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Abstract

As mentioned in Biondini et al. (Commun Math Phys 348:475-533, 2016), the com-
plete theory of the inverse scattering transform for the multi-component focusing
nonlinear Schrodinger equation with nonzero boundary conditions still remains open.
In this paper, we attempt to investigate the above problem with a particular class
of nonzero boundary conditions. The direct problem is shown to be well posed for
potential q such that q(-,7) — q+ lies in the L' (R*) space. By introducing two
modified Lax pairs and generalized cross product operations in C¥*!, the analytic-
ity properties and the symmetries of a complete set of eigenfunctions and scattering
data are obtained. The inverse problem is characterized in terms of a 3 x 3 block
matrix Riemann-Hilbert problem, whose solution exists uniquely due to the growth
conditions at branch points and the symmetries of jump matrices, residue conditions
and asymptotics at two infinities of Riemann surface. In the reflectionless case, some
special solutions including soliton and breather are displayed.
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1 Introduction

As one of the most important theories in the nonlinear integrable PDEs over the last 50
years, the inverse scattering transform (IST) was pursued mostly for the zero boundary
conditions (ZBCs), i.e., the potentials vanish for large spatial variable. However, recent
studies have shown that the nonzero boundary conditions (NZBCs) are relevant to the
research of modulation instability and the generation mechanism of rogue wave [1-4].
From a mathematical viewpoint, such problems are less well characterized. Following
that, a nature issue is to formulate the IST in the NZBCs cases. Specifically, we focus
on the N-component nonlinear Schrédinger (NLS) equation

iq + qer +2kqq’'q =0, q=(q1,....qn)", (1.1)

where k = %1 means the focusing (resp. defocusing) case. It is well known that
the scalar version is referred to as the celebrated NLS equation and the 2-component
case as the Manakov system. There are two main motivations for studying the multi-
component case.

On the one hand, the N-component NLS equation not only possesses some remark-
ably rich symmetries but also arises in many physical fields such as nonlinear optics,
fluid mechanics, plasmas physics and multi-component Bose-Einstein condensates
[5-8]. On the other hand, let us recall the research works about the IST for the N-
component NLS equation. The scalar case with ZBCs was developed in Ref. [9] (see
also Refs. [10-13]), the 2-component case was dealt in Ref. [7], and the theory can be
extended to any multi-component NLS equations with ZBCs in a straightforward way
[14, 15]. Unlike the case of ZBCs, the IST with NZBCs is more complicated because
the spectral parameter lies in the two-sheeted Riemann surface rather than the complex
plane. The early work for the NLS equation with NZBCs was shown in Refs. [16, 17]
and was revisited in Refs. [18-21]. The work about the defocusing Manakov system
was accomplished in Ref. [22] and developed in Ref. [23]. The focusing Manakov
system with NZBC was studied in Ref. [24] using similar methods. By generaliz-
ing the tensor approach, important advance in the multi-component defocusing NLS
equation with NZBCs was outlined in Ref. [25]. Recently, a more rigorous analysis
of the IST for the 3-component defocusing NLS equation with NZBC was presented
in Ref. [26], and it was pointed out that for the multi-component focusing NLS equa-
tion with NZBCs, the complete theory of the inverse scattering transformation is still
open. Unfortunately, the above methods can not be applied directly to the arbitrary
N-component focusing NLS equation with NZBCs. Despite several development has
been established in Refs. [23-26], there are still some crucial problems, in which the
most important ones are the symmetry of jump matrix, the existence and uniqueness
of the solution for Riemann—Hilbert (RH) problem, the verification of reconstruction
formula. Furthermore, it is well known that the focusing NLS equation and the defo-
cusing NLS equation are fundamentally different, the IST for the focusing case is much
more involved than the defocusing case because there are four different fundamental
domains of analyticity instead of two.
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The purpose of this work is to overcome some challenging difficulties and to present
a characterization of the IST for the N-component focusing NLS equation

iq + e +299°q — 259 =0, N >2, qo>0, (1.2)
with NZBCs for large |x|:

lim q(x,1) = q+ = qoe'®™, forany fixedr € R, (1.3)
x—+o0

where qq is a constant complex valued vector of modulus g, 6+ € [0, 27). Indeed, by
two gauge transformations q(x, ) — q(x, t)e‘ﬁqét and q(x,7) — qoq(qox,qgt),
Eq. (1.2) can be converted into the N-component focusing NLS equation (1.1) and the
multi-component Gross—Pitaevskii equation iq, +q +2qq’q—2q = 0, respectively.
In addition, given the U (N) invariance of Eq. (1.2), without loss of generality, qo can
be chosen to be the form qp = (0, ..., 0, go)".

N-1

As it will be shown, when it comes to focusing the N-component focusing NLS
equation with NZBCs, the analysis process becomes extremely difficult, so we have
to introduce some new concepts and new tools. The innovation of this paper is mainly
reflected in the following aspects: (i) Instead of the method in Ref. [18], two modified
Lax pairs are first used to set up the Volterra integral equations and investigate the
analyticity properties of the scattering matrix entries. In addition, compared with
Ref. [18], a slightly weaker nonzero boundary condition is required in this context.
(i) Instead of the tensor approach, a generalized cross product operation in CV*1,
consistent with the common cross product operation in R, is introduced to generate
the auxiliary eigenfunctions. The decompositions of the auxiliary eigenfunctions and
the symmetries of a complete set of eigenfunctions are established by virtue of the
adjugate matrix. Especially, some essential identities, which may be also useful to the
ISTs, are proved for the first time. (iii) Unlike the cases with ZBCs or the scalar cases
with NZBCs, it does not seem obvious for the multi-component cases with NZBCs
that the inverse problem can be solved uniquely. In this paper, the existence and the
uniqueness of the solution for the inverse problem are proved by virtue of Zhou’s
vanishing Lemma (see Refs. [27, 28]), and the reconstruction formula is verified by
the dressing method (see Ref. [29]).

The organization of this paper is as follows: In Sect.2, we prove that the direct
scattering problem is well defined for potential q such that q(-, ) — q+ lies in the
appropriate functional space. As a consequence, we obtain the integral representations
for the scattering data and establish the analyticity of the eigenfunctions and the
scattering data. In Sect.3, we prove that the solution of the N-component focusing
NLS equation with NZBCs can be expressed in terms of the unique solution of a
3 x 3 block matrix RH problem, which is directly formulated by a combination of the
eigenfunctions and the scattering data. In the reflectionless case, some exact solutions
are obtained in Sect. 4.
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Fig. 1 (Left) The regions D4 (shaded) and D_ (white) in the complex z-plane. (Right) The oriented
contours for the RH problem

The following basic notations will be used throughout this paper: We denote by z
2

the complex conjugate of a complex number z, and denote 7 = — %0. When used with

amatrix A, A denotes the element-wise complex conjugate, A’ denotes the transpose,
AT denotes the conjugate transpose. In addition, we use A* to denote the adjugate of
a square matrix A. We use I and 0 to denote an appropriately sized identity and zero
matrix, respectively. For any (matrix-valued) function f(z), we denote f () = f(2).
Let

Dy ={z € Cllmz > 0, |z] > g0}, D2 ={z € C|lmz <0, |z] > qo},
D3 ={ze€C|lmz <0, |z| < qo}, Ds4={z€C|lmz >0, |z] < qo},
C* ={z € Cllmz 2 0}, Co = {z € Cllz| = qo},

't =RU(CTNCy), ' =RUCy.

Furthermore, for a set D in the complex plane C, D represents its closure. For an
(N +1)-order square matrix A, without otherwise specified, we write it in block form as
A = (A1, Az, A3z), where A represents the first column, A3 represents the last column,
and A, represents the rest of columns. The notation A(z) holds for z € (D1, D>, D3),
means that A(z), A>(z) and Az(z) hold for z € Di, D; and D3, respectively. Also,
sometimes, A is rewritten in another block form as

A1 Ap Agz
A=Ay A»nAxy]|,
A3l Az Az

where A and A3z are scalar.
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2 Direct problem
2.1 Lax pair, Riemann surface and uniformization
The N-component focusing NLS equation (1.2) admits the Lax pair:
Ve =Uy, ¥ =V, 2.1

with

Ux,1; k) = —iko +Q,  V(x,1; k) = 2ik’0 — 2kQ — io (Q, — Q* — ¢31),

2.2)
(10 (0 —q'

() e (0. e
whereq = (g1, ...,¢ N)T, and k is a constant spectral parameter. In order to introduce
the Jost solutions, it is necessary to study the asymptotic spectral problems

¢ =Usrd, ¢ =Vio, 2.4
with
. 0 —qT
Uy = —iko +Q+, Qi = ), (2.5a)
qx 0
Vi =2ik’o — 2kQx +i0 Q7. + igdo. (2.5b)

The eigenvalues of Uy are i) and ik (with multiplicity N — 1), the eigenvalues of
V. are £2ikA and —i(k% 4 A2) (with multiplicity N — 1), where

A(k) = /K2 + 3. (2.6)

We fix the branch cut [—igo, igg], from which ,/k? + qg is well defined by set-

272

get mixed up with each other, but are interchanged in passing from one edge of
the cut [—iqo, igo] to the other. By gluing the two copies with cut, it can be com-
pactified a two-sheeted Riemann surface T = {(k, 1) € C*|A? = k? + ¢}, where
Y1 = {(k, AlLLT 1) € (Cz} represents the first (resp. second) sheet. The multi-valued
function A = A(k) becomes a single valued function A = A(P) of a point P on the
Riemann surface Y: if P = (k,A) € Y, then A(P) = A (the projection on the the
A-axis). Define the uniformization map z : Y +— C,

ting arg(k + igg) € [—% 3—”). The two branches, A; ;1 = +./k? +q§, do not

z(k,2) =k + 24, 2.7)
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whose inverse map is

1 1
k=— ), Ar==(z—-32), 2.8
> (z + Z) > (Z Z) 2.8)
2
where z = —%0. Note that, the branch cut is mapped onto Co, the first (resp. second)
sheet is mapped onto the exterior (resp. interior) of Co, z(k, A;)z(k, Aj1) = —qg,

z(ooy) = 00, z(0oy7) = 0, where ooy (resp. ooyy) represents the point at infinity in
sheet I (resp. I1) (see [19, 24] for further details).

It is easy to see that two solution matrices of the asymptotic spectral problems (2.4)
read

¢+ (x.1:7) = E1(2)e' @19, 2.9)
where
. 104
4 .
Es@=T1--0Qi=| 0 10 |, qr=qp (2.10)
‘ lgr g

and O(x, t; z) isan (N + 1) x (N + 1) matrix defined by

O(x,t;z) =diag(01(x,1;2),02(x, 1;2), ..., 02(x, 15 2), =01(x,1; 2)),
N—1

(2.11)
01(x,t;7) = —Ax 4+ 2kAt, Oa(x,t;7) = kx — (K> + A2)t. (2.12)

Indeed, each column of E (z) is a common eigenvector of Ut and Vi, respectively,
and

2
det(EL(z)) = 1 + ‘Z’—g 2 9(2), 2.13)
E+()EL() = EL@EL(z) = diag(y(2), 1. .... 1, y(2) £ H(z). (2.14)

N-1
2.2 Jost solutions and scattering matrix

We look for two fundamental solution matrices ¥4 (x, ¢; z), which also known as Jost
solutions, of (2.1) that satisfies the boundary conditions

Yir(x,t;2) =¢p4(x,1;2) +o(l), x = +oo, ze T+, R,T'1). (2.15)

The reason we are interested especially in (I'y, R, ') is that ¢4 (x, ¢; z) are oscilla-
tory rather than exponentially decreasing or increasing for large |x|.
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Introduce the modified eigenfunctions
P (x, 152) = Y (v, 1 2)e 1O, (2.16)
by which two equivalent forms are obtained as follows:

(BX'pa)e = A EX pus] + EX AQups, (2.17a)
(BZ'pt)r = 1A EZ ] + EZ' AQppus, (2.17b)

where A(z) = diag(—X, k, ...,k 1), AQr = Q — Qu, the (x, t; z)-dependence is
——

N-1
omitted for brevity. Equation (2.17) is equivalent to

(efixAE;IMieixA)x — efixAEllAQiMieixA’ (2183)
(e_iXAE;IMieiXA)x — e_iXAE;I AQ:FM:}:CDCA‘ (218b)

Integrating (2.18a) from 400 to x, and noting the asymptotics
put =Ei +0(1), x— Foo, (2.19)

we find that p4 satisfy the Volterra integral equations
X . .
pny =Ey4 + [ Eiel VAR AQu e i VAgy, (2.20)
+o00

Also, integrating (2.18b) from 0 to x, we state

X
Ut = E:FCIXAE;I/J&:(O, t: Z)e—le + / E:Fel(X_Y)AE;] AQ:FIJ/:I:C—I(X_}’)Ady.
0

2.21)

Splicing (2.20) and (2.21) together, we arrive at

x . .
ue =E4 + f Eiel* VAR AQLpse @7 VAdy, x e RE, (2.222)
+o0

pae = Bze" B 14 (0,15 2)e ™A

X . .
+ / Ee VAR AQepre VA, x € RF, (2.22b)
0

where 1£(0, t; z) obtained from (2.22a) is used at the initial condition in (2.22b).

Remark 2.1 The reason we introduce two equivalent modified Lax pairs or Volterra
integral equations is that AQ+ ¢ L'(R), which presents some difficulties for investi-
gating the analyticities of w4 (x, t; z) for x € R. In Refs. [23, 24], only considering
the integral equation (2.20), one needs another method in Ref. [18] to analyze the
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analyticity properties of the scattering matrix entries. However, one can avoid such a
problem by combining two equivalent modified Lax pairs.

Remark 2.2 For all x € R,

Ze—ik}r _Z\ei)ur 0 . i(}i (efi)\x 7ei)\,x)
ixA@ -1 s ikx 2
Ei(z)e El (z) = 0 eI 0 . (223)
ig (e7 M —ei*r) 0 zeiMX —feirx
5] o
At z = iqo, although the matrices E+(z) are degenerate, the expressions
E. (z)e"“\(z)E£l (z) remain finite as 7 — =+iqo,
. 1+ gox 0 —q+x
lim E£(e" A QEI ') = 0 ew1T 0 |,
o q+x 0 1 — gox
. l—gox 0 —q+x
lim Ei(z)e"A@EI!(z) = 0 R 0
o q+x 0 1 4 gox

In the following, we must prove that the Jost solutions or the modified ones are well
defined. Set

L'R*) = {F(x) ecCV

/ IFGO iy < +oo},
R:t

LY (RY) = {F(x) eCV

/ (14 XD IF o) [l1dx < +oo},
]Ri

and || - |1 is the L' vector norm.

Theorem 2.3 Suppose that q(-,t) — qz € LV'(RF), ui(x,t;z) is analytic for
7z € (D2, CT, D3) and u_(x,t;z) is analytic for z € (D1, C™, Dy). Meanwhile,
U (x,t;z) is continuous up to (I'y, R, T'}) and pn_(x,t;z) is continuous up to
(-, R, T).

Proof We only give the proofs about p_j(x,t;z) and n_s(x,; z), the rest of the
theorem is proved similarly. Firstly, we consider u_1(x, t; 7). Let

z—ﬁzemx 0 — iéi(lgezmx)
A . A
Gi(x;2) = 0 el 0 . (2.24)
igr(—e®) 2?2
2X 2%

Case i: x € R™. It follows from (2.22a) that

1

p—i(x,tr52)=| 0 +/ G_(x —y; 2AQ_(y, Hu—1(y, t; 2)dy. (2.25)
19— —0o0
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We introduce a Neumann series u_(x,t;z) = Z;’;O Un(x, t; z) for the solution of
(2.25), where

1 X

pox,t;2) =1 0 |, un+1(x,t;z)=/ Ki(x, y, t; Dun(y, t; 2)dy,
19— —00
z

Ki(x,y,1,2) = G-(x — y; 2AQ_(y, 1). (2.26)

As z € D1, G_(x — y; ) is analytic and continuous up to the boundary 9 D;. In the
integrand y < x, so if z € D; U I'_, by maximum modulus principle, we conclude
that

IG-(x —y; Dl =ci(+1x —yD) <ci(I+ [y, ¢ =max{l, 2qo}.

(2.27)
Consequently,
IKi(x, y, 5290 = et 4+ [yDlIlg(y, ) — q-1l- (2.28)
By induction, we can prove that
2 * "
i (e 12 )l < — <01/ A+ 1yDlgCy, ) _‘I||1dY>
: —00
2! .
E n| ||(I(,l‘) _q*”Ll,l(R—)' (229)

It follows that the infinite series converges absolutely and uniformly by comparison
with an exponential series,

<2exp(cillqC, 1) —q-lp11r-y), forallx e R™,z e DyUT_.

o0
D alx,152)
n=0

1
(2.30)

It is easy to use the uniform convergence of the Neumann series to prove that
n—1(x, t; z) is in fact a solution of the Volterra equation (2.25) whenever z € D1 UT"_.
The uniqueness of this solution follows by the fact that a certain power of the operator
ff oo Ki(x, ¥, 1; 2)(-)dy is a contraction operator. Note that, jo(x, #; z) is analytic for
z € Dj and continuous up to the boundary dD;. Asn > 1,for z € [)1,

n

C

1Ky (x, ¥, 8 D1 (0, 15 )11 < L
(n—1)!

n—1

_Q—”l”(l(,f) _q—”Ll,l(R—)’ (231)

A+ 1yDlgCy, 1)
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by Lebesgue dominated convergence theorem,

X
Jim, N Ki(x, y,t; z0)n—1(y, t; zo)dy.
z,20€ Dy

lim/ K](X,y,ﬂZ)N-nfl(yaZ;Z)dy:/
—00
(2.32)

This proves u, (x, t; z) is a continuous function of z in D;. Suppose that t,—1(x, t; z)
is analytic for z € Dy, let C be a piecewise-smooth closed curve contained in D;.
Thus,

X
?gun(x,t;z)dz = f / Ki(x, y, t; D pn—1(y, t; z)dydz. (2.33)
C CJ—o0

The estimate (2.31) yields the above integrand lies in LY (R~ xC). By Fubini’s theorem
and Cauchy’s integral theorem, we have

X
y{ n 5, £: 2)dz = / f Ki (5, v, 15 Dm0, 15 2)dzdy = 0. (2.34)
C -0 JC

By Morera’s theorem, 1, (X, ; z) is analytic for z € Dj. Since a uniformly convergent
series of analytic functions converges to an analytic function, p_1(x, #; z) is analytic
for z € Dy. Also, u—_1(x, t; z) is continuous in D respect to z.

Case ii: x € RT. It follows from (2.22b) that

p—1(x,152)  G4(x;2)

= ~100,1; 2
1+ x| T1 ey #1©62)
14yl m-1(y,1;2)
+ ——Gi(x —y;2)A ) —
/0 T+ 1| +(x = y; DAQ4(y, 1) Dl
(2.35)
We introduce a Neumann series % = Z:io v, (x, t; z) for the solution of
(2.35), where
Gi(x; *
VO(valz):MM—I(OJ;Z), vn+1(x,t;z)=/ Kao(x, y, t; 2)va(y, 15 2)dy,
I+ |x| 0
14|yl
Ka(x,y,t:2) = Y Gi(x —y;2AQ4(y, 1).
1+ |x|
(2.36)

Asz € D; UT'_, similar to (2.27), we have

IG+(xs D)l <ci(T+[xD, 1G+(x —y; DIl =i +x —y)) < (1 + [x]).
(2.37)
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Therefore,

lIvo (e, 25 D)l < 2¢rexplerliql, 1) = q-ll 11 @-)) = (1), (2.38)
IKa(x, y, 25211 < cr(1+ [yDlg(y, 1) — qll1- (2.39)

For all x € Rt, z € D; UT_, we obtain the uniform convergence

= < () explerllq(-, 1) — gl 11 r+y)-

H m-1(x,1;2)
1+ |x]

o0
Z l)l’l(x9 ta Z)
n=0

! 1

(2.40)

Similarly, u_1(x, t; z) is well defined in D1 U I'_ respect to z, analytic for z € D
and continuous up to the boundary 9 D;.
Secondly, we consider n_»(x, t; 7). Let

Ze—izxize—iix 0 . iéi(eﬂmfeﬂ”)

A 2\ o
Gelxi2) = 0 1 0 . (2.41)
ige(eT —eT) o geitt geninn
2\ )
Note that,
. (1 —gox)e ¥ 0 —gixe 90
i, G009 = 0 ! 0 : 2.42)
Z—>—1q0 qixe—qox 0 (1 + qox)e_qox

asz € R,

: —izx _ .—iZx
igx(e ) P (2.43)
2\
Ze—izx _ Ee—iix Cix E(G_i” _ e—iéx)
= : —_ | < 3. 2.44
2, ¢t 2% = (244)
Case i: x € R™. It follows from (2.22a) that
0 X
o, t;z)=|1 +/ G_(x —y; 2AQ-(y, )u—2(y, t; 2)dy. (2.45)
0 —00
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We introduce a Neumann series u_p(x,t;z) = Z;O:O i (x, t; ) for the solution of
(2.45), where

0

X
pox,t;2)=11], ﬂn+1(x,t;z)=/ Ki(x, y,t; 2)fn(y, t; 2)dy,
0 —00

Ki(x,y,:2) =G_(x — y; 2)AQ_(y.1).

(2.46)

G_(x— y; z) isanalytic for z € C™\{—igo} and continuous in C~ UR. In the integrand
y < x,s0if z € C~ UR, by maximum modulus principle, we conclude that

IG_(x —y; D)l < 4. (2.47)
Consequently,
1K1 Cx, y, 15 2) M1 < 4llq(y, 1) — q_]|1. (2.48)

By induction, we can prove that

R 4n x n
liin (e, 151 < = (f la(y, ) — q_||1dy)
n. 00

4" n
=< ;”q(v t) - q*”Ll(R—)'
(2.49)

It follows that the infinite series converges absolutely and uniformly by comparison
with an exponential series,

<exp@llq(-, 1) —q-llp1r-)), forallx e R7,z € CT UR.

oo
Zﬁn(xat;z)
n=0

1
(2.50)

It is easy to use the uniform convergence of the Neumann series to prove that
—2(x, t; z) is a solution matrix of the Volterra equation (2.45) whenever z € C~ UR.
The uniqueness of this solution follows by the fact that a certain power of the operator
ff o Kl (x, y, t; z)()dy is a contraction operator. Note that, fig(x, ; z) is analytic for
z € C™ and continuous up to the boundary R. Asn > 1,forz € CT UR,

n

1K1 Cx, v, 15 2)fin—1 (v, 15 211 <

= o 1900 — - hlat. ) = 4=l -

(2.51)
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by Lebesgue dominated convergence theorem,

=20

X X
lim / K](x,y,t;z)/fcn—1(y,t;z)dyZ/ Ki(x, v, 15 20)fin—1(y, t; 20)dy.
-z —00 —00
z,20€CTUR

(2.52)
This proves fi,(x,t;z) is a continuous function of z in C~ U R. Suppose that

n—1(x, t; 7) is analytic for z € C~, let C be a piecewise-smooth closed curve con-
tained in C~. Thus,

X
%ﬂn(x,t;z)dz=7€/ Ki(x,y,1;2)n—1(y, t; 2)dydz. (2.53)
C CJ—o0

The estimate (2.51) yields the above integrand lies in L' (R~ x C). By Fubini’s theorem
and Cauchy’s integral theorem, we have

X
7{ fn(x, t; 2)dz :/ 7{ Ki(x,y, 15 2)fin—1(y, t; 2)dzdy = 0.  (2.54)
C —o0 JC

By Morera’s theorem, (1, (x, t; z) is analytic for z € C~. Since a uniformly convergent
series of analytic functions converges to an analytic function, u_j(x, ¢; z) is analytic
for z € C~. Also, u_2(x, t; z) is continuous in C~ U R respect to z.

Case ii: x € RT. It follows from (2.22b) that

A X A~
u—2(x,t;2) = Gy (x; ) —2(0,1; 2) +/O G(x —y; DAQ4+(y, Hu—2(y, t; 2)dy.
(2.55)

We introduce a Neumann series p_z(x, t;z7) = ZZO:() Vp (x, t; z) for the solution of
(2.55), where

Po(x, 15 2) = G (x; )p—2(0, 13 2),
X

Dng1(x, 15 2) =/ Ko(x, y,t; 2)0,(y, 15 z)dy,
0

Ko(x, y,1:2) = G (x — y; 2)AQ4 (3, 1).

(2.56)
As z € C7 UR, similar to (2.47), we have
1G4 (v Dl < 4. 2.57)
Therefore,
190(x, 15 Dll1 < 4exp@llat, 1) —a-llpie-) 2 e30), (2.58)
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1Ko Cx. y. 1)1 < 4lq(y. ) — qy [l (2.59)

For all x € RT, z € C~ UR, we obtain the uniform convergence

(0.¢]
G )l = | D dnlx, 1:2)| < e3(t) exp@llqC, 1) — qillp1ge))-
n=0

1
(2.60)

Similarly, u_»(x, t; z) is well defined in C~ U R respect to z, analytic for z € C~ and
continuous up to the boundary R. O

Remark 2.4 Unlike what happens for the defocusing case, the defect of analyticity
for the focusing N-component NLS equation does not increase with the number of
components. In fact, for any N > 2, one has exactly N analytic eigenfunctions in each
of the domains Dy, ..., D4, and hence, only one additional eigenfunction per each of
the domain is required to obtain a fundamental set of analytic solutions.

Lemma 2.5 Under the same hypotheses as in Theorem 2.3, for all z in the interior of
their corresponding domains of analyticity, u+2(x, t; z) are bounded for all x € R,
wt1(x,t; z) and p3(x, t; z) are bounded for x € RF, “i]'ﬁ)’ctlw and “ﬁﬁ;f)
bounded for x € RT.

are

Proof The first column of u_ (x, ¢; z) follows from (2.30) and (2.40), and > (x, t; 2)
follows from (2.50) and (2.60). The rest of this lemma is obtained similarly. O

Theorem 2.3 shows that 4 (x, t; z) are continuous up to (I'+, R, I't), respectively.
Moreover, formally differentiating the Volterra integral equation (2.22) with respect
to z and performing a similar Neumann series analysis, one can show the following:

Corollary 2.6 Under the same hypotheses as in Theorem 2.3, 9,4 (x, t; ) are con-
tinuous for z € ('y, R, 'y).

Remark 2.7 1t follows trivially from the above theorem that the columns of ¥4 (x, #; )
have the same analyticity properties as i (x,t; 7). Moreover, if q(-,7) — q+ €
LY(R%), the modified eigenfunctions py(x,t;z) are also are analytic for z €
(D2, CT, D3), (D1, C™, Dy), respectively. However, p+1(x,t; z) and p43(x,t; 2)
are not continuous at the branch points +igg. Furthermore, noting that q(-, 1) — q+
is needed to be lied in Ll’z(Ri) in Ref. [18], in this context, we require a slightly
weaker condition q(-, 1) — q+ € LLI(R®).

In the following, we will introduce the scattering matrix. Observing the traceless
nature of Q(x, 1) — Q4, by Abel’s Theorem, we arrive at d, det (E;1 (Dus(x,t;2) =
0. Therefore, we may compute the determinant of E;l (2)p+(x, t; z) with the limit
x — =oo. Consequently, equation (2.19) implies

det(ux(x,t;2)) = det(Ex(z2)) = y(z), z €R, (2.61)
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ie.,
det(Ys(x, 1; 7)) = y(r)e! N~ DREED 7 e R, (2.62)

Since both v (x, ¢; z) and {_(x, t; z) are the fundamental solutions of the Lax pair
(2.1), there exists a (N + 1) x (N + 1) matrix s(z) independent of x and ¢ such that

Y_(x,1;2) = Yy (x, 1; 2)8(2), (2.63)
where

s11(z)  s12(z)  s13(2)
$(z) = | s21(z)  s22(z2)  s23(2) (2.64)
$31(z)  s32(2)  $33(2)

is usually referred to as the scattering matrix. Taking the determinants of both sides
of (2.63) and recalling (2.62), we state

det(s(z)) =1, zeR. (2.65)
Let
S11(z)  Si2(z)  S13(2)
S =s"'@) =810 S»nk Sis@]|. (2.66)
S31(z)  S32(z)  S33(2)
thus,

Vi(x,t;2) = Y- (x,1; 2)S(2). (2.67)
Evaluating (2.63) at (400, 0), recalling (2.16) and (2.22), we conclude that
too )
s(2) = E7'(2)u—(0,0: 2) + / e AR (2)AQy (x, 0 (x, 0; 2)e A P dx.
0
(2.68)

Similarly,

O . .
S(z) = EZ'(2)114(0,0; 2) — / e THAOEN ) AQ_(x, 0)py (x, 0; 2)e* AP dx.

—00

(2.69)

From Theorem 2.3, Lemma 2.5 and the above integral representations (2.68)—(2.69),
we can obtain the following theorem obviously.
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Corollary 2.8 Under the same hypotheses as in Theorem 2.3, s11(2), $13(2), 831(2)
and $33(z) are well defined in T'_\{iqo}, S11(2), S13(2), S31(z) and S33(z) are well
defined in ' \{—iqo}, the remainder of scattering coefficients are well defined in R.
Furthermore, the following scattering coefficients can be analytically continued to the
corresponding regions:

s11(2) : D1, $22(2) : €7, 833(2) : Dg, (2.70a)
S11(2) : D2,  S»u(z):C*,  S33(2): Ds. (2.70b)

2.3 Auxiliary eigenfunctions

In order to pose the inverse problem, that is, to formulate an (N 4+ 1) x (N + 1)
matrix RH problem, we need to have a complete set of analytic eigenfunctions in
any given domain D;, j =1, ...,4. However, only N of the columns of py(x, t; z)
and u_(x, t; z) are analytic in D;. To offset the incompleteness of analyticity, we
introduce a “generalized cross product" for vectors in C¥*! as follows:

Definition 2.9 (Generalized cross product) For alluy, ..., uy € CN+! et
N+1
Glu,....uy] =) det(uy.....uy. €)e;, (2.71)
j=1
where {eq, ..., ey} represents the standard basis for RN+

Specially, as N = 2, G[u, up] = u; X up, represents the common cross product
in R3. Like this case, G[-] is also multi-linear and totally antisymmetric.

Lemma 2.10 For any A € CWHDX(N+D B e C"*"(n < N), 1 <l <N —-n+1,
then

N
Zg[ul, oW AujLujgg, .. uy] = (trace(A)I —AT) Gluy,...,uy],
j=1

(2.72a)
Glay, ...,w—q, (u, ..., Wy 1)B, wyyy, ..., uy] = det(B)Gluy, ..., uyl.
(2.72b)
Proof Set
F(it;u,A) =G[0+tAuy, ..., X+ tAuy]. (2.73)

Since det(I + tA) is continuous for ¢ € R, there exists a positive number § such that
I + 7A is non-degenerate for |f| < §. The definition of G[-] yields the left-hand side
of (2.72a)
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N dF(t;u, A)
> Gl u Auj gy uy] = (2.74)
; dr t=0
j=l1
On the other hand, for |¢| < &,
N+1
F(t;u,A) = ) det((I+ Ay, ..., I+ A)uy. e))e;
j=1
N+1
= det(I + rA) Z det(uy, ..., uy, I+ tA)*lej)ej
j=1
2 f(t; AFi(t; 4, A).
(2.75)
Indeed,
df@; A
AGEY) = trace(A), (2.76)
dr t=0
N+1
dFi(t;u, A)
T o = - Z det(ug, ..., uy, Aej)ej
j=1
N+1 N+1
= — Z det(ug, ..., uy, Z(elelT)Aej)ej
j=1 =1
N+1 N+1
= Z det(uy, ..., uy, Z(e,TAej)el)ej
j=1 =1
N+1 N+1
= — Z det(ug,...,uy, €) Z ej(elTAej)T
I=1 j=1
N+1 N+1
= — Z det(uy, ..., uy, €) Z(eje]r)ATez
I=1 j=1
N+1
= —AT Z det(ug, ..., uy, €e)e;
I=1
=—ATGuy, ..., uy]. (2.77)
The right-hand side of (2.72a)
trace(A)Gluy, ...,uy] — ATGluy, ..., uy]
df@; A dF(t;u, A
= VG 0w A) + £ 4) TERA
_ dF(;u,A)
N dt 0
(2.78)
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In addition, the identity (2.72b) is the trivial result of Definition 2.9. O

Remark 2.11 InRefs. [23, 24, 26], four identities always are introduced to construct the
auxiliary eigenfunctions in C3 or C*. However, verifying four similar identities directly
in higher dimensional space will bring us a heavy calculation burden. Fortunately,
combining with the differential operation of determinant function, we have proved the
identity (2.72a), which is essential to construct the auxiliary eigenfunctions, especially
in the arbitrary N-component case. In addition, those identities in Refs. [23, 24, 26]
are the special cases of (2.72a).

Indeed, observing that Q7 = —Q, by virtue of the identity (2.72a), we can directly
verify the following fact.

Proposition 2.12 Suppose that ¥\ (x,t; z), ..., Un(x,t; 2) are N arbitrary solution
vectors of the Lax pair (2.1), then

W(x,t;7) =N DRCEDGIT (x 1 2), L, U (x, 15 7)) (2.79)

is a solution vector of the Lax pair (2.1), where &j (x,t;2) = ¥j(x,t;2) for j =
I,...,N.

The above functions 1}/ (x,t;2) (j = 1,..., N + 1) are also called the adjoint Jost
solutions, the analyticity of which can be derived obviously by Riemann—Schwarz
symmetry principle. Note that, a simple relation exists between the adjoint Jost solu-
tions and the Jost solutions of the original Lax pair (2.1):

Lemma 2.13 Under the same hypotheses as in Theorem 2.3, as z € R,

Vinr Vi jwar (6, 15 2) = e VTVREEDGIE - (1 2), 00, ey (6, 15 2],
(2.80a)
Vinn Vet iy (6, 13 2) = TTNREEDGy (e 1 2), 0, Yy (6, 1 2],
(2.80b)
where

1, j=1N+1,

= ] (2.81)
v v(@, j=2,...,N,
and (ji, ..., jN+1) isaneven permutationof (1, ..., N+1), ¥+ j and lﬁtj represent
the j-th columns of W+ and v+, respectively.
Definition 2.14 Introducing four new solutions of the original Lax pair (2.1):
x1(x, 5 2) = NVDREEAGI L (x 1 2), Yoo (x, 1 2)], (2.82a)
x2(x, t;2) = e NVRCEIGIE | (x 11 2), Yo (x, 15 2)], (2.82b)
x3(x, t:2) = NV VREEIGHE ) (1 2), Yoa(x, 1 ), (2.82¢)
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xa(x, t; 7) = W= DRCEDGLG o (x 1 2), Yas(x, 1; 2)], (2.82d)

we called xi(x,?;2), ..., xa(x, t; z) the auxiliary eigenfunctions. Analogous to the
Jost eigenfunctions, the auxiliary eigenfunctions have a modified form

m;(x,1;7) = x;(x, t; 7)1 5D, j=12, (2.83a)
m;(x,1;2) = (=DV 0, 127D =34 (2.83b)

Considering the ¥+ ’s corresponding domains of analyticity, by Riemann—Schwarz
symmetry principle, we state

Lemma 2.15 Under the same hypotheses as in Theorem 2.3, as j = 1,...,4, the
auxiliary eigenfunction x j(x, t; z) and the modified form m;(x, t; z) are analytic for
z € Dj and continuous up to the boundary 9D j, respectively.

2.4 Symmetries

Similar to the scalar case and the 2-component case, the scattering problem admits two
symmetries corresponding to the involutions: (k, A) — (k,2) and (k, A) — (k, —1),
i.e., in terms of uniformization variable z: z — Z and z — Z. Indeed, there is also
another symmetry corresponding to 7 — Z or z — Z, which can be obtained by
combining the first two symmetries.

2.4.1 First symmetry:z — Z

Proposition 2.16 If Y/ (x, t; 7) is a matrix solution of the Lax pair (2.1), then
LW DY 1) =W (DY (1 2) = 0. (2.84)

The above statement is a straightforward consequence of the symmetries of the Lax

pair (2.1). Considering the asymptotic conditions as in (2.15) for ¥+ (x,t; z), we
deduce

YL, DYa(x, 1 2) = H(z). (2.85)
Especially,
v DY 132 =0, ze Dy, (2.86a)
YLDV, 12) =0, z € D, (2.86b)
Yl DY a(x,1,2) =0, ze D, (2.86¢)
Vi, DY, 152 =0, z € Da. (2.86d)
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According to (2.63) and (2.67), we state

s(2) = H '@yl (v, ; D¥-(x, 152), S =H '@yl (v, ;)Y (x, 152). (2.87)

Consequently, the scattering matrices s(z) and S(z) satisfy the symmetry

s(z) = H '(2)ST(D)H(2).

Componentwise,
sl _
s = 25, £ =r@8,H@), zeR,
_ )
23 =y @SLHE).  sn@ =B, zeR,

$13(2) = 831(2), $31(2) =813(2), z € '_\{igo}.
Particularly,

b
y(2)
S5, (D) =50 =¥, ;DY a(x, 132, zeCo,

_ 1 . _
S33(2) = s33(2) = %‘/’13(’“’ 5DV, 652), 2 € Da\figo).

SH@ =s11) = — ¥ (e, DY 1 (0, 152), 2z € Di\igo),

2.4.2 Second symmetry:z — Z

(2.88)

(2.892)

(2.89b)
(2.89¢)

(2.90a)
(2.90b)

(2.90c)

Proposition 2.17 If v (x, t; z) is a matrix solution of the Lax pair (2.1), sois ¥ (x, t; Z).

Considering the asymptotic conditions in (2.15) for ¥4 (x, #; z), we find

Ya(x, t52) = Y (x, 15 D1 (2),

where
004
Z
Hi(z)=| 01T 0
4= 9 0
Zz

In particular,

Yr1(v. 1) = Lyus(x,1:2), z € Dy (resp. Dy),
Ya3(x, t;2) = i%lﬂi](x, t;%), z € D3 (resp.Dy),

Yaa(x,1;2) = Yua(x, 15 2), z€Cy,
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which implies the auxiliary eigenfunctions satisfy the symmetries

mi(x, 1;7) = Lemy(x, 1;2), z e Dy, (2.94a)

my(x,1:2) = “Emy(x,152), z € Da. (2.94b)

Combining (2.63), (2.67) with (2.91), we find

s2) =M @Qs@MN-' (), SE) =N (S (2). (2.95)
Componentwise,
s12(2) = —I—ZS32(2), $21(z) = 1q—_523(2), 7 € R, (2.96a)
&+ _©
$32(2) = —s12(2), s23(2) = o8y (3), zeR, (2.96b)
. q+ Z
$13(2) = q;s31(2), s31(2) = ?;813(2), z € I'_\{iqo}, (2.96¢)
q+ q+
s11(z) = 3;533(2), z € Di\{igo}, (2.96d)
+
$22(2) =s»(), zeC_, (2.96¢)
$33(2) = Z—_Sll(f), z € Da\fiqo}- (2.96f)
+

A similar set of relations obviously holds for the components of S(z),
iz R i .
S12(z) = —q—S32(z), S21(z) = %523(@, 7z € R, (2.97a)
iz . ig .
S22 = == 8120), () = TS, zeR, (2.97b)

sn(z)=Z—+sgl<z>, sal<z>=g—+sn<z>, ze T \{—ig}, (2.97¢)

Si11(z) = Z—+S33(2), z € Dy\{—iqo}, (2.97d)
$2(2) = Sxn(2), zeCy, (2.97¢)
S33(z) = Z—+511(2), 2 € D3\{—iqo}. (2.97f)

2.4.3 Combined symmetry
In the inverse problem, the following reflection coefficients will appear,

SINE)
Sh@’

_ S (2) _
$11(2)

p1(2) (2) 7 €R, (2.982)
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$31(2) _ S13(2)
S11(2) Sll(Z)’

B 1 T
03(2) = $32(2)87, (2) = ms;(zxs;z(z)) !

() = z € I'_\{igo},

Considering the transform z — Z, we have

iz s32) ey (@) SHLE)
g+ 4+ Sp@)
_ 9+ 813(2) qim
TG sn@ 4y Su@)
i g+
zy(2)

p1(2) =— e R,

p2(2)

z € I'_\{iqo},

S, @S,

p3(3) = “’7+slz<z)s;;(z) =

From (2.87)—(2.90), it follows that

V@Y1
v @vo@)
IR ANGTAIE
Y@@

01(2) = v (2)

02(2) z € I'_\{igo},

(2.98b)

zeR. (2.98¢)

(2.992)

(2.99b)

zeR.
(2.99¢)

(2.100a)

(2.100b)

p@ =V @OV 2@y QU L@V, zeR. (2.1000)

The above expressions together with Corollary 2.6 give the following

Corollary 2.18 Under the same hypotheses as in Theorem 2.3, and suppose that none
of the zeros of s11(z) and det(s22(z)) occurs on I'_, then p1(2), p3(2) € CY(R) and

p2(z) € CH(I2).

Remark 2.19 For z € R, it follows trivially from S(z)s(z) = I that

S11(2)(S31(2)812(2) + S32(2)822(2) + S33(2)832(2)) = 0, (2.101a)
S31(2)(S11(2)812(2) + S12(2)822(2) + S13(2)832(2)) = 0, (2.101b)

the subtraction of which yields

S31(2)S12(z) — 811(2)832(2)

03(2) = $32(2)85, (2) =

Equations (2.98) and (2.99) allow us to conclude

g+, (D)o@ —i2p] @)
p3(2) = —_—,
(@G — g1, (2))
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which implies the scattering coefficients p;(z), p2(z) and p3(z) are not independent.

2.5 Behavior at branch points

In order to properly specify growth conditions for the RH problem, we should analyze
the behaviors of the eigenfunctions and the scattering data near the branch points. It fol-
lows from Theorem 2.3 and Lemma 2.15 that 1 (x, t; 2), u4+2(x, t; 2), t—3(x, t; 2),
my (x, t; 7) and my(x, ¢; z)are well defined and continuous at the branch point z = iqo,
U1(x,t;2), w—a(x,t; 2), ky3(x, t; z), mp(x, t; z) and m3(x, ¢; z) are well defined
and continuous at the branch point z = —igg. Furthermore, it follows from (2.15) that
all of the above eigenfunctions are nonzero at the branch points.

From (2.87), it follows that the scattering coefficients s11(z), $13(z), s31(z) and
s33(z) have a pole at the branch point z = igy.

Corollary 2.20 Under the same hypotheses as in Theorem 2.3, as z — iqo,

(z —igo)s11(z) = O(1),  (z—iqo)s13(z) = O(1),

, , (2.104)
(z —igo)s31(z) = O(1),  (z —iqo)s33(z) = O(1).

Similarly, the scattering coefficients Sy (z), S13(2), S31(z) and S33(z) have a pole at
the branch point z = —iqq.

Corollary 2.21 Under the same hypotheses as in Theorem 2.3, as z — —iqq,

(z +1ig0)S11(2) = 0(1),  (z+1igo)S13(z) = O(1),

. . (2.105)
(z +1g0)S31(z) = O(1), (2 +igo)S33(z) = O(1).

Considering the asymptotics for the columns of ¥4 (x, ¢; Figg) as x — £00, respec-
tively, we state

Vo1 (x, 15 iq0) = € Y_3(x, 1;iq0),  V1(x, 13 —igo) = —e Yi3(x, 13 —igo).

(2.106)
It follows trivially from (2.87), (2.98) and (2.106) that
lim p(z) = lim pp(2) = —e', (2.107)
z—iqo z—iqo

which implies that the jump matrices in Sect.3 are not singular at £iqg.

2.6 Asymptotic behaviorasz — coandz — 0

In the context of IST with ZBCs, we need to investigate the asymptotic behaviors of the
eigenfunctions and the scattering data as the spectral parameter approaches infinity.
However, since two points oo and 0o, at infinity on the Riemann surface Y are
mapped to infinity and zero in the complex z plane, respectively, we should consider
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the asymptotics both as z — 0o and z — 0. Substituting the Wentzel-Kramers—
Brillouin expansions of the columns of the modified Jost solutions into (2.17) and
collecting the terms O(z/) as in Ref. [18], or substituting the formal expansions
nt(x,t;z) = Z;’oz 1 ,u(i/ )(x, t; z) into the Volterra integral equation (2.22) as in Ref.
[21], we obtain the following asymptotics:

Lemma 2.22 Suppose that q(-,t) — q+ € LYY (R*) and q(-, 1) is continuously dif-
ferentiable with q, (-, 1) € L'(R%), as z — 00 in the appropriate regions that each
column is well defined,

1 g’ (r, 1) .
M:E(X, t; Z) = iq(x,1) IZ + O(Z_ ) (2108)

Z

Similarly, as z — 0 in the appropriate regions that each column is well defined,

q*(x,zt)qi
mt1(x,t;2) = 90 + O0(1), (2.109a)
19+
.
—Lqi@x, 1)
M2(x, 15 2) = 0 ; (€1, ..., enN—1) + O(2), (2.109b)
ig+
n3(x, 15 2) = (q(;,)> + 0(1), (2.109¢)
q+
where {€1, ..., €N} represents the standard basis for RV,
Consequently, we can calculate the asymptotics of m; (j = 1,...,4) by the

definitions (2.82) and (2.83) of the auxiliary eigenfunctions and the modified ones,
respectively.

Corollary 2.23 Under the same hypotheses as in Lemma 2.22, as 7 — 00 in the
appropriate regions that each column is well defined,

iq'(x,0)en
Zz

m(x,1;z) = 0 +0@E™h, (2.110a)
1

iq'(x,0)en
Zz

my(x,1;2) = 0 +0@E™h. (2.110b)
1

Similarly, as z — 0 in the appropriate regions that each column is well defined,

9 (x.ney

q—

m3(x,1;z) = 0 + O(), (2.111a)
ig—
Z
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q' (. 0en
q+
my(x,t;7) = 0 + 0(1). (2.111b)

igy
z

Remark 2.24 Indeed, by virtue of the symmetries (2.93) and (2.94), Egs. (2.109) and
(2.111) can be obtained directly from Eqgs. (2.108) and (2.110), respectively.

Next, it follows from the asymptotics in Lemma 2.22 and the scattering relation (2.90)
that the scattering matrix entries have the asymptotic behaviors:

Corollary 2.25 Under the same hypotheses as in Lemma 2.22, as z — 00 in the
appropriate regions that each column is well defined,

si2)=1+0@@™Y, Su =14+0Eh, (2.112a)
sn@) =I+0c"Y, Snk =I+0ch. (2.112b)

Similarly, as z — 0 in the appropriate regions that each column is well defined,

$2() =1+ 0@3). Snk) =I+0(). 2.1132)
s13() = =1 00). SuG) =1 +0@). (2.113b)
q- 9+

Lemma 2.22 together with (2.100) immediately implies the following:

Corollary 2.26 Under the same hypotheses as in Lemma 2.22, as 7 — 00,

p1(2)=0E"Y, m@=0c"Y, nk=0ch. (2.114)

3 Inverse problem

Forz € Dj, j =1,...,4, an extra analytic eigenfunction x;(x, t; z) is generated
by virtue of the generalized cross product. Therefore, p+(x, t; z) and {x;(x, t; z)}‘l‘
make up a complete set of analytic eigenfunctions for solving the inverse problem. In
the following, we will introduce a new operator and several identities, which play a
key role in decomposing the auxiliary eigenfunctions and expressing symmetries.

3.1 Decomposition of the auxiliary eigenfunctions

Definition 3.1 Foralluy, ..., uy; € CN*!, define
N+1N+1 0 e
%[ul,...,uNH]:—Z Zdet <elT O]>ejelT, (3.1)

=1 j=1
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where u = (uy, ..., uy4+1). Consequently, the /-th column of ¥[uy, ..., uy41] reads
I=1,...,N+1,

N+1
u €;
“Gluy, ... ,un+1] = Yuy, ... ,unyile = — 2 det (elT 0'/> e;.
j=
3.2)

By direct calculations, it is easy to verify the following relation among the adjugate
matrix (-)*, the generalized cross product G[-] and the operator ¢/[-],

=DNGT [y, ..., uy41]
(=DN1GT[uy, u3 ..., uy 4]

: T
=i AT =9 [uy,...,uy41l
(DN TG Ty, o wjo g, ujg, . uy ]

G'uy,...,uyl
(3.3)

Lemma3.2 Forallu € CN+Dx(N+D)

N+ 1, rank(u) =N + 1,

rank(4[u]) = { 1, rank(u) = N, 3.4
0, rank(u) < N.
Lemma3.3 Foralluy,...,uy,vy,...,vy € CN*TL
Yl un,Givi, vl = (vah v Glun eyl (3.52)

Y191, ... vl uy] = (DY (Glur, . un] vl ve) . (B5b)
where v.= (vi,...,Vn), Uy = (U, ..., upy).
Proof Firstly, we give the proof of (3.5a). Since
Iniilag, ...,un, Glve, ..., vyl = Gluay, ..., uy], (3.6)
we need to prove the remaining part
@, My, Gl vy = v v (3.7)

If vi,...,vy are linear dependent, the identities G[v(,...,vy] = 0 and
V(U(T])V)* = 0 yield (3.7). If not, there exists vy4+1 € CN+! guch that vy =
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(Vi,...,Vy41) is nonsingular. According to (3.3), we obtain G[vy,...,vy] =
(vz‘l))TeNH. Indeed,

(gl, ...,gN)[lll, ...,llN,g[Vl, ...,VN]]
= (4, ..., 9, ...,un, GIvi, ..., vyllCer, ..., en)T

N
Z%[ul, ...uy, Glvy, ..., VN]]EIT (by Egs. (3.2), (3.3))

N N+l u v )Te e
_szt<(1) @) et Oj)ejel

=1 j=1
N N+1

_ (Y O gor (P OGN €\ r
-3 s ("
= 1det(v(1)) 0 1 € 0 0

N N+1 e e Ve,
0 3 ST (R A
I=1 j=1 0 0
N N+1 Vun vTe: N
= — Z Z det( GT(I) 0 l) ejEIT (by I= ZGnGZ)
I=1 j=I ! n=I
N N+1 r N o T.T..
=->Y det (V O Z”:l(%”v eﬂe”) ejef
I=1 j=1
N N B NG A
= —ZZdet( GT(I) On> Z e](e/ VGn)GIT
= l i

viag €
e GT(]) 0n> vene/  (by Egs. (3.1), (3.3))
1 1

Il
-
utﬂz

= v%[vTu(l)] = v(u(Tl)v)*,
(3.8)

where {€1, ..., ey} represents the standard basis for R" . The identity (3.5b) is proved
similarly. O

Consequently, the relation (3.3) yields the following repeated cross product identity

Q[ul, o, UN T, g[vl, ey VN]] = —%N[ul, P | .Y g[vl, ey VN]], (3.9)

which generalizes the triple cross product formula u; x (v x vp) = (ulTvz)Vl —
(ulTvl)Vz in R3.
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Lemma 3.4 Under the same hypotheses as in Theorem 2.3, the auxiliary eigenfunc-
tions have the following decompositions:

x1(2) =s11(D)V¥-3@) —s13()Y¥-1(2), z €T \{igo},
= det(S2(2)¥43(2) — ¥42(2)85,(2)S23(2),  z € R,

(3.102)
x2(@) =S1@¥3() = S13()¥+1(2),  z € I'y\{~igo},
= det(s22(2)¥-3(2) — ¥-2(2)83,(2)823(2),  z €R,
(3.10b)
(—DVx3(2) =833 ¥+1(2) —S31(@DY43().  z € I \{—igo}.
=det(s22(2)¥-1(2) — ¥-2(2)85,(2)%21(2), z €R,
(3.10¢)

DV xu(2) =s53@)VY-12) —s31()V-3(2),  z € [_\{igo},
= det(S22(2)V41(2) — ¥42(2)85,(2)S21(z),  z €R,
(3.10d)

where the (x, t)-dependence is suppressed for brevity.

Proof We suppress the (x, t; z)-dependence for simplicity. As z € I'_\{igo},

x1 =N VGIS 10 + 081 + S31v3, Y]
— VDB LTy T ]
+elV=D0G G5, 2] (by Egs. (2.80), (2.89), (2.90))

=s¥_3 —Si3¥_1.
(3.11)

Asz e R,

x1 =V VRGIG 1810 + Yiadan + Uyadinl
= VVRG L, Pio8an + Y43832] (by Egs. (3.2), (3.3))

=N D0y Wi, Y0800 + Uasd, Yiall.

Indeed,
GWi1. V2820 + V43832, Y3 ] (3.12)
{10 0
=G| W1, V42, ¥43) [0 S22 0 (by Eq. (3.3))
0 s3» 1

10 o\
= || @t V2. 943) [0 522 0 (by Eq. (3.3))
0 S3» 1
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1 0 0\"
=G, V2, 43l |0 81, 8D (by Eq. (2.80))
0 0 1
‘ detGl) 0 0
=e NV (g y i, Yy3) 0 ()" —(Szz)*ssz (by Eqgs. (2.89), (2.90))
0 0 det(szz)
det(S22) 0 0
= Wy v | 00 sy, S (3.13)
0 0 det(Sy)
Therefore,
x1 = det(S22) Y43 — ¥1285,803. (3.14)
The remainder of Lemma 3.4 is proved similarly. O

In the following, we will consider the inverse scattering transformation, which can
be characterized in terms of a 3 x 3 block matrix RH problem.

3.2 Riemann-Hilbert problem

In order to coincide with the focusing Manakov system with NZBCs in Ref. [24], we
define the piecewise meromorphic function M(x, ¢; z) as

M(x,t;z2) = (%{:Z), Haa(x,1;2), %) , z €Dy,
M my(x,1;z)
(x,t;2) = | g1 (x, 15 2), p— Z(X,f»Z)Szz (2), W , Z€ Dy,
M . mg(x,t,z) . -1 .
(xat Z - S%:}( ) 7/‘72('x5t’ Z)522 (Z)v /'L+3(~x7t7 Z) 5 VS D3a
_(mu(x, 15 2) N {C 9 59
Meera) = (det(szz( y et = o ) e b

(3.15)

By virtue of Lemma 3.3, we prove that

Lemma 3.5 Under the same hypotheses as in Theorem 2.3, as z € C\T,

GIM(x,1;2)] =y (@M, 1; DH ' (2), detM(x,1:2) = y(2). (3.16)
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Proof We suppress the (x, t; z)-dependence for simplicity. As z € Dy,

_y[r m;
YM] =9 [ o2 G Szz)] (by Egs. (2.72b), (2.82), (2.83))

U1 . h_2
=9 | —, .G [ , 7]] (by Lemma 3.3)
|: . K42 H41 det(S2y) Yy

o 22 () e ) ol
1 det(Sy) ul, 1 det(Sy) TR

by Eqs.(2.83), (2.86), (2.90)) (3.17)
(/11 i )(y 0 ) ﬁlz)
+1» S; s =
det($22) / \0 @@&5/ " Sui

- nsen) (0 sy ) 5)
KA1 GetS20) ) \o y det($22)85,' ) " &y,

- ~—1 m2
A1, Vi 2577 > R .
11

Similarly, we can prove

mx|7:l

Yilsa, ) €Dy, (3.18a)

-1 m; |
9 |:M+1, =28y, o | = ( det(S 2)

S

( iy ,yﬂ+z,%), ze D3, (3.18b)

m3 —1
G| —, U-2S55 ,
|:Sg3 H—2877 M+3_ FRT)

e S 5_—( Vii_a8s M) €Dy, (3.18¢)
oS " ey | S 285 43 4, :

which means
GM(x,1:2)] = y(@)M(x, t; H ' (2). (3.19)

For z € Dy, the (1, 1)-entry ofMT(x, t; 2)9[M(x, t; z)] = det(M(x, t; z))I implies

1 -
det(M(x, t; 7)) = Tuzl(x,t; Dfir1(x, 15 2) = (). (3.20)
Similarly, det(M(x, t; 7)) = y(z) holds for z € D>, D3, Dj. O

The above lemma, together with the relation (3.3) and the symmetries (2.90), (2.93),
(2.94) and (2.96), implies that the piecewise meromorphic function M(x, ¢; z) satisfies
two symmetries:

Lemma 3.6 Under the same hypotheses as in Theorem 2.3, as 7 € C\T,

M(x, t;z) = (M'(x, 7; 2)) " 'H(2), (3.21a)
M(x, t; 2) = M(x, t; )1 (2). (3.21b)
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Set

Z
Mi(x,1;2) = lim M(x.1;2), zeT, (3.22)
JeDs

and “ lifn“ means non-tangential limit, Dy = D{UD3, D_ = DyUDy4. From Theorem
2.3, Lemma 2.15 and Corollary 2.20, 2.21, it follows that M1 (x, ¢; z) is well defined
forz eT.

Furthermore, M(x, f; z) satisfies the growth conditions near the branch points +igq:

Lemma 3.7 Under the same hypotheses as in Theorem 2.3,

Mi(x,t;z) = O(z —iqo), z € D1 — iqo,
Ms(x,1;2) = O(z —iq0),  z € D4 — 1qo,
M (x,t;z2) = O(z +iq0), z € D3 — —iqo,
Ms(x, t; z) = O(z +1qo), z € Dy — —iqo.

(3.23)

The piecewise meromorphic function M(x, ¢; z) has the jump across the oriented
contour I" as follows:

Lemma 3.8 Under the same hypotheses as in Theorem 2.3,

My(x,1;2) =M_(x,1;2)J(x,152), z€T, (3:24)
with
J(x,1;7) = @F LD (e ONLED ey [ =1,...,4, (3.25)
Tz Tos
14+ 2985 4 5 @mk) 2 m@ - pl@pE)
i@ = p1(2) 1 @@ |
02(z) — p3(2)p1(2) —p3(2) 14 y(2)p3(2)p3(2)
(3.26a)
1 - g—iﬁz(z)ﬁz(f) 0 p2(2)
Ja(2) = 0 I 0 |, (3.26b)
—2—152(2) 0 1
J3() =07 @I O L(2), (3.26¢)
L= Zp(2)p() 0 =2 m ()
Ju(z) = 0 I 0 : (3.26d)
p2(2) 0 1
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where the oriented contours U'; (I = 1, ..., 4) are depicted in Fig. 1, p1(z), p2(z) and
p3(2) are defined in (2.98). Meanwhile, the jump matrix J(x, t; -) € C'(I') and tends
to identity matrix both as 7 — oo and 7z — O.

J11(2) J12(2) J13(2)
Proof For z € 'y, denote J1(z) = | J21(z) J22(2) J23(2) |. The jump (3.24) implies

J31(2) J32(2) J33(2)
that

v Vi + Yoasyy Jor + X—J31, (3.27a)
S11 Si1

- X2
Va2 = Ydio + ¥oosy, Joo + S—“J32,

(3.27b)
X1 —1 X2
———— = VY1J13 + Y285, Jo3 + T3, (3.27¢)
det(S»») v+ V-osn St11
Substituting (2.63), (2.67), (3.10a) and (3.10b) into (3.27), we find
_ det 3 — Y_osh
% = (Y—1S11 + Y2821 + V383011 + Y285, Jo1 + etn)¥ ;“ V2858 Ja1,
(3.282)
S - S
Yo = Ydio + (Y1s12 + Yoo + Yi3s3)sy, Joo + %J}Z, (3.28b)
S -S
Vi3 — Y4285 823 = Y1 is + (Yaisia + Vyasa + Y43832)s5; Jos + %JB.
(3.28¢)

Sincedet(yr1) # Oforz € I'1, all columns of /4 are linearly independent. Comparing
the coefficients yields

1 _ SusintSizsan—1 Si3  Susip+Sizs —1g-!
Stis11 St $12 S + St S22 SZ2 S23
| __520821+52383; _ Q!
Ji = s11511 I S, 823
——Su__ —s1285,) 1+ $3285, S5,'S
s11 det(s22) 32527 32572 B2 923

(3.29)

Recalling (2.98), (2.99) and the fact s(z)S(z) = S(z)s(z) = I for z € T'y, we derive
(3.26a) obviously. One can obtain (3.26b)-(3.26d) by a similar way, so we omit the
rest of proofs. The statement that the jump matrix J(x,t;-) € C L(I") and tends to
identity matrix both as z — oo and z — 0, follows by Corollary 2.18 and 2.26. O

Remark 3.9 For z € T, note that,

Joo,1;2) =H ' @Y (v, 1; DHG), J(x,1;2) = O (@I v, 15 9T (2),
(3.30)
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which exactly coincide with the symmetries (3.21a) and (3.21b) of M(x, ¢; z). These
symmetries play a key role in ensuring the existence and uniqueness of the solution
for the RH problem, and the correctness of the reconstruction formula.

Substituting the asymptotics (2.108)—(2.113) of the eigenfunctions and the scat-
tering coefficients into (3.15), we state

Lemma 3.10 Under the same hypotheses as in Lemma 2.22, the piecewise meromor-
phic function M(x, t; z) has the following asymptotic behaviors as z € C\T,

M(x,1;2) =1+ 0@z, z-— oo, (3.31a)
M(x,t;2) = I+ 0@)M(z), z—0. (3.31b)

It follows from (2.90) and (2.96) that

Lemma 3.11 Under the same hypotheses as in Theorem 2.3, as zg € Dy, then

$11(20) = 0 <= S11(Zp) = 0 = S33(20) = 0 < s33(%9) = 0, (3.32a)
det(S22(z0)) = 0 <= det(s(Z)) = 0 < det(sp2(Zp)) = 0 < det(S22(39)) = 0.
(3.32b)

The definition (3.15) implies that M (x, #; z) can only have singularities at the zeros
of s11(z) and det(S22(z)). Similarly, M (x, ; z) can only have singularities at the
zeros of S11(z) and det(s2>(z)), etc. Lemma 3.11 implies that these zeros appear in
symmetric quartets: zg, Zo, 20, 20. Therefore, we only need to study the zeros of s1(z)
and det(S»»(z)) for z € Dj.

Assumption 3.12 Assume that s;;(z) has N| + N; simple zeros {wl}iv' and {y,, }i\/z in
Dy, det(S22(z)) has N, + N3 simple zeros {ym}iv2 and {zn}iv3 in Dy, where {wl}iv' N

{zn}llv3 = 0, {ym}iv2 are the common zeros of s11(z) and det(S»>(z)). Assume that
none of these zeros occurs in I'.

Lemma 3.13 Under the same hypotheses as in Theorem 2.3, if w is the simple pole of
M(x, t; z), then

2
ResM(x, 1; 7) = 0 (ResM(x, . z)) I, (). (3.33)
W w w

Furthermore, suppose that there exists a matrix A such that ResM(x,t;z) =
w
M(x, t; w)A, then

ResM(x, t; z) = —M(x, ; )H™ ' (w)ATH(w). (3.34)
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Proof Since the pole is simple,
ResM(x, t; 2) = [M(x,1; 2)(z — Lb)”z:ﬁ) (by Eq. (3.21b))
w
= [M(x 5 OM () — D],

M(x, t; DI (2)(Z — w)] )

l_|

2 =w
=% ResM(x, 1 z)) 0, ().
w
(3.35)
Suppose
M(x, 1:7) = iwt) FMo(x. 1)+ Oz — ), z—> b, (3.36a)
=
+ _ 1(x, 1) _
M (x,t;z)_z—w+M0(x )+ 0(iz—w), z—w.
(3.36b)
Indeed,
M_j(x,1) = [(z — DM (x, £; D]lz=ip = [(Z — w)M(x, £; D] |z
o (3.37)
- (RugsM(x, ‘ z)) — ATMT(x, 1: ).
The symmetry (3.21a) implies that
M_; (x, NDH ' (2)M_; (x, 1) = 0, (3.38)
Mo(x, DH ' ()M_ (x, 1) + M_; (x, H'H ' (2)Mp(x, t) = 0. (3.39)

Substituting (3.36) into (3.39), we obtain

1(X 1)

0= (M(x, t;2) — +0(z— w)) H'(x)M_(x, 1)

M_; (x, 1)

+M_i(x, )H ' (2) (MT(x, 1;7) — +0(z — w)> (by (3.38))

=M(x, 1; DH (@M1 (x, 1) + M (x, NDH ' (@M (x, 15 2) + O(z — w).

(3.40)

Setting z = w, combining (3.21a) with (3.37), we obtain
ResM(x, 13 2) = My (x, 1) = =M(x, 1 wH ™ (0)ATH(w). (3.41)
O
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Lemma 3.14 Suppose A(z) is a s-order square matrix, w is the simple zero of
det(A(z)), then

rank(A(w)) = s — 1, rank(A*(w)) = 1. (3.42)

Proof The lemma follows trivially from the fact

det(A(w)) = trace(A(w)A* (w)), (3.43)
where “-" represents thp differential operator respect to z. If not, i.e., rank(A(w)) <
s — 2, which implies det(A(w)) = 0, this a contradiction. O

Lemma 3.15 Under the same hypotheses as in Theorem 2.3, and suppose that the set
of the singularities are as in Assumption 3.12, the following residue conditions hold:

ResM(x, 13 2) = (aje 210 OM (x, 13 wp), 0, 0), (3.44a)
wy
ResM(x, £; 2) = (0, 0, —ae® 1 HIDM, (x, 15 wy)), (3.44b)
wy
2
ResM(x, 1;z) = (— %516219‘(X”‘w’)M3(x, t; W), 0, 0), (3.44c¢)
w; wy
=2
ResM(x, 1;z) = (0, 0, "—;ale—ml @EWOM, (x, 1 w,)), (3.44d)
wy wl
%esM(x, t7) = (ei(92—91)(X,l;)rm)Mz(x’ t: Ym)Bum, 0, 0)’ (3.45a)
i (01=02)(x.1:5m)
ResM(x, t; z) = (0, — M (x,£; ju)B], 0>, (3.45b)
I Y m)
igy el @1 =6 (.1:5m) .
ResM(x,t;2) = | 0, ———— M;(x,t: yu)B,,, 0 ), (3.45¢)
ym )’mV(Ym)
iy el B2t 3m) A
ResM(x,1;z) = (0,0, — My (x, t; Ym)Bu |, (3.45d)
Ym Ym
ResM(x, 1; 2) = <0, 0, !N EIMY (x, 1; zn)cn), (3.46a)
Zn
e—i(01+02) (x.1:%,) .
ResM(x, 1; 7) = <0, e M;(x,1; 2,)C], 0), (3.46b)
Zn V(Zn)
iGy e iOrHe) (52 -
ResM(x,t;z) = (0, — — M (x,1;2,)C,,0), (3.46¢)
Zn Zny (Zn)
iq+ei(91+92)("’“2")
ResM(x, t; z) = <— —— Mo (x, t; 2,)Cp, 0, 0), (3.464)
Zn Zn
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where M(x,t;z) = M(x, t; z), Ma(x, t; z), M3(x, t; 2)), a;, By, C,, are constants
or (N — 1) dimensional constant vectors, | = 1,..., N, m = 1,..., Ny, n =
1,..., Ns.

Proof By virtue of Lemma 3.13 and the symmetry (3.21b), we only need to prove
(3.44a), (3.45a) and (3.46a). In the following proofs, we omit the (x, ¢; z)-dependence
for brevity.

As z = wj. It follows from (3.15) and (3.16) that

P szt = (o s g5 ) = (0100,
M1, H—=28y, , M) = | U—1, Y 442811, det(822) =\H4-1,Y, det(Szz) ’
(3.47)

m
det(S22)

hi =(—1>Ng[u+2, } det(fiq1. 283, 1) = yS11 = 0. (3.48)

Consequently, rank (/i 1, [L_2§2_21, m;) < N and ﬁslzz) # 0 (if not, iy, = 0, this is
a contradiction). Combining with Lemma 3.2 yields rank (,u_l, 0, %) =1,ie.,

there exists a constant b; independent of (x, ¢; z) such that u_; = bie~ 20 detI?Slzz)'

Setting a; = Slel we complete the proof of (3.44a).
As z = yp,. It follows from (3.15) and (3.16) that

. m det(Sx)
g (ml, fia, ~—2> = (L’“ y/ms;z,m]), (3.49)
Si1 S11
my det(So2) i1 -~ .y -
4 (M—lv M2, ;) = (T+’ VM—ZS;2’ mp |, (350)

. . m
det <M+1, H-2, S_> =y det(S2) =0, det (M—l, M2, j) =0. (351
11

Since p4» and fi_» are full column rank, combining with Lemma 3.2 and Lemma
3.14 yields

det(San)
1 > rank (e(sz—Z)Ml Y 4255, m1> > rank (M—s-ZS;z) =1, (3.52)
11
det(Sx)j
| > rank (% Yil_2§hy. rhz) > rank (ji_o83,) = 1, (3.53)
11

i._e., there exists a constant vector «, independent of (x,;z) such that u_; =
61(92_91)u+28§2am. Furthermore, (3.49) and (3.53) imply m; = 0. Setting B,, =

S%IT’" , we complete the proof of (3.45a).

As 7 = z,, it follows from (3.15) and (3.16) that

<~ - Iﬁz) (det(Szz)M—l
g M1, =2, =— = -
Sii S11

(3.54)
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det (ml, fia, ;“—2) = y det(Sx) = 0. (3.55)
11

Since 4 is full column rank, combining with Lemma 3.2 and Lemma 3.14 yields

1 > rank (0, Y 42855, m1) > rank (M+2S§2) =1, (3.56)
i.e., there exists a constant vector f, independent of (x,7;z) such that m; =
el@1+02) 14283, By Setting C, = dftz(zsi ';) , we complete the proof of (3.46a). O

The inverse problem can be formulated in terms of the following:

Riemann-Hilbert Problem 3.16 Find a matrix-valued function M(x, 7; z) which is
sectionally meromorphic in C\I', has simple poles as in Assumption 3.12, satisfies
the growth conditions as in Lemma 3.7, the jump conditions as in Lemma 3.8, the
asymptotic behaviors as in Lemma 3.10 and the residue conditions as in Lemma 3.15.

Theorem 3.17 Under the same hypotheses as in Lemma 2.22, the matrix M(x, t; )
defined by (3.15) satisfies Riemann—Hilbert problem 3.16.

3.3 Reconstruction of potential

Lemma 3.18 (Vanishing Lemma) The regular RH problem for M(x, t; z) obtained
from RH problem 3.16 by replacing the asymptotic conditions in Lemma 3.10 with

M(x,t;2) = 0(z"), z— oo,
M(x,t;z) = O(l), z— 0,

has only the zero solution.

Proof LetH(x,t;z) = M(x, t; 2)H ' (2)MT(x, t; Z), it follows from the growth con-
ditions (3.23) that H(x, ¢; z) is well defined at z = Figgp. Also,

Hi(x,t;2) =M_(x,t; )1 (x, t; Z)H_I(Z)Mi(x, t;z7), zely,

(3.57a)
Ho(x,1;2) =M_(x,; DH ' @I (x, 1; DM (x, 1;2),  z €Ty,
(3.57b)
Hi(x.t:2) = M_(x, 1 D)Ja(x, t: DH T @M (x, 1:2), z €Ty,
(3.57¢)
Ho(x,1;2) =M_(x,; DH ' @IS (x, 1; DML (x, 1;2),  z €Ty,
(3.57d)
where J,, (x, t; z) = J(x, t; 2)Ir,,n = 1, ..., 4. The above equations imply H(x, t; z)

has no jump across I'1 U I'4, similarly for I'» U I'3. Since H(x, ¢; z) is analytic for
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z € C\T', also approaches 0 as z — 00, by Liouville’s theorem, we state
H(x,t;2) =0. (3.58)

From (3.26) and (3.30), we find J;(x, t; 2)H () is positive definite for z € I';.
Combining with (3.57a) implies M_(x, t; z) = 0 for z € T'y, similarly for z € I'3.
As a consequence, M(x, t; z) = 0 for z € R, which implies M(x, #; z) has no jump
across R. As is known to all, the zeros of the analytic function are isolated, thus
M(x,t;z) =0. |

Now, we rewrite any (N + 1) x (N + 1) matrix A in the following block form

Al Ap A
A= , 3.59
(A21 Axn A23> (3.59)

where A1 and A3 are scalar.

Theorem 3.19 (Reconstruction formula) The solution M(x, t; z) of RH problem 3.16
exists uniquely, thus

q(x, ) = —i lim zMy;(x,¢; 2), (3.60)
7—> 00

solves the N-component focusing NLS equation (1.2).

Proof As we know that M(x, ¢; z) may have some poles, however, this singular RH
problem can be mapped to a regular one (see Ref. [30]). The solution of the regu-
lar RH problem 3.16 (has no singularities) exists uniquely if and only if Vanishing
Lemma 3.18 holds (see Refs. [27, 28]). In absence of the possible poles, based on
the symmetry properties of the jump matrix J(x, ¢; z), one obtains that M(x, t; z),
M (x, ;7)) 'H(z) and M(x, t; Z)I1 (z) satisfy the same RH problem. Taking into
account the uniqueness, we conclude

M(x,1;z) = M (x,7:2) "' H(z) = M(x, 1; )14 (2). (3.61)

In the following, we shall prove that q(x, ) defined by (3.60) solves the N-component
focusing NLS (1.2) by virtue of the dressing method [29]. Set

A (x,t;7) = 0, M(x,t;7) — Ux, t; 2)M(x, t; 2) +iM(x, t; 2)A(2),
RB(x,t;2) = 0:M(x,t;2) — V(x, t; 2)M(x, t; 2) —iM(x, t; 2)R(2),

where U(x,t;z) and V(x,t;z) are defined by (2.2), R(z) = diag(—2kA,
k> 422, ... k> + A%, 2k)). Suppose q(x, 1) is defined by (3.60), and M(x, 7; z) has

N-1
the asymptotic expansion forms

Mx,t;2) =1+

M t M t
l(zx’ ) | Malx, )+0<z_3), ts o0, (3.63)

72
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M(x,t;z) = (I + Mi(x, D)z 4+ Mao(x, )22 + O(z3)) I, (2), z— 0.
(3.64)

combining with the symmetries in (3.61), we conclude

Q(x,t)=%[a,M1(x,t)], M (x.1) = —g2M(x. 1), My(x.1) = giMa(x. ).

(3.65)
Direct calculations yield .7 (x, t; z) satisfies the homogeneous RH problem
Ay (x,t;2) = A_(x,t;2)J(x,1;2), z€T,
A (x,1;2)=0@E""), z— oo,
A (x,t;z) = 0(1), z—0, (3.60)
which by Lemma 3.18 implies
o (x,t;2) = 0. (3.67)

Furthermore, substituting the asymptotic expansion (3.63) into (3.67), and comparing
the coefficients of O (z~1), we obtain

lo, 0: M (x,1)] = |:U, —%[o, Mj(x, )] + Q(x, )M (x, t)i| . (3.68)

It follows from (3.65) and (3.68) that ZA(x, t; z) satisfies the homogeneous RH prob-
lem

PBi(x,t;2) = B_(x,1;2)I(x,t;2), z€T,
B(x,t;2) =0, z— oo,
HBx,t;2) =0(1), z—0, (3.69)

which also by Lemma 3.18 implies that
AB(x,t;2) =0. (3.70)

The compatibility condition of Egs. (3.67) and (3.70) yields the function q(x, 7) defined
by (3.60) and solves the N-component focusing NLS equation (1.2). O

Remark 3.20 In general, if the symmetries of jump matrix, the residue conditions and
the asymptotic conditions are sufficient, the above theorem holds naturally by (3.15).
In order to verify those symmetries that have been found are adequate, one must prove
the reconstruction formula. In other words, the potential also can be expressed in
terms of M2 (x, ¢; z), the consistency of two reconstructions should be ensured by
symmetries.
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Indeed, RH problem 3.16 can be regularized by subtracting any pole contributions
and the leading order asymptotic behavior at infinity and zero:

M(x,t;2) = M(x,1;2) — E4 (2)
N [ResM ResM  ResM  ResM
wi wy

wy wy

-3 et —
Z—w = w = w

Z— If)]
N, [ ResM ResM ResM ResM

_Z Ym +ym +ymA +)’m

Z=Ym Z=Im Z=Im  Z—Ym

N; [ResM ResM ResM  ResM

_Z Zn + Zn + Zn + Zn

Z—Zn Z—Zn Z—Zn z—2,

(3.71)
Consequently, the piecewise holomorphic function M (x, t; z) satisfies

My(x,t,;2) —M_(x,t;2) =M_(x,t;2)J(x,152) = ), zeT, (3.72)
M(x,t;2) = 0, z— oo. (3.73)

Using the Plemelj—Sokhotski formula, we get

M. 1:2) = ﬁfr Mo 1 52({(?”4) Dy, (3.74)

Equivalently, RH problem 3.16 can be solved by the system of algebraic-integral
equations:

Ny
M) =Eq1()+ )

(azezie’(w’)Mﬂwz) 6142r51€2191(’z”)M3(U:)1)>
=1

z—wr W} (z — wy)

Ny ei(92 —01 )(Ym)Mz (ym)Bm N3 ei(gl +92)(Zn)M2 (2n)cn

+ Z iq+ Z z2n(Z — Zn)

= Ym

m=1 n=1

(3.75a)
1 M_(x, t; C)(J(x,t;c)—lhd
e - ¢
1 Jr {—z
] M_ . . _ I
Dﬂz(Z)==E+2(Z)+-§—f‘/’ o r U 16 = D2y,
71 Jr -z
22, (e @O=0GM, (5,)B],  ig.e @G M;(5,)B),
ARSI Sy G) @ = Im)

)

(3.75b)
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v (Zu)(z — Zp)

n=

Nj
M3(2) =E43(2) + )

=1

N3 <e—i<01+92)(zn>M3(zn)le
1
e "M ()

M2 i 02=000m My ($,0) By,

i, e 1O1T0)GEIM, (Z,)C)h
Zny @)@ = 2n)

G2 aje” B WOM, (i) )
— +
7 —wy

wi(z — W)

3, el +02) @M, (7,)C)

—igy - (3.75¢)
— Ym(Z = Ym) el 27 Zn
1 M_(x,t; C)(J(x,t;é)—l)sd
— ¢
271 —z

Corollary 3.21 The solution of the N-component focusing NLS equation (1.2) with
NZBCs (1.3) is reconstructed as

2
=216 (wy)
x,1) = —1 ae Moz (w;) —
qx, 1) = q4 E(z 23(wp) i

a %% (w’)Mzs(w)>
=1 i

Na
—i ) IOy (y,)B,, Z T 040Ny, (2,)C,

m=1 n= 1

1
JFE/r [M_(x,7: ) (x, 1: 0) — D], d¢. (3.76)

4 Reflectionless potential and exact solutions

We now reconstruct the potential q(x, r) explicitly in the reflectionless case, i.e.,
p1(z) = 0 and p2(z) = 0. In this case, there is no jump across the contour I'. As a
consequence, the inverse problem reduces to an algebraic system

Ny+N3

oy M3 (w, My (M) B -
M) —E+1(z)+zu s> MeBn 5 R @l
—w Z— Am
=1 m=1
No+N3 Iy +
M (A B,
My (z) = E42(z) — Z —mi, 7= An, (4.1b)
m=1 Z— Am +Z—
2Ny - - N2+N3
aM (@) 111+M2(Am)3
M3(z) =E;3(2) — _— = _— =w;j,
; T w ,,; Am(z — m) !
(4.1¢)
where
, I=1,...,Nq,
o =1 : 4.2)
wi—py;, [=Ni+1,...,2Ny,
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ape— 201 (o) l=1,..., Ny,
aj(x,t) = 2 . . 4.3
o _%azw.e—z‘(’“’““wﬂ, [=Ni+1,....2Ny, @3

, —1,....No,
P B " 2 (4.4)
Zm-Nyy, m=No+1,..., N+ N3,

SICEUNERTM) : 3 m=1,....N,
BuGx,t) =1 . o e 45
m(*, 1) Lol 00 C,_y, . m =Ny 1,..., Na+ Na. )

4.1 Reconstruction

It follows trivially from (3.76) that

Theorem 4.1 In the reflectionless case, the solution of the N-component focusing NLS
(1.2) with NZBCs (1.3) can be expressed by

2Ny Nyr+N3
Q. 1) =qy =i ) (e, OMs(x, tio) =1 Y Maa(x, £ An) B (x, 1).
=1 m=1
4.6)

Substituting (4.1a) into (4.1b) and (4.1c), we get the following algebraic system for
o M3 (@)} and (M (1) B, )1

N>+N3 - F

E. i (A)B B

My ()By = Ea () By — Y ——
m=1 )\n_)\m +)Ln_)\m

N2+N3 N2+Nj3 ¥
BLB,)My(A)B;
Z 3 ( A) 2( f)_f (4.72)
= j=1 (An _)\m‘i‘)\n_km)(km_)\j)
~ Ni’v el (Bl By)arMs (@)
m=1 1=1 (An — )_Lm + j\\n - )_Lm)()_tm — )

Rl ot]oqEH(a);) 2 ajoyoMs(wp)
ajM3(@)) = ajEq3(0) — ) ———" =" G

—~  wj— o =i (@ — @)@ — wp)
2N| N2+N. — N2+N-
_ 21: iS ajalM2()¥m)Bm _ is IQ+a]M2()Vm)Bm (4.7b)
= (0j =)@ =) = A —Am)

Solving this system, combining with Theorem 4.1, we find

Corollary 4.2 In the reflectionless case, the solution of the N-component focusing NLS
(1.2) with NZBCs (1.3) can be written

q(x, 1) = q4 —iF(, A+ Gx, 1)1y, (4.8)
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where the N x N matrix-valued function G(x,t) = (gun) ¥ x>, the N X N

matrix-valued function ¥(x,t) = (Fy, ..., F 4), the A -dimensional column vector
1Ly=(,....,DI, ¥ =2N; + Ny + N3,

2N ooy
—_— < <
=1 @n—an(@—on)’ I=mn=2N,
igi o 2N) oy, < < <
v ontmn, 2=t T v —e)G ey 1Sn=2Ni<m =N,

= B B,—
mn lN:21+N3 ( ) 1<m<2Ny<n<.V,
(wm_)t/)()tl An— 2N1+)Ll )\n 2N1)
B B,_
INZZIJFM _ Bibran) , 2Ny <m,n <N,
Am—2n) =2 (A —An—2N| FAi—An-2N})
4.9)
E.o(w;) — 2Ny ajaEior (@) 1< i<2N
i3 (W) I=1 = wj—a =J =40
= NotNy  E21Gan)BLBjon .
E 0 (hjan)Bj—an, — Yoy ® —— N 2Ny < j <A
}"] 2N }‘ITI+}"j 2N )\m
(4.10)

Remark 4.3 As N, = N3 =0, i.e., 4 = 2N}, it follows from (4.10) that the (m, n)-
element of the matrix F(x, r) iszeroform = 1,..., N — 1. Consequently, g; = --- =
gn-1=0.

4.2 Special exact solution

In the following, we explore the different possibilities for the reflectionless solution in
the 3-component case. Without loss of generality, we consider gy = 1,q_ = —1,1i.e.,
q+ = (0,0, DT, q- = (0,0, — 17T In the reflectionless case, similar to the Manakov
system [24], we find that

N _ ~
(o) = [[ L2 i H Z_y’"]"[ (.11)

llz_wlz_wlmlZ ymnlz_zn

Setting z — 0 in the above equation, and comparing the asymptotics in (2.113) yields

1 2 3
ZZargwl+Zargym—2_:argzn=%4—/(71, K € Z. 4.12)

Case (i) N, = 0, N3 = 0 (Fig.2); Since g1 = g2 = 0, we only consider the dynamical
evolutions of g3.

Case(ii) Ny = 1, N, = 1, N3 = 0 (Fig. 3);

Case (iii) Ny = 0, N = 1, N3 = 1 (Fig. 4);

Case(iv) Ny = 1, N, = 1, N3 = 1 (Fig. 5);
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Fig.2 Left: |g3| with N = 1, w; = 1 +1,a; = I;Right: |g3| with N| =2, w; = 1 +1,wy =2i,a; =1,
ay) =1

Fig. 4 The dynamical evolutions of the solution q with y; = —2 + %, 7] = %, B, = (1,)7,
Cr=zuC-1Li"

P TS W

IR0 90/0.90'8' 95 8%

Fig. 5 The dynamical evolutions of the solution q with @ = 3i, y; = % +2i,z1 = 557,01 = 1,
B =G D, Cr=z0G-DT
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Remark 4.4 By virtue of the numerical software “Mathematica,” we have verified that
all the expressions for q(x, 7) in cases (i) — (iv) solve the 3-component focusing NLS
equation (1.2) with limy_, 100 q(x, ) = (0, 0, +1H7T,

5 Conclusion and outlook

As it has shown that this work is more involved than the scalar case and the 2-
component case, mainly in understanding the algebraic structure thoroughly. In this
paper, we have introduced the idea of “block" and the generalized cross product in
multi-dimensional space to develop the IST for the N-component focusing NLS with
NZBCs and have characterized the inverse problem in terms of a 3 x 3 block matrix RH
problem. Moreover, by virtue of the symmetries of the scattering data, we have verified
the existence and uniqueness of solution for the above RH problem and have proved
that the reconstruction potential q(x, #) solves the N-component focusing NLS. We
expect these ideas to be useful in investigating the other multi-component integrable
equations. However, due to lacking N — 1 analytic eigenfunctions rather than one in
each sector, those ideas in this work can not be applied to the IST for the N-component
defocusing NLS equation with NZBCs in a straightforward way. We should remark
that the IST for the multi-component defocusing NLS equation with NZBCs was
recently established in Ref. [25, 26]. In spite of some ideas can be extended to the
N-component case, a detailed treatment of the symmetries is still open. We believe
that the idea of “block” would be useful to characterize the symmetries. In this paper,
we consider the case of a solution that tends to q()e"(’i as x — Fo00, where qq is a fixed
vector. This is a special case, the problem with general nonzero boundary condition
is left as a topic for future work.

Once the long-time asymptotics for the focusing NLS with NZBCs have been

analyzed in Refs. [31-34] by virtue of the nonlinear steepest descend method [35],
one could try to investigate the 2-component case. Therefore, it would be an interesting
subject to relate our previous work [36] on the 2-component coupled case with ZBCs
to the techniques in this paper and Refs. [31-33].
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