
(N+1)×(N+1),

rank(G [u]) =

⎧

⎪
⎨

⎪
⎩

N + 1, rank(u) = N + 1,

1, rank(u) = N ,

0, rank(u) < N .

(3.4)

Lemma 3.3 For all u1, . . . ,uN , v1, . . . , vN ∈ C
N+1,

G [u1, . . . ,uN ,G[v1, . . . , vN ]] =
(

v(uT(1)v)
∗,G[u1, . . . ,uN ]

)

, (3.5a)

G [G[v1, . . . , vN ],u1, . . . ,uN ] = (−1)N
(

G[u1, . . . ,uN ], v(uT(1)v)∗
)

. (3.5b)

where v = (v1, . . . , vN ), u(1) = (u1, . . . ,uN ).

Proof Firstly, we give the proof of (3.5a). Since

GN+1[u1, . . . ,uN ,G[v1, . . . , vN ]] = G[u1, . . . ,uN ], (3.6)

we need to prove the remaining part

(G1, . . . ,GN )[u1, . . . ,uN ,G[v1, . . . , vN ]] = v(uT(1)v)
∗. (3.7)

If v1, . . . , vN are linear dependent, the identities G[v1, . . . , vN ] = 0 and
v(uT(1)v)

∗ = 0 yield (3.7). If not, there exists vN+1 ∈ C
N+1 such that v(1) =
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(v1, . . . , vN+1) is nonsingular. According to (3.3), we obtain G[v1, . . . , vN ] =
(v∗

(1))
T eN+1. Indeed,

(G1, . . . ,GN )[u1, . . . ,uN ,G[v1, . . . , vN ]]
= (G1, . . . ,GN )[u1, . . . ,uN ,G[v1, . . . , vN ]](ε1, . . . , εN )T

=
N
∑

l=1

Gl [u1, . . . ,uN ,G[v1, . . . , vN ]]εTl (by Eqs. (3.2), (3.3))

= −
N
∑

l=1

N+1
∑

j=1

det

(

u(1) (v∗
(1))

T eN+1 e j
εTl 0 0

)

e jεTl

= −
N
∑

l=1

N+1
∑

j=1

1

det(v(1))
det

(

vT(1) 0
0 1

)

det

(

u(1) (v∗
(1))

T eN+1 e j
εTl 0 0

)

e jεTl

= −
N
∑

l=1

N+1
∑

j=1

det

(

vT(1)u(1) eN+1 vT(1)e j
εTl 0 0

)

e jεTl

= −
N
∑

l=1

N+1
∑

j=1

det

(

vTu(1) vT e j
εTl 0

)

e jεTl (by I =
N
∑

n=1

εnε
T
n )

= −
N
∑

l=1

N+1
∑

j=1

det

(

vTu(1)
∑N

n=1(ε
T
n v

T e j )εn
εTl 0

)

e jεTl

= −
N
∑

l=1

N
∑

n=1

det

(

vTu(1) εn
εTl 0

) N+1
∑

j=1

e j (eTj vεn)ε
T
l

= −
N
∑

l=1

N
∑

n=1

det

(

vTu(1) εn
εTl 0

)

vεnεTl (by Eqs. (3.1), (3.3))

= vG [vTu(1)] = v(uT(1)v)
∗,

(3.8)

where {ε1, . . . , εN } represents the standard basis forRN . The identity (3.5b) is proved
similarly. �

Consequently, the relation (3.3) yields the following repeated cross product identity

G[u1, . . . ,uN−1,G[v1, . . . , vN ]] = −GN [u1, . . . ,uN ,G[v1, . . . , vN ]], (3.9)

which generalizes the triple cross product formula u1 × (v1 × v2) = (uT1 v2)v1 −
(uT1 v1)v2 in R

3.
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Lemma 3.4 Under the same hypotheses as in Theorem 2.3, the auxiliary eigenfunc-
tions have the following decompositions:

χ1(z) = s11(z)ψ−3(z) − s13(z)ψ−1(z), z ∈ �−\{iq0},
= det(S22(z))ψ+3(z) − ψ+2(z)S∗

22(z)S23(z), z ∈ R,

(3.10a)

χ2(z) = S11(z)ψ+3(z) − S13(z)ψ+1(z), z ∈ �+\{−iq0},
= det(s22(z))ψ−3(z) − ψ−2(z)s∗22(z)s23(z), z ∈ R,

(3.10b)

(−1)Nχ3(z) = S33(z)ψ+1(z) − S31(z)ψ+3(z), z ∈ �+\{−iq0},
= det(s22(z))ψ−1(z) − ψ−2(z)s∗22(z)s21(z), z ∈ R,

(3.10c)

(−1)Nχ4(z) = s33(z)ψ−1(z) − s31(z)ψ−3(z), z ∈ �−\{iq0},
= det(S22(z))ψ+1(z) − ψ+2(z)S∗

22(z)S21(z), z ∈ R,

(3.10d)

where the (x, t)-dependence is suppressed for brevity.

Proof We suppress the (x, t; z)-dependence for simplicity. As z ∈ �−\{iq0},

χ1 = ei(N−1)θ2G[S̃11ψ̃−1 + ψ̃−2S̃21 + S̃31ψ̃−3, ψ̃−2]
= ei(N−1)θ2 S̃11G[ψ̃−1, ψ̃−2]

+ ei(N−1)θ2 S̃31G[ψ̃−3, ψ̃−2] (by Eqs. (2.80), (2.89), (2.90))

= s11ψ−3 − s13ψ−1.

(3.11)

As z ∈ R,

χ1 = ei(N−1)θ2G[ψ̃+1, ψ̃+1s̃12 + ψ̃+2s̃22 + ψ̃+3s̃32]
= ei(N−1)θ2G[ψ̃+1, ψ̃+2s̃22 + ψ̃+3s̃32] (by Eqs. (3.2), (3.3))

= ei(N−1)θ2GN+1[ψ̃+1, ψ̃+2s̃22 + ψ̃+3s̃32, ψ̃+3].

Indeed,

G [ψ̃+1, ψ̃+2 s̃22 + ψ̃+3s̃32, ψ̃+3] (3.12)

= G

⎡

⎣(ψ̃+1, ψ̃+2, ψ̃+3)

⎛

⎝

1 0 0
0 s̃22 0
0 s̃32 1

⎞

⎠

⎤

⎦ (by Eq. (3.3))

=
⎡

⎣

⎛

⎝(ψ̃+1, ψ̃+2, ψ̃+3)

⎛

⎝

1 0 0
0 s̃22 0
0 s̃32 1

⎞

⎠

⎞

⎠

∗⎤

⎦

T

(by Eq. (3.3))
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= G [ψ̃+1, ψ̃+2, ψ̃+3]
⎛

⎝

1 0 0
0 s̃T22 s̃T32
0 0 1

⎞

⎠

∗

(by Eq. (2.80))

= e−i(N−1)θ2 (ψ+1, γψ+2, ψ+3)

⎛

⎝

det(s̃T22) 0 0
0 (s̃T22)

∗ −(s̃T22)
∗s̃T32

0 0 det(s̃T22)

⎞

⎠ (by Eqs. (2.89), (2.90))

= e−i(N−1)θ2 (ψ+1, γψ+2, ψ+3)

⎛

⎜

⎝

det(S22) 0 0

0 S∗
22 − S∗

22S23
γ

0 0 det(S22)

⎞

⎟

⎠ . (3.13)

Therefore,

χ1 = det(S22)ψ+3 − ψ+2S∗
22S23. (3.14)

The remainder of Lemma 3.4 is proved similarly. �

In the following, we will consider the inverse scattering transformation, which can
be characterized in terms of a 3 × 3 block matrix RH problem.

3.2 Riemann–Hilbert problem

In order to coincide with the focusing Manakov system with NZBCs in Ref. [24], we
define the piecewise meromorphic function M(x, t; z) as

M(x, t; z) =
(

μ−1(x, t; z)
s11(z)

, μ+2(x, t; z), m1(x, t; z)
det(S22(z))

)

, z ∈ D1,

M(x, t; z) =
(

μ+1(x, t; z), μ−2(x, t; z)s−1
22 (z),

m2(x, t; z)
S11(z)

)

, z ∈ D2,

M(x, t; z) =
(

m3(x, t; z)
S33(z)

, μ−2(x, t; z)s−1
22 (z), μ+3(x, t; z)

)

, z ∈ D3,

M(x, t; z) =
(

m4(x, t; z)
det(S22(z))

, μ+2(x, t; z), μ−3(x, t; z)
s33(z)

)

, z ∈ D4.

(3.15)

By virtue of Lemma 3.3, we prove that

Lemma 3.5 Under the same hypotheses as in Theorem 2.3, as z ∈ C\�,

G [M(x, t; z)] = γ (z)M̃(x, t; z)H−1(z), det(M(x, t; z)) = γ (z). (3.16)
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Proof We suppress the (x, t; z)-dependence for simplicity. As z ∈ D1,

G [M] = G

[

μ−1

s11
, μ+2,

m1

det(S22)

]

(by Eqs. (2.72b), (2.82), (2.83))

= G

[

μ−1

s11
, μ+2,G

[

μ̃+1,
μ̃−2

det(S22)

]]

(by Lemma 3.3)

=
⎛

⎝

(

μ̃+1,
μ̃−2

det(S22)

)
((

μT−1
s11

μT+2

)
(

μ̃+1,
μ̃−2

det(S22)

)
)∗

,G
[

μ−1

s11
, μ+2

]

⎞

⎠

(

by Eqs.(2.83), (2.86), (2.90)
)

=
(
(

μ̃+1,
μ̃−2

det(S22)

)
(

γ 0
0 s̃22

det(S22)

)∗
,
m̃2

S̃11

)

=
((

μ̃+1,
μ̃−2

det(S22)

)(

1 0
0 γ det(S22)s̃

−1
22

)

,
m̃2

S̃11

)

=
(

μ̃+1, γ μ̃−2 s̃
−1
22 ,

m̃2

S̃11

)

.

(3.17)

Similarly, we can prove

G

[

μ+1, μ−2s
−1
22 ,

m2

S11

]

=
(

μ̃−1
s̃11

, γ μ̃+2,
m̃1

det(S̃22)

)

, z ∈ D2, (3.18a)

G

[

m3

S33
, μ−2s

−1
22 , μ+3

]

=
(

m̃4

det(S̃22)
, γ μ̃+2,

μ̃−3
s̃33

)

, z ∈ D3, (3.18b)

G

[

m4

det(S22)
, μ+2,

μ−3

s33

]

=
(

m̃3

S̃33
, γ μ̃−2s̃

−1
22 , μ̃+3

)

, z ∈ D4, (3.18c)

which means

G [M(x, t; z)] = γ (z)M̃(x, t; z)H−1(z). (3.19)

For z ∈ D1, the (1, 1)-entry ofMT (x, t; z)G [M(x, t; z)] = det(M(x, t; z))I implies

det(M(x, t; z)) = 1

s11(z)
μT−1(x, t; z)μ̃+1(x, t; z) = γ (z). (3.20)

Similarly, det(M(x, t; z)) = γ (z) holds for z ∈ D2, D3, D4. �
The above lemma, together with the relation (3.3) and the symmetries (2.90), (2.93),
(2.94) and (2.96), implies that the piecewisemeromorphic functionM(x, t; z) satisfies
two symmetries:

Lemma 3.6 Under the same hypotheses as in Theorem 2.3, as z ∈ C\�,

M(x, t; z) = (M†(x, t; z̄))−1H(z), (3.21a)

M(x, t; z) = M(x, t; ẑ)�+(z). (3.21b)
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Set

M±(x, t; z) = ∠
lim
z′→z
z′∈D±

M(x, t; z′), z ∈ �, (3.22)

and “
∠
lim"means non-tangential limit, D+ = D1∪D3, D− = D2∪D4. FromTheorem

2.3, Lemma 2.15 and Corollary 2.20, 2.21, it follows thatM±(x, t; z) is well defined
for z ∈ �.

Furthermore,M(x, t; z) satisfies the growth conditions near the branch points±iq0:

Lemma 3.7 Under the same hypotheses as in Theorem 2.3,

M1(x, t; z) = O(z − iq0), z ∈ D1 → iq0,

M3(x, t; z) = O(z − iq0), z ∈ D4 → iq0,

M1(x, t; z) = O(z + iq0), z ∈ D3 → −iq0,

M3(x, t; z) = O(z + iq0), z ∈ D2 → −iq0.

(3.23)

The piecewise meromorphic function M(x, t; z) has the jump across the oriented
contour � as follows:

Lemma 3.8 Under the same hypotheses as in Theorem 2.3,

M+(x, t; z) = M−(x, t; z)J(x, t; z), z ∈ �, (3.24)

with

J(x, t; z) = ei�(x,t;z)Jl(z)e−i�(x,t;z), z ∈ �l , l = 1, . . . , 4, (3.25)

J1(z) =
⎛

⎜

⎝

1 + ρ
†
1 (z̄)ρ1(z)

γ (z) + ρ̃2(z)ρ2(z)
ρ
†
1 (z̄)

γ (z) ρ̃2(z) − ρ
†
1(z̄)ρ

†
3(z̄)

ρ1(z) I −γ (z)ρ†
3(z̄)

ρ2(z) − ρ3(z)ρ1(z) −ρ3(z) 1 + γ (z)ρ3(z)ρ
†
3(z̄)

⎞

⎟

⎠ ,

(3.26a)

J2(z) =
⎛

⎝

1 − q+
q̄+ ρ̃2(z)ρ̃2(ẑ) 0 ρ̃2(z)

0 I 0
− q+

q̄+ ρ̃2(ẑ) 0 1

⎞

⎠ , (3.26b)

J3(z) = �−1+ (z)J−1
1 (ẑ)�+(z), (3.26c)

J4(z) =
⎛

⎝

1 − q̄+
q+ ρ2(z)ρ2(ẑ) 0 − q̄+

q+ ρ2(ẑ)
0 I 0

ρ2(z) 0 1

⎞

⎠ , (3.26d)
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where the oriented contours �l (l = 1, . . . , 4) are depicted in Fig. 1, ρ1(z), ρ2(z) and
ρ3(z) are defined in (2.98). Meanwhile, the jump matrix J(x, t; ·) ∈ C1(�) and tends
to identity matrix both as z → ∞ and z → 0.

Proof For z ∈ �1, denote J1(z) =
⎛

⎝

J11(z) J12(z) J13(z)
J21(z) J22(z) J23(z)
J31(z) J32(z) J33(z)

⎞

⎠. The jump (3.24) implies

that

ψ−1

s11
= ψ+1J11 + ψ−2s

−1
22 J21 + χ2

S11
J31, (3.27a)

ψ+2 = ψ+1J12 + ψ−2s
−1
22 J22 + χ2

S11
J32,

(3.27b)
χ1

det(S22)
= ψ+1J13 + ψ−2s

−1
22 J23 + χ2

S11
J33. (3.27c)

Substituting (2.63), (2.67), (3.10a) and (3.10b) into (3.27), we find

ψ−1

s11
= (ψ−1S11 + ψ−2S21 + ψ−3S31)J11 + ψ−2s

−1
22 J21 + det(s22)ψ−3 − ψ−2s∗22s23

S11
J31,

(3.28a)

ψ+2 = ψ+1J12 + (ψ+1s12 + ψ+2s22 + ψ+3s32)s
−1
22 J22 + S11ψ+3 − S13ψ+1

S11
J32, (3.28b)

ψ+3 − ψ+2S
−1
22 S23 = ψ+1J13 + (ψ+1s12 + ψ+2s22 + ψ+3s32)s

−1
22 J23 + S11ψ+3 − S13ψ+1

S11
J33.

(3.28c)

Since det(ψ±) �= 0 for z ∈ �1, all columns ofψ± are linearly independent. Comparing
the coefficients yields

J1 =

⎛

⎜

⎜

⎝

1
S11s11

−S11s12+S13s32
S11

s−1
22

S13
S11

+ S11s12+S13s32
S11

s−1
22 S

−1
22 S23

− s22S21+s23S31
s11S11

I −S−1
22 S23

− S31
s11 det(s22)

−s32s
−1
22 1 + s32s

−1
22 S

−1
22 S23

⎞

⎟

⎟

⎠

.

(3.29)

Recalling (2.98), (2.99) and the fact s(z)S(z) = S(z)s(z) = I for z ∈ �1, we derive
(3.26a) obviously. One can obtain (3.26b)-(3.26d) by a similar way, so we omit the
rest of proofs. The statement that the jump matrix J(x, t; ·) ∈ C1(�) and tends to
identity matrix both as z → ∞ and z → 0, follows by Corollary 2.18 and 2.26. �
Remark 3.9 For z ∈ �, note that,

J(x, t; z) = H−1(z)J†(x, t; z̄)H(z), J(x, t; z) = �−1+ (z)J−1(x, t; ẑ)�+(z),

(3.30)
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which exactly coincide with the symmetries (3.21a) and (3.21b) ofM(x, t; z). These
symmetries play a key role in ensuring the existence and uniqueness of the solution
for the RH problem, and the correctness of the reconstruction formula.

Substituting the asymptotics (2.108)−(2.113) of the eigenfunctions and the scat-
tering coefficients into (3.15), we state

Lemma 3.10 Under the same hypotheses as in Lemma 2.22, the piecewise meromor-
phic function M(x, t; z) has the following asymptotic behaviors as z ∈ C\�,

M(x, t; z) = I + O(z−1), z → ∞, (3.31a)

M(x, t; z) = (I + O(z))�+(z), z → 0. (3.31b)

It follows from (2.90) and (2.96) that

Lemma 3.11 Under the same hypotheses as in Theorem 2.3, as z0 ∈ D1, then

s11(z0) = 0 ⇐⇒ S11(z̄0) = 0 ⇐⇒ S33( ˆ̄z0) = 0 ⇐⇒ s33(ẑ0) = 0, (3.32a)

det(S22(z0)) = 0 ⇐⇒ det(s22(z̄0)) = 0 ⇐⇒ det(s22( ˆ̄z0)) = 0 ⇐⇒ det(S22(ẑ0)) = 0.

(3.32b)

The definition (3.15) implies that M1(x, t; z) can only have singularities at the zeros
of s11(z) and det(S22(z)). Similarly, M2(x, t; z) can only have singularities at the
zeros of S11(z) and det(s22(z)), etc. Lemma 3.11 implies that these zeros appear in
symmetric quartets: z0, z̄0, ẑ0, ˆ̄z0. Therefore, we only need to study the zeros of s11(z)
and det(S22(z)) for z ∈ D1.

Assumption 3.12 Assume that s11(z) has N1 + N2 simple zeros {wl}N1
1 and {ym}N2

1 in

D1, det(S22(z)) has N2 + N3 simple zeros {ym}N2
1 and {zn}N3

1 in D1, where {wl}N1
1 ∩

{zn}N3
1 = ∅, {ym}N2

1 are the common zeros of s11(z) and det(S22(z)). Assume that
none of these zeros occurs in �.

Lemma 3.13 Under the same hypotheses as in Theorem 2.3, if w is the simple pole of
M(x, t; z), then

Res
ŵ

M(x, t; z) = q20
w2

(

Res
w

M(x, t; z)
)

�+(ŵ). (3.33)

Furthermore, suppose that there exists a matrix A such that Res
w

M(x, t; z) =
M(x, t;w)A, then

Res
w̄

M(x, t; z) = −M(x, t; w̄)H−1(w̄)A†H(w̄). (3.34)
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Proof Since the pole is simple,

Res
ŵ

M(x, t; z) = [M(x, t; z)(z − ŵ)]∣∣z=ŵ
(by Eq. (3.21b))

= [M(x, t; ẑ)�+(z)(z − ŵ)]∣∣ẑ=w

=
[

− z

w
M(x, t; ẑ)�+(z)(ẑ − w)

]∣

∣

∣

ẑ=w

= q20
w2

(

Res
w

M(x, t; z)
)

�+(ŵ).

(3.35)

Suppose

M(x, t; z) = M−1(x, t)

z − w̄
+ M0(x, t) + O(z − w̄), z → w̄, (3.36a)

M†(x, t; z̄) = M̌−1(x, t)

z − w̄
+ M̌0(x, t) + O(z − w̄), z → w̄.

(3.36b)

Indeed,

M̌−1(x, t) = [(z − w̄)M†(x, t; z̄)]|z=w̄ = [(z̄ − w)M(x, t; z̄)]† |z̄=w

=
(

Res
w

M(x, t; z)
)† = A†M†(x, t;w).

(3.37)

The symmetry (3.21a) implies that

M−1(x, t)H−1(z)M̌−1(x, t) = 0, (3.38)

M0(x, t)H−1(z)M̌−1(x, t) + M−1(x, t)H−1(z)M̌0(x, t) = 0. (3.39)

Substituting (3.36) into (3.39), we obtain

0 =
(

M(x, t; z) − M−1(x, t)

z − w̄
+ O(z − w̄)

)

H−1(z)M̌−1(x, t)

+ M−1(x, t)H−1(z)

(

M†(x, t; z̄) − M̌−1(x, t)

z − w̄
+ O(z − w̄)

)

(by (3.38))

= M(x, t; z)H−1(z)M̌−1(x, t) + M−1(x, t)H−1(z)M†(x, t; z̄) + O(z − w̄).

(3.40)

Setting z = w̄, combining (3.21a) with (3.37), we obtain

Res
w̄

M(x, t; z) = M−1(x, t) = −M(x, t; w̄)H−1(w̄)A†H(w̄). (3.41)

�
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Lemma 3.14 Suppose A(z) is a s-order square matrix, w is the simple zero of
det(A(z)), then

rank(A(w)) = s − 1, rank(A∗(w)) = 1. (3.42)

Proof The lemma follows trivially from the fact

˙det(A(w)) = trace(Ȧ(w)A∗(w)), (3.43)

where “·" represents the differential operator respect to z. If not, i.e., rank(A(w)) ≤
s − 2, which implies ˙det(A(w)) = 0, this a contradiction. �
Lemma 3.15 Under the same hypotheses as in Theorem 2.3, and suppose that the set
of the singularities are as in Assumption 3.12, the following residue conditions hold:

Res
wl

M(x, t; z) = (ale
−2iθ1(x,t;wl )M3(x, t;wl), 0, 0), (3.44a)

Res
w̄l

M(x, t; z) = (0, 0,−āle
2iθ1(x,t;w̄l )M1(x, t; w̄l)), (3.44b)

Res
ˆ̄wl

M(x, t; z) =
(

− q2+
w̄2
l

āle
2iθ1(x,t;w̄l )M3(x, t; ˆ̄wl), 0, 0

)

, (3.44c)

Res
ŵl

M(x, t; z) =
(

0, 0,
q̄2+
w2
l

ale
−2iθ1(x,t;wl )M1(x, t; ŵl)

)

, (3.44d)

Res
ym

M(x, t; z) =
(

ei(θ2−θ1)(x,t;ym )M2(x, t; ym)Bm, 0, 0
)

, (3.45a)

Res
ȳm

M(x, t; z) =
(

0,−ei(θ1−θ2)(x,t;ȳm)

γ (ȳm)
M1(x, t; ȳm)B†

m, 0
)

, (3.45b)

Res
ˆ̄ym

M(x, t; z) =
(

0,− iq+ei(θ1−θ2)(x,t;ȳm )

ȳmγ ( ˆ̄ym)
M3(x, t; ˆ̄ym)B†

m, 0
)

, (3.45c)

Res
ŷm

M(x, t; z) =
(

0, 0,− iq̄+ei(θ2−θ1)(x,t;ym )

ym
M2(x, t; ŷm)Bm

)

, (3.45d)

Res
zn

M(x, t; z) =
(

0, 0, ei(θ1+θ2)(x,t;zn)M2(x, t; zn)Cn

)

, (3.46a)

Res
z̄n

M(x, t; z) =
(

0,−e−i(θ1+θ2)(x,t;z̄n)

γ (z̄n)
M3(x, t; z̄n)C†

n, 0
)

, (3.46b)

Res
ˆ̄zn

M(x, t; z) =
(

0,− iq̄+e−i(θ1+θ2)(x,t;z̄n)

z̄nγ ( ˆ̄zn)
M1(x, t; ˆ̄zn)C†

n, 0
)

, (3.46c)

Res
ẑn

M(x, t; z) =
(

− iq+ei(θ1+θ2)(x,t;zn)

zn
M2(x, t; ẑn)Cn, 0, 0

)

, (3.46d)
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where M(x, t; z) = (M1(x, t; z),M2(x, t; z),M3(x, t; z)), al , Bm, Cn are constants
or (N − 1) dimensional constant vectors, l = 1, . . . , N1, m = 1, . . . , N2, n =
1, . . . , N3.

Proof By virtue of Lemma 3.13 and the symmetry (3.21b), we only need to prove
(3.44a), (3.45a) and (3.46a). In the following proofs, we omit the (x, t; z)-dependence
for brevity.

As z = ωl . It follows from (3.15) and (3.16) that

G (μ̃+1, μ̃−2s̃
−1
22 , m̃2) =

(

μ−1, γμ+2s11,
m1

det(S22)

)

=
(

μ−1, 0,
m1

det(S22)

)

,

(3.47)

μ̃+1 = (−1)NG
[

μ+2,
m1

det(S22)

]

, det(μ̃+1, μ̃−2s̃
−1
22 , m̃2) = γ S̃11 = 0. (3.48)

Consequently, rank(μ̃+1, μ̃−2s̃
−1
22 , m̃2) ≤ N and m1

det(S22)
�= 0 (if not, μ̃+1 = 0, this is

a contradiction). Combining with Lemma 3.2 yields rank
(

μ−1, 0,
m1

det(S22)

)

= 1, i.e.,

there exists a constant bl independent of (x, t; z) such that μ−1 = ble−2iθ1 m1
det(S22)

.

Setting al = bl
ṡ11

, we complete the proof of (3.44a).
As z = ym . It follows from (3.15) and (3.16) that

G

(

μ̃+1, μ̃−2,
m̃2

S̃11

)

=
(

det(S22)μ−1

s11
, γμ+2S∗

22,m1

)

, (3.49)

G

(

μ−1, μ+2,
m1

s11

)

=
(

det(S22)μ̃+1

s11
, γ μ̃−2s̃∗22, m̃2

)

, (3.50)

det

(

μ̃+1, μ̃−2,
m̃2

S̃11

)

= γ det(S22) = 0, det

(

μ−1, μ+2,
m1

s11

)

= 0. (3.51)

Since μ+2 and μ̃−2 are full column rank, combining with Lemma 3.2 and Lemma
3.14 yields

1 ≥ rank

(

det(S22)μ−1

s11
, γμ+2S∗

22,m1

)

≥ rank
(

μ+2S∗
22

) = 1, (3.52)

1 ≥ rank

(

det(S22)μ̃+1

s11
, γ μ̃−2s̃∗22, m̃2

)

≥ rank
(

μ̃−2s̃∗22
) = 1, (3.53)

i.e., there exists a constant vector αm independent of (x, t; z) such that μ−1 =
ei(θ2−θ1)μ+2S∗

22αm . Furthermore, (3.49) and (3.53) imply m1 = 0. Setting Bm =
S∗
22αm
ṡ11

, we complete the proof of (3.45a).
As z = zn , it follows from (3.15) and (3.16) that

G

(

μ̃+1, μ̃−2,
m̃2

S̃11

)

=
(

det(S22)μ−1

s11
, γμ+2S∗

22,m1

)

= (

0, γμ+2S∗
22,m1

)

,

(3.54)
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det

(

μ̃+1, μ̃−2,
m̃2

S̃11

)

= γ det(S22) = 0. (3.55)

Since μ+2 is full column rank, combining with Lemma 3.2 and Lemma 3.14 yields

1 ≥ rank
(

0, γμ+2S∗
22,m1

) ≥ rank
(

μ+2S∗
22

) = 1, (3.56)

i.e., there exists a constant vector βn independent of (x, t; z) such that m1 =
ei(θ1+θ2)μ+2S∗

22βn . Setting Cn = S∗
22βn˙det(S22) , we complete the proof of (3.46a). �

The inverse problem can be formulated in terms of the following:

Riemann–Hilbert Problem 3.16 Find a matrix-valued function M(x, t; z) which is
sectionally meromorphic in C\�, has simple poles as in Assumption 3.12, satisfies
the growth conditions as in Lemma 3.7, the jump conditions as in Lemma 3.8, the
asymptotic behaviors as in Lemma 3.10 and the residue conditions as in Lemma 3.15.

Theorem 3.17 Under the same hypotheses as in Lemma 2.22, the matrix M(x, t; z)
defined by (3.15) satisfies Riemann–Hilbert problem 3.16.

3.3 Reconstruction of potential

Lemma 3.18 (Vanishing Lemma) The regular RH problem for M(x, t; z) obtained
from RH problem 3.16 by replacing the asymptotic conditions in Lemma 3.10 with

M(x, t; z) = O(z−1), z → ∞,

M(x, t; z) = O(1), z → 0,

has only the zero solution.

Proof LetH(x, t; z) = M(x, t; z)H−1(z)M†(x, t; z̄), it follows from the growth con-
ditions (3.23) that H(x, t; z) is well defined at z = ±iq0. Also,

H+(x, t; z) = M−(x, t; z)J1(x, t; z)H−1(z)M†
−(x, t; z̄), z ∈ �1,

(3.57a)

H−(x, t; z) = M−(x, t; z)H−1(z)J†1(x, t; z̄)M†
−(x, t; z̄), z ∈ �1,

(3.57b)

H+(x, t; z) = M−(x, t; z)J4(x, t; z)H−1(z)M†
−(x, t; z̄), z ∈ �4,

(3.57c)

H−(x, t; z) = M−(x, t; z)H−1(z)J†2(x, t; z̄)M†
−(x, t; z̄), z ∈ �4,

(3.57d)

where Jn(x, t; z) = J(x, t; z)|�n , n = 1, . . . , 4. The above equations implyH(x, t; z)
has no jump across �1 ∪ �4, similarly for �2 ∪ �3. Since H(x, t; z) is analytic for
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z ∈ C\�, also approaches 0 as z → ∞, by Liouville’s theorem, we state

H(x, t; z) ≡ 0. (3.58)

From (3.26) and (3.30), we find J1(x, t; z)H−1(z) is positive definite for z ∈ �1.
Combining with (3.57a) implies M−(x, t; z) = 0 for z ∈ �1, similarly for z ∈ �3.
As a consequence, M(x, t; z) = 0 for z ∈ R, which implies M(x, t; z) has no jump
across R. As is known to all, the zeros of the analytic function are isolated, thus
M(x, t; z) ≡ 0. �

Now, we rewrite any (N + 1) × (N + 1) matrix A in the following block form

A =
(

A11 A12 A13
A21 A22 A23

)

, (3.59)

where A11 and A13 are scalar.

Theorem 3.19 (Reconstruction formula) The solutionM(x, t; z) of RH problem 3.16
exists uniquely, thus

q(x, t) = −i lim
z→∞ zM21(x, t; z), (3.60)

solves the N-component focusing NLS equation (1.2).

Proof As we know that M(x, t; z) may have some poles, however, this singular RH
problem can be mapped to a regular one (see Ref. [30]). The solution of the regu-
lar RH problem 3.16 (has no singularities) exists uniquely if and only if Vanishing
Lemma 3.18 holds (see Refs. [27, 28]). In absence of the possible poles, based on
the symmetry properties of the jump matrix J(x, t; z), one obtains that M(x, t; z),
(M†(x, t; z̄))−1H(z) andM(x, t; ẑ)�+(z) satisfy the same RH problem. Taking into
account the uniqueness, we conclude

M(x, t; z) = (M†(x, t; z̄))−1H(z) = M(x, t; ẑ)�+(z). (3.61)

In the following, we shall prove that q(x, t) defined by (3.60) solves the N-component
focusing NLS (1.2) by virtue of the dressing method [29]. Set

A (x, t; z) = ∂xM(x, t; z) − U(x, t; z)M(x, t; z) + iM(x, t; z)�(z),

B(x, t; z) = ∂tM(x, t; z) − V(x, t; z)M(x, t; z) − iM(x, t; z)�(z),

where U(x, t; z) and V(x, t; z) are defined by (2.2), �(z) = diag(−2kλ,

k2 + λ2, . . . , k2 + λ2
︸ ︷︷ ︸

N−1

, 2kλ). Suppose q(x, t) is defined by (3.60), and M(x, t; z) has

the asymptotic expansion forms

M(x, t; z) = I + M1(x, t)

z
+ M2(x, t)

z2
+ O

(

z−3
)

, z → ∞, (3.63)
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M(x, t; z) =
(

I + M1(x, t)z + M2(x, t)z
2 + O(z3)

)

�+(z), z → 0.

(3.64)

combining with the symmetries in (3.61), we conclude

Q(x, t) = i

2
[σ,M1(x, t)], M1(x, t) = −q20M1(x, t), M2(x, t) = q40M2(x, t).

(3.65)

Direct calculations yield A (x, t; z) satisfies the homogeneous RH problem

A+(x, t; z) = A−(x, t; z)J(x, t; z), z ∈ �,

A (x, t; z) = O(z−1), z → ∞,

A (x, t; z) = O(1), z → 0, (3.66)

which by Lemma 3.18 implies

A (x, t; z) ≡ 0. (3.67)

Furthermore, substituting the asymptotic expansion (3.63) into (3.67), and comparing
the coefficients of O(z−1), we obtain

[σ, ∂xM1(x, t)] =
[

σ,− i

2
[σ,M2(x, t)] + Q(x, t)M1(x, t)

]

. (3.68)

It follows from (3.65) and (3.68) thatB(x, t; z) satisfies the homogeneous RH prob-
lem

B+(x, t; z) = B−(x, t; z)J(x, t; z), z ∈ �,

B(x, t; z) = O(z−1), z → ∞,

B(x, t; z) = O(1), z → 0, (3.69)

which also by Lemma 3.18 implies that

B(x, t; z) ≡ 0. (3.70)

The compatibility conditionofEqs. (3.67) and (3.70) yields the functionq(x, t)defined
by (3.60) and solves the N-component focusing NLS equation (1.2). �
Remark 3.20 In general, if the symmetries of jump matrix, the residue conditions and
the asymptotic conditions are sufficient, the above theorem holds naturally by (3.15).
In order to verify those symmetries that have been found are adequate, one must prove
the reconstruction formula. In other words, the potential also can be expressed in
terms of M12(x, t; z), the consistency of two reconstructions should be ensured by
symmetries.
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Indeed, RH problem 3.16 can be regularized by subtracting any pole contributions
and the leading order asymptotic behavior at infinity and zero:

M(x, t; z) = M(x, t; z) − E+(z)

−
N1
∑

l=1

⎛

⎝

Res
wl

M

z − wl
+

Res
w̄l

M

z − w̄l
+

Res
ŵl

M

z − ŵl
+

Res
ˆ̄wl

M

z − ˆ̄wl

⎞

⎠

−
N2
∑

m=1

⎛

⎜

⎝

Res
ym

M

z − ym
+

Res
ȳm

M

z − ȳm
+

Res
ŷm

M

z − ŷm
+

Res
ˆ̄ym

M

z − ˆ̄ym

⎞

⎟

⎠

−
N3
∑

n=1

⎛

⎝

Res
zn

M

z − zn
+

Res
z̄n

M

z − z̄n
+

Res
ẑn

M

z − ẑn
+

Res
ˆ̄zn

M

z − ˆ̄zn

⎞

⎠ .

(3.71)

Consequently, the piecewise holomorphic function M(x, t; z) satisfies

M+(x, t, ; z) − M−(x, t; z) = M−(x, t; z)(J(x, t; z) − I), z ∈ �, (3.72)

M(x, t; z) → 0, z → ∞. (3.73)

Using the Plemelj–Sokhotski formula, we get

M(x, t; z) = 1

2π i

∫

�

M−(x, t; ζ )(J(x, t; ζ ) − I)
ζ − z

dζ. (3.74)

Equivalently, RH problem 3.16 can be solved by the system of algebraic-integral
equations:

M1(z) = E+1(z) +
N1
∑

l=1

(

ale−2iθ1(wl )M3(wl)

z − wl
− q2+āle2iθ1(w̄l )M3( ˆ̄wl)

w̄2
l (z − ˆ̄wl)

)

+
N2
∑

m=1

ei(θ2−θ1)(ym)M2(ym)Bm

z − ym
− iq+

N3
∑

n=1

ei(θ1+θ2)(zn)M2(ẑn)Cn

zn(z − ẑn)

(3.75a)

+ 1

2π i

∫

�

M−(x, t; ζ )(J(x, t; ζ ) − I)1
ζ − z

dζ,

M2(z) = E+2(z) + 1

2π i

∫

�

M−(x, t; ζ )(J(x, t; ζ ) − I)2
ζ − z

dζ

−
N2
∑

m=1

(

ei(θ1−θ2)(ȳm)M1(ȳm)B†
m

γ (ȳm)(z − ȳm)
+ iq+ei(θ1−θ2)(ȳm )M3( ˆ̄ym)B†

m

ȳmγ ( ˆ̄ym)(z − ˆ̄ym)

)

(3.75b)
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−
N3
∑

n=1

(

e−i(θ1+θ2)(z̄n)M3(z̄n)C
†
n

γ (z̄n)(z − z̄n)
+ iq̄+e−i(θ1+θ2)(z̄n)M1( ˆ̄zn)C†

n

z̄nγ ( ˆ̄zn)(z − ˆ̄zn)

)

,

M3(z) = E+3(z) +
N1
∑

l=1

(

− āle2iθ1(w̄l )M1(w̄l)

z − w̄l
+ q̄2+ale−2iθ1(wl )M1(ŵl)

w2
l (z − ŵl)

)

− i q̄+
N2
∑

m=1

ei(θ2−θ1)(ym)M2(ŷm)Bm

ym(z − ŷm)
+

N3
∑

n=1

ei(θ1+θ2)(zn)M2(zn)Cn

z − zn
(3.75c)

+ 1

2π i

∫

�

M−(x, t; ζ )(J(x, t; ζ ) − I)3
ζ − z

dζ

Corollary 3.21 The solution of the N-component focusing NLS equation (1.2) with
NZBCs (1.3) is reconstructed as

q(x, t) = q+ − i
N1
∑

l=1

(

ale
−2iθ1(wl )M23(wl) − q2+

w̄2
l

āle
2iθ1(w̄l )M23( ˆ̄wl)

)

−i
N2
∑

m=1

ei(θ2−θ1)(ym)M22(ym)Bm −
N3
∑

n=1

q+
zn

ei(θ1+θ2)(zn)M22(ẑn)Cn

+ 1

2π

∫

�

[

M−(x, t; ζ )(J(x, t; ζ ) − I)
]

21 dζ. (3.76)

4 Reflectionless potential and exact solutions

We now reconstruct the potential q(x, t) explicitly in the reflectionless case, i.e.,
ρ1(z) = 0 and ρ2(z) = 0. In this case, there is no jump across the contour �. As a
consequence, the inverse problem reduces to an algebraic system

M1(z) = E+1(z) +
2N1
∑

l=1

αlM3(ωl)

z − ωl
+

N2+N3
∑

m=1

M2(λm)Bm

z − λm
, z = ω̄ j , λ̄n, (4.1a)

M2(z) = E+2(z) −
N2+N3
∑

m=1

M1(λ̄m)B†
m

z − λ̄m + ẑ − ˆ̄λm
, z = λn, (4.1b)

M3(z) = E+3(z) −
2N1
∑

l=1

ᾱlM1(ω̄l)

z − ω̄l
−

N2+N3
∑

m=1

iq̄+M2(λm)Bm

λm(z − λ̂m)
, z = ω j ,

(4.1c)

where

ωl =
{

wl , l = 1, . . . , N1,

ˆ̄wl−N1, l = N1 + 1, . . . , 2N1,
(4.2)
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αl(x, t) =
⎧

⎨

⎩

ale−2iθ1(x,t;ωl ), l = 1, . . . , N1,

−ω2
l

q̄2+
āl−N1e

−2iθ1(x,t;ωl ), l = N1 + 1, . . . , 2N1,
(4.3)

λm =
{

ym, m = 1, . . . , N2,

ẑm−N2 , m = N2 + 1, . . . , N2 + N3,
(4.4)

Bm(x, t) =
{

ei(θ2−θ1)(x,t;λm )Bm, m = 1, . . . , N2,
iλm
q̄+ ei(θ2−θ1)(x,t;λm )Cm−N2 , m = N2 + 1, . . . , N2 + N3.

(4.5)

4.1 Reconstruction

It follows trivially from (3.76) that

Theorem 4.1 In the reflectionless case, the solution of the N-component focusing NLS
(1.2) with NZBCs (1.3) can be expressed by

q(x, t) = q+ − i
2N1
∑

l=1

αl(x, t)M23(x, t;ωl) − i
N2+N3
∑

m=1

M22(x, t; λm)Bm(x, t).

(4.6)

Substituting (4.1a) into (4.1b) and (4.1c), we get the following algebraic system for
{α jM3(ω j )}2N1

1 and {M2(λn)Bn}N2+N3
1 :

M2(λn)Bn = E+2(λn)Bn −
N2+N3
∑

m=1

E+1(λ̄m)B†
mBn

λn − λ̄m + λ̂n − ˆ̄λm

−
N2+N3
∑

m=1

N2+N3
∑

j=1

(B†
mBn)M2(λ j )B j

(λn − λ̄m + λ̂n − ˆ̄λm)(λ̄m − λ j )
(4.7a)

−
N2+N3
∑

m=1

2N1
∑

l=1

(B†
mBn)αlM3(ωl)

(λn − λ̄m + λ̂n − ˆ̄λm)(λ̄m − ωl)
,

α jM3(ω j ) = α jE+3(ω j ) −
2N1
∑

l=1

α j ᾱlE+1(ω̄l)

ω j − ω̄l
−

2N1
∑

l=1

2N1
∑

h=1

α j ᾱlαhM3(ωh)

(ω j − ω̄l)(ω̄l − ωh)

−
2N1
∑

l=1

N2+N3
∑

m=1

α j ᾱlM2(λm)Bm

(ω j − ω̄l)(ω̄l − λm)
−

N2+N3
∑

m=1

iq̄+α jM2(λm)Bm

λm(ω j − λ̂m)
. (4.7b)

Solving this system, combining with Theorem 4.1, we find

Corollary 4.2 In the reflectionless case, the solution of the N-component focusing NLS
(1.2) with NZBCs (1.3) can be written

q(x, t) = q+ − iF(x, t)(I + G(x, t))−11N , (4.8)
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where the N × N matrix-valued function G(x, t) = (gmn)N ×N , the N × N
matrix-valued function F(x, t) = (F1, . . . ,FN ), the N -dimensional column vector
1N = (1, . . . , 1)T , N = 2N1 + N2 + N3,

gmn =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∑2N1
l=1

ᾱlαn
(ωm−ω̄l )(ω̄l−ωn)

, 1 ≤ m, n ≤ 2N1,

iq̄+αn

q20+ωnλm−2N1
+∑2N1

l=1
ᾱlαn

(λm−2N1−ω̄l )(ω̄l−ωn)
, 1 ≤ n ≤ 2N1 < m ≤ N ,

∑N2+N3
l=1

(B†
l Bn−2N1 )

(ωm−λ̄l )(λ̄l−λn−2N1+ˆ̄λl−λ̂n−2N1 )
, 1 ≤ m ≤ 2N1 < n ≤ N ,

∑N2+N3
l=1

(B†
l Bn−2N1 )

(λm−2N1−λ̄l )(λ̄l−λn−2N1+ˆ̄λl−λ̂n−2N1 )
, 2N1 < m, n ≤ N ,

(4.9)

F j =

⎧

⎪
⎨

⎪
⎩

α jE+23(ω j ) −∑2N1
l=1

α j ᾱlE+21(ω̄l )

ω j−ω̄l
, 1 ≤ j ≤ 2N1,

E+22(λ j−2N1)B j−2N1 −∑N2+N3
m=1

E+21(λ̄m )B†
mB j−2N1

λ j−2N1−λ̄m+λ̂ j−2N1−ˆ̄λm
, 2N1 < j ≤ N .

(4.10)

Remark 4.3 As N2 = N3 = 0, i.e., N = 2N1, it follows from (4.10) that the (m, n)-
element of the matrix F(x, t) is zero form = 1, . . . , N −1. Consequently, q1 = · · · =
qN−1 = 0.

4.2 Special exact solution

In the following, we explore the different possibilities for the reflectionless solution in
the 3-component case. Without loss of generality, we consider q+ = 1, q− = −1, i.e.,
q+ = (0, 0, 1)T , q− = (0, 0,−1)T . In the reflectionless case, similar to the Manakov
system [24], we find that

s33(z) =
N1
∏

l=1

z − w̄l

z − wl

z − ŵl

z − ˆ̄wl

N2
∏

m=1

z − ŷm

z − ˆ̄ym
N3
∏

n=1

z − zn
z − z̄n

. (4.11)

Setting z → 0 in the above equation, and comparing the asymptotics in (2.113) yields

2
N1
∑

l=1

argwl +
N2
∑

m=1

arg ym −
N3
∑

n=1

arg zn = π

2
+ κπ, κ ∈ Z. (4.12)

Case (i) N2 = 0, N3 = 0 (Fig. 2); Since q1 = q2 = 0, we only consider the dynamical
evolutions of q3.
Case (ii) N1 = 1, N2 = 1, N3 = 0 (Fig. 3);
Case (iii) N1 = 0, N2 = 1, N3 = 1 (Fig. 4);
Case (iv) N1 = 1, N2 = 1, N3 = 1 (Fig. 5);
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Fig. 2 Left: |q3| with N1 = 1, w1 = 1+ i, a1 = 1; Right: |q3| with N1 = 2, w1 = 1+ i, w2 = 2i, a1 = 1,
a2 = i

Fig. 3 The dynamical evolutions of the solution q with w1 = 4i
3 , y1 = 3i

2 , a1 = 1, B1 = (i, 2 + i)T

Fig. 4 The dynamical evolutions of the solution q with y1 = −2 + 3i
2 , z1 = 18+24i

25 , B1 = (1, i)T ,

C1 = z1(−1, i)T

Fig. 5 The dynamical evolutions of the solution q with ω1 = 3
2 i, y1 = 3

2 + 2i, z1 = 18i−24
25 , α1 = 1,

B1 = (i, 1)T , C1 = z1(i, −1)T
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Remark 4.4 By virtue of the numerical software “Mathematica,” we have verified that
all the expressions for q(x, t) in cases (i)− (iv) solve the 3-component focusing NLS
equation (1.2) with limx→±∞ q(x, t) = (0, 0,±1)T .

5 Conclusion and outlook

As it has shown that this work is more involved than the scalar case and the 2-
component case, mainly in understanding the algebraic structure thoroughly. In this
paper, we have introduced the idea of “block" and the generalized cross product in
multi-dimensional space to develop the IST for the N-component focusing NLS with
NZBCs and have characterized the inverse problem in terms of a 3×3 blockmatrix RH
problem.Moreover, by virtue of the symmetries of the scattering data, we have verified
the existence and uniqueness of solution for the above RH problem and have proved
that the reconstruction potential q(x, t) solves the N-component focusing NLS. We
expect these ideas to be useful in investigating the other multi-component integrable
equations. However, due to lacking N − 1 analytic eigenfunctions rather than one in
each sector, those ideas in this work can not be applied to the IST for the N -component
defocusing NLS equation with NZBCs in a straightforward way. We should remark
that the IST for the multi-component defocusing NLS equation with NZBCs was
recently established in Ref. [25, 26]. In spite of some ideas can be extended to the
N -component case, a detailed treatment of the symmetries is still open. We believe
that the idea of “block” would be useful to characterize the symmetries. In this paper,
we consider the case of a solution that tends to q0eiθ± as x → ±∞, where q0 is a fixed
vector. This is a special case, the problem with general nonzero boundary condition
is left as a topic for future work.

Once the long-time asymptotics for the focusing NLS with NZBCs have been
analyzed in Refs. [31–34] by virtue of the nonlinear steepest descend method [35],
one could try to investigate the 2-component case. Therefore, it would be an interesting
subject to relate our previous work [36] on the 2-component coupled case with ZBCs
to the techniques in this paper and Refs. [31–33].
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19. Biondini, G., Kovačič, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation
with nonzero boundary conditions. J. Math. Phys. 55, 031506 (2014)

20. Bilman, D., Miller, P.D.: A robust inverse scattering transform for the focusing nonlinear Schrödinger
equation. Commun. Pure Appl. Math. 72, 1722–1805 (2019)

21. Biondini, G., Lottes, J., Mantzavinos, D.: Inverse scattering transform for the focusing nonlinear
Schrödinger equation with counterpropagating flows. Stud. Appl. Math. 146, 371–439 (2021)

22. Prinari, B., Ablowitz, M.J., Biondini, G.: Inverse scattering transform for the vector nonlinear
Schrödinger equation with nonvanishing boundary conditions. J. Math. Phys. 47, 063508 (2006)

23. Biondini, G., Kraus, D.: Inverse scattering transform for the defocusingManakov system with nonzero
boundary conditions. SIAM J. Math. Anal. 47, 706–757 (2015)
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