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Abstract
Aganagic and Okounkov proved that the elliptic stable envelope provides the pole
cancellation matrix for the enumerative invariants of quiver varieties known as vertex
functions. This transforms a basis of a system of q-difference equations holomorphic
in variables z with poles in variables a to a basis of solutions holomorphic in a with
poles in z. The resulting functions are expected to be the vertex functions of the 3d
mirror dual variety. In this paper, we prove that the functions obtained by applying
the elliptic stable envelope to the vertex functions of the cotangent bundle of the full
flag variety are precisely the vertex functions for the same variety under an exchange
of the parameters a ↔ z. As a corollary of this, we deduce the expected 3d mirror
relationship for the elliptic stable envelope.
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1 Introduction

The goal of this paper is to discuss a specific example of 3d mirror symmetry (some-
times also called symplectic duality) from the perspective of enumerative geometry.
3d mirror symmetry originated in three-dimensional supersymmetric gauge theories.
The low energy dynamics of such a theory are governed by the geometry of the moduli
space of vacua. The Higgs and Coulomb branches are algebraic varieties that give two
components of the moduli space of vacua, see [3, 18]. 3d mirror symmetry expects
deep relationships between the geometry of the Higgs branch of a theory and the
Coulomb branch of the dual theory.

One such expectation deals with the problem of curve counting. In many cases, the
Higgs branch canbe constructed as aNakajimaquiver variety X .Using the enumerative
theory of stable quasimaps to a geometric invariant theory quotient from [4], one can
package the K -theoretic equivariant count of genus 0 curves in X into an object known
as the vertex function, see [20] Section 7. The vertex function is a power series

V (z) ∈ KT×C
×
q
(X)loc[[z]]

where

• T is a torus that acts on X .
• C

×
q acts naturally on the domain P

1 of quasimaps and trivially on X .
• z is a collection of variables inserted to keep track of the degrees of quasimaps.
• loc stands for localized K -theory.

The variables z are usually referred to as the Kähler parameters of X . In the case,
where X has finitely many T-fixed points, one can restrict the vertex function to the
fixed points to obtain a collection of vertex functionsAlthough Vp(a, z) depends on
q, we omit it as an argument.

Vp(a, z)1 =
∑

d

cd(a, �, q)zd ∈ KT×C
×
q
(pt)loc[[z]], p ∈ XT

where � is the T-weight on the symplectic form on X and a stands for the equivariant
parameters of the torus A := ker(�) ⊂ T. The vertex functions are known to satisfy

1 Although Vp(a, z) depends on q, we omit it as an argument.
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certainq-difference equations in both the variables a and z. In somecases, theCoulomb
branch X ! can also be constructed as a Nakajima quiver variety2, in which case one
can ask:what is the relationship between the vertex functions and difference equations
of X and X !?

Another side of the story involves elliptic stable envelopes. Elliptic stable envelopes
were defined in [2] for Nakajima quiver varieties in order to identify the monodromy
of the difference equations. Let Stab(p) be the elliptic stable envelope of p ∈ XT for
a certain choice of polarization and chamber (to be explained below), see [2, 25] for
precise definitions. The elliptic stable envelope Stab(p) is a section of a certain line
bundle over the extended T -equivariant elliptic cohomology scheme of X . If XT is
finite, then one can restrict these sections to obtain a matrix

Stabp,r := Stab(p)|r

The entries in this matrix are certain combinations of theta functions in the parameters
a and z.

The vertex functions Vp(a, z) are known to be holomorphic in z with poles in a.
In [2], it is proven that for the correct choice of polarization and chamber, the matrix
of restrictions of the elliptic stable envelopes provides the pole cancellation matrix of
Vp(a, z) and gives another set of solutions to the same system of difference equations.
In other words,

Bp :=
∑

r∈XT

Stabp,r Vr (a, z) (1)

has no poles in a certain neighborhood of a point on a toric compactification of A.
Hence, we can expand Bp as a power series

Bp =
∑

d

γd(z, �, q)ad

One expectation of 3d mirror symmetry is that under the correct normalization, (1) is
the vertex function of X !. For such a statement to make sense, wemust have a bijection
on the fixed point sets

b : XT ←→ X !T!

as well as a way of exchanging equivariant parameters with the Kähler parameters:

z ←→ a!

a ←→ z!

2 In general, the Coulomb branch corresponding to a type A quiver variety can be constructed as a bow
variety, see [17, 22]. The combinatorial tools for studying vertex functions of bow varieties have not yet
been developed.
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This result has been proven in the case where X is a hypertoric variety in [27], as
well as for the vertex function at a particular fixed point for the cotangent bundle of
the Grassmannian in [6]. As far as we are aware, this has not been proven for any
other examples. Related results pertaining to quantum K -theory for instanton moduli
spaces were obtained in [13]. For the Hilbert scheme of points in the plane, and more
generally, the Hilbert scheme of points on minimal resolutions of type A singularities,
consequences of 3d mirror symmetry were explored in [15, 26].

In this paper, we study the case when X is the cotangent bundle of the full flag
variety in C

n . In [23], the authors study 3d mirror symmetry from the perspective of
elliptic stable envelopes and prove that in this case

X ! ∼= X

i.e., the cotangent bundle of the full flag variety is 3d mirror self-symmetric. A crucial
part of their argument involves the elliptic weight functions introduced in [24]. In [23],
certain combinatorial properties of the weight functions are interpreted in light of 3d
mirror symmetry as a relationship between the elliptic stable envelopes of X and X !.
This example has also been studied from a physical perspective in [5], where 3dmirror
symmetry is studied in various limits.

Here, we revisit the identification X ! ∼= X from the perspective of vertex functions
as explained above. Fixed points on X are naturally indexed by permutations I =
(I1, . . . , In) of n. The bijection on fixed points is given by

b : I ←→ I−1 =: I !

We define the identification κ of the equivariant and Kähler parameters in (7) below.
Then, our main result is:

Theorem 1 (Theorem 4) Let X be the cotangent bundle of the full flag variety and let

(
StabI ,J

)
I ,J∈XT

be the restriction matrix of the elliptic stable envelope for the choice of polarization
and chamber given by (3) and (4), normalized as in Definition 7. Then,

Ṽ !
I !(a

!, z!) = κ

⎛

⎝
∑

J∈XT

StabI ,J ṼJ (a, z)

⎞

⎠

where ṼJ (a, z) is the normalization of the vertex function given by Definition 6.

In other words, we prove that the elliptic stable envelope provides the transition
matrix between the vertex functions of X and X ! ∼= X , where the roles of the equiv-
ariant and Kähler parameters are switched for X !.

Our proof relies on [12, 14], in which the difference equations satisfied by the vertex
functions in a and z are identified via the Macdonald operators (see Propositions 2
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Fig. 1 Quiver data for the
cotangent bundle of the flag
variety

n

1 2
. . .

n− 1

and 3). In [19], the authors prove that solutions of these equations of a particular form
are uniquely determined by their leading coefficient. In light of this, along with the
results from [2], in order to identify

κ

⎛

⎝
∑

J∈XT

StabI ,J ṼJ (a, z)

⎞

⎠

with the vertex functions of X !, it is sufficient to calculate the leading coefficient. This
is done by using the known diagonal and quasiperiodicity properties of the elliptic
stable envelope. Along the way, to connect our results with those of [23], we define
the elliptic weight functions and identify precisely which choices of polarization and
chamber are needed to relate the weight functions to the elliptic stable envelopes.

As a corollary of our main Theorem, we obtain a simple proof of the main result
of [23], which states that the inverse of the restriction matrix of the elliptic stable
envelope of X is equal to that of X ! after applying κ and appropriately permuting
the rows and columns. Another interesting application of the results of this paper to
K -theoretic stable envelopes are explored in [7].

2 Description as a quiver variety

2.1 Definitions

We construct the cotangent bundle of the full flag variety in C
n as a Nakajima quiver

variety. Fix n ∈ N. We consider the quiver with n − 1 vertices, with dimension

v = (v1, v2, . . . , vn−1) = (1, 2, . . . , n − 1)

and one framing of dimension of n at vertex n − 1 (Fig. 1).
TheNakajima quiver variety associatedwith this data is a geometric invariant theory

quotient with respect to the group

G =
n−1∏

i=1

GL(Vi )

123



100 Page 6 of 31 H. Dinkins

where Vi is a vector space of dimension vi . As the stability condition, we choose the
G-character

θ : G → C
×, (gi )i �→

n−1∏

i=1

det gi

By [9] Proposition 5.1.5, the θ -semistable points consist of maps so that Vi → Vi−1
are surjective for i ∈ {1, . . . , n}, where Vn = W is the framing vector space. Thus,
the quiver variety X is the cotangent bundle of the full flag variety.

2.2 Torus action and fixed points

The maximal torus Ã of GL(W ) acts on X . After choosing a basis {ei }i∈{1,...,n} so that
W ∼= C

n , this action is induced by the action of Ã ∼= (C×)n on W given by

(u1, . . . , un) · (x1, . . . , xn) = (u−1
1 x1, . . . , u

−1
n xn)

An additional torus C
×
�
acts on X by scaling the cotangent data, which is given by the

maps Vi → Vi−1 for i ∈ {1, . . . , n}, by �
−1.

We define

T̃ := Ã × C
×
�

The torus Ã ⊂ T̃ preserves the symplectic form of X and T̃/Ã scales it with character
�. Also, the action of Ã is not faithful, but has kernel (u, u, . . . , u) ∈ Ã. We write A
for the quotient by the diagonal subgroup, and denote

T = A × C
×
�

Coordinates on A will be denoted by ai = ui/ui+1.
The T-fixed points on X are given by data for which the vector spaces Vi are spanned

by coordinate vectors of W . Then, ker(Vi → Vi−1) = SpanC{eIi } where we assume
that V0 = 0, and the tuple (I1, . . . , In) defines a permutation of n.

The vector spaces Vi andW descend to vector bundles Vi andW on X . It is known
that Pic(X) ∼= Z

n−1 is generated by the tautological line bundles

Li := det Vi (2)

see [16]. We define the Kähler torus

K := Pic(X) ⊗ C
×

and write (z1, . . . , zn−1) for the coordinates on it. These coordinates are usually called
Kähler parameters.
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2.3 Polarization and tangent space

Elliptic stable envelopes were defined for Nakajima quiver varieties in [2]. The defini-
tion presented there depends on a choice of a polarization. The choice of polarization
controls the q-periodicity of the stable envelopes, see [2] Section 3.3.

A polarization of X is the choice of a K -theory class T 1/2X so that the tangent
bundle decomposes as

T X = T 1/2X + �
−1(T 1/2X)∨ ∈ KT(X)

There is a natural choice of polarization for X , given in terms of the tautological
bundles Vi , i = 1, . . . , n − 1 and Vn = W by

T 1/2X =
n−1∑

i=1

V∨
i ⊗ Vi+1 −

n−1∑

i=1

V∨
i ⊗ Vi ∈ KT(X) (3)

In terms of the Chern roots x (i)
1 , . . . x (i)

i of Vi , this is given by

T 1/2X =
n−1∑

i=1

⎛

⎝
i∑

j=1

1

x (i)
j

⎞

⎠
(

i+1∑

k=1

x (i+1)
k

)
−

⎛

⎝
i∑

j=1

1

x (i)
j

⎞

⎠
(

i∑

k=1

x (i)
k

)
∈ KT(X)

At the fixed point given by a permutation I of {1, 2, . . . , n}, the tangent space can be
calculated by substituting for the Chern roots x (i)

j = uI j . So in terms of the coordinates

on Ã,

T 1/2
I X =

n−1∑

i=1

i∑

j=1

i+1∑

k=1

uIk

u I j
−

i∑

j=1

i∑

k=1

uIk

u I j

=
∑

1≤ j<k≤n

u Ik

u I j
∈ KT(pt)

Thus,

TI X =
∑

1≤ j<k≤n

u Ik

u I j
+ �

−1
∑

1≤ j<k≤n

u I j

u Ik
∈ KT(pt)

2.4 Chamber

The elliptic stable envelope depends additionally on the choice of a chamber in

LieRA = cochar(A) ⊗Z R
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where cochar(A) denotes the cocharacter lattice of A. In the case of a variety with
finitely many fixed points, the chamber controls the diagonal entries of the matrix of
restrictions of the elliptic stable envelope, see [2] Section 3.3 and [25] Section 2.13.

A chamber is a choice of connected component of

LieRA −
⋃

w

{σ ∈ LieRA | 〈σ,w〉 = 0}

where the union is taken over allA-weights of the tangent spaces at the fixed points and
〈·, ·〉 denotes the natural pairing on characters and cocharacters. A choice of generic
cocharacter σ of A gives a chamber C, and the dependence of the chamber on the
cocharacter is locally constant. The tangent space at a fixed point decomposes into a
direct sum of A-weight spaces

TI X =
⊕

w∈Hom(A,C×)

VI (w)

A choice of chamber given by a cocharacter σ decomposes the tangent space at a fixed
point I into attracting and repelling directions:

TI X = N+
I + N−

I

where

N+
I =

⊕

w〈σ,w〉>0

VI (w)

N−
I =

⊕

w〈σ,w〉<0

VI (w)

Since the fixed point set is finite, every direction is either attracting or repelling.

Definition 1 The index bundle with respect to C at a fixed point I , written indCI , is the
attracting part of the polarization restricted to I .

In our case of the cotangent bundle of the full flag variety, we fix once and for all
the cocharacter

σ : u �→ (u−1, u−2, . . . , u−n), u ∈ C
× (4)

and denote the corresponding chamber as C. With respect to this chamber, attracting
weights look like ui/u j where i < j , or equivalently, like monomials with positive
powers in ai . Explicitly, we have

TI X = N+
I + N−

I

123
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where

N−
I =

∑

1≤ j<k≤n
Ik>I j

u Ik

u I j
+ �

−1
∑

1≤ j<k≤n
Ik<I j

u I j

u Ik

N+
I =

∑

1≤ j<k≤n
Ik<I j

u Ik

u I j
+ �

−1
∑

1≤ j<k≤n
Ik>I j

u I j

u Ik

Given a permutation I = (I1, . . . , In) of n, we define the ordered indices
i (k)1 , . . . , i (k)k so that

{i (k)1 < . . . < i (k)k } = {I1, . . . , Ik}

Definition 2 For permutations I and J with ordered indices i (k)m and j (k)m , we define

I ≺ J ⇐⇒ i (k)m < j (k)m for all k = 1, . . . , n − 1 and m = 1, . . . , k (5)

In what follows, we will also denote by ≺ an arbitrary refinement of this partial order
to a total order.

2.5 Vertex functions

The vertex function is an important enumerative invariant of a Nakajima quiver variety
X . The vertex function is defined as the generating function for a virtual K -theoretic
equivariant count of quasimaps from P

1 to X . When restricted to a fixed point, the
vertex function gives a power series in the Kähler parameters, with coefficients given
by rational functions in the equivariant parameters and q, the coordinate on the torus
C

×
q which acts on the domain P

1 of quasimaps. In the setting of elliptic cohomology,

q plays the role of the modular parameter of the elliptic curve C
×/qZ, and we assume

that 0 < |q| < 1.
A central property of the vertex functions is that when normalized properly, they

give a basis of solutions to a system of q-difference equations in both the equivariant
and Kähler parameters, see [21]. The vertex functions are holomorphic in the Käh-
ler parameters with poles in the equivariant parameters. Rather than review all the
necessary theory here, we refer the reader to [20] Section 7, [1, 4] Section 1.

For the specific case of the cotangent bundle of the full flag variety, the vertex
functions have been studied in [12, 14]. In particular, explicit formulas were given for
the vertex functions and the systems of q-difference equations solved by the vertex
functions were identified. We review these results here.

For an indeterminate x , we define

ϕ(x) :=
∞∏

i=0

(1 − xqi )
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The q-Pochammer symbol is given by

(x)d := ϕ(x)

ϕ(xqd)

and the odd Jacobi theta function is defined by

ϑ(x) := (x1/2 − x−1/2)ϕ(qx)ϕ(q/x)

This function satisfies

ϑ(1/x) = −ϑ(x) and ϑ(qx) = − 1

q1/2x
ϑ(x) (6)

For a vector bundle V on X , written in terms of its Chern roots as V = x1 + . . . + xr ,
we define

�(V) :=
r∏

i=1

ϕ(xi ) and 	(V) :=
r∏

i=1

ϑ(xi )

We extend this to KT (X) by

�(−V) :=
r∏

i=1

1

ϕ(xi )
and 	(−V) :=

r∏

i=1

1

ϑ(xi )

The function 	(V) pulls back under the elliptic Chern class map to a section of the
Thom class of the bundle V over the elliptic cohomology scheme of X , see [2] Section
2.6, [8] Section 6.1, and [25] Section 2.6.

Quasimaps from P
1 to X come equipped with a notion of degree. The quasimap

moduli space from which the vertex function of X is defined is the disjoint union
of quasimap moduli spaces for each degree. The choice of stability condition for the
quiver variety determines the set of degrees for which themoduli spaces are nonempty,
see [20]Corollary 7.2.15. For the cotangent bundle to the full flag variety, the following
definition gives the set of such degrees, see [14] Section 3.

Definition 3 We define C ⊂ Z × Z
2 × . . . × Z

n−1 as the collection of integers di, j
where i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , i} so that
• di, j ≥ 0 for all i, j .
• For each i ∈ {1, . . . , n − 2}, there exists { j1, . . . , ji } ⊂ {1, . . . , i + 1} so that
di,k ≥ di+1, jk for all k.

123
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Theorem 2 [14] Theorem 3.1 The vertex function of the cotangent bundle of the full
flag variety, restricted to a fixed point I , is given by the following power series:

VI (u, z) =
∑

di, j∈C
zd

n−2∏

i=1

i∏

j=1

i+1∏

k=1

(
�
uIk
u I j

)

di, j−di+1,k(
q
uIk
u I j

)

di, j−di+1,k

n−1∏

i=1

i∏

j,k=1

(
q
uIk
u I j

)

di, j−di,k(
�
uIk
u I j

)

di, j−di,k

n∏

i=1

n−1∏

j=1

(
�

ui
u I j

)

dn−1, j(
q ui
u I j

)

dn−1, j

where zd = ∏n−1
i=1

∏i
j=1 z

di, j
i .

Note that our normalization of the vertex functions differs from that in [14] by absorb-
ing various powers of q and � into the Kähler parameters.

2.6 Difference equations

Definition 4 For 1 ≤ r ≤ n, we define the Macdonald difference operators by

Dr (x; q, t) = tr(r+1)/2−rn
∑

J⊂{1,...,n}
|J |=r

∏

i∈J
j /∈J

t xi − x j
xi − x j

∏

i∈J

T x
i

where x = (x1, . . . , xn) and T x
i : xi �→ qxi .

For our purposes, these difference operators will act either on the space of rational
functions in x so that none of the denominators vanish or on the space of formal power
series in x with coefficients in some ring.

We introduce new parameters ζi related to the Kähler parameters by

ζi

ζi+1
= h

q
zi

and write the vertex functions VI (u, z) as VI (u, ζ ).

Definition 5 For each fixed point I ∈ XT, we define a factor

αI (u, ζ , t) =
n∏

i=1

ϑ(ζi t i−n)ϑ(uIi (q/t)n−i )

ϑ(ζi/uIi )

Proposition 1 This factor satisfies the following transformation properties:

T ζ
i αI (u, ζ , t) = αI (u, ζ , t)tn−i u−1

Ii
T ζ
i
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100 Page 12 of 31 H. Dinkins

T u
i αI (u, ζ , t) = αI (u, ζ , t)(q/t)n−I !

i ζ−1
I !
i
T u
i

Proof This follows from direct computation using (6). ��
For the sake of q-difference equations, the following function gives an equally good

alternative choice

αI (u, ζ , t) = exp

(
− 1

ln(q)

n−1∑

i=1

ln(zi ) ln(Li |I t i(i+1)/2−in)

)

exp

(
− 1

ln(q)
ln(ζn) ln(u1 . . . unt

n(1−n)/2)

)

Definition 6 We defined normalized vertex functions by

ṼI (u, ζ ) = αI (ζ , u, �)�((q − �)T 1/2
I X)VI (u, ζ )

Proposition 2 [12] Theorem 2.6 For all fixed points I , the normalized vertex function
is an eigenvector of the Macdonald operators:

Dr (ζ ; q, �)ṼI (u, ζ ) = er (u−1)ṼI (u, ζ )

where er (u−1) denotes the rth elementary symmetric polynomial in u−1.

Proof Observe that the termαI (u, ζ , �) has the same q-periodicity in ζ as the prefactor
in Theorem 2.6 of [12]. Furthermore, the term �((q − �)T 1/2

I X) only involves the
equivariant parameters, so it does not affect the q-difference properties in the variables
ζ . Now, the result follows from Theorem 2.6 in [12]. ��
Similarly, we have

Proposition 3 [14] Theorem 4.8 For all fixed points I , the normalized vertex function
is an eigenvector of the Macdonald operators:

(q/�)r(n−1)Dr (u; q, q/�)ṼI (u, ζ ) = er (ζ
−1)ṼI (u, ζ )

where er (ζ−1) denotes the rth elementary symetric polynomial in ζ−1.

2.7 The dual variety

We denote by X ! another copy of the cotangent bundle of the full flag variety, con-
structed as a Nakajima quiver variety in the same way as X above. In particular, we
assume the choice of stability θ ! is the same.

This variety is equipped with the action of a torus T̃
!
, with quotient torus T!. We

write u!
1, . . . , u

!
n, �

! for the coordinates on T̃!
and a!

1, . . . , a
!
n−1, �

! for the coordinates
on T!. We choose the same chamber as for X , and denote a generic cocharacter in the
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chamber by σ !. As before, the choice of chamber provides a decomposition of the
tangent bundle at a fixed point I !

TI ! X ! = N !−
I ! + N !+

I ! ∈ KT!(pt)

into attracting and repelling directions.
Similarly, the Kähler torus of X ! has coordinates z!1, . . . , z!n−1. As discussed in the

introduction, 3d mirror symmetry expects the existence of a bijection

XT ←→ X !T!

and an isomorphism of tori

κ : T × K × C
×
q → T! × K! × C

×
q

In our context, we define the bijection on fixed points as

I ←→ I−1

For uniformity in our formulas below, we prefer to write I ! for the inverse permutation
I−1. We define κ by

zi �→ �
!a!
i

ai �→ �
!

q
z!i

� �→ q

�!
q �→ q (7)

As in the case of X , we define new parameters ζ !
1, . . . , ζ

!
n related to z!i by

ζ !
i

ζ !
i+1

= �
!

q
z!i

The parameters ζi and ζ !
i can be thought of as coordinates on extensions K̃ and K̃

!
of

the Kähler tori. In this language, the map κ is induced by the map

T̃ × K̃ × C
×
q → T̃

! × K̃
! × C

×
q

given by

ζi �→ ζ !
i

ui �→ u!
i
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� �→ q

�!
q �→ q

Abusing notation, we will also write this map as κ when it appears in what follows.
From the explicit form of κ , it is easy to verify that the differential of κ , restricted

to suitable subtori, satisfies

dκ(σ ) = θ ! and dκ(θ) = σ ! (8)

This is an expected property of 3d mirror symmetry, see [11] where the property (8)
is part of the definition of 3d mirror symmetry.

2.8 Limits of vertex functions

Given a choice of chamber C determined by a cocharacter σ : C
× → A, we define

Vp(0C, z) := lim
w→0

Vp(σ (w), z) (9)

Since all equivariant parameters appear in terms of the form

1 − wui/u j

1 − w′ui/u j

for some w,w′ ∈ Q(q, �), this limit is a well-defined element of C(q, �)[[z]].
For our choice of chamber in (4), we have

Proposition 4

κ (VI (0C, z)) = �((q − �
!)N !+

I ! )

Proof Recall that attracting directions of the tangent space look like ui/u j for i < j . In
the limit of the vertex function with respect to the chamber C, these weights contribute
terms of the form

lim
a→0

1 − wa

1 − w′a
= 1

for w,w′ ∈ Q(q, �). Repelling weights contribute terms of the form

lim
a→∞

1 − wa

1 − w′a
= w

w′

So if a is an repelling weight, we obtain contributions of the form:

lim
a→∞

(�a)d

(qa)d
=

(
�

q

)d

123



3d mirror symmetry of the cotangent bundle of the full… Page 15 of 31 100

Putting this together with Theorem 2, we find that

Vp(0C, z) =
∑

di, j∈CI

zd
n−1∏

i=1

(�)dn−1,i

(q)dn−1,i

n−2∏

i=1

i∏

j=1

(�)di, j−di+1, j

(q)di, j−di+1, j

n−2∏

i=1

i∏

j=1

i+1∏

k=1
Ik>I j

(
�

q

)di, j−di+1,k n−1∏

i=1

i∏

j,k=1
Ik>I j

(q
�

)di, j−di,k
n∏

i=1

n−1∏

j=1
i>I j

(
�

q

)dn−1, j

Now, define indices f j,k so that

f j,k =
{
dk−1, j − dk, j k < n

dn−1, j k = n

We observe that

∏

1≤ j<k≤n

(z j . . . zk−1)
f j,k = zd

Furthermore, the q-Pochammer terms in Vp(0C, z) give

n−1∏

i=1

(�)dn−1,i

(q)dn−1,i

n−2∏

i=1

i∏

j=1

(�)di, j−di+1, j

(q)di, j−di+1, j

=
∏

1≤ j<k≤n

(�) f j,k

(q) f j,k

A proof by induction on the order ≺ from Definition 2 can show that the rest of the
terms combine to give in total

∏

1≤ j<k≤n

ϕ

(
q

(
�

q

)k− j+δ(I j<Ik )
z j . . . zk−1

)

ϕ

((
�

q

)k− j−1+δ(I j<Ik )
z j . . . zk−1

)

where δ(a < b) is 1 if a < b and 0 otherwise. Applying the map κ , this is clearly seen
to be �((q − �

!)N+
I ! ). ��

3 Weight functions and elliptic stable envelopes

3.1 Definitions

Following [24], we define elliptic weight functions associated with the cotangent
bundle of the full flag variety. We will show that these coincide with the elliptic stable
envelope of X . For a further discussion of elliptic weight functions and their relation
to stable envelopes in the case of the cotangent bundle of the Grassmannian, see [10].
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The weight functions depend on the parameters

• w j for 1 ≤ j ≤ n, which we abbreviate by w.

• t (k)j for 1 ≤ k ≤ n and 1 ≤ j ≤ k, where t (n)
j = w j . We abbreviate by t(k) the

variables t (k)1 , . . . , t (k)k and by t the variables t(1), . . . , t(n−1).
• μ j for 1 ≤ j ≤ n, which we abbreviate by μ.
• �

We will identify these with the parameters of X in (10) after discussing the main
properties of the weight functions.

Let

UI (t,w, �, μ) =
n−1∏

k=1

(
k∏

a=1

k+1∏

c=1

ψI ,k,a,c(t
(k+1)
c /t (k)a )

)
k∏

b=a+1

ϑ(�t (k)b /t (k)a )

ϑ(t (k)b /t (k)a )

where

ψI ,k,a,c(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϑ(x) i (k+1)
c < i (k)a

ϑ

(
x�

−δ(Ik+1<i(k)a )μ j(I ,k,a)/μk+1

)

ϑ

(
�

−δ(Ik+1<i(k)a )μ j(I ,k,a)/μk+1

) i (k+1)
c = i (k)a

ϑ(x/�) i (k+1)
c > i (k)a

Here, the index j(I , k, a) ∈ {1, . . . , n} is the index so that

I j(I ,k,a) = i (k)a

and

δ(a < b) =
{
1 a < b

0 otherwise

Let

E(t, �) =
n−1∏

k=1

k∏

a,b=1

ϑ(�t (k)b /t (k)a )

and

ŨI (t,w, �,μ) = UI (t,w, �,μ)

E(t, �)

Define the symmetrization of a function of t(k) by

Symt (k) f (t
(k)
1 , . . . , t (k)k ) =

∑

τ∈Sk
f (t (k)τ (1), . . . , t

(k)
τ (k))
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Define

WI (t,w, �,μ) = ϑ(�−1)n(n−1)/2Symt(1) . . . Symtn−1UI (t,w, �,μ)

WI (t, z, �,μ) is known as the elliptic weight function, see [24]. We will need the
normalized weight function

W̃I (t,w, �,μ) = WI (t,w, �,μ)

E(t, �)

= ϑ(�−1)n(n−1)/2Symt(1) . . . Symtn−1ŨI (t,w, �,μ)

3.2 Properties of the weight functions

Although our normalization differs slightly from that in [24], the proofs of all of the
properties of the weight functions stated below can be obtained from straightforward
modifications of the proofs of the analogous properties in [24] Section 2. For a function
f (t), let f (w I ) denote the result of substituting t (k)j = w

i (k)j
in f .

Lemma 1 [24] Lemma 2.4 W̃I (wJ ,w, �,μ) = 0 unless I ≺ J

Next, let

PI (w, �) =
∏

k<l
Il<Ik

ϑ(wIk/wIl )
∏

k<l
Ik<Il

ϑ(�wIk/wIl )

Lemma 2 [24] Lemma 2.5

W̃I (w I ,w, �,μ) = PI (w, �)

Define the functions

G(t,w, �,μ) =
n−1∏

k=1

k∏

a=1

k+1∏

c=1

ϑ(t (k+1)
c /t (k)a )

n−1∏

k=1

ϑ(�μk+1/μk t
(k)
1 . . . t (k)k )

ϑ(�μk+1/μk)ϑ(t (k)1 . . . t (k)k )

and

GI (w, �,μ)

= ϑ(�)N (I )

ϑ(�)ϑ(
∏

1≤ j<k≤n
I j<Ik

wIk/wI j )

ϑ(�
∏

1≤ j<k≤n
I j<Ik

wIk/wI j )

n−1∏

k=1

ϑ(wI1 . . . wIk )ϑ(�μk+1/μk)

ϑ(wI1 . . . wIk�μk+1/μk)
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where N (I ) is the number of non-inversions of I :

N (I ) :=
∑

1≤ j<k≤n
I j<Ik

1 = n(n − 1)

2
−

∑

1≤ j<k≤n
I j>Ik

1

Let

GI (t,w, �,μ) = G(t,w, �,μ)GI (w, �,μ)

Lemma 3 [24] Lemma 2.3 The ratio WI (t,w, �,μ)/GI (t,w, �,μ) does not change
when any of the variables t , w, μ, and � are shifted by q.

As a result, we deduce:

Lemma 4 W̃I (t,w, �,μ) has the same transformation properties as

GI (t,w, �,μ)/E(t, �)

under shifts of the variables t , w, μ, and � by q.

3.3 Elliptic stable envelopes

We identify the Chern roots, equivariant parameters, and Kähler parameters of X with
the weight function parameters by

� �→ �

t (k)a �→ 1/x (k)
a

μ j/μ j+1 �→ �zi
wi �→ 1/ui (10)

Under this identification, Lemmas 1, 2, and 4 give us the following three lemmas.

Lemma 5 W̃I (x J , u, �, z) = 0 unless I ≺ J .

Lemma 6 The function W̃I (x, u, �, z) has the same transformation properties as

	(�)rk(ind
−C
I )	(T 1/2X)

ϑ(�−1)ϑ(det ind−C
I )

ϑ(�−1 det ind−C
I )

n−1∏

k=1

ϑ(zkLk)

ϑ(zk)ϑ(Lk)

n−1∏

k=1

ϑ(Lk |I )ϑ(zk)

ϑ(Lk |I zk)

under shifts of the variables x, u, z, and � by q. Here,Li denotes the tautological line
bundle from (2) and ind−C

I denotes the index bundle from Definition 1.
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For a function f (x), we write f (x I ) for the substitution x (k)
j = uI j into f . Then,

Lemma 7

W̃I (x I , u, �, z) = (−1)n(n−1)/2(−1)I	(N+
I )

where (−1)I is the sign of the permutation I .

Combining these facts gives

Theorem 3 Up to a sign, as sections of a line bundle over the elliptic cohomology
scheme of X, the weight function coincides with the elliptic stable envelope:

W̃I (x, u, �, z) = (−1)n(n−1)/2(−1)I Stab−C,T 1/2X (I )

Proof Recall that elliptic cohomology classes are defined as sections of a particular
line bundle over the elliptic cohomology scheme. In [2], the elliptic stable envelope
is defined as the unique elliptic cohomology class satisfying two properties. The first
property is a support condition, which says that Stab−C,T 1/2X (I ) is supported on the
full attracting set of I with respect to the cocharacter −σ , see Section 3.3.5 of [2]. A
simple calculation shows that the order ≺ of Definition 2 coincides with the partial
order by attraction with respect to σ . The second condition is an explicit identification
of the restrictions Stab−C,T 1/2X (I )|I . As explained in [25] Section 2.13, this condition
requires that

Stab−C,T 1/2X (I )|I = 	(N+
I )

Lemma 6 means that W̃I (x, u, �, z) is a section of the right line bundle over the
elliptic cohomology scheme of X . In other words, it is actually an elliptic cohomology
class.

Lemma 1 is precisely the support condition.
After multiplication by (−1)n(n−1)/2(−1)I , Lemma 7 is precisely the condition on

the restriction Stab−C,T 1/2X (I )|I . ��
In what follows, we write

StabI ,J = Stab−C,T 1/2X (I )|J
with the choice of chamber and polarization understood.

4 3dmirror symmetry of vertex functions

Definition 7 We define a new normalization of the elliptic stable envelope by

StabI ,J =
√√√√det T 1/2

I Xκ−1(det N !+
I ! )

det N+
I κ−1(det T 1/2

I ! X !)
κ−1

(
α!
I (u

!, ζ !, �
!)
)

αJ (u, ζ , �)
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StabI ,J

κ−1
(
	(N !+

I ! )
)

κ−1
(
	(T 1/2

I ! X !)
)

	(T 1/2
J X)

Our main result is:

Theorem 4

Ṽ !
I !(a

!, z!) = κ

⎛

⎝
∑

J∈XT

StabI ,J ṼJ (a, z)

⎞

⎠

We refer to this by saying that the elliptic stable envelope is the transition matrix
between the vertex functions of X and the vertex functions of X !.

Alternatively, by canceling the repeated transcendental factors in StabI ,J and
ṼJ (a, z) and using Lemma 10, this is equivalent to

Theorem 5

V
!
I !(a!, z!) = κ

⎛

⎝
∑

J∈XT

StabI ,J V J (a, z)

⎞

⎠

where V I (a, z) = �((q − �)N+
I )VI (a, z) and

StabI ,J =
√√√√det T 1/2

I X det N+
J

det T 1/2
J X det N+

I

StabI ,J
	(N+

J )

The formulation of Theorem 4 reflects our preferred normalization of the vertex
functions and is particularly transparent for analyzing the q-difference properties. On
the other hand, Theorem 5 better reflects the pole cancellation properties of the elliptic
stable envelope, see the discussion in the proof of Theorem 4.

Our goal in the remainder of this paper is to prove this theorem. FromPropositions 2
and 3, we know that the vertex functions are eigenvectors of the Macdonald operators.
In [19], it is shown that such functions are essentially uniquely determined by their
leading coefficient. In what follows, we will use the known properties of the elliptic
stable envelope to compute the leading term of the right-hand side of Theorem 4. It
will be apparent that it agrees with the leading term of the left-hand side.

4.1 Various normalizations

As a function of the Chern roots of the tautological bundles and of the Kähler param-
eters, let

e(x, z) :=
n−1∏

i=1

ϑ(Li )ϑ(zi )

ϑ(Li zi )
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This function transforms as follows:

e(x, z)|
x (i)
j =qx (i)

j
= e(x, z)zi

e(x, z)|zi=qzi = e(x, z)Li (11)

From the perspective of q-difference operators in u, the function e(x I , z) is equivalent
to

αI (u, ζ , �) exp(− ln(ζn) ln(u1 . . . un)

ln(q)
)

Definition 8 We define a further normalization of the elliptic stable envelope by

SI ,J = e(x I , z)−1	(N+
I )−1StabI ,J e(x J , z)

Lemma 8 SI ,J is q-periodic with respect to shifts of u and ζ . Furthermore, SI ,I = 1.

Proof The first claim follows from the known q-quasiperiodicity of the various func-
tions fromLemma6, Proposition 1, and (11). The second claim follows fromLemma7.

��
Tracing back the definitions shows that StabI ,J is related to SI ,J by

StabI ,J =
√√√√det T 1/2

I Xκ−1(det N !+
I ! X !)

det N+
I κ−1(det T 1/2

I ! X !)
κ−1

(
α!
I (u

!, ζ !, �
!)
)

αJ (u, ζ , �)

κ−1
(
	(T 1/2

I ! X !)
)

	(T 1/2
J X)

e(x I , z)
e(x J , z)

	(N+
I )

κ−1
(
	(N !+

I ! )
) SI ,J (12)

Lemma 9 If ζi or ui is shifted by q, then StabI ,J is scaled by a factor of �
1−n and

(q/�)n−1, respectively.

Proof This follows from a direct computation with (12). ��
Proposition 5 For each I ≺ J , the operator Dr (u; q, q/�) acts diagonally on

StabI ,J ṼJ (a, z)

with eigenvalue er (ζ−1).

Proof This follows from Lemma 3 and Lemma 9. ��
We also need the following lemma.
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Lemma 10

	(N+
I )�((q − �)T 1/2

I X)

	(T 1/2
I (X))

=
√√√√ det N+

I

det T 1/2
I X

�((q − �)N+
I )

Proof Formula (106) in [2] gives

�((q − �)T 1/2X)

	(T 1/2X)
= (det T 1/2X)−1/2

�(T X∨)

So the left-hand side of the Lemma is equal to

	(N+
I )

(det T 1/2
I X)1/2�(TI X∨)

We have

	(N+
I )

�(TI X∨)
=

∏

w∈charT(N+
I )

w1/2(1 − w−1)ϕ(qw)ϕ(q/w)

ϕ(1/w)ϕ(�w)

= (det N+
I )1/2

∏

w∈charT(N+
I )

ϕ(qw)

ϕ(�w)

= (det N+
I )1/2�((q − �)N+

I )

from which the result follows. ��

4.2 Proof of Theorem 4

If we multiply both sides of Theorem 4 by

	(N !+
I ! )

	(T 1/2
I ! X !)

√√√√det T 1/2
I ! X !

det N !+
I !

and use Lemma 10, we see that Theorem 4 is equivalent to

αI !(u!, ζ !, �
!)�((q − �

!)N !+
I ! )V !

I !(a
!, z!) = κ

⎛

⎝
∑

J∈XT

AI ,J ṼJ (a, z)

⎞

⎠ (13)

where

AI ,J =
√√√√det T 1/2

I X

det N+
I

κ−1
(
α!
I (u

!, ζ !, �
!)
)
StabI ,JαJ (u, ζ , �)−1	(T 1/2

J X)−1 (14)
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We proceed with a few lemmas before proving Theorem 4. For a function f (a) of the
equivariant parameters, we denote by

lim
a→0

f (a) := f (0C)

where f (0C) is as in (9), assuming this limit exists. Since ai = ui/ui+1 and by our
choice of chamber C, this is equivalent to sending each ai to zero.

Lemma 11 If I ≺ J and I �= J , then

lim
a→0

1

κ−1
(
α!
I (u

!, ζ !, �!)
) AI ,J ṼJ (a, z) = 0

Proof Using (12), we rewrite the term inside the limit as

1

κ−1
(
α!
I (u

!, ζ !, �!)
)

√√√√det T 1/2
I X

det N+
I

e(x I , z)
e(x J , z)

αI (u, ζ , �)

αJ (u, ζ , �)

	(N+
I )

	(T 1/2
J X)

SI ,J ṼJ (a, z)

=
√√√√det T 1/2

I X

det N+
I

e(x I , z)
e(x J , z)

	(N+
I )�((q − �)T 1/2

J X)

	(T 1/2
J X)

SI ,J VJ (a, z)

Using the identity

�((q − �)T 1/2
J X)

	(T 1/2
J X)

= (det T 1/2
J X)−1/2

�(T∨
J X )

,

we further rewrite this as
√√√√det T 1/2

I X

det N+
I

e(x I , z)
e(x J , z)

	(N+
I )(det T 1/2

J X)−1/2

�(T∨
J X)

SI ,J VJ (a, z)

Since |q| < 1, we can calculate the limit as a → 0 by substituting ai = qλi ai
and sending each λi → ∞. Writing this substitution as a → aqλ, the q-periodicity
properties of the terms give the following.

• The term SI ,J is q-periodic with respect to shifts of a, by Lemma 8.
• As λ → ∞, the vertex function approaches a limit

VJ (aqλ, z) → VJ (0C, z) (15)

by Proposition 4.
• The substitution a → aqλ transforms the term �(T∨

J X)−1 to

�(T∨
J X)−1|a→aqλ = �(T∨

J X)−1
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∏

1≤ j<k≤n
Jk<J j

(
�
uJk
u J j

)

λJk+...+λJ j−1(
q
uJk
u J j

)

λJk+...+λJ j−1

(
uJk

u J j

)λJk+...+λJ j−1

q(
λJk

+...+λJ j−1+1

2
)

∏

1≤ j<k≤n
Jk>J j

( uJ j
u Jk

)

λJ j +...+λJk−1(
q
�

uJ j
u Jk

)

λJ j +...+λJk−1

(
�

−1 uJj

u Jk

)λJ j +...+λJk−1

q(
λJ j

+...+λJk−1+1

2
)

The term 	(N+
I ) is transformed as

	(N+
I )|a→aqλ

= 	(N+
I )

∏

1≤ j<k≤n
Ik<I j

(−1)λIk+...+λI j−1

√
q(λIk+...+λI j−1)

2

(
uIk

u I j

)λIk+...+λI j−1

∏

1≤ j<k≤n
Ik>I j

(−1)λI j +...+λIk−1

√
q(λI j +...+λIk−1)

2

(
�

−1 uI j

u Ik

)λI j +...+λIk−1

Combining these two expressions gives

(
�(T∨

J X)−1	(N+
I )

)
|a→aqλ = �(T∨

J X)−1	(N+
I )

∏

1≤ j<k≤n
Jk<J j

(
�
uJk
u J j

)

λJk+...+λJ j−1(
q
uJk
u J j

)

λJk+...+λJ j−1

(
√
q
uJk

u J j

)λJk+...+λJ j−1

∏

1≤ j<k≤n
Jk>J j

( uJ j
u Jk

)

λJ j +...+λJk−1(
q
�

uJ j
u Jk

)

λJ j +...+λJk−1

(√
q�

−1 uJj

u Jk

)λJ j +...+λJk−1

∏

1≤ j<k≤n
Ik<I j

(
−uIk

u I j

)λIk+...+λI j−1 ∏

1≤ j<k≤n
Ik>I j

(
−�

−1 uI j

u Ik

)λI j +...+λIk−1

(16)

• Substituting a → aqλ transforms e(x I , z)/e(x J , z) into

e(x I , z)
e(x J , z)

∣∣∣∣
a→aqλ

= e(x I , z)
e(x J , z)

n−1∏

i=1

i∏

j=1

z
λI j +...+λn−1−(λJ j +...+λn−1)

i ,
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and this combines with the q-contribution from

√√√√ det T 1/2
I X

det N+
I det T 1/2

J X

to give

⎛

⎝ e(x I , z)
e(x J , z)

√√√√ det T 1/2
I X

det N+
I det T 1/2

J X

⎞

⎠
∣∣∣∣
a→aqλ

= e(x I , z)
e(x J , z)

√√√√ det T 1/2
I X

det N+
I det T 1/2

J X

n−1∏

i=1

i∏

j=1

(
zi√
q

)λI j +...+λn−1−(λJ j +...+λn−1) n−1∏

i=1

√
q
i
(
λIi+1+...+λn−1−(λJi+1+...λn−1)

)

(17)

Now, we take the limit as λ → ∞. The q-Pochammer terms in (16) converge to

∏

1≤ j<k≤n
Jk<J j

ϕ

(
�
uJk
u J j

)

ϕ

(
q
uJk
u J j

)
∏

1≤ j<k≤n
Jk>J j

ϕ
( uJ j
u Jk

)

ϕ
(
q
�

uJ j
u Jk

) = 1

�((q − �)N+
J )

(18)

Combining the remaining terms in (16) and (17) gives

n−1∏

i=1

i∏

j=1

(
zi
q

)λI j +...+λn−1−(λJ j +...+λn−1)

∏

1≤ j<k≤n
Ik<I j

(
−uIk

u I j

)λIk+...+λI j−1 ∏

1≤ j<k≤n
Ik>I j

(
−�

−1 uI j

u Ik

)λI j +...+λIk−1

∏

1≤ j<k≤n
Jk<J j

(
uJk

u J j

)λJk+...+λJ j−1 ∏

1≤ j<k≤n
Jk>J j

(
�

−1 uJj

u Jk

)λJ j +...+λJk−1

(19)

By the definition of I ≺ J in Definition 2, the power on zi in (19) is positive. So putting
together (15), (18), and (19), we see that in the neighborhood given by |zi | < |q| and
|ai | < max(1, |�|),

lim
λ→∞

(
1

κ−1
(
α!
I (u

!, ζ !, �!)
) AI ,J ṼJ (a, z)

) ∣∣∣∣
a=aqλ

= 0

It suffices to consider |zi | < |q| since the expression is meromorphic in zi . This
completes the proof. ��
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Lemma 12

lim
a→0

1

κ−1
(
α!
I (u

!, ζ !, �!)
) AI ,I ṼI (a, z) = VI (0C, z)

Proof Observe that

1

κ−1
(
α!
I (u

!, ζ !, �!)
) AI ,I ṼI (a, z)

= 1

αJ (u, ζ , �)

√√√√det T 1/2
I X

det N+
I

	(N+
I )

	(T 1/2
I X)

ṼI (a, z)

=
√√√√det T 1/2

I X

det N+
I

	(N+
I )�((q − �)T 1/2

I X)

	(T 1/2
I X)

VI (a, z)

By Lemma 10, this is equal to

�((q − �)N+
I )VI (a, z)

Now, we examine the limit as the attracting weights are sent to 0. Since

lim
w→0

ϕ(qw)

ϕ(�w)
= 1,

it follows that

lim
a→0

�((q − �)N+
I ) = 1

So the only contribution for the diagonal term is VI (0C, z) ��
Proof of Theorem 4 From (14), we have

1

κ−1
(
α!
I (u

!, ζ !, �!)
)

∑

J∈XT

AI ,J ṼJ (a, z)

=
∑

J∈XT

√√√√det T 1/2
I X

det N+
I

StabI ,J
�((q − �)T 1/2

J X)

	(T 1/2
J X)

VJ (a, z)

By the pole subtraction property of elliptic stable envelopes, see Theorem 5 in [2], the
expression on the right-hand side of the above equation is holomorphic in a neighbor-
hood of ai = 0. Expanding as a power series in a, we get

1

κ−1
(
α!
I (u

!, ζ !, �!)
)

∑

J∈XT

AI ,J ṼJ (a, z) =
∑

d
di≥0

cd(z)a
d
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Clearly,

c0(z) = lim
a→0

1

κ−1
(
α!
I (u

!, ζ !, �!)
)

∑

J∈XT

AI ,J ṼJ (a, z)

By Lemmas 11 and 12 , this limit is

c0(z) = VI (0C, z)

So we have

1

VI (0C, z)

∑

J∈XT

AI ,J ṼJ (a, z) = κ−1
(
α!
I (u

!, ζ !, �
!)
) ∑

d
di≥0

c′
d(z)a

d (20)

where c′
0(z) = 1. By Proposition 5, (20) is an eigenvector of Dr (u; q, q/�) with

eigenvalue er (ζ−1) for r ∈ {1, . . . , n}. Furthermore, formula (2.23) in [19] gives a
recursive formula for the coefficients of a solution to the joint eigenvalue problem
for the operators Dr (u; q, q/�). Since c′

0(z) = 1, the form of the recursion evidently
implies that c′

d(z) ∈ Cq,�(z) for all d, where Cq,� = C(q, �). Equivalently,

κ−1
(
α!
I (u

!, ζ !, �
!)
) ∑

d
di≥0

c′
d(z)a

d ∈ κ−1
(
α!
I (u

!, ζ !, �
!)
)

Cq,�(z)[[a]]

Proposition 2 implies that

κ−1
(
αI !(u!, ζ !, �

!)V !
I !(u

!, ζ !)
)

(21)

is also a solution to the joint eigenvector problem for Dr (u; q, q/�) for r ∈ {1, . . . , n}.
It is obvious from Theorem 2 that

κ−1
(
αI !(u!, ζ !, �

!)V !
I !(u

!, ζ !)
)

∈ κ−1
(
α!
I (u

!, ζ !, �
!)
)

Cq,�(z)[[a]]

ByTheorem2.1 in [19], solutions of the joint eigenvector problem for Dr (u; q, q/�)

for r ∈ {1, . . . , n} inside the ring κ−1
(
α!
I (u

!, ζ !, �
!)
)
Cq,�(z)[[a]] are uniquely deter-

mined by their leading coefficient in a.
We have already shown that c′

0(z) = 1, and it is obvious from Theorem 2 that (21)
also has leading coefficient 1. Hence, we must have

1

VI (0C, z)

∑

J∈XT

AI ,J ṼJ (a, z) = κ−1
(
αI !(u!, ζ !, �

!)V !
I !(u

!, ζ !)
)

Multiypling by VI (0C, z), applying κ , and using Proposition 4 gives (13), which
finishes the proof. ��
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5 3dmirror symmetry of elliptic stable envelopes

We can use Theorem 4 to recover the main result of [23]. Let P be the permutation
matrix that identifies the fixed points of X and X !. Explicitly,

PI ,J =
{
1 if I = J−1

0 otherwise

Let Stab! be the elliptic stable envelope for X ! for the chamber −C! and polarization
T 1/2X !. It is equivalent toStab, butwith the equivariant andKähler parameters trivially
swapped

ζ �→ ζ ! and u �→ u!

Then, Theorem 4 gives

ṼI (a, z) = κ−1

⎛

⎝
∑

J !
Stab!

I !,J ! Ṽ
!
J !(a

!, z!)

⎞

⎠

Writing Ṽ (a, z) for the vector of vertex functions of X , and similarly for X !, we see
that

Ṽ (a, z) = M(a, z)Ṽ (a, z) (22)

where

M(a, z) = P−1κ−1
(
Stab!) PStab

Corollary 1 If we write MI ,J for the entries in the matrix M(a, z), then we have

MI ,J = δI ,J

In other words,

Stab−1 = P−1κ−1
(
Stab!) P

Proof From (22), we have an equation

ṼI (a, z) =
∑

J∈XT

MI ,J ṼJ (a, z)

Now, since the entries in the elliptic stable envelopes are meromorphic functions of all
parameters, we deduce that MI ,J are meromorphic functions of a and z. Furthermore,
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the known q-periodicity of the elliptic stable envelope implies that MI ,J is q-periodic
with respect to shifts of a and z.

From Definition 7, we see that MI ,I = 1 for all I ∈ XT. Along with triangularity
of stable envelopes, this gives us

∑

J�I
J �=I

MI ,J ṼJ (a, z) = 0

which is equivalent to

∑

J�I
J �=I

MI ,JαJ (ζ , u, �)�((q − �)T 1/2
J X)VJ (a, z) = 0

Let K be the minimal index of the sum with respect to the order ≺, and divide both
sides by αK (ζ , u, �) to get

∑

J�I
J �=I

MI ,J
αJ (ζ , u, �)

αK (ζ , u, �)
�((q − �)T 1/2

J X)VJ (a, z) = 0

Substituting zi = ziqλi for λi ∈ N and using the known q-periodicity give

∑

J�I
J �=I

MI ,J
αJ (ζ , u, �)

αK (ζ , u, �)

n−1∏

i=1

(Li |K
Li |J

)λi

�((q − �)T 1/2
J X)VJ (a, zqλ) = 0 (23)

Observe that if K ≺ J , then

Li |K
Li |J

is either 1 or an attractingweight. Furthermore, there is some i for which it is attracting.
Thus, assuming that |ai | < 1, we see that

lim
λ→∞

n−1∏

i=1

(Li |K
Li |J

)λi

= 0

If we take the limit λ → ∞ in (23), only one term survives. Furthermore, since
|q| < 1, it is clear from Theorem 2 that

lim
λ→∞ VJ (a, zqλ) = 1

So taking the limit as λ → ∞ in (23) gives

MI ,K�((q − �)T 1/2
K X) = 0
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Since the zeros and poles of the latter term are both isolated, this implies that

MI ,K = 0

Repeating this argument inductively implies that MI ,J = 0 whenever I �= J , which
yields the result. ��

This Corollary is precisely what is needed to prove the existence of the so-called
duality interface, see [11]. The elliptic stable envelopes of X and X ! glue to give an
elliptic cohomology class on the product X × X ! which restricts to the elliptic stable
envelopes of each. In the language of [11], Theorem 4 says that the correspondence
given by the duality interface maps the vertex functions of X to the vertex functions
of X !.

The proof of Corollary 1 in [23] relies on very special combinatorial properties of
the elliptic weight functions which do not hold in general. In contrast, we expect that
the above proof can be generalized to show that the 3d mirror symmetry of vertex
functions implies the 3d mirror symmetry of elliptic stable envelopes.
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