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Abstract
We propose a new method for computing motivic Donaldson–Thomas invariants of a
symmetric quiver which relies on Koszul duality between supercommutative algebras
and Lie superalgebras and completely bypasses cohomological Hall algebras. Specifi-
cally,we define, for a given symmetric quiver Q, a supercommutative quadratic algebra
AQ, and study the Lie superalgebra gQ that corresponds to AQ under Koszul duality.
We introduce an action of the first Weyl algebra on gQ and prove that the motivic
Donaldson–Thomas invariants of Q may be computed via the Poincaré series of the
kernel of the operator ∂t . This gives a new proof of positivity for motivic Donaldson–
Thomas invariants. Along theway, we prove that the algebraAQ is numerically Koszul
for every symmetric quiver Q and conjecture that it is in fact Koszul; we show that
this conjecture holds for a certain class of quivers.
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1 Introduction

Motivic Donaldson–Thomas invariants of quivers, abbreviated DT invariants in the
following, were introduced in [24] as natural analogues of the Donaldson–Thomas
invariants counting classes of sheaves. They are originally defined purely formally via
Euler product factorizations of motivic generating series of stacks of representations
of the quiver. To investigate their properties, more structural interpretations are thus
desirable. The first such interpretation was already given in [24], by introducing the
cohomological Hall algebra HQ associated to the given quiver Q. For a symmetric
quiver, this algebra is supercommutative; it was conjectured in [24], and proved in [12],
to be isomorphic to the free supercommutative algebra generated by a certain subspace
whose Poincare series encodes all DT invariants, thus proving their integrality and
positivity. Geometric interpretations of the DT invariants in terms of moduli spaces of
quiver representationswere subsequently derived in [17, 30]. In the special case of one-
vertex quivers, a combinatorial formula for DT invariants was derived in [34]. Much
more recently, the graded dual of the cohomological Hall algebra was identified in [11]
with the canonical coalgebra on the universal envelope of a vertex Lie algebra; since
the latter is cofree, this in particular gave an alternative proof of the main result of [12].

In this paper, we propose a different approach to DT invariants of symmetric quiv-
ers. It also starts with a certain supercommutative algebra; however, by contrast with
the cohomological Hall algebra, our algebraAQ is, in general, highly non-free. While
for cohomological Hall algebras, the DT invariants are computed directly using the
Poincaré series of the space of generators, in our case, the link to DT invariants is pro-
vided by the Koszul duality theory. Specifically, one finds that the role of generators
of the cohomological Hall algebra is now played by the Koszul dual Lie superalge-
bra gQ ofAQ. Positivity and integrality of DT invariants follows, in our context, from
existence of extra symmetries of that Lie superalgebra: an action of the Weyl algebra
of polynomial differential operators on the line. Specifically, we prove the following
result.

Theorem The Koszul dual Lie algebra gQ has aDiff1-module structure, and the action
of Q[t] ⊂ Diff1 on gQ is free, with the space of generators Ker(∂t ). Moreover, for

each d ∈ ZQ0≥0 , we have

DTd(q) =
∑

n≥0

dim(Ker(∂t )d,n)q
1
2 n−1 ∈ Z≥0[q± 1

2 ].

One of the intermediate steps of our proof uses the vertex operator algebra approach
to DT invariants proposed in [11], which in turn may be related to the more geometric
approach of [21, 22, 25]. It is however important to emphasize that in [11] the motivic
DT invariants are related to negative halves of the coefficient algebras of certain vertex
Lie algebras, and in our approach, studying the positive halves is crucial, and the two
are not related in any obvious way. That surprising symmetry remains a mystery that
demands further explanations.

It is perhaps instructional to give an example of the first nontrivial particular case
of our construction, corresponding to the quiver Q with one vertex and two loops.
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In this case, the algebra AQ is the commutative algebra in even variables ak , k ≥ 0,
subject to the relations

∑

k1+k2=k

ak1ak2 = 0, k ≥ 0.

Its Koszul dual Lie superalgebra has odd generators bk , k ≥ 0, subject to the relations

[bk, bl ] = [bk−1, bl+1],

and the operator ∂t of the Weyl algebra is the unique derivation D for which D(bi ) =
bi−1.

Let us remark that, as a part of the proof, we establish the following result that is of
independent interest. Recall that an associative algebra is called numerically Koszul if
the Poincaré series of its Koszul complex is equal to 1; in our case where all Poincaré
series are multigraded, this means that the Poincaré series of the algebraA and of its
Koszul dual algebra A ! satisfy the relation

P(A , x, q)P((A !)∨, q− 1
2 x, q) = 1,

where (A !)∨ is the graded dual of A !, defined precisely below.

Theorem The algebra AQ is numerically Koszul for every symmetric quiver Q.

It is known that each Koszul algebra is numerically Koszul, but the converse is not
true in general. However, this result is a strong evidence toward the conjecture that
the algebras AQ are always Koszul. At the moment, we cannot prove this conjecture
in full generality, but we managed to classify all quivers Q for which the algebra AQ
has a quadratic Gröbner basis of relations for the natural ordering of variables ai,k that
prioritizes the value of k in comparing the generators, and all quivers Q for which the
defining relations of our algebra form a regular sequence, thus exhausting two most
obvious criteria of Koszulness.

It is also worth mentioning a different layer of Koszul duality at play: algebras
AQ are related to certain commutative vertex algebras, and algebras gQ are related to
certain vertex Lie algebras, and the two seem to be Koszul dual as vertex algebras.
Interestingly enough, the corresponding commutative vertex algebras and vertex Lie
algebras are free in an appropriate sense (for certain locality functions on the sets
of generators [4, 35]), and so the Koszul duality between the algebras AQ and gQ
appears to mimic the classical boson-fermion correspondence in a way that appears
quite different from that recently described in the recent paper [9].

Finally, we note that if Q is obtained from a simple graph G by “doubling” (putting
an arrow i → j whenever i and j are connected by an edge), the algebra AQ may be
interpreted as the coordinate algebra of the arc space [19, 31] of the variety defined by
quadratic monomials corresponding to edges of G. Those algebras are studied in the
recent papers [7, 8, 20, 26, 27] with lattice vertex algebras as one of the main tools. It
would be desirable to examine the algebrasAQ for other quivers in the context of the
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study of relationships between arc spaces and vertex algebras [1]. These observations
will be addressed elsewhere.

Structure of the paper

The paper is organized as follows. In Sect. 2, we give the necessary recollections on
DT invariants, quadratic algebras, and criteria of Koszulness. In Sect. 3, we define
the quadratic algebras AQ and establish a relationship between their Poincaré series
and the motivic generating functions. In Sect. 4, we describe the Koszul dual Lie
superalgebra gQ and relate it to the known combinatorics of DT invariants for one-
vertex quivers. In Sect. 5, we define an action of the Weyl algebra on gQ, and use it to
prove the main results of the paper. In Sect. 6, we show that the algebra AQ is always
numerically Koszul and classify the quivers for which it can be proved to be Koszul
using one of the standard methods. In the appendix, we prove auxiliary linear algebra
results used in the paper.

2 Recollections

All vector spaces and chain complexes in this article are defined over the field of
rational numbers. All chain complexes are homologically graded, with the differential
of degree −1.

Throughout the article, Q denotes a finite quiver with the set of vertices Q0 and the
set of arrows Q1. We shall assume that Q is symmetric, that is, the number of arrows
from i to j is equal to the number of arrows from j to i for all i, j ∈ Q0. We denote
by L the free abelian group ZQ0 , and denote its standard basis elements by αi . The
Euler form of Q is the bilinear form on L defined as

χ(d, e) =
∑

i∈Q0

diei −
∑

(a : i→ j)∈Q1

die j .

Under our assumption, the Euler form is symmetric.

2.1 Graded vector spaces and algebras

Most vector spaces considered in this article are of the form

V =
⊕

d∈L

Vd, Vd =
⊕

(d,n)∈L×Z

V n
d .

We consider the category VectL×Z of such vector spaces, with morphisms being maps
of degree zero. The category VectL×Z is monoidal, with the monoidal structures given
by the tensor product V ⊗ W defined by

(V ⊗ W )n
d =

⊕

(d′,n′)+(d′′,n′′)=(d,n)

V n′
d′ ⊗ W n′′

d′′ .
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Moreover, we can use the Koszul sign rule to define a braiding σ : V ⊗ W → W ⊗ V
by the formula σ(v ⊗ w) = (−1)n′n′′

w ⊗ v, for v ⊗ w ∈ V n′
d′ ⊗ W n′′

d′′ ; this braiding
makes the category VectL×Z symmetric monoidal. Finally, we shall use graded duals;
for an object V , its graded dual V ∨ is defined by the formula

V ∨ =
⊕

d∈L

V ∨
d , V ∨

d =
⊕

n∈Z
(V −n

d )∗.

We shall work with various algebras in the category VectL×Z, specifically, asso-
ciative, commutative, and Lie algebras. One can either define them directly, using
the tensor product to talk about the structure operations and using the braiding to
implement permutations of arguments, or, alternatively, one may note that the cate-
gory VectL×Z contains the category Vect as a full symmetric monoidal subcategory
of objects of degree zero, and so one may talk about objects in VectL×Z that are alge-
bras over the classical operads Ass, Com, and Lie in Vect. In particular, as in the case
of Vect, the free associative algebra generated by an object X is the tensor algebra
T(X) = ∐

n≥0 X⊗n , and the free commutative algebra generated by an object X is the
symmetric algebra S(X) = ∐

n≥0(X⊗n)�n . When using the braiding defined via the
Koszul sign rule, it is not uncommon to refer to the corresponding notions of algebras
as associative (commutative, Lie) superalgebras. We hope that the reader is not too
perturbed by the fact that, under our convention, these algebras are just associative
(commutative, Lie) algebras, just in a different symmetric monoidal category.

2.2 Poincaré series

Let V be a Z-graded vector space with finite-dimensional components. The Poincaré
series P(V , q) is defined by the formula

P(V , q) =
∑

k∈Z
dim(V k)(−q

1
2 )−k .

(Division by two corresponds to the standard convention used for cohomological Hall
algebras, and using the exponent −k comes from working with homologically graded
vector spaces.) In general, this expression is an element of the vector space of doubly

infinite Laurent seriesQ[[q± 1
2 ]]; in our work, we shall only deal with situations where

it is finite on one of the sides, so that it belongs to one of the fields of formal Laurent

series Q((q
1
2 )) = Q[[q 1

2 ]][q− 1
2 ] and Q((q− 1

2 )) = Q[[q− 1
2 ]][q 1

2 ].
Let us consider formal variables xi , i ∈ Q0, and denote, ford ∈ L , xd = ∏

i∈Q0
xdi

i .

To an object V of VectL×Z with finite-dimensional components, we shall associate its
Poincaré series P(V , x, q):

P(V , x, q) =
∑

d∈L

P(Vd, q)xd =
∑

d∈L

∑

k∈Z
dim(V k

d )(−q
1
2 )−k xd.
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An important property of the Poincaré series is the following invariance property. If
V is a chain complex (with a differential δ of degree (0,−1)), its Poincaré series is
the same as the Poincaré series of its homology:

P(V , x, q) = P(H(V , δ), x, q).

For certain objects in VectL×Z, we shall use the fact that Poincaré series behave well
with respect to various operations, including tensor products. For that, it is important
to consider a smaller category. Our choice is to consider the subcategory C consisting
of objects

V =
⊕

d∈ZQ0≥0

Vd =
⊕

d∈ZQ0≥0

⊕

k∈Z
V k
d

such that all components V k
d are finite-dimensional and V k

d = 0 for k 
 0. The
Poincaré series is a ring homomorphism

K0(C ) → RQ = Q((q
1
2 ))[[xi : i ∈ Q0]].

We emphasize that not all objects we consider belong to C , but whenever we use the
compatibility of Poincaré series with tensor products of vector spaces, we shall restrict
ourselves to objects from C .

2.3 Plethystic exponential

We shall need an operation on formal power series called the plethystic exponential.
We recall one of its definitions which is not the most general one but is well suited for

the ring RQ = Q((q
1
2 ))[[xi : i ∈ Q0]]. For each n ≥ 1, we define the map

pn : RQ → RQ

by the formula

pn( f ) = f |
xi →xn

i ,q
1
2 →q

n
2

.

If we denote by mQ the maximal ideal of RQ , the plethystic exponential is the group
isomorphism Exp : (mQ,+) → (1 + mQ, ·) defined by

Exp( f ) = exp

⎛

⎝
∑

n≥1

pn( f )

n

⎞

⎠ .

123



Koszul algebras and Donaldson–Thomas invariants Page 7 of 39 106

Alternatively, this isomorphism is uniquely defined by the property

Exp(qk xd) =
∑

n≥0

qnk xnd, k ∈ 1

2
Z, d ∈ Z

Q0≥0 \ {0}.

The plethystic exponential is used to compute the Poincaré series of the symmetric
algebra of an object of C . Namely, if V is an object in C with V0 = 0 (so that
P(V , x, q) ∈ mQ), then we have

P(S(V ), x, q) = Exp(P(V , x, q)).

Using the definition of a λ-ring, one can re-state this property saying that the Poincaré
series is a homomorphism of λ-rings from K0(C ) to RQ , see [18, 23] for details.

2.4 Donaldson–Thomas invariants of symmetric quivers

For a quiver Q, its motivic generating series AQ(x, q) is defined by the formula

AQ(x, q) =
∑

d∈ZQ0≥0

(−q
1
2 )−χ(d,d)xd∏

i∈Q0
(q−1)di

,

where we denote (q)n = (1 − q) . . . (1 − qn) (we note that AQ(x, q−1) ∈ RQ). This
series is the Poincaré series of a certain graded vector space associated to the quiver
Q. Namely, let us denote by Rd(Q) the space of representations of Q of dimension
vector d, and by Gd the basis change group. Then we have

P(HQ, x, q) = AQ(x, q),

whereHQ is the shifted direct sumof equivariant cohomologyof representation spaces

HQ =
⊕

d

H∗+χ(d,d)
Gd

(Rd(Q),Q).

The refined Donaldson–Thomas invariants DTd(q) of Q are defined by

AQ(x, q−1) = Exp

⎛

⎜⎝
1

1 − q

∑

d∈ZQ0≥0

(−1)χ(d,d)DTd(q
−1)xd

⎞

⎟⎠ .

(Note that AQ(x, q) has coefficients inQ((q− 1
2 )), so we pass to AQ(x, q−1) in order to

workwith power serieswith coefficients inQ((q
1
2 )), for whichwe define the plethystic

exponential.) Note that the motivic Donaldson–Thomas series of Q defined in [24] is
obtained by the substitution of the Lefschetz motive L = [P1] − 1 instead of q.
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Kontsevich and Soibelman defined [24] the cohomological Hall algebra of Q by
endowingHQ with a parabolic induction-type associative product. Using equivariant
localization, this product admits a purely algebraic description using a certain version
of the Feigin–Odesskii shuffle product [13]. More specifically, for any d ∈ Z

Q0≥0 , let
us define

	d = Q[zi,r : i ∈ Q0, 1 ≤ r ≤ di ]�d , �d =
∏

i∈Q0

�di .

Then H∗
Gd

(pt) ∼= 	d, and

HQ,d = 	d[−χ(d,d)].

Efimov showed in [12] that, after a certain (non-canonical) sign twist of the shuffle
product of HQ, there exists an L × Z-graded vector space V with finite-dimensional
components Vd = ⊕

n≥0 Vd,n for which

HQ 
 S(V [z])

as commutative algebras (where z is placed in degree (0, 2)). Comparing the Poincaré
series, this implies that DTd(q) ∈ N[q±1/2].

2.5 Koszul algebras

We shall now recall the basics of the theory of Koszul duality for associative and
commutative algebras; we invite the reader to consult [28, 33] for further details. All
vector spaces in this section belong to the category VectL×Z or even to its subcategory
C discussed in Sect. 2.2. We use a standard convention for suspensions, according to
which the homological degree shifts are implemented by the symbol s of homological
degree 1 (that is, of L × Z-degree (0, 1)).

All associative algebras A we consider are quadratic, that is, presented by gener-
ators and relations as A = T (V )/(R), where R ⊂ V ⊗2. For each such algebra, one
may define the Koszul dual algebra A ! as follows:

A ! = T ((sV )∨)/(R⊥),

where R⊥ is the annihilator of R under the natural pairing between ((sV )∨)⊗2

and V ⊗2. (Note that our definition is slightly different from the usual one [33] in
that we insist on considering the Koszul dual algebra with the shift of homological
degree implemented by s.) For a (super)commutative associative algebra A , rela-
tions of the Koszul dual algebra must in particular annihilate ei ⊗ e j ∓ e j ⊗ ei ,
which immediately implies that those relations are linear combinations of elements
(sei )

∨⊗(se j )
∨±(se j )

∨⊗(sei )
∨. In other words, relations of the Koszul dual algebra

of a (super)commutative algebra are linear combinations of (super)commutators (for
opposite parities), meaning that the Koszul dualA ! of a (super)commutative associa-
tive algebraA , the Koszul dual is isomorphic to the universal enveloping algebra of a
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certain Lie (super)algebra g(A ); we shall refer to that Lie (super)algebra as theKoszul
dual Lie algebra of A . To make the definition of g(A ) explicit, one takes the rela-
tions ofA ! and replaces each (sei )

∨ ⊗ (se j )
∨ ± (se j )

∨ ⊗ (sei )
∨ by [(sei )

∨, (se j )
∨],

thus obtaining a Lie (superalgebra) presented by generators and relations, that is, as a
quotient of a free Lie (super)algebra.

One can show that A ! is isomorphic to the subalgebra of the Yoneda algebra
Ext•(Q,Q) generated by Ext1; here Q is considered as an A -module on both sides
via the augmentation A → Q annihilating all generators. An algebra A is said to
be Koszul if the inclusion A ! ↪→ Ext•(Q,Q) is an isomorphism. It is also important
for us that there exists a chain complex K(A) with the underlying graded vector space
A ⊗ (A !)∨ which is a resolution of Q if and only if the algebra A is Koszul. In
particular, for a Koszul algebra A , we have

P(A , x, q)P((A !)∨, q− 1
2 x, q) = 1 (2.1)

(here q− 1
2 x means that each coordinate of the vector x is rescaled by the factor q− 1

2 ;
this factor accounts for the fact that we consider the generating functions that also
count the homological degrees, and the Koszul dual algebra is generated by (sV )∨).
An algebra satisfying this property is said to be numerically Koszul; thus, a Koszul
algebra is numerically Koszul, but the converse is not true in general.

2.6 Criteria of Koszulness

There are two useful criteria of Koszulness which we shall now recall.
Let us choose a basis X in the space of generators V . An ordering ofmonomials (that

is, of words in the alphabet X ) in the tensor algebra T (V ) is said to be admissible if it
is a total well ordering, and if the product is an increasing function of its arguments:
replacing one of the monomials in a product by a greater one increases the result.
Given an admissible ordering of monomials in the tensor algebra, one says that a
subset G of an ideal I ⊂ T (V ) is a (noncommutative) Gröbner basis if the leading
monomial of every element of I is divisible by a leading monomial of an element
of G. The primary reason to look for Gröbner bases is dictated by considerations of
linear algebra: a Gröbner basis for an ideal gives extensive information on the quotient
modulo I . More precisely, a monomial is said to be normal with respect to G if it is not
divisible by any of the leading monomials of elements of G. The normal monomials
with respect to any set of generators of an ideal I always form a spanning set of the
quotient modulo I . However, a generating set G of I is a Gröbner basis of I if and only
if cosets of monomials that are normal with respect to G form a basis of the quotient
modulo I , see [6, Prop. 2.3.3.5]. Among different choices of a Gröbner basis, there is
the so called reduced Gröbner basis, for which no leading term is a divisor of another
one, and all non-leading terms are normal; for each admissible ordering, there exists
a unique reduced Gröbner basis.

Proposition 2.1 ([33, Chapter 4, Theorem 3.1]) An algebra A with a Gröbner basis
consisting of elements of weight 2 (linear combinations of products of two generators)
is Koszul.

123
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Basic linear algebra implies that if A has a Gröbner basis consisting of elements
of weight 2 (for a certain admissible ordering of monomials), then the Koszul dual
algebra A ! has a quadratic Gröbner basis for the ordering obtained by the opposite
ordering of monomials in elements of the dual basis.

The next criterion is only applicable to commutative algebras. Recall that if R is a
commutative ring and M is an R-module, an element f of even homological degree
is said to be M-regular if f is injective on M . This definition has an odd counterpart
[32]: an element f of odd homological degree is said to be M-regular if the kernel
f on M coincides with the image of f on M (in other words, is also trivial in the
obvious sense). A sequence of elements f1, . . . , fk of R is said to be M-regular if fi

is regular on M/( f1, . . . , fi−1)M for all i = 1, . . . , k − 1. For M = R we will use
just the word “regular.”

Proposition 2.2 A commutative algebra A which is the quotient of some polynomial
algebra R by an ideal ( f1, . . . , fm) with quadratic relations f1, . . . , fm that form a
regular sequence is Koszul.

Proof This immediately follows from the Koszul complex criterion of regularity [36,
Sec. 2.3] and uniqueness of minimal resolutions of weight graded algebras. ��

2.7 Gröbner–Shirshov bases for Lie algebras

We shall make use of the technique essentially going back to Shirshov for determining
bases of Lie algebras presented by generators and relations. Let us briefly recall the
corresponding definitions; we refer the reader to [2, 3] for details.

Suppose that X is a set equippedwith a well-order.We can consider the freemonoid
〈X〉 generated by X , consisting of all words in the alphabet X with the associative
product of each two elements given by concatenation. We shall moreover assume that
there is a parity function X → Z/2Z = {0, 1} allowing to write X = X0 � X1; we
extend parity to 〈X〉 additively. A non-empty word w is said to be a Lyndon–Shirshov
word if it is the strictly largest one (with respect to the graded lexicographic ordering
of 〈X〉 induced by the order of X ) among all its cyclic shifts. Furthermore, a non-empty
word w is said to be a super-Lyndon–Shirshov word if it is a Lyndon–Shirshov word
or a square of an odd Lyndon–Shirshov word.

We can also consider the free magma M(X) generated by X , consisting of all
nonassociative words in the alphabet X with the product of each two elements given
by enclosing their concatenation in brackets. We extend parity to M(X) additively.
There is an obvious morphism

M(X) → 〈X〉, w �→ w,

which erases all brackets. A non-empty nonassociative wordw is said to be a Lyndon–
Shirshov monomial if either w ∈ X or the following two conditions hold:

• If w = (w1w2), then w1 and w2 are Lyndon–Shirshov monomials and w1 is
lexicographically greater than w2,

• If w = ((w1w2)w3), then w3 is lexicographically greater than w2 or equal to it.
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A non-empty nonassociative wordw is said to be a super-Lyndon–Shirshov monomial
if it is aLyndon–Shirshovmonomial or a square of anoddLyndon–Shirshovmonomial.

It is known that for every super-Lyndon–Shirshovmonomialw, the associativeword
w is a super-Lyndon–Shirshov word, and that for any super-Lyndon–Shirshov word
there is a unique bracketingmaking it a super-Lyndon–Shirshovmonomial. Moreover,
let g be a Lie algebra with generators X and some relations R, and let us interpret
elements of R as linear combinations of commutators in the free algebra generated
by X , giving a presentation of the universal envelope U (g). The Lie algebra g has a
basis of cosets of super-Lyndon–Shirshov monomials w for which w is normal with
respect to R if and only if R is a Gröbner basis of defining relations of U (g).

3 Quadratic algebras associated to symmetric quivers

Let Q be a symmetric quiver. The protagonist of the paper is a certain associative
algebra associated to Q. We denote by mi, j the number of arrows from i to j in Q.

Definition 3.1 The algebraAQ is defined as follows. Its space of generators VQ has a
basis ai,k with i ∈ Q0, k ≥ 0; we set deg(ai,k) = (αi ,−2k − mi,i ) ∈ L × Z, so VQ

is an object of C . There are two groups of defining relations of AQ:

ai,k1a j,k2 = (−1)mi,i m j, j a j,k2ai,k1 for all i, j, k1, k2,
∑

k1+k2=k

(
k2
p

)
ai,k1a j,k2 = 0 for all k ≥ 0 and 0 ≤ p < mi, j .

Note that all relations of the algebraAQ aremanifestly homogeneous, and therefore
that algebra is itself an object of C . The first group of relations merely state thatAQ is
(super–)commutative. Relations of the second group should be thought of as follows.
Consider the formal generating series

ai (z) =
∑

k≥0

ai,k zk .

Then the relations

∑

k1+k2=k

(
k2
p

)
ai,k1a j,k2 = 0 for all k ≥ 0

are, up to the factor 1
p! , the coefficients of the power series

ai (z)
d p

dz p
a j (z) = 0.
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It is also easy to show that this group of relations is equivalent to a bigger more
symmetric one

d p

dz p
ai (z)

dq

dzq
a j (z) = 0 for 0 ≤ p + q < mi j .

Remark 3.2 In a particular case where for all i, j ∈ Q0 there is at most one arrow from
i to j (to such quiver we may associate in an obvious way a graph � without multiple
edges), the algebraAQ was previously studied in the literature as the coordinate algebra
defining the arc scheme of the graph scheme of �, see, for example, [7, 8, 20, 26, 27].

Let us give several examples of algebras AQ.

Example 3.3 (i) Let Q be the A1 quiver. Then the algebra AQ is generated by
a0, a1, . . . ; the only relations are those of the first group, and our algebra is the
polynomial algebra Q[a0, a1, . . . ].

(ii) Let Q be the quiver with one vertex and one loop. Then the algebraAQ is generated
by a0, a1, . . . . Relations of the first group say that the generators anti-commute,
and the relation a(z)a(z) = 0 of the second group is redundant, since it fol-
lows from anti-commutativity. Thus, our algebra is the infinite Grassmann algebra
	(a0, a1, . . . ).

(iii) Let Q be the quiverwith onevertex and two loops.Then the algebraAQ is generated
by commuting generators a0, a1, . . . modulo the relations

(a0 + a1z + a2z2 + . . . )2 = 0,

(a0 + a1z + a2z2 + . . . )
d

dz
(a0 + a1z + a2z2 + . . . ) = 0.

The second relation follows from the first one by differentiation, so our algebra is

Q[a0, a1, . . . ](
a2
0 , 2a0a1, 2a0a2 + a2

1 , . . . ,
∑

i+ j=k
ai a j

) .

This algebra was studied in many papers in the context of level 1 modules over
the Lie algebra ŝl2 (see e.g. [14]).

1. Let Q be the quiver with two vertices and one arrow in each of the two directions
between these vertices. Then the algebra AQ is generated by a0,0, a0,1, . . . and
a1,0, a1,1, . . . . Relations of the first group say that the generators commute, and
relations of the second group say that a0(z)a1(z) = 0. This algebra was studied in
[5], where an unexpected algebraic property of its nilradical was unravelled.

We shall now describe a convenient interpretation of the graded dual space A ∨
Q of

the algebraAQ, inspired by the approach of [14] in the case of the algebra associated
to the quiver with one vertex and two loops. (For the case of jet algebras of graph
schemes, this result is established in [26, Sec. 5.3].) Recall that we denote 	d =
Q[zi,r : i ∈ Q0, 1 ≤ r ≤ di ]�d .
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Proposition 3.4 Let Fd ∈ Q[zi,r : i ∈ Q0, 1 ≤ r ≤ di ] be defined by the formula

Fd :=
∏

i∈Q0

∏

1≤r<r ′≤di

(zi,r − zi,r ′)mi,i
∏

{i,i ′}∈Q0,i �=i ′
1≤r≤di ,
1≤r ′≤di ′

(zi,r − zi ′,r ′)mi,i ′ .

Then we have an isomorphism of graded vector spaces

A ∨
Q,d

∼= Fd	d[−m · d],

where m · d = ∑
i∈Q0

mi,idi .

Proof Aswhen discussing the relations in our algebra, we shall consider formal power
seriesai (z).Moreover,we shall usemanydifferent formal variables zi,r of homological
degree 2; here i ∈ Q0, 1 ≤ r ≤ di ; one may think of the corresponding series as
elements of AQ[[zi,r : i ∈ Q0, 1 ≤ r ≤ di ]]. Note that under our conventions each
term ai,k zk

i,r in ai (zi,r ) is of homological degree −mi,i , so the expression

∏

i∈Q0

ai (zi,1) . . . ai (zi,di )

is of homological degree −m · d, and thus for each element

ξ ∈ A ∨
Q,d,

the evaluation

fξ = ξ

⎛

⎝
∏

i∈Q0

ai (zi,1) . . . ai (zi,di )

⎞

⎠

is a map of graded vector spaces from A ∨
Q,d to the degree shifted polynomial ring

Q[zi,r : i ∈ Q0, 1 ≤ r ≤ di ][−m · d]

(we get a polynomial and not a power series since ξ belongs to the graded dual and is
thus supported in finitely many degrees).
Let us show that fξ ∈ Fd	d[−m ·d]. We note that the second group of relations of the
algebra AQ imposes vanishing conditions on the diagonals where pairs of variables
zi,r coincide. First, for each i ∈ Q0, the polynomial fξ is manifestly divisible by
(zi,r − zi,r ′)mi,i for all 1 ≤ r < r ′ ≤ di . Moreover, commutativity of generators
ensures that fξ is symmetric in variables zi,1,…, zi,di for evenmi,i and anti-symmetric
for odd mi,i . Thus, the ratio fξ /

∏
1≤r<r ′≤di

(zi,r − zi,r ′)mi,i is �di -invariant. Next,
for i �= j ∈ Q0, the polynomial fξ is divisible by (zi,r − zi ′,r ′)mi,i ′ for 1 ≤ r ≤ di ,
1 ≤ r ′ ≤ di ′ . Overall, the polynomial Fd divides fξ and the ratio is �d-invariant, as
required.
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We are left to show that if f ∈ Fd	d, then f = fξ for an appropri-
ate ξ ∈ AQ(d)∗. The needed ξ is uniquely defined by the formula f =
ξ
(∏

i∈Q0
ai (zi,1) . . . ai (zi,di )

)
. In other words, ξ(

∏
i∈Q0

ai,k1 . . . ai,kdi
) is the coef-

ficient of f in front of
∏

i∈Q0
zk1

i,1 . . . z
kdi
i,di

. We note that the inclusion f ∈ Fd	d
guarantees that ξ both is well defined as a functional on the supercommutative algebra
generated by ai,k and vanishes on all the relations from Definition 3.1. ��
Corollary 3.5 We have

P(AQ, x, q) =
∑

d∈ZQ0≥0

(−q
1
2 )d·d−χ(d,d)

∏
i∈Q0

(q)di

xd.

Proof According to Proposition 3.4, we have

A ∨
Q,d

∼= Fd	d[−m · d].

Clearly, P(	d, q) = 1∏
i∈Q0

(q−1)di
. Each variable zi,s is of degree 2, so the degree of

the polynomial Fd is equal to

2
∑

i∈Q0

mi,i

(
di

2

)
+

∑

i �= j∈Q0

mi, jdid j =
∑

i, j∈Q0

mi, jdid j − m · d,

and taking the account the extra shift −m · d, we find that

P(A ∨
Q , x, q) =

∑

d∈ZQ0≥0

(−q
1
2 )

−∑
i, j∈Q0

mi, jdid j

∏
i∈Q0

(q−1)di

xd =
∑

d∈ZQ0≥0

(−q
1
2 )χ(d,d)−d·d

∏
i∈Q0

(q−1)di

xd.

Finally,

P(AQ, x, q) = P(A ∨
Q , x, q−1) =

∑

d∈ZQ0≥0

(−q
1
2 )d·d−χ(d,d)

∏
i∈Q0

(q)di

xd,

as required. ��
We are now ready to unravel the true reason why the algebra AQ is of interest to

us. For that, we note that though the motivic generating series

∑

d∈ZQ0≥0

(−q
1
2 )−χ(d,d)xd∏

i∈Q0
(q−1)di
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is an element of the ring Q((q− 1
2 ))[[xi : i ∈ Q0]], and the Poincaré series of the

algebra AQ is an element of the ring RQ = Q((q
1
2 ))[[xi : i ∈ Q0]], each of those

series can be viewed as an element of the ring Q(q
1
2 )[[xi : i ∈ Q0]]. Note that if we

view the two former rings as subspaces of Q[[q± 1
2 ]][[xi : i ∈ Q0]], the embeddings

of Q(q
1
2 )[[xi : i ∈ Q0]] into them give two different embeddings

Q(q
1
2 )[[xi : i ∈ Q0]] ↪→ Q[[q± 1

2 ]][[xi : i ∈ Q0]].

Proposition 3.6 In the ring Q(q
1
2 )[[xi : i ∈ Q0]], we have

AQ(x, q) = P(AQ, q
1
2 x, q).

Proof According to Corollary 3.5, we have

P(AQ, x, q) =
∑

d∈ZQ0≥0

(−q
1
2 )d·d−χ(d,d)

∏
i∈Q0

(q)di

xd.

At the same time, we have the following equalities in Q(q
1
2 )[[xi : i ∈ Q0]]:

AQ(x, q) =
∑

d∈ZQ0≥0

(−q
1
2 )−χ(d,d)xd∏

i∈Q0
(q−1)di

=
∑

d∈ZQ0≥0

(−q
1
2 )−χ(d,d)q

∑
i∈Q0 (

di +1
2 )xd

∏
i∈Q0

(
(q − 1) · . . . · (qdi − 1)

)

=
∑

d∈ZQ0≥0

(−1)−χ(d,d)+∑
i∈Q0

di q− 1
2χ(d,d)+∑

i∈Q0 (
di +1
2 )xd∏

i∈Q0
(q)di

.

We note that

−χ(d,d) +
∑

i∈Q0

di ≡ −χ(d,d) +
∑

i∈Q0

d2i = d · d − χ(d,d) (mod 2)

and that

−1

2
χ(d,d) +

∑

i∈Q0

(
di + 1

2

)
= −1

2
χ(d,d) + 1

2
d · d + 1

2

∑

i∈Q0

di .

We see that the only difference between AQ(x, q) and P(AQ, q
1
2 x, q) is that for

each d, the corresponding term in AQ(x, q) has the extra factor q
1
2

∑
i∈Q0

di . Since the

multiplication of the monomial xd by q |d| = q
1
2

∑
i∈Q0

di can be implemented by the

rescaling x �→ q
1
2 x , we conclude that
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AQ(x, q) = P(AQ, q
1
2 x, q),

as required. ��

4 Koszul dual Lie algebras and their properties

Proposition 3.6 explains why it is natural to seek for an interpretation of the refined
Donaldson–Thomas invariants in terms of the algebra AQ. In this section, we make
the crucial step toward the main result of the paper and perform an extensive study
of the Koszul dual Lie algebra. Note that all our algebras are defined within the same
symmetric monoidal category, and the Koszul sign rule applies whenever one talks
about (skew-)symmetry.

4.1 The description of the Koszul dual Lie algebra

Proposition 4.1 The Koszul dual Lie algebra g(AQ) is isomorphic to the Lie algebra
gQ that is the quotient of the free Lie algebra generated by elements bi,k of degree
(αi , 2k + mi,i + 1), i ∈ Q0, k ≥ 0 by the relations

[bi,k, bi,l ] = 0

for all i ∈ Q0 with mi,i = 0 and all k, l ≥ 0,

mi,i −1∑

p=0

(−1)p
(

mi,i − 1

p

)
[bi,k−p, bi,l+p] = 0,

for all i ∈ Q0 with mi,i ≥ 1 and all k ≥ mi,i − 1, l ≥ 0, and

mi, j∑

p=0

(−1)p
(

mi, j

p

)
[bi,k−p, b j,l+p] = 0

for all i �= j ∈ Q0 and all k ≥ mi, j , l ≥ 0.

Proof Let us first show that, if we interpret bi,k as (sai,k)
∨, the relations of gQ in

which each Lie bracket is written as commutator, annihilate the relations ofAQ under
the usual pairing. The calculation is completely straightforward; let us show how it
works for the pairing between one of the elements

mi, j∑

p=0

(−1)p
(

mi, j

p

)
[bi,k−p, b j,l+p]
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with k ≥ mi, j , l ≥ 0 and one of the elements

∑

k1+k2=k+l

(
k2
q

)
ai,k1a j,k2

with 0 ≤ q < mi, j (if k1 + k2 �= k + l, the pairing is manifestly zero). Matching the
corresponding elements, we obtain the value of the pairing

mi, j∑

p=0

(−1)p
(

mi, j

p

)(
l + p

q

)
,

which is the constant termof (1−t−1)mi, j · tq−l

(1−t)q+1 = (1−t)mi, j −q−1(−1)mi, j tq−l−mi, j .
Since q < mi, j , this expression does not have a pole at t = 1, and so it is a Laurent
polynomial in t ; the top degree in it is mi, j − q − 1 + q − l − mi, j = −1 − l, so its
constant term vanishes.

It is thus enough to establish that the given relations span, for each Z
Q0≥0 × 1

2Z-
homogeneous component, the space of the same dimension as the space of quadratic
elements of AQ. Our elements are quadratic, so we should consider only the homo-
geneous components of degree (αi + α j , d), where αi are the basis elements of ZQ0≥0
introduced earlier.

Let us first consider the homogeneous component of degree (αi +α j , d)with i �= j .
Our relations are indexed by k ≥ mi, j , l ≥ 0, and we have d = k + l, so there are
relations for d ≥ mi, j , and the number of relations is equal to d−mi, j +1. On the other
hand, according to Proposition 3.4, the dual space of AQ,αi +α j is identified with the
space of polynomials in two variables z1, z2 divisible by (z1 − z2)mi, j , so we conclude
that the number of relations is equal to the dimension of the corresponding space of
quadratic elements. These relations are linearly independent by direct inspection.

The case of the homogeneous component of degree (2αi , d) is similar, but the
dual space is the space of symmetric polynomials in two variables z1, z2 divisible by
(z1 − z2)mi,i , and there are duplicates among the relations (for each d ≥ mi,i , the k-th
relation and the (mi,i − k)-th relation are proportional), and these two phenomena
“compensate” each other, leading to the matching dimensions. ��

Let us give a complete description of the Lie superalgebra gQ in one particular
case. Let Q be the quiver consisting of two vertices with no loops and one edge in
each direction. The Lie superalgebra gQ is generated by odd elements bi,k , i = 1, 2,
k ≥ 0 subject to the relations

[b1,k, b1,l ] = 0,

[b1,k, b2,l ] = [b1,k−1, b2,l+1],
[b2,k, b2,l ] = 0,

The second group of relations means that the element [b1,k, b2,l ] only depends on the
sum k + l, and we can denote it ck+l . Moreover, it follows from the Jacobi identity
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that [b1,k, cl ] = [b2,k, cl ] = [ck, cl ] = 0, and therefore the Lie algebra gQ has a basis
consisting of b1,k (of degree (α1, 2k + 1)), b2,k (of degree (α2, 2k + 1)), and ck (of
degree (α1 + α2, 2k + 2)). Thus, the Poincaré series of gQ in this case is equal to

(1 − q−1)−1(−q−1/2z1 − q−1/2z2 + q−1z1z2),

exhibiting the same shape as the plethystic logarithm of the motivic generating series.
We shall now see that this is not a coincidence.

4.2 The case of one-vertex quivers

In this section, we recall the combinatorial approach of [34] in the case of one-vertex
quivers and highlight its relationship to our work.

Let Q be the quiver with one vertex and m ≥ 1 loops. The Lie superalgebra gQ is
generated by elements bk , k ≥ 0, of parity congruent to m − 1 modulo 2, subject to
the relations

m−1∑

i=0

(−1)i
(

m − 1

i

)
[bk−i , bl+i ] = 0, k ≥ m − 1, l ≥ 0.

Lattice vertex operator realizations of these algebras were studied in [10], where it
was essentially established that for the degree-lexicographic ordering arising from the
ordering bi < b j for i > j of generators, the defining relations form a Gröbner basis
of the universal enveloping algebra U (gQ). It follows that gQ has a basis parametrized
by the setS of super-Lyndon–Shirshovwords bp1 · · · bpn such that pi+1 ≤ pi +m−1
for all i < n.

Let us recall the partition combinatorics of [34, Section 5]. Let 	 be the set of all
partitions λ with non-negative parts, written

λ = (0 ≤ λ1 ≤ . . . ≤ λn),

and set l(λ) = n. We define the shift operators S p on 	 by

S pλ = (λ1 + p, . . . , λn + p).

For two partitions λ,μ ∈ 	, we define λ ∪ μ as the partition with parts
λ1, . . . , λl(λ), μ1, . . . , μl(μ), listed in the non-decreasing order. We shall consider the
monoid structure on 	 defined by the formula

λ ∗ μ = λ ∪ S(m−1)l(λ)μ.

Let us consider the subset T ⊂ 	 consisting of all partitions λ such that λi ≤ (m −
1)(i − 1) for all i = 1, . . . , l(λ). It is a submonoid of (	, ∗), and when multiplying
two partitions in T , the monoidal product is given by the concatenation (no resorting
of the parts has to be performed). Furthermore, let us consider the subset T 0 ⊂ T
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consisting of all partitions λ such that λi < (m − 1)(i − 1) for all i = 2, . . . , l(λ).
It is totally ordered by the standard lexicographic ordering; we define the parity of
λ ∈ T 0 to be congruent to (m − 1)l(λ) modulo 2. Finally, we define T L,+ as the set
of all super-Lyndon–Shirshov words in the alphabetT 0 (this uses the parity we just
defined).

We shall now relate the setsS and T L,+.

Proposition 4.2 The set S is in bijection with Z≥0 × T L,+ by associating to (p, λ) ∈
Z≥0 × T L,+ the word

(p + (m − 1)(i − 1) − λi )i .

Proof Let us first consider the set of all monomials in variables bi . This set has a subset
C of monomials bp1 · · · bpn such that the following two conditions hold:

(i) p1 = 0,
(ii) pi+1 ≤ pi + m − 1 for all i < n.

It is easy to see that the map ı : T → C defined by associating to a partition λ ∈ T
the word bp1 . . . bpn with pi = (m − 1)(i − 1) − λi is bijective, and in fact defines an
isomorphism of monoids, that is, ı(λ ∗ μ) is the concatenation of ı(λ) and ı(μ), for
λ,μ ∈ T . Under this bijection, the subset T 0 maps to the set C0 of all words a in C
such that ai > 0 for all i > 1. Now let v = bp1 . . . bpn be any word in S . Since v is
super-Lyndon–Shirshov, p1 is minimal among all pi , so we can subtract p1 from all pi

to obtain a wordw ∈ S starting from b0. Such aword admits a canonical factorization
w = w1 . . . wk with all wi ∈ C0: the first letters of the words wi correspond precisely
to occurrences of b0 in w. Thus, w can be viewed as a word in the alphabet C0.

An observation that is crucial for our purposes is that since w is a super-Lyndon–
Shirshov word in the alphabet {bi }, it is also a super Lyndon–Shirshov word in the
alphabet C0. Conversely, a super Lyndon–Shirshov word in the alphabet C0 is also
super-Lyndon–Shirshov as a word in the alphabet {bi } (this holds true since the only
cyclic rotations of w for which the Lyndon–Shirshov property is non-trivial are those
which also start with 0). Since the map ı : T → C is a monoid isomorphism inducing
a bijection between T 0 and C0, we thus find a unique partition λ ∈ T L,+ such that
ı(λ) = w. Adding p = p1 to all its parts recovers the word v. The above observation
also shows that, conversely, any word in ı(T L,+) is Lyndon. ��

In [34], the above argument was paired with a number-theoretic argument involving
cyclotomic polynomials to establish integrality of refined DT invariants. We shall see
below that there is away to adapt the argument relyingon the combinatorics ofLyndon–
Shirshov words for the general case. Under the assumption of the quiver having at
least one loop at every vertex, one can also generalize the partition combinatorics of
[34], leading to another strategy for studying the refined DT invariants; however, the
relation of this combinatorics to super-Lyndon–Shirshov words that form a basis of
gQ is mysterious. We therefore postpone a description of this combinatorics to future
work.
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5 DT invariants and the Lie algebra gQ

In this section, we shall relate the Poincaré series of the Lie algebra gQ to the refined
Donaldson–Thomas invariants of Q, and use that property to re-prove the positivity
of those invariants.

5.1 TheWeyl algebra action and the Poincaré series

We shall start with establishing that the dimensions of the graded components of the
Lie algebra gQ satisfy the inequalities expected from the refined Donaldson–Thomas
invariants. For that, it would be convenient to temporarily switch from Poincaré series
to characters; for a Z≥0-graded vector space, we shall denote by ch the generating
function similar to the Poincaré series that ignores signs arising from the parity:

ch(V , q) =
∑

k∈Z
dim(V k)(q

1
2 )−k .

Our first key ingredient is the action of the first Weyl algebra Diff1 (generated by
elements t and ∂t subject to the standard relation ∂t t − t∂t = 1) on the Lie algebra gQ
defined as follows. We first consider two derivations p and q of the free Lie algebra
with generators bi,k which act on generators according to the formulas

p(bi,k) =
{

bi,k−1, k > 0,

0, otherwise,
q(bi,k) = (k + 1)bi,k+1.

We note that these derivations preserve the relations of the Lie algebra gQ. Indeed, the
action of these derivations on the formal generating series bi (z) := ∑

bi,k zk can be
succinctly written as

p(bi (z)) = zbi (z), q(bi (z)) = ∂zbi (z).

Rewriting the defining relations of gQ in terms of the above generating series, we note
that all of them are of the form (z − w)ai j [bi (z), b j (w)] with certain ai j ≥ 0, and the
fact that the ideal they generate is preserved by our derivations is obvious, once one
notes that (∂z + ∂w)(z − w) = 0.

Since on the space of generators we have [q, p] = id, and the commutator of two
derivations is a derivation, on each component (gQ)d the commutator [q, p] acts by
multiplication by |d|. We have (gQ)d = 0 for d = 0, and so we may divide q by |d|
and obtain the action of the first Weyl algebra Diff1 on each given component (gQ)d.

This Weyl algebra action can be used to prove the following result.

Proposition 5.1 For each d ∈ Z
Q0≥0 , we have

(1 − q)ch((g∨
Q)d, q) ∈ Z≥0[[q 1

2 ]].
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Note that since the homological degree of bi,k is equal to 2k + mi,i + 1, the
endomorphism t ∈ Diff1 is of degree 2, and the endomorphism ∂t ∈ Diff1 is of degree
−2, so (gQ)d is a graded module over the Weyl algebra (and is clearly concentrated in
positive degrees). Let us prove a simple but useful result about graded modules over
the Weyl algebra.

Lemma 5.2 Each Z-graded Diff1-module M such that the endomorphism t ∈ Diff1 is
of degree 2, and the endomorphism ∂t ∈ Diff1 is of degree −2 and such that Mk = 0
for k � 0 is isomorphic to the free Q[t]-module generated by Ker(∂t ).

Proof Let us first show that the endomorphism t is injective on M . Suppose that for
some v we have t(v) = 0. Note that the commutation relation [∂t , t] = 1 implies
that Q[∂t ](v) is a Diff1 submodule of M . By the boundedness of M from below,
this submodule is finite-dimensional. However, the algebra Diff1 has no non-zero
finite-dimensional modules, so v = 0.

Next, we shall show, by induction on n, that in degrees at most n, M is generated
by Ker(∂t ). This is true when n is the smallest integer such that Mn �= 0 (all elements
of that degree are automatically in the kernel of t). To prove the step of induction, let
us note that in Diff1, we have, for each m ≥ 0,

tm∂m
t = t∂t (t∂t − 1) . . . (t∂t − m + 1).

(This well-known formula is easily proved by induction on m.) Note that t∂t is a
degree-preserving endomorphism of M , so it defines an endomorphism of Mn . By
boundedness of M from the above, there exists m > 0 such that ∂m is zero on Mn ,
which shows that as an endomorphism of Mn , t∂t is annihilated by the polynomial
X(X − 1) . . . (X − m + 1). This immediately implies that Mn = Ker(t∂t ) ⊕ Im(t∂t ).
Moreover, Im(t∂t ) ⊂ Im(t), and Ker(t∂t ) = Ker(∂t ) because of injectivity of t . Thus,
modulo the kernel of ∂t , each element of Mn is obtained by action of t on elements of
Mn−1, ensuring that the induction step can proceed.

To conclude, we need to show that the map Q[t] ⊗Ker(∂t ) → M obtained via the
action of Q[t] on Ker(∂t ) ⊂ M has no kernel. Indeed, if there exist 0 ≤ a ≤ b and
ma, . . . , mb ∈ Ker(∂t ) that satisfy

b∑

i=a

t i mi = 0,

then applying ∂t to this equality and using the formula [∂t , t i ] = i t i−1, we obtain

b∑

i=a

i t i−1mi = 0,

so iterating that b times, we find mb = 0, and similarly mi = 0 for all i . ��
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Proof of Proposition 5.1 Wehave just established that theWeyl algebra action on (gQ)d
is free with the generators Ker(∂t )d. This implies that for each d

∑

n≥0

dim((gQ)d,n)q− 1
2 n = 1

1 − q−1

∑

n≥0

dim(Ker(∂t )d,n)q− 1
2 n .

Since (g∨
Q)d,n 
 (gQ)∨d,−n , we see that

(1 − q)ch((g∨
Q)d, q) ∈ Z≥0[[q 1

2 ]],

as required. ��
To obtain further information about characters, we shall use Gröbner–Shirshov bases
for Lie algebras. We shall use the ordering of generators “dual” to the one considered
in the case of the algebraAQ. Namely, we first order the set of generators by choosing
some ordering of Q0, and then letting bi,k < b j,l if k > l or if k = l and i > j ; this
ordering leads to the corresponding graded lexicographic ordering of monomials. We
note that this order is not a well-order, but our relations are homogeneous with respect
to the homological degree, and in each degree the number of monomials is finite, so
all results of the theory of Gröbner–Shirshov bases are in fact available. Let us denote
by G Q the reduced Gröbner basis of relations of U (gQ) for this ordering.

It is immediate from the defining relations that the endomorphism τ of the
free associative algebra with generators bi,k defined on generators by the formula
τ(bi,k) = bi,k+1 descends to a well-defined endomorphism of U (gQ). Let us record
an obvious but important feature of our ordering that would allow us to generalize the
combinatorial argument of [34] to arbitrary quivers.

Proposition 5.3 Suppose that m1 and m2 are two monomials in the free associative
algebra with generators bi,k . Then m1 < m2 if and only if τ(m1) < τ(m2). Moreover,
a monomial m is a super-Lyndon–Shirshov word if and only if the monomial τ(m) is
a super-Lyndon–Shirshov word.

Proposition 5.4 For each d ∈ Z
Q0≥0 , we have

(1 − q |d|)ch((g∨
Q)d, q) ∈ Z≥0[q 1

2 ].

Proof Let us denote by NQ the set of all super-Lyndon–Shirshov words which are
normal with respect to G Q , and by N 0

Q the set of all super-Lyndon–Shirshov words
which are normal with respect to G Q and the first letter is bi,0 for some i . Note
that for each such word w = bi1,k1 . . . bis ,ks we have k1 = min(kp), since otherwise
there would be a cyclic shift which is larger than w. Thus, we have a bijection w �→
(k1, τ−k1(w)) between NQ and Z≥0 × N 0

Q . Let us also note that the relations of
gQ are all of the form (z − w)ai j [bi (z), b j (w)] with certain ai j ≥ 0, meaning that
the leading terms of G Q include the monomials bi,kb j,l for all i, j ∈ Q0 and all
l ≥ k + ai, j , therefore for each d the set (N 0

Q)d is finite. According to the theory of
Gröbner–Shirshov bases for Lie algebras, the cosets of Lyndon–Shirshov monomials
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corresponding to elements of NQ form a basis of gQ. Let us denote by g0Q the span of

the cosets of Lyndon–Shirshov monomials corresponding to elements of N 0
Q . Since

subtracting k1 from each letter subtracts 2|d|k1 from the homological degree, we see
that

ch((g∨
Q)d, q) = 1

1 − q |d| ch(((g
0
Q)∨)d, q),

and ch(((g0Q)∨)d, q) ∈ Z≥0[q 1
2 ] since (N 0

Q)d is finite. ��
We are now ready to establish an important property of the characters of our Lie

algebras.

Proposition 5.5 For each d ∈ Z
Q0≥0 , we have

(1 − q)ch((g∨
Q)d, q) ∈ Z≥0[q 1

2 ].

More specifically, using the action of Diff1 on gQ, we have

(1 − q)ch((g∨
Q)d, q) =

∑

n≥0

dim(Ker(∂t )d,n)q
1
2 n .

Proof According to Proposition 5.4,

(1 − q |d|)ch((g∨
Q)d, q) ∈ Z≥0[q 1

2 ].

At the same time, Proposition 5.1 implies that

(1 − q |d|)ch((g∨
Q)d, q) = 1 − q |d|

1 − q
(1 − q)ch((g∨

Q)d, q)

is a product of a polynomial in q
1
2 with non-negative coefficients and a power series

in q
1
2 with non-negative coefficients equal to

∑

n≥0

dim(Ker(∂t )d,n)q
1
2 n .

This means that the latter power series must be a polynomial, concluding the proof. ��

5.2 Relationship to vertex Lie algebras

We shall now see that the character ch((g∨
Q)d, q) is directly related to the refined

Donaldson–Thomas invariants of Q. To that end, we shall use the second key ingre-
dient, that is, vertex Lie algebras (also known as Lie conformal algebras); the reader
is invited to consult [11, Sec. 4] and [35] for details. In the context of vertex Lie
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algebras, there is no such object as the free vertex Lie algebra; rather, there are free
objects with the given locality function (we shall mainly focus on non-negative local-
ity; two fields a(z) and b(z) are said to be local with the locality N (a, b) ≥ 0 if
(z − w)N (a,b)[a(z), b(w)] = 0). Let us denote by CQ the free vertex Lie algebra
corresponding to the locality function NQ(i, j) = mi, j − δi, j ; according to [11, Sec.
5.1], it is isomorphic to the free vertex Lie algebra corresponding to the non-negative
locality function N+

Q (i, j) = max(NQ(i, j), 0). Using the general theory of vertex Lie
algebras, we may associate to the vertex Lie algebra CQ an honest Lie algebra LQ , the
coefficient algebra of CQ ; moreover, we have a graded vector space decomposition

LQ = L−
Q ⊕ L+

Q,

where L−
Q and L+

Q are Lie subalgebras of LQ . It is established in [35, Sec. 3] that both

the Lie algebra LQ and its subalgebra L+
Q admit explicit presentations by generators

and relations as follows. The Lie algebra LQ is generated by elements i(k) of degree
(αi , 2k + mi,i + 1), i ∈ Q0, k ∈ Z, subject to the relations

N+
Q (i, j)∑

p=0

(−1)p
(

N+
Q (i, j)

p

)
[i(k − p), j(l + p)] = 0 (5.1)

for all i, j ∈ Q0, and the Lie algebra L+
Q is generated by elements i(k) of degree

(αi , 2k + mi,i + 1), i ∈ Q0, k ≥ 0, subject to those of the relations (5.1) that only
contain the generators i(k) with k ≥ 0. The subalgebra L−

Q is defined more indirectly.
Examining the relations (5.1), we see that we have a Lie algebra isomorphism

L+
Q

∼= gQ

sending i(k) to bi,k . We shall now use this observation to obtain a new interpretation
of the motivic generating function.

Theorem 5.6 The Poincaré series P(U (gQ)∨, x, q) belongs to the subring

Q(q
1
2 )[[xi : i ∈ Q0]] ⊂ Q((q

1
2 ))[[xi : i ∈ Q0]].

In that subring, we have the equality

AQ(x, q)P(U (gQ)∨, x, q) = 1.

Proof We shall use the results of [11, Sec. 6] that interpret the CoHA-modules Mw,
w ∈ Z

Q0≥0 of [15, 16] in the context of vertex Lie algebras. For that, we shall consider
the automorphism τw of the Lie algebra LQ defined on the generators as τw(i(n)) :=
i(n−wi ). This automorphismmay be used to define two newLie subalgebrasL−

Q,w :=
τw(L−

Q) and L+
Q,w := τw(L+

Q). According to [11, Th. 6.4], we have the isomorphism

Mw = (U (L+
Q,w) ⊗U (L+

Q) Q)∨,
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so

P(Mw, x, q) = P((U (L+
Q,w) ⊗U (L+

Q) Q)∨, x, q).

Note that using the isomorphism τw, we can write

U (L+
Q,w) ⊗U (L+

Q) Q = τw(U (L+
Q) ⊗U (τ−1

w (L+
Q))

Q),

so

P((U (L+
Q,w) ⊗U (L+

Q) Q)∨, x, q) = S−2wP((U (L+
Q) ⊗

τ−1
w (U (L+

Q))
Q)∨, x, q),

where Sw(xd) = q
1
2w·dxd. It follows that

P((U (L+
Q) ⊗

τ−1
w (U (L+

Q))
Q)∨, x, q) = S2wP((U (L+

Q,w) ⊗L+
Q
Q)∨, x, q)

= S2wP(Mw, x, q).

Note that a priori the left-hand side of this equation is a power series with coefficients

in Q[[q 1
2 ]], and the right-hand side is a power series with coefficients in Q[q± 1

2 ],
since each graded component of Mw is (degree shifted) cohomology of an algebraic

variety, so in reality both sides have polynomials in q
1
2 as coefficients. According to

[11, Prop. 3.4], we have

P(Mw, x, q) = AQ(x, q) · S−2w AQ(x, q)−1,

so

S2wP(Mw, x, q) = S2w AQ(x, q) · AQ(x, q)−1,

and to compare it with P((U (L+
Q) ⊗

τ−1
w (U (L+

Q))
Q)∨, x, q), we wish to expand it as a

formal power series with coefficients in Q[[q 1
2 ]], which we may do using the result

of Proposition 3.6 for the motivic generating function. This shows that S2w AQ(x, q)

has the limit 1 as w → ∞ (that is, all wi → ∞), so the limit of S2wP(Mw, x, q)

is AQ(x, q)−1. On the other hand, P((U (L+
Q) ⊗

τ−1
w (U (L+

Q))
Q)∨, x, q) has the limit

P(U (L+
Q)∨, x, q) as w → ∞ (since the graded components of the relative tensor

product manifestly stabilize). Recalling that gQ ∼= L+
Q , we see that

P(U (gQ)∨, x, q) = AQ(x, q)−1,

as required. ��
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5.3 A new proof of positivity of the refined DT invariants

We are now ready to relate the Lie algebra gQ to the refined Donaldson–Thomas
invariants of the quiver Q.

Theorem 5.7 The refined Donaldson–Thomas invariants of Q can be computed using
the Diff1-module structure on gQ: for each d ∈ ZQ0≥0 , we have

DTd(q) =
∑

n≥0

dim(Ker(∂t )d,n)q
1
2 n−1.

In particular, DTd(q) ∈ Z≥0[q± 1
2 ].

Proof We have already established that the Lie algebra gQ is a freeQ[t]-module with
the space of generators Ker(∂t ). It remains to relate the refined Donaldson–Thomas
invariants to the latter space of generators. Combining the definition

AQ(x, q−1) = Exp

⎛

⎜⎝
1

1 − q

∑

d∈ZQ0≥0

(−1)χ(d,d)DTd(q
−1)xd

⎞

⎟⎠

of the refined Donaldson–Thomas invariants with plethystic logarithm of the formula

AQ(x, q)P(U (gQ)∨, x, q) = 1

of Theorem 5.6, we conclude that

(−1)χ(d,d)DTd(q)

1 − q−1 + P((g∨
Q)d, q) = 0.

Let us recall that the homological degree of each generator bi,k of the Lie algebra gQ is
equal to 2k +mi,i +1 ≡ mi,i +1 (mod 2). Thus, all elements of (gQ)d (and of (g∨

Q)d)
are in homological degree congruent to

∑
i∈Q0

(mi,i + 1)di modulo 2. However,

∑

i∈Q0

(mi,i + 1)di ≡
∑

i∈Q0

(1 − mi,i )d2i ≡ χ(d,d) (mod 2),

so we have

P((g∨
Q)d, q) = (−1)χ(d,d)ch((g∨

Q)d),

implying that

(−1)χ(d,d)DTd(q)

1 − q−1 + (−1)χ(d,d)ch(g∨
Q)d, q) = 0.
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This simplifies to

DTd(q) = q−1(1 − q)ch(g∨
Q)d, q),

and it remains to apply Proposition 5.5 to conclude that

DTd(q) = q−1
∑

n≥0

dim(Ker(∂t )d,n)q
1
2 n,

as required. ��

6 The Koszulness conjecture

We begin this section with recording the following theorem which is an immediate
consequence of the results obtained in the previous sections.

Theorem 6.1 The algebra AQ is numerically Koszul for every symmetric quiver Q.

Proof According to Theorem 5.6, we have

AQ(x, q)P(U (gQ)∨, x, q) = 1.

Since A !
Q

∼= U (gQ), the result of Proposition 3.6 implies that

P(AQ, q
1
2 x, q)P((A !)∨, x, q) = 1,

which, up to a change of variables, is precisely the numerical Koszulness of AQ. ��
This result may be interpreted as strong evidence for the following conjecture.

Conjecture 6.2 The algebra AQ is Koszul for every symmetric quiver Q.

In this section, we survey the situations in which we managed to prove this conjec-
ture.

6.1 Koszulness via quadratic Gröbner bases

Let us classify, for a certain ordering of monomials, all quivers Q such that the algebra
AQ has a noncommutative quadratic Gröbner basis. Let us choose some ordering of
Q0, and order the generators of AQ as follows: ai,k < a j,l if k < l or if k =
l and i < j . This ordering of generators gives rise to the corresponding graded
lexicographic ordering of monomials: given two monomials, the longer is bigger, and
if the lengths coincide, the bigger one is the monomial that is bigger lexicographically,
when compared letter by letter.
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Definition 6.3 Let N be a positive integer. We say that a quiver Q is almost N -regular
if for all i �= j ∈ Q0, we have mi j = N , and for each i ∈ Q0 we have either mii = N
or mii = N + 1.

Theorem 6.4 Let Q be a symmetric quiver. For the ordering defined above, the algebra
AQ has a noncommutative quadratic Gröbner basis of relations if and only if the quiver
Q is almost N-regular. In particular, for each almost N-regular quiver Q, the algebra
AQ is Koszul.

The proof of this theorem occupies the rest of the section. We first prepare several
lemmas.

One can easily see that among the leading terms of the relations of the algebraAQ
there are, in general, repetitions. To present a candidate for a Gröbner basis, one has to
begin with replacing these relations by relations with pairwise distinct leading terms.

Lemma 6.5 The ideal of relations of the algebra AQ has a system of generators whose
set of pairwise distinct leading terms is

ai,ka j,l , k > l,

ai,ka j,l , 0 ≤ l − k ≤ mi, j , i < j,

ai,ka j,l , 0 ≤ l − k ≤ mi, j − 1, i ≥ j .

Proof Let us analyze the relations carefully. First of all, the first two groups of relations
(supercommutativity) imply that ai,ka j,l with k > l are leading terms, as well as
ai,ka j,k with i > j , and ai,kai,k , the latter in case of odd mi,i . In what follows, we
shall only consider monomials that are already normal with respect to these leading
terms.

From Lemma 1 (proved in Appendix), it follows that after the appropriate row
reduction

• If mi,i is even, then a2
i,k , ai,kai,k+1, …, ai,kai,k+mi,i −1 are the leading terms of the

third group of relations,
• If mi,i is odd, then ai,kai,k+1, …, ai,kai,k+mi,i −1 are the leading terms of the third
group of relations,

• If i < j , then ai,ka j,k , ai,ka j,k+1, ai,ka j,k+mi, j as well as a j,kai,k+1, …,
a j,kai,k+mi, j −1, are the leading terms of the third group of relations,

It remains to notice that the union of these sets of leading terms is precisely the set
described above. ��

We already mentioned above that a generating set G of I is a Gröbner basis of I if
and only if cosets of monomials that are normal with respect to G form a basis of the
quotient modulo I . However, if all elements of G are of weight two, there is a much
more efficient criterion using the Diamond Lemma [6, Th. 2.4.1.5]: a generating set G
ofweight two is aGröbner basis if and only if cosets of cubic (weight three)monomials
that are normal with respect to G form a basis of the cubic part of the quotient modulo
I . We shall now use this criterion in our case. In fact, for the algebra AQ, the cubic
part can be further separated according to the ZQ0 -grading. Let us consider various
possible situations.
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Lemma 6.6 The q-character ofAQ,3αi is equal to the character of the set of monomials

ai,k1ai,k2ai,k3 , kp ≥ 0,

that are normal with respect to the quadratic leading terms of Lemma 6.5.

Proof From Proposition 3.4, we know that the graded componentA ∨
Q,3αi

is identified
with the vector space of polynomials equal to a product of a symmetric polynomial
in z1, z2, z3 and the polynomial ((z1 − z2)(z2 − z3)(z1 − z3))mi,i shifted by 3mi,i .

The q-character of this latter vector space is q6mii

(q)3
. The normal monomials are the

monomials ai,k1ai,k2ai,k3 with k2 − k1 ≥ mi,i and k3 − k2 ≥ mi,i . We see that

(k1, k2, k3) = (mi,i , 2mi,i , 3mi,i ) + (l1, l2, l3),

where (l1, l2, l3) is a partition into at most three parts, and so the result follows. ��
Lemma 6.7 Suppose that i < j . The q-character ofAQ,2αi +α j is equal to the character
of the set of monomials

ai1,k1ai2,k2ai3,k3 , αi1 + αi2 + αi3 = 2αi + α j k p ≥ 0,

that are normal with respect to the quadratic leading terms of Lemma 6.5 if and only
if mi,i = mi, j or mi,i = mi, j + 1.

Proof From Proposition 3.4, we know that A ∨
Q,2αi +α j

is identified with the vector
space of polynomials equal to a product of a polynomial in z1, z2, z3 symmetric in
z1, z2 and the polynomial (z1− z2)mi,i ((z2− z3)(z1− z3))mi, j shifted by 2mi,i +m j, j .

The q-character of this vector space is q3mi,i +2mi, j +m j, j

(q)2(q)1
. There are three types of normal

monomials:

• ai,k1ai,k2a j,k3 with k2 − k1 ≥ mii and k3 − k2 ≥ mi j + 1, contributing
q3mi,i +mi, j +m j, j +1

(q)3
to the character,

• ai,k1a j,k2ai,k3 with k2 − k1 ≥ mi j + 1 and k3 − k2 ≥ mi j , contributing
q2mi,i +3mi, j +m j, j +2

(q)3
to the character,

• a j,k1ai,k2ai,k3 with k2 − k1 ≥ mi j and k3 − k2 ≥ mii , contributing
q3mi,i +2mi, j +m j, j

(q)3
to the character.

Dividing by q2mi,i +m j, j , we see that it remains to determine whenwe have the equality

q2mi,i +mi, j +1

(q)3
+ q3mi, j +2

(q)3
+ q2mi, j +mi,i

(q)3
= qmi,i +2mi j

(q)2(q)1
,

or, equivalently,

q2mi,i +mi, j +1 + q3mi, j +2 + q2mi, j +mi,i = qmi,i +2mi, j (1 + q + q2).
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This latter simplifies to

q2mi,i +mi, j +1 + q3mi, j +2 = qmi,i +2mi, j +1 + qmi,i +2mi, j +2,

or

qmi, j +1(qmi, j − qmi,i )(qmi, j +1 − qmi,i ) = 0,

and the claim follows. ��
Lemma 6.8 Suppose that i > j . The q-character ofAQ,2αi +α j is equal to the character
of the set of monomials

ai1,k1ai2,k2ai3,k3 , αi1 + αi2 + αi3 = 2αi + α j k p ≥ 0,

that are normal with respect to the quadratic leading terms of Lemma 6.5 if and only
if mi,i = mi, j or mi,i = mi, j + 1.

Proof From Proposition 3.4, we know that A ∨
Q,2αi +α j

is identified with the vector
space of polynomials equal to a product of a polynomial in z1, z2, z3 symmetric in
z1, z2 and the polynomial (z1− z2)mi,i ((z2− z3)(z1− z3))mi, j shifted by 2mi,i +m j, j .

The q-character of this vector space is q3mi,i +2mi, j +m j, j

(q)2(q)1
. There are three types of normal

monomials:

• ai,k1ai,k2a j,k3 with k2−k1 ≥ mi,i and k3−k2 ≥ mi, j , contributing
q3mi,i +mi, j +m j, j

(q)3
to the character,

• ai,k1a j,k2ai,k3 with k2 − k1 ≥ mi, j and k3 − k2 ≥ mi, j + 1, contributing
q2mi,i +3mi, j +m j, j +1

(q)3
to the character,

• a j,k1ai,k2ai,k3 with k2 − k1 ≥ mi, j + 1 and k3 − k2 ≥ mi,i , contributing
q3mi,i +2mi, j +m j, j +2

(q)3
to the character.

Dividing by q2mi,i +m j, j , we see that it remains to determine whenwe have the equality

q2mi,i +mi, j

(q)3
+ q3mi, j +1

(q)3
+ q2mi, j +mi,i +2

(q)3
= qmi,i +2mi, j

(q)2(q)1
,

or, equivalently,

q2mi,i +mi, j + q3mi, j +1 + q2mi, j +mi,i +2 = qmi,i +2mi, j (1 + q + q2).

This latter simplifies to

q2mi,i +mi, j + q3mi, j +1 = qmi,i +2mi, j + qmi,i +2mi, j +1,

or

qmi, j (qmi, j − qmi,i )(qmi, j +1 − qmi,i ) = 0,
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and the claim follows. ��
Lemma 6.9 Suppose that i < j < k. The q-character of AQ,αi +α j +αk is equal to the
character of the set of monomials

ai1,k1ai2,k2ai3,k3 , αi1 + αi2 + αi3 = αi + α j + αk, kp ≥ 0,

that are normal with respect to the quadratic leading terms of Lemma 6.5 if and only
if mi, j = m j,k = mi,k .

Proof From Proposition 3.4, we know that A ∨
Q,αi +α j +αk

is identified with the vector
space of polynomials equal to a product of a polynomial in z1, z2, z3 and the poly-
nomial (z1 − z2)mi, j (z2 − z3)m j,k (z1 − z3)mi,k shifted by mi,i + m j, j + mk,k . The

q-character of this vector space is qmi,i +m j, j +mk,k+mi, j +m j,k+mi,k

(q)31
. There are six types of

normal monomials:

• ai,k1a j,k2ak,k3 with k2 − k1 ≥ mi, j + 1 and k3 − k2 ≥ m j,k + 1, contributing
qmi,i +m j, j +mk,k+2mi, j +m j,k+3

(q)3
to the character,

• ai,k1ak,k2a j,k3 with k2 − k1 ≥ mi,k + 1 and k3 − k2 ≥ m j,k , contributing
qmi,i +m j, j +mk,k+2mi,k+m j,k+2

(q)3
to the character,

• a j,k1ai,k2ak,k3 with k2 − k1 ≥ mi, j and k3 − k2 ≥ mi,k + 1, contributing
qmi,i +m j, j +mk,k+2mi, j +mi,k+1

(q)3
to the character,

• a j,k1ak,k2ai,k3 with k2 − k1 ≥ m j,k + 1 and k3 − k2 ≥ mi,k , contributing
qmi,i +m j, j +mk,k+2m j,k+mi,k+2

(q)3
to the character,

• ak,k1ai,k2a j,k3 with k2 − k1 ≥ mi,k and k3 − k2 ≥ mi, j + 1, contributing
qmi,i +m j, j +mk,k+2mi,k+mi, j +1

(q)3
to the character,

• ak,k1a j,k2ai,k3 with k2 − k1 ≥ m j,k and k3 − k2 ≥ mi, j , contributing
qmi,i +m j, j +mk,k+2m j,k+mi, j

(q)3
to the character.

Dividing by qmi,i +m j, j +mk,k , we see that it remains to determine when these contribu-

tions add up to qmi, j +m j,k+mi,k

(q)31
, or, in other words, when

q2mi, j +m j,k+3 + q2mi,k+m j,k+2 + q2mi, j +mi,k+1 + q2m j,k+mi,k+2 +
q2mi,k+mi, j +1 + q2m j,k+mi, j = qmi, j +m j,k+mi,k (1 + q)(1 + q + q2).

Dividing by qmi, j +m j,k+mi,k , one obtains an equivalent condition

qmi, j −mi,k+3 + qmi,k−mi, j +2 + qmi, j −m j,k+1 + qm j,k−mi, j +2

+qmi,k−m j,k+1 + qm j,k−mi,k = (1 + q)(1 + q + q2).

For the rest of the proof, let us denote a := mi, j − mi,k , b := mi,k − m j,k , so that our
condition becomes

qa+3 + q2−a + qa+b+1 + q2−a−b + qb+1 + q−b = 1 + 2q + 2q2 + q3.
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Since q is a formal variable, each term on the left must match a term on the right.
Let us note that on the left we have both the exponent −b and the exponent b + 1,
which add up to one. Examining the exponents on the right, we conclude that one
of them is equal to zero and the other is equal to one. Also, we have the exponent
a + 3 and the exponent 2− a which add up to 5, and examining the exponents on the
right, we conclude that one of them is equal to 2 and the other is equal to 3. These
two observations imply that a, b ∈ {−1, 0}, and that qa+b+1 + q2−a−b = q + q2, so
a + b + 1 = 1 or a + b + 1 = 2, or, in other words, a + b ∈ {0, 1}, which, given that
a, b ∈ {−1, 0}, implies a = b = 0, and the claim follows. ��
Proof of Theorem 6.4 Thecasesweconsidered exhaust all possibleZQ0 -gradings of the
cubic part, so the claim on the quadratic Gröbner basis follows: Lemma 6.9 ensures
that all off-diagonal elements are pairwise equal, and Lemmas 6.7 and 6.8 ensure
that the diagonal elements are either equal to the corresponding off-diagonal ones or
exceed them by one, so the conjunction of these (which constitutes the condition of
our Gröbner basis criterion) singles out precisely the almost N -regular quivers. In
conjunction with Proposition 2.1, this result implies that for each almost N -regular
quiver Q, the algebra AQ is Koszul. ��

The almost N -regularity condition interpolates between two cases each of which
is meaningful in its own right. The condition mi j = N for all i, j ∈ Q0 is reasonable
from the quiver viewpoint: it says that the quiver is regular, meaning that there is the
same number of arrows between any two (possibly coinciding) vertices. The condition
mi j = N for all i �= j ∈ Q0, mii = N + 1 for all i ∈ Q0 is reasonable from the
Koszul dual viewpoint: in this case, the Koszul dual algebra turns out to be the free
vertex algebra on |Q0| generators with the constant locality function N (i, j) ≡ N , see
[35]. In fact, one can use results of [35] (appropriately modified to eliminate certain
misprints) to establish existence of a quadratic Gröbner basis for the ideal of relations
of the Koszul dual algebra; a different approach to studying the same algebra which
also leads to a quadratic Gröbner basis is developed in [10].

Remark 6.10 Note that the ordering that we consider is “global,” forcing the quiver
to be completely regular. In fact, it is easy to modify it slightly to handle connected
components of Q separately, and for such orderings the same argument proves that the
algebraAQ has a quadratic Gröbner basis if and only if each connected component of
Q is N -regular for some N > 0.

6.2 Koszulness beyond quadratic Gröbner bases

In this section, we give an example of a quiver for which the algebraAQ does not have
a quadratic Gröbner basis of relations for any admissible ordering but is nevertheless
Koszul. We begin with a following proposition.

Proposition 6.11 Suppose that Q is a symmetric quiver which has two vertices i �= j
with exactly one arrow i → j , exactly one arrow j → i , and no loops at either i or
j . There exists no admissible ordering of monomials in the generators for which the
algebra AQ has a quadratic Gröbner basis of relations.
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Proof Let us consider the following defining relations of AQ:

ai,0a j,0 = 0,

ai,0a j,1 + ai,1a j,0 = 0.

We remark that they are the only relations of the respective gradings. They immedi-
ately imply a2

i,0a j,1 = ai,1a2
j,0 = 0. These elements of the ideal of relations of AQ

are monomials, and thus they must be divisible by the leading terms of some elements
of the reduced Gröbner basis, no matter which admissible ordering we choose. Sup-
pose that the algebra AQ has a quadratic Gröbner basis. Since the relations of our
algebra do not contain squares of variables, the same is true for the reduced Gröbner
basis. Therefore ai,0a j,1 and ai,1a j,0 must both be leading terms of some elements
of the reduced Gröbner basis, but there is just one relation ai,0a j,1 + ai,1a j,0 of the
corresponding degree, so we arrived at a contradiction. ��

Let us show that in the absence of any other vertices, the algebra associated to the
corresponding quiver is Koszul.

Proposition 6.12 Let Q be a quiver with two vertices 0 and 1 and exactly two arrows:
one from 0 to 1 and the other from 1 to 0. The algebra AQ is Koszul.

Proof In this case, all generators commute, and the relations of the third type are
the relations a0(z)a1(z) = 0. Let us consider the algebra A

(p)
Q which has relations

a0(z)a1(z) = 0, but we truncate the ring of power series at z p+1, so that there are only
finitely many relations. We remark that the algebra AQ is Koszul if and only if the

algebras A (p)
Q are Koszul for all p. Indeed, the algebra AQ has its additional strictly

negative internal homological grading, and the same grading exists on the minimal
resolution of the ground field. The Koszul property can be expressed in terms of the
latter resolution: an algebra is Koszul if and only if the n-th term of the resolution
is generated by elements of weight n. We note that since the extra grading is strictly
negative, computing every graded piece of the resolution involves dealing with finitely
many of the generators and finitely many of the relations between them, proving that
dealing with all the algebras A (p)

Q is enough. We shall demonstrate that the left-hand
sides of the defining relations

a0,0a1,0 = 0,

a0,0a1,1 + a0,1a1,0 = 0,

. . .

a0,0a1,p + · · · + a0,pa1,0 = 0

of the algebra A (p)
Q form a regular sequence.

Let us denote by R the ring of polynomials in the variables a0,k , a1,k , and consider
the obvious short exact sequence

0 → a0,0R/a0,0a1,0R → R/a0,0a1,0R → R/a0,0R → 0
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of R-modules. Our goal is to show that the elements

a0,0a1,1 + a0,1a1,0 = 0,

. . .

a0,0a1,p + · · · + a0,pa1,0 = 0

form an M-regular sequence for the R-module M = R/a0,0a1,0R. Using the Koszul
complex criterion for regular sequences [29,Th. 16.5], it is easy to see that it is sufficient
to prove the same for the modules a0,0R/a0,0a1,0R and R/a0,0R. The action of R on
the first of these modules factors through the action of R/a1,0R, and a0,0R/a0,0a1,0R
is easily seen to be a free R/a1,0R-module of rank one. The action of R on the second
module factors through the action of R/a0,0R, and that module is manifestly a free
R/a0,0R-module of rank one. Setting a0,0 = 0 in the j-th relation a0,0a1, j + · · · +
a0, j a1,0 = 0 produces the ( j − 1)-st relation of the same shape using the variables
{a0,1+k | k ≥ 0} instead of {a0,k | k ≥ 0}. This allows us to conclude that the regularity
of our sequence follows by induction on p. ��

We conclude with a result indicating that regular sequences almost never appear as
relations of algebras associated to quivers.

Proposition 6.13 Let Q be a connected symmetric quiver. The minimal set of relations
of the algebra AQ, considered as a commutative algebra with generators ai,k , forms
a regular sequence if and only if Q is one of the following quivers:

• The quiver with one vertex and no loops,
• The quiver with one vertex and one loop,
• The quiver with two vertices 0 and 1 and exactly two arrows: one from 0 to 1 and

the other from 1 to 0.

Proof Suppose first that Q has just one vertex. If Q has 2m ≥ 2 loops at its only
vertex 0, the minimal set of relations of the algebra AQ includes a2

0,0 and a0,0a0,1,
which prevents it from being regular. If Q has 2m + 1 ≥ 3 loops at its only vertex 0,
the minimal set of relations of the algebraAQ includes a0,0a0,1, which is not a regular
element (it annihilates a0,0). Thus, the only remaining cases are the quiver with no
loops and the quiver with just one loop. In the case of no loops, there are no relations
of the second group; in the case of one loop, the relations of the second group are
redundant. Either way, the statement is trivially true.

Suppose that Q has more than one vertex. Since Q is connected, it has two vertices
i �= j with mi, j �= 0. If mi, j ≥ 2, the minimal set of relations of the algebra AQ
includes ai,0a j,0 and ai,0a j,1, which prevents it from being regular. If mi, j = 1 and
one of the two vertices, say i , has at least one arrow to a vertex k �= j (note that we
allow k = i , so it also accounts for possible loops), then the minimal set of relations
of the algebraAQ includes ai,0a j,0 and ai,0ak,0, which prevents it from being regular.
Thus, the only remaining case is that of the quiver Q with Q0 = {i, j} and exactly
two arrows, for which the statement is established in the proof of Proposition 6.12. ��
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Appendix A. Reduction of relations ofAQ

In this section, we state and prove a simple but slightly technical result which is used
in the paper.

Lemma 1 (i) Let ai , i ≥ 0, be a sequence of commuting formal variables. Let a(z) =∑
i≥0 ai zi , and consider, for the given m ≥ 1, the system of elements R defined as

the coefficients of the series a(z)2, a(z)a′(z), …, a(z)a(2m−1)(z). Let us order the
quadratic monomials ai a j with the given k = i + j by saying that ai a j > ai ′a j ′ if
|i − j | < |i ′ − j ′|. Then there is a system of elements R′ spanning the same vector
space as R whose set of leading monomials is {ai a j : 0 ≤ j − i ≤ 2m − 1}.

(ii) Let bi , i ≥ 0, be a sequence of anti-commuting formal variables. Let b(z) =∑
i≥0 bi zi , and consider, for the given m ≥ 2, the system of elements R defined as

the coefficients of the series b(z)2, b(z)b′(z), …, b(z)b(2m−2)(z). Let us order the
quadratic monomials bi b j with the given k = i + j by saying that bi b j > bi ′b j ′ if
|i − j | < |i ′ − j ′|. Then there is a system of elements R′ spanning the same vector
space as R whose set of leading monomials is {bi b j : 0 ≤ j − i ≤ 2m − 2}.

(iii) Let ci , i ≥ 0, and di , i ≥ 0, be two sequence of formal variables. Let c(z) =∑
i≥0 ci zi and d(z) = ∑

i≥0 di zi , and consider, for the given m ≥ 1, the system
of elements R defined as the coefficients of the series c(z)d(z), c(z)d ′(z), …,
c(z)d(m−1)(z). Let us order the quadratic monomials ci d j with the given k = i + j
by saying that ci d j > ci ′d j ′ if |i − j | < |i ′ − j ′|, or if |i − j | = |i ′ − j ′| and
i < i ′. Then there is a system of elements R′ spanning the same vector space as
R whose set of leading monomials is

{ci d j : 0 ≤ j − i ≤ m} ∪ {ci d j : 0 < i − j < m}.

Proof For commuting variables, it is easy to see that for each odd l the relation
a(z)a(l)(z) is redundant. Now let us fix k ≥ 0, and examine the elements of R obtained
as the coefficients of zk of the series a(z)2, 12a(z)a(2)(z)…, 1

(2m−2)!a(z)a(2m−2)(z). If
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k = 2p, the matrix relating these elements to the monomial basis is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · 2 2
(p
2

) (p−1
2

) + (p+1
2

) · · · (1
2

) + (2p−1
2

) (0
2

) + (2p
2

)

(p
4

) (p−1
4

) + (p+1
4

) · · · (1
4

) + (2p−1
4

) (0
4

) + (2p
4

)

...
...

. . .
...

...
( p
2m−2

) ( p−1
2m−2

) + ( p+1
2m−2

) · · · ( 1
2m−2

) + (2p−1
2m−2

) ( 0
2m−2

) + ( 2p
2m−2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we subtract from each column the previous one (and from the second column twice
the previous one), we obtain the matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
(p
2

) (p
1

) − (p−1
1

) · · · (2p−2
1

) − (1
1

) (2p−1
1

) − (0
1

)

(p
4

) (p
3

) − (p−1
3

) · · · (2p−2
3

) − (1
3

) (2p−1
3

) − (0
3

)

...
...

. . .
...

...
( p
2m−2

) ( p
2m−3

) − ( p−1
2m−3

) · · · (2p−1
2m−3

) − ( 1
2m−3

) ( 2p
2m−3

) − ( 0
2m−3

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which we shall denote A2p,m and keep aside for now. If k = 2p+1, the matrix relating
these elements to the monomial basis is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 · · · 2 2
(p
2

) + (p+1
2

) (p−1
2

) + (p+2
2

) · · · (1
2

) + (2p
2

) (0
2

) + (2p+1
2

)

(p
4

) + (p+1
4

) (p−1
4

) + (p+2
4

) · · · (1
4

) + (2p
4

) (0
4

) + (2p+1
4

)

...
...

. . .
...

...
( p
2m−2

) + ( p+1
2m−2

) ( p−1
2m−2

) + ( p+2
2m−2

) · · · ( 1
2m−2

) + ( 2p
2m−2

) ( 0
2m−2

) + (2p+1
2m−2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we subtract from each column the previous one (and from the second column twice
the previous one), we obtain the matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 · · · 0 0
(p
2

) + (p+1
2

) (p+1
1

) − (p−1
1

) · · · (2p−1
1

) − (1
1

) (2p
1

) − (0
1

)

(p
4

) + (p+1
4

) (p+1
3

) − (p−1
3

) · · · (2p−1
3

) − (1
3

) (2p
3

) − (0
3

)

...
...

. . .
...

...
( p
2m−2

) + ( p+1
2m−2

) ( p+1
2m−3

) − ( p−1
2m−3

) · · · (2p−1
2m−3

) − ( 1
2m−3

) ( 2p
2m−3

) − ( 0
2m−3

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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which we shall denote A2p+1,m and keep aside for now.
For anti-commuting variables, it is easy to see that for each even l the relation

b(z)b(l)(z) is redundant. Now let us fix k ≥ 0, and examine the elements of R obtained
as the coefficients of zk of the seriesb(z)b′(z), 1

3!b(z)b(3)(z)…, 1
(2m−3)!b(z)b(2m−3)(z).

If k = 2p, the matrix relating these elements to the monomial basis is

⎛

⎜⎜⎜⎜⎜⎜⎝

(p+1
1

) − (p−1
1

) (p+2
1

) − (p−2
1

) · · · (2p−1
2

) − (1
1

) (2p
1

) − (0
1

)

(p+1
3

) − (p−1
3

) (p+2
3

) − (p−2
3

) · · · (2p−1
3

) − (1
3

) (2p
3

) − (0
3

)

...
...

. . .
...

...
( p−1
2m−3

) − ( p−1
2m−3

) ( p+2
2m−3

) − ( p−2
2m−3

) · · · (2p−1
2m−3

) − ( 1
2m−3

) ( 2p
2m−3

) − ( 0
2m−3

)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

which is obtained from the matrix A2p+1,m above by deleting the first row and the
first column and, using the formula −(p−1

s

) + (p+1
s

) = (p−1
s−1

) + ( p
s−1

)
, is seen to be

column equivalent to the matrix A2p−1,m−1 above.
Similarly, if k = 2p + 1, the matrix relating these elements to the monomial basis

is

⎛

⎜⎜⎜⎜⎜⎜⎝

(p+1
1

) − (p
1

) (p+2
1

) − (p−1
1

) · · · (2p
2

) − (1
1

) (2p+1
1

) − (0
1

)

(p+1
3

) − (p
3

) (p+2
3

) − (p−1
3

) · · · (2p
3

) − (1
3

) (2p+1
3

) − (0
3

)

...
...

. . .
...

...
( p−1
2m−3

) − ( p
2m−3

) ( p+2
2m−3

) − ( p−1
2m−3

) · · · ( 2p
2m−3

) − ( 1
2m−3

) (2p+1
2m−3

) − ( 0
2m−3

)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

which is obtained from the matrix A2p,m above by deleting the first row and the first
column and, using the formula−(p

s

)+ (p+1
s

) = ( p
s−1

)
, is seen to be column equivalent

to A2p−2,m−1 above.
Overall, these calculations allow us to conclude by induction that our matrices are

of full rank, and deduce the existence of the spanning sets of their row spaces of
requisite form.
For the last statement, the proof is similar but simpler. If, for the given k ≥ 0, we
examine the elements of R obtained as the coefficients of zk of the series c(z)d(z),
c(z)d ′(z), 1

2c(z)d(2)(z)…, 1
(m−1)!c(z)d

(m−1)(z), then for k = 2p the matrix relating
these elements to the monomial basis is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
(p
1

) (p+1
1

) (p−1
1

) · · · (2p
1

) (0
1

)

(p
2

) (p+1
2

) (p−1
2

) · · · (2p
2

) (0
2

)

...
...

...
. . .

...
...

( p
m−1

) ( p+1
m−1

) ( p−1
m−1

) · · · ( 2p
m−1

) ( 0
m−1

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and for k = 2p + 1 the matrix relating these elements to the monomial basis is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1 1
(p+1

1

) (p
1

) (p+2
1

) (p−1
1

) · · · (2p+1
1

) (0
1

)

(p+1
2

) (p
2

) (p+2
2

) (p−1
2

) · · · (2p+1
2

) (0
2

)

...
...

...
...

. . .
...

...
( p+1

m−1

) ( p
m−1

) ( p+2
m−1

) ( p−1
m−1

) · · · (2p+1
m−1

) ( 0
m−1

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Elementary row and column operations on these matrices easily show that these matri-
ces are of full rank, and that their row spaces have spanning sets of requisite form.

��

References

1. Arakawa, T., Moreau, A.: Arc spaces and vertex algebras. https://www.imo.universite-paris-saclay.fr/
~moreau/CEMPI-arc_space-vertex_algebras.pdf (2021)

2. Bokut, L.A., Kang, S.-J., Lee, K.-H., Malcolmson, P.: Gröbner-Shirshov bases for Lie superalgebras
and their universal enveloping algebras. J. Algebra 217(2), 461–495 (1999)

3. Bokut, L.A., Malcolmson, P.: Gröbner-Shirshov bases for relations of a Lie algebra and its enveloping
algebra. In: Algebras and Combinatorics (Hong Kong, 1997), pp. 47–54. Springer, Singapore (1999)

4. Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Nat. Acad. Sci. U.S.A.
83(10), 3068–3071 (1986)

5. Bourqui, D., Sebag, J.: The radical of the differential ideal generated by XY in the ring of two variable
differential polynomials is not differentially finitely generated. J. Commut. Algebra 11(2), 155–162
(2019)

6. Bremner,M.R., Dotsenko, V.: Algebraic Operads. An algorithmic Companion. CRCPress, Boca Raton
(2016)

7. Bringmann, K., Jennings-Shaffer, C., Milas, A.: Graph schemes, graph series, and modularity. arXiv
e-print arXiv:2105.05660 (2021)

8. Bringmann, K., Milas, A.:W -algebras, false theta functions and quantum modular forms. I. Int. Math.
Res. Not. IMRN 21, 11351–11387 (2015)

9. Davison, B.: A boson-fermion correspondence in cohomological Donaldson–Thomas theory. arXiv
e-print arXiv:2109.09788 (2021)

10. Dotsenko, V.: Parking functions and vertex operators. Sel. Math. (N.S.) 14(2), 229–245 (2009)
11. Dotsenko, V., Mozgovoy, S.: DT invariants from vertex algebras. arXiv e-print arXiv:2108.10338

(2021)
12. Efimov, A.I.: Cohomological Hall algebra of a symmetric quiver. Compos. Math. 148(4), 1133–1146

(2012)
13. Feı̆gin, B.L., Odesskiı̆, A.V.: Vector bundles on an elliptic curve and Sklyanin algebras. In: Topics in

Quantum Groups and Finite-Type Invariants, vol. 185 of Amer. Math. Soc. Transl. Ser. 2, pages 65–84.
Amer. Math. Soc., Providence, RI, (1998)

14. Feı̆gin, B.L., Stoyanovskiı̆, A.V.: Functional models of the representations of current algebras, and
semi-infinite Schubert cells. Funktsional. Anal. i Prilozhen. 28(1), 68–90 (1994)

15. Franzen, H.: On chow rings of fine quiver moduli and modules over the cohomological hall algebra.
PhD thesis, Wuppertal University (2014)

16. Franzen, H.: On cohomology rings of non-commutative Hilbert schemes and CoHa-modules. Math.
Res. Lett. 23(3), 805–840 (2016)

17. Franzen, H., Reineke, M.: Semistable Chow-Hall algebras of quivers and quantized Donaldson–
Thomas invariants. Algebra Number Theory 12(5), 1001–1025 (2018)

123

https://www.imo.universite-paris-saclay.fr/~moreau/CEMPI-arc_space-vertex_algebras.pdf
https://www.imo.universite-paris-saclay.fr/~moreau/CEMPI-arc_space-vertex_algebras.pdf
http://arxiv.org/abs/2105.05660
http://arxiv.org/abs/2109.09788
http://arxiv.org/abs/2108.10338


Koszul algebras and Donaldson–Thomas invariants Page 39 of 39 106

18. Getzler, E.: Mixed Hodge Structures of Configuration Spaces. Preprint 96–61. Max Planck Institute
for Mathematics, Bonn (1996)

19. Ishii, Shihoko: Jet schemes, arc spaces and the nash problem. C. R. Math. Acad. Sci. Soc. R. Can.
29(1), 1–21 (2007)

20. Jennings-Shaffer, C.,Milas, A.: Further q-series identities and conjectures relating false theta functions
and characters. arXiv e-print arXiv:2005.13620 (2020)

21. Joyce, D.: Ringel-Hall style vertex algebra and Lie algebra structures on the homology of moduli
spaces. https://people.maths.ox.ac.uk/joyce/hall.pdf (2018)

22. Joyce, D.: Enumerative invariants and wall-crossing formulae in abelian categories. arXiv e-print
arXiv:2111.04694 (2021)

23. Knutson, D.: λ-rings and the representation theory of the symmetric group. In: Lecture Notes in
Mathematics, vol. 308. Springer-Verlag, Berlin, New York (1973)

24. Kontsevich, M., Soibelman, Yan: Cohomological Hall algebra, exponential Hodge structures and
motivic Donaldson–Thomas invariants. Commun. Num. Theor. Phys. 5, 231–352 (2011)

25. Latyntsev, A.: Cohomological Hall algebras and vertex algebras. arXiv e-print arXiv:2110.14356
(2021)

26. Li, H.: Some remarks on associated varieties of vertex operator superalgebras. Eur. J. Math. 7(4),
1689–1728 (2021)

27. Li, H., Milas, A.: Jet schemes, quantum dilogarithm and Feigin–Stoyanovsky’s principal subspaces.
arXiv e-print arXiv:2010.02143 (2020)

28. Loday, J.-L., Vallette, B.: Algebraic operads Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences], vol. 346. Springer, Heidelberg (2012)

29. Matsumura, H.: Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, second edition, (1989). Translated from the Japanese by M.
Reid

30. Meinhardt, S., Reineke, Markus: Donaldson–Thomas invariants versus intersection cohomology of
quiver moduli. J. Reine Angew. Math. 754, 143–178 (2019)

31. Nash, J.F.: Jr. Arc structure of singularities. Duke Math. J. 81(1), 31–38 (1996)
32. Ogievetskiı̆, O.V., Penkov, I.B.: Serre duality for projective supermanifolds. Funktsional. Anal. i

Prilozhen. 18(1), 78–79 (1984)
33. Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lecture Series, vol. 37. American

Mathematical Society, Providence, RI (2005)
34. Reineke, Markus: Degenerate cohomological Hall algebra and quantized Donaldson–Thomas invari-

ants for m-loop quivers. Doc. Math. 17, 1–22 (2012)
35. Roitman, Michael: On free conformal and vertex algebras. J. Algebra 217(2), 496–527 (1999)
36. Schmitt, Thomas: Regular sequences in Z2-graded commutative algebra. J. Algebra 124(1), 60–118

(1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2005.13620
https://people.maths.ox.ac.uk/joyce/hall.pdf
http://arxiv.org/abs/2111.04694
http://arxiv.org/abs/2110.14356
http://arxiv.org/abs/2010.02143

	Koszul algebras and Donaldson–Thomas invariants
	Abstract
	1 Introduction
	Structure of the paper

	2 Recollections
	2.1 Graded vector spaces and algebras
	2.2 Poincaré series
	2.3 Plethystic exponential
	2.4 Donaldson–Thomas invariants of symmetric quivers
	2.5 Koszul algebras
	2.6 Criteria of Koszulness
	2.7 Gröbner–Shirshov bases for Lie algebras

	3 Quadratic algebras associated to symmetric quivers
	4 Koszul dual Lie algebras and their properties
	4.1 The description of the Koszul dual Lie algebra
	4.2 The case of one-vertex quivers

	5 DT invariants and the Lie algebra gQ
	5.1 The Weyl algebra action and the Poincaré series
	5.2 Relationship to vertex Lie algebras
	5.3 A new proof of positivity of the refined DT invariants

	6 The Koszulness conjecture
	6.1 Koszulness via quadratic Gröbner bases
	6.2 Koszulness beyond quadratic Gröbner bases

	Acknowledgements
	Appendix A. Reduction of relations of AQ
	References




