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Abstract
The Agmon estimate shows that eigenfunctions of Schrödinger operators, −�φ +
Vφ = Eφ, decay exponentially in the ‘classically forbidden’ region where the poten-
tial exceeds the energy level {x : V (x) > E}. Moreover, the size of |φ(x)| is bounded
in terms of a weighted (Agmon) distance between x and the allowed region.We derive
such a statement on graphs when −� is replaced by the graph Laplacian L = D− A:
we identify an explicit Agmon metric and prove a pointwise decay estimate in terms
of the Agmon distance.
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1 Introduction: Agmon estimates

Let V : Rn → R be a nonnegative potential growing at infinity, i.e., V (x) → ∞ as
‖x‖ → ∞. Agmon estimates are concerned with eigenfunctions of the Schrödinger
operator −� + V : we study functions φ : Rn → R satisfying

−�φ + Vφ = Eφ,

where E ∈ R is the eigenvalue. Multiplying with φ and integrating by parts,

∫
Rn

|∇φ|2dx +
∫
Rn

V (x) · φ(x)2dx =
∫
Rn

E · φ(x)2dx .

This identity implies that most of the L2−mass should be contained in the ‘allowed’
region {x ∈ R

n : V (x) ≤ E} and only very little mass can be in the ‘forbidden’ region
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{x ∈ R
n : V (x) > E}. The celebrated Agmon estimate [1] shows that this is indeed

the case and, moreover, that φ decays exponentially in terms of the distance from the
allowed region for a suitable notion of distance. Agmon’s estimate can be derived
from an explicit integral identity. One way of motivating the estimate (taken from a
summary of Deift [8]) is as follows: if

−�φ + Vφ = Eφ,

then for any (sufficiently regular) g : Rn → R

∫
Rn

∣∣∇(egφ)
∣∣2 dx +

∫
Rn

(
V − E − |∇g|2

)
e2gφ2dx = 0.

Ignoring the first (positive) term, this implies

∫
Rn

(
V − E − |∇g|2

)
e2gφ2dx ≤ 0.

We note that e2g and φ2 are positive, V − E − |∇g|2 is negative in the allowed region
and positive in the forbidden region provided |∇g| is sufficiently small. The inequality
then naturally implies that there cannot be too much L2−mass of φ in the forbidden
region except this is now coupled with an additional exponentially growing term e2g .
The statement becomes stronger, the larger we make g; however, we want to maintain
the nonnegativity of V − E − |∇g|2 in the forbidden region. This then suggests a
way of defining g: the Agmon metric associated with the energy level E between two
points x, y ∈ R

n is given as the minimum energy taken

ρE (x, y) = inf
γ

∫ 1

0
max

(√
V (γ (t)) − E, 0

)
|γ̇ (t)|dt,

where γ : [0, 1] → R
n ranges over all paths from γ (0) = x to γ (1) = y. The integral

identity can then be used (see for example Carmona and Simon [6]) to derive pointwise
statements in the forbidden region along the lines of that for all ε > 0

|φ(x)| ≤ cε sup
y∈Rn

V (y)≤E

e−(1−ε)ρE (x,y).

We refer to Aizenman and Simon [2], Carmona [5], Dimassi and Sjöstrand [9], Helffer
[13], Helffer and Sjöstrand [14, 15], Hislop [16], Simon [23, 24] and references therein
for amore complete picture regardingAgmon’s estimate in the continuous setting. Our
paper is partially inspired by a recent probabilistic approach to obtain sharp pointwise
Agmon estimates in the continuous setting [25].
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2 An Agmon estimate on graphs

2.1 Setup

Let G = (V , E) be a finite, connected graph with V = {v1, . . . , vn}. We introduce
the diagonal matrix D ∈ R

n×n satisfying dii = deg(vi ) and the adjacency matrix
A ∈ R

n×n given by

Ai j =
{
1 if (vi , v j ) ∈ E

0 otherwise.

There is a natural notion of a discrete Laplacian acting on functions f : V → V given
by the linear operator L = D− A ∈ R

n×n . We observe that L can be interpreted as the
discrete analogue of −� as both are positive semi-definite and allow for integration
by parts: for f : V → R

〈 f , L f 〉 =
∑

(vi ,v j )∈E
( f (vi ) − f (v j ))

2.

Given an arbitrary potential W : V → R, our goal is to understand the behavior of
eigenfunctions φ : V → R satisfying

Lφ + Wφ = Eφ

for some eigenvalue E ∈ R. Multiplying with φ and integrating by parts

∑
(vi ,v j )∈E

(φ(vi ) − φ(v j ))
2 +

∑
v∈V

W (v) · φ(v)2 =
∑
v∈V

E · φ(v)2.

This suggests, just as in the continuous case above, that there should be relatively little
�2−mass in the ‘classically forbidden’ region {v ∈ V : W (v) > E}. The question is
now whether, just as in the continuous case, one can expect exponential decay in the
forbidden region and how this can be quantified.

2.2 Main result

We define a notion of Agmon distance ρE : V → R as the cost of the cheapest path
starting in v ∈ V and ending in any arbitrary vertex in the allowed region where
‘cheap’ refers to an explicit cost function on V depending on the potential W , the
energy E and the degree of the vertex. Formally,

ρE (v) = inf

⎧⎨
⎩

�∑
i=1

log

(
1 + (W (vi ) − E)+

deg(vi )

)
: v = v1 → · · · → v� and W (v�) ≤ E

⎫⎬
⎭ ,
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where the infimum is taken over all paths that start in v and end in a vertex v� in the
allowed region. As usual, (W (vi ) − E)+ = max {W (vi ) − E, 0}. Note that ρE ≡ 0
in the allowed region and ρE > 0 in the forbidden region.

Theorem We have, for all v ∈ V ,

|φ(v)| ≤ e−ρE (v) · ‖φ‖�∞ .

The maximum principle shows that |φ| assumes its maximum in the allowed region
and thus ‖φ‖�∞ = ‖φ‖�∞(W (v)≤E). Since ρE ≡ 0 in the allowed region, the inequality
is sharp in the maximum and the implicit constant 1 in front cannot be improved any
further. In terms of the exponential decay, there are graphs where the inequality is
asymptotically optimal: such examples are constructed in §3.2.

2.3 Related results

There is relatively little work regarding Agmon estimates on graphs. However, we
emphasize one recent result which is close in spirit to our result. Filoche, Mayboroda
and Tao [11] study eigenvector localization for a fairly general class of matrices A ∈
R
n×n . They obtain an integrated exponential estimate in terms of an explicit Agmon-

type distance. Considering A = D − A+ W and u = (1, 1, . . . , 1) in their approach,
one arrives at a notion of distance

ρ(v,w) = inf

{
�∑

i=1

log
(
1 + 4

√
(W (vi ) − E)+(W (vi+1) − E)+

)}
,

where the infimum ranges over all paths that start in v = v1 and end inw = v�+1 (and,
as in our approach, traveling through the allowed region is free which we suppress
in the equation above for simplicity of exposition). This is very similar in flavor to
our distance above: using this, they then obtain an integrated estimate also involving a
landscape-type potential A−11 [11, Theorem 2.5] as well as more general integrated
estimates [11, Theorem 2.7]. A main difference is the dependency on the degree of a
vertex which is locally built into our distance while arising in the integrated estimates
of [11] more globally (somewhat unsurprisingly: integrated estimates themselves are
global). Both our estimate and the estimates in [11] are complementary: which one
ends up being better will depend (among other things) on whether there is a lot of
variation in the degrees of the vertices.
There is also a recent work of Keller and Pogorzelski [18] who study Agmon estimates
in the more general setting of weighted, infinite graphs where the Agmon distance is
given in terms ofHardyweights. There is a philosophical overlapwithwork ofDodziuk
[10]. We also note the work of Akduman and Pankov [3, 4] on metric graphs, the work
of Harrell and Maltsev [12] on quantum graphs, Damanik, Fillman and Sukhtaiev [7]
on tree graphs, results of Hua and Lu [17] and Wojciechowski [27] as well as work of
Klein and Rosenberger [19, 20], Mandich [22] and Wang and Zhang [26] on Zd .

123



An Agmon estimate for Schrodinger operators on graphs Page 5 of 9 12

3 Proof

3.1 Proof of the Theorem

Proof Note first that the eigenfunction satisfies

(D − A)φ = (E − W )φ.

Considering this linear system of equations in a fixed vertex u ∈ V one obtains

deg(u)φ(u) −
∑

(u,w)∈E
φ(w) = (E − W (u))φ(u).

This equation can be rewritten as

[
1 + W (u) − E

deg(u)

]
φ(u) = 1

deg(u)

∑
(u,w)∈E

φ(w).

We observe that if φ(u) = 0, then the theorem is trivially true in u. It thus suffices to
prove it for vertices u ∈ V where φ(u) �= 0. Note, moreover, that in the forbidden
region {u ∈ V : W (u) > E}, one trivially has

1 + W (u) − E

deg(u)
≥ 1

and thus, for u ∈ V in the forbidden region, it is possible to divide and

φ(u) =
[
1 + W (u) − E

deg(u)

]−1 1

deg(u)

∑
(u,w)∈E

φ(w).

Taking absolute values on both sides, we have

|φ(u)| ≤
[
1 + W (u) − E

deg(u)

]−1 1

deg(u)

∑
(u,w)∈E

|φ(w)|

≤
[
1 + W (u) − E

deg(u)

]−1

max
(u,w)∈E |φ(w)|.

Since φ(u) �= 0, we deduce

max
(u,w)∈E |φ(w)| > |φ(u)|.

We can now move from u to its neighbor w maximizing |φ(w)| and then apply the
very same argument again inw. The argument can be applied iteratively as long as the
new vertex is still in the forbidden region. Note that |φ| is increasing along the way
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which implies that the arising path can never cross itself and must eventually end up
in the allowed region {v ∈ V : W (v) ≤ E}. Altogether, this results in a path

u = v1 → v2 → · · · → vm → vm+1 where W (vm+1) ≤ E

since otherwise the path could be further extended. Collecting all the factors

|φ(u)| ≤
(

m∏
i=1

[
1 + W (vi ) − E

deg(vi )

]−1
)

· |φ(vm+1)|

≤
(

m∏
i=1

[
1 + W (vi ) − E

deg(vi )

]−1
)

· ‖φ‖�∞

Note that

m∏
i=1

[
1 + W (vi ) − E

deg(vi )

]−1

= exp

(
−

m∑
i=1

log

(
1 + W (vi ) − E

deg(vi )

))
.

By definition of ρE , we have

exp

(
−

m∑
i=1

log

(
1 + W (vi ) − E

deg(vi )

))
≤ exp (−ρE (v1))

and this concludes the proof. 
�
Remark We note that the final estimate in the argument implies

|φ(u)| ≤ exp

(
−

m∑
i=1

log

(
1 + W (vi ) − E

deg(vi )

))
· |φ(wm+1)|

for any path starting in u = v1 and ending in the vertex vm+1 in the allowed region. This
would imply a slightly refined estimate where one is not only interested in minimizing
the Agmon metric but also wants to end up in a vertex in the allowed region such that
|φ(wm+1)| is not too small.

Remark We quickly note a part in the derivation where the argument can be lossy: the
main inequality is

|φ(u)| ≤
[
1 + W (u) − E

deg(u)

]−1 1

deg(u)

∑
w∼u

|φ(w)|

≤
[
1 + W (u) − E

deg(u)

]−1

max
(u,w)∈E |φ(w)|.
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This inequality could also be interpreted as a type of martingale inequality and can be
exploited in this sense. Let us define a sequence of random vertices given by X0 = u
and such that Xk+1 is a randomly chosen neighbor of Xk and that this random walk is
continued until W (Xk) ≤ E . We will denote the smallest such k by the stopping time
τ . Assume furthermore that

W (u) − E

deg(u)
≥ δ for all u ∈ V in the forbidden region.

An iterative application of the inequality then implies

|φ(u)| ≤
( ∞∑

�=0

P (τ = �)

(1 + δ)�

)
· ‖φ‖�∞ .

We note that this inequality can lead to improved results in settings where a random
walk needs a very long time before arriving in the allowed region. Observe that the
sum can be interpreted as an exponential moment E exp (τ/(δ + 1)) of the stopping
time τ which is a well-studied object. We refer to [25] for the derivation of Agmon
estimates via this more stochastic perspective in the continuous setting.

3.2 An Example

The purpose of this section is to construct a graph where the inequality is nearly sharp.
One example of such graphs is given by q−regular trees of a certain depth where the
final layer of vertices is then additionally connected to another vertex v∗ (see Fig. 1,
for an example). We consider the potential given by W (v∗) = 0 and, for all other
vertices v �= v∗, we choose the potential to be constant and W (v) = W � qk � 1
for some very large constant W ∈ R where k is the depth of the tree. The function we
will consider is the first eigenfunction of L + W .

By Rayleigh–Ritz, the smallest eigenvalue of −� + W satisfies

λ1 = inf
f :V→R

∑
(vi ,v j )∈E ( f (vi ) − f (v j ))

2 + ∑
v∈V W (v) f (v)2∑

v∈V f (v)2
.

Fig. 1 A q−regular tree (here,
q = 3) of depth k (here, k = 2)
with final layer being connected
to a single additional vertex v∗

v∗

k 0 1 2
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Taking f : V → R given by f (v∗) = 1 and f (v) = 0 for all v �= v∗, we deduce that

E = λ1 ≤ qk independently of W .

We can now use the equation

φ(u) = E − W (u)

deg(u)
φ(u) + 1

deg(u)

∑
w∼u

φ(w)

and we shall restrict its use to vertices in the q−regular tree. The value of φ then only
depends on the level. We shall therefore write φ(v) = φi whenever the vertex v is in
the i−th level where 1 ≤ i ≤ k − 1 (the case i = 0 and i = k will be ignored since
the algebra is slightly different). The equation then simplifies to

φi = λ1 − W

q + 1
φi + 1

q + 1
(q · φi+1 + φi−1).

This can be rewritten as

(W − λ1 + q + 1) · φi = q · φi+1 + φi−1.

For fixed q and W � qk ≥ E , this implies that approximately φi ∼ (q/W ) · φi+1 as
W → ∞ which implies exponential decay. Conversely, we have

log

(
1 + W − E

deg(v)

)
∼ log

(
W

q

)

which implies, to leading order, the same kind of decay.
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