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Abstract

We present variational formulations of gauge theories and Einstein—Yang—Mills equa-
tions in the spirit of Kaluza—Klein theories. For gauge theories, only a topological
fibration is assumed. For gravitation coupled with gauge fields, no fibration is assumed:
Fields are defined on a ‘space-time’ ) of dimension 4 + r without any structure a pri-
ori, where r is the dimension of the structure group. If the latter is compact and simply
connected, classical solutions allow to construct a manifold X" of dimension 4 to be the
physical space-time, in such a way that )} acquires the structure of a principal bundle
over X and leads to solutions of the Einstein—Yang—Mills systems. The special case
of the Einstein—-Maxwell system is also discussed: It suffices that at least one fiber
closes in on a circle to deduce that the five-dimensional space-time has a fiber bundle
structure.

Keywords Kaluza—Klein - Gauge theories - General Relativity - Differential
Geometry

1 Introduction

Kaluza—Klein theories (see [ 1] for an account) go back to the work of Kaluza[2]in 1921
and Klein [3] in 1926, in an attempt to unify gravity and electromagnetism as a man-
ifestation of a five-dimensional relativistic gravity theory on a manifold fibered over
some four-dimensional space-time. This theory was abandoned for various reasons
before arousing new interest in the context of supergravity and string theory. Some
inconsistency was observed and fixed through the introduction of additional fields
(radion or dilaton) independently by Jordan [4] in 1947 and Thiry [5] in 1948. The
introduction of this field, the physical meaning of which is not clear, can be avoided by
not imposing the Einstein equation on the higher-dimensional space-time and instead
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by looking for the critical points of the Einstein—Hilbert action when assuming a fiber
bundle structure and equivariance constraints. By following this alternative option, the
theory was extended to Yang—Mills fields by Kerner [6] in 1968, leading to the exact
Einstein—Yang—Mills system (see also [7]).

Another problem is to explain why the extra dimensions cannot be observed. One of
the most common hypothesis, due to Klein, is to suppose that the extra dimensions are
tiny, so that, in the quantized version, higher modes are too energetic to be observable.
Another one is simply to assume that the metric is invariant along extra dimensions.
But this assumption needs to be justified.

This is the question we address here: We propose theoretical models coupling
gravity with electromagnetism or gauge fields such that, at the classical level, the
invariance of fields along extra dimensions follows from dynamical equations, so that
there is no need to assume this condition a priori.

Hence, in the following models, fields which are not solutions of the dynamical
equations depend, in general, on 4 + r variables, where r is the number of extra
dimensions. But some of the dynamical equations, caused by auxiliary fields which
play the role of Lagrange multipliers, force the apparition of a fibration of the higher-
dimensional space-time over some four-dimensional physical space-time.

However, these auxiliary fields may spoil the result (in a way similar to dilatons)
by creating some artificial matter sources in the final equations. This is where an
unexpected cancellation phenomenon (20) comes into play, leading to the vanishing
of terms coming from auxiliary fields in the equations, when these are projected on
the space-time.

2 Results

In the following, we present several models of growing generality, in order to expound
the various mechanisms underlying our theory. In Sect. 3, we present a model leading
to Maxwell equations on a fixed space-time but by replacing the usual principal U (1)-
bundle by a topological circle bundle. As a consequence, the gauge symmetry group
is larger than in the standard theory since, in addition to the usual gauge symmetries,
the action functional is invariant by fibration-preserving diffeomorphisms. This shows
how the invariance of some fields along extra dimensions can be achieved and also
gives a first glance at the cancellation mechanism.

In Sect. 4, we extend this construction for Yang—Mills fields, still over a fixed space-
time, for a structure group which is compact and simply connected (e.g., any product of
SU (k)’s). It generalizes results in [8] (where we needed to assume a principal bundle
structure a priori).

In Sect. 5, we then turn on the general Kaluza—Klein model for a compact and
simply connected structure group. Fibers are obtained by integrating an exterior dif-
ferential system through Frobenius’s theorem. Most of these results were obtained in
[9] (without a bare cosmological constant).

The previous model, however, does not work for U (1) since this group is not simply
connected. This question is addressed in Sect. 6 where we show that, if there exists
at least one integral curve of the exterior differential system which closes, then we
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obtain a four-dimensional space-time, a fibration and, at the very end, a solution of
the Einstein—-Maxwell system.
Throughout the paper, all fields are assumed to be smooth.

3 Model for Maxwell equations

Consider a connected four-dimensional space-time manifold X'* with a fixed Rie-
mannian metric g,,, a five-dimensional space-time ) and suppose that there exists

a smooth projection map ))° L X% such that dP has a maximal rank (equal to 4)
everywhere and that, for any x € X', the inverse image f, := P~!(x) is a topological
circle. We denote by x = (x*)p<,<3 the coordinates on X’ 4 by y the coordinate on
fibers f, and set z = (z/ Jo<i<4 = (x,y). We describe the metric on x4 through a
fixed co-vierbein e = eﬁ (x)dx* for0 <a <3,sothatg,, = nabeZef, where 1, 18
the Minkowski metric.

Dynamical fields on V3 are pairs (0, ), where 6 = 6, (x, y)dx* + 64(x, y)dy =
0;(z)dz! and 7 = %7{1 7k (2)dz! A dz? A dzK. We will, however, privilege another
decomposition of T Indeed, we assume that 64 # 0 so that (eg, e1, ez, e3, 0) provides
us with a co-5-bein on ). We define

o _ 1

1
e =P nel Ae? AP, e‘(,?’) = geabcdeb A e Ae? and e = Eeabcde” Aed
This allows us to decompose
2 3
w = in®(x, y)el) A0 — i (x, y)ed) ey

We set || ||2 = %n“b Tap, Where 1, = nacnbdnCd, and define the action functional
1

Alf, 7] =/ —71Pe® A0 +7 Ado )
ys 2

or A[6, 7] = fy5 (}Tn“bnab + %@abnab + ®an”) e™® A 0, where we set d =
%@ahe“ Ael + Ouet N6.

3.1 Euler-Lagrange equations

We denote by (e7)o<s<4 the 5-bein dual to (¢?, 0). The Euler—Lagrange equations are

d0(eq, 8,)/04 = 0O, =0 (a)
®ab + Tap = 0 (b) (3)
dr = 3|7|?e® (o)

@ Springer



95 Page4of15 F.Hélein

where Equations (a), (b) and (c) correspond to variations with respect to m,, 7, and
0, respectively. Equation (3a) has the following consequence. Consider two points
x1, x2 € X* and a path y joining x; to x5 in X*. Its inverse image by P is a surface
S C ) with boundary 3§ = fy, —fy,. Since 9, is tangent to S, we have by (3a)

/9—/9=/d9=0 (4)
fiy oy s

Hence, g := ffx 6 is independent of x in X’ 4. We can thus define the new coordinate

y
s=flx,y) = ./0 04(x, y")dy’ mod [q]

and replace the coordinates (x, y) by (x, s), where s € R/gZ. The form 6 then reads
0 = Au(x,s)e? + ds, where A, (x, f(x,y)) = (6 —df),y) (eq). Equation (3a)
further implies d;A, = 0, so that

0 =A,(x)e? +ds 5)

Hence,d6 =F = %Fabe“ A el where Fyp = 9,A5 — 0,Ap. We define p??(x, s) and
p®(x,s) such that

Pl fx, ) =7 y) = P A, f(x, Y))
P, fxy) =7 (x, )
Then, 7 = % p“befb) Ads — p“e,(f), where p?® = —F* by (3b).
Let %, be the spin connection on X** for the vierbein (e,). It satisfies the torsion-
free condition

d7e? :=de” + 9, ne’ = 0. (6)

By setting d” p?? := dp?? + y¢.pt + y®.p® and d” p* := dp® + y“.p¢ and by
using (6), we find that dmr = %dy P A eﬁ) Ads —d¥p% A ef). By decomposing
dv p® = 8 p*e€ + 3, p?Pds and d¥ p* = 3! p®e® + 9, p®ds, we hence get dr =

(BZ P+ Bsp“)e,(f) Ads — 8 p®e™ . Thus, (3¢) is equivalent to

I FP(x) = d;pi(x,s) (a)

(N

0 p(x.5) = =5 IIF*(x) (b)
The key point to conclude that A is a solution of Maxwell equations in vacuum is to
observe that the Lh.s of (7a) is independent of s, thus

e Jo 8] Febds _Jo dspds 0 ®
b - q - -
Jo' ds q
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because p“ is g-periodic in s. Equation (7b) involves fields which are not observable
a priori.

3.2 Gauge symmetries

The action (2) is invariant under several types of gauge symmetries:

(i) by diffeomorphisms of }> which preserves the orientation and the map ) LN
X4, ie., of the form T(x,y) = (x, f(x,y)), through pullback (6,7) —
(T*0, T*m);

(ii) by gauge transformations § —> 6 + dV, where V is a function of x € X'*;

(iii) by transformations w —> 7 + i, where ¥ is any closed 3-form on X'* which
decays at infinity.

4 Non-Abelian gauge fields

The previous theory can be extended to nonlinear gauge theories. We let ® be acompact
simply connected Lie group of dimension r, and we replace J° by a manifold N +!
of dimension N + 1 = 4 4 r. We still assume the existence of a smooth projection
map YN+l ﬁ) X* such that d P has maximal rank and, for any x € X4, fo =P 1(x)
is a connected submanifold of YV le of dimension r. Local coordinates on YV ! are
z= (Zl)oflfN = (x,y) = (x*, y)o<u<3<i<n, Where (x*)p<, <3 are coordinates on
X4 as previously. '

Let g be the Lie algebra of &, (t;)3;<xy abasisof gand c‘j i the structure coefficients
such that [t;, t;] = cl'.‘jtk. We note g* the dual space of g and (ti)3<i5 y its dual basis.
A consequence of the compactness of & is that g is unimodular, which reads

cfj = c;i =0 )
We let k be a scalar product on g which is invariant by the adjoint action of & and we
set k;; = k(t;, t;). Fields are pairs (6, w) where

0 =06't; = (0", (2)dx" 4 6 ; (2)dy))t;
T =mit = ﬁﬂ,’h...[}\,_l (Z)dzl1 Ao AdgIv-rg

As for Maxwell case, we assume that the rank of (e%, §? )o<a<3<i<N 1S maximal, equal
to N + 1. Hence, by introducing the notations

Fr—a) ; L
il (r _ a)!éll'”la]oH»l'”.

P NN 2 (10)
for 0 < « < r and where all indices run from 4 to N, we instead decompose 7 as

1 _ ol 1 o
= En,ﬂbefb) I A A Nt Fitte® N (8))
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where coefficients ;7K are functions of z = (x, y).
The action functional is

1 _ :
A6, 7] :/ —|7)?e® A8 4+ 7; A ©F (12)
YN 2

where || |2 = 17,907 4 with i), = KV 7 j%Ungenpq and O = do' + 1[0 A O] =

do’ + 3¢',67 A 6F.

4.1 Euler-Lagrange equations

Using the decomposition e = %@iabe” Ael + O e A BF + %@"jk@j A 6% and
denoting d’7; = dm; — c,ﬁiek A 7 j, the dynamical equations read

niab + ®i_ab =0 (a)
O =0 (b)
@ijk =0 (© (13)

d'm; = Sl |2e® A 67D (@

where Equations (a), (b), (c) and (d) correspond to variations with respect to 7%, 7 iak R
;) k and 67, respectively. We first use (13c), which implies that, for any 3 <i < N
and for any x € X**, the restriction of ® = do? + %ci.kej A 6% on f = f, vanishes.
Hence, by Frobenius’ theorem (see [10]), given a point z € f, we can construct a
unique map g from a neighborhood of z in f to & such that the restriction to f of
6 — g_ldg vanishes and such that g(z) = 1. Since the rank of (Bi)3<i5N is r, this
map is a local diffeomorphism. Actually, the inverse map can be extended globally as
amap T; : & — f which associates with any g € & the end value v(1) of the path
v : [0,1] — f which is a solution of v(0) = z, e”(fl—’t’) =0for0 <a < 3and
0(%%) = u='9% where u : [0, 1] —> & is a path such that u(0) = 1 and u(1) = g.
Indeed, the definition of 7¢(g) does not depend on the choice of the path u since &
is simply connected. 75 is then a covering map of f. Hence, since & is compact, f is
compact and is diffeomorphic to a quotient &¢ of & by a finite subgroup.

But all fibers are diffeomorphic to the same group &. Indeed, for any fixed £ = £9t,
in g, consider the vector field X = X(&) on YV +! defined by ¢ (X) = &% and 0 (X) = 0.
Then, by (6) which, by setting y%, = y“pce, reads de’ = y“bceb A e, the Lie
derivative of e by X satisfies Lxe® = 0 mod [eb ], forany O < a, b < 3. This implies
that the image of a fiber f by the flow map of X is another fiber. We can thus construct a
diffeomorphism between & x B*(0, &) ~ f x B*0, ) (where B*(0, ¢) is the ball of
a sufficiently small radius ¢ in R*) and a neighborhood of a leaf f in )Y *+! by mapping
(z,&)to eX@) (7). Its inverse map provides us with a local trivialization of YN+ Since
this construction can be done everywhere, YN+L 5 x4 is endowed with a structure
of principal bundle with a structure group &y.

By choosing a local trivialization of this bundle, we can improve the use of Equation
(13c) to show the existence of a map g from an open subset of YV *! to &g such that
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the restriction of & — g~'dg to f vanishes for any fiber f. This means that, if we set
A = ghg~! —dg g~ ! and decompose A = A e® + A;0%, then A; = 0. Hence,

0. = ¢ (DA)g(2)e" + g~ (2)dg:.
Equation (13b) then reads 9z A, = 0, so that actually A,(z) = A,(x) and

0 =g 'As(x)ge” + g ' dg. (14)

Thus, Y¥*! — X% is endowed with the connection form A. We define F = dA +
%[A ANA] = %Fab(x)e“ A P, so that we have © := O't; = g~ 'Fg.

Let (S;) be the matrix of the adjoint action of g on g in the basis (t;)3<;<n, i.e.,
such that gt; g !
in (10), &7, &" " and é,?j’.‘”. Then, by (9), &®) = 40, "D = (S*l)-l.’é;"“ and

& = (sTHEE™H4a . We also set

=S ; t;. We define ¢/ = Sj.ej and, by using the same conventions as

pi =S/ mj pi® = (S7H]m;®

pit = (STHIS{m;, pilt = (STHiSnSym ™
Then,
U ab,@ - k,3) 500 L@ -2
pi=5piey, NeD — piRe®d ATV + P! e nel (15)

Then, (13a) reads piab + Flup = 0, where p'op = kY naenpap 4, or, by setting
Fi% = kijn®nP¥/ o4,

pi?? +F%P =0 (16)

Lastly, by defining d p; = dp; — c,{l.Ak Apjand |pl|® = 5 p'appi®?, Equation (13d)
translates as

1 _(r—1
dpi = SlplPe® g™ (17)

The computation of d* p; requires some further notations. We denote by 9, and 9;
the operators such that, for any function f, df = (3, f)e® + (9; f)e' and by Al the
coefficients such that A’ = A?,e?. As in Sect. 3, we let y%p be the spin connection
coefficients and we set y%. = y%e?. Lastly, we define

LA
3 APi“b = 3 pi® — Alpe pe® + v i + v e pi
3" pil = 0ppi’® — Akpct ped® + ARpcl, pi® + P pil©
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Then, we obtain by using (6) and (9) that

A ~
dApi = @) pi® + ok pi™) e A&

A . 1 . 1 _(r—1
+ (8;/ pi]b+3kpi]k+§F]abpiah+EC&p;‘“) 6(4)/\6.? ) (18)

By taking into account (16), we deduce that (17) is equivalent to

A
o B =opt (19)
0" pil? + O pil* + 3ei,pi*t = 3RS + JFPF o

As in Maxwell theory, a key point is to observe that the 1.h.s. in the first equation in
(19) does not depend of y (or g). Hence, since the fibers are compact,

A -~ — —(r—1
j;x 31); Fl_ab 2 B ffx 3kpi“k 2™ B ffx d(Piake](cr ))

VA ab _
9 KT = ff 2 - ff () - ff FLG)

=0. (20

Hence, A is a solution of Yang—Mills equations. The second equation in (19) involves
fields which are not observable.

4.2 Gauge symmetries

The action (12) is invariant under the following gauge symmetries:

(i) by diffeomorphisms of Y¥*! which preserves the orientation and the map

YN+ B x4 e of the form T(x,y) = (x, f(x, ), through pullback
0, 7) — (T70,T*7);
(i1) by gauge transformations

0 —> Adg6 —dg g !

T —> Adlﬁn @1

for any map g : X* — & and where Ad 0 = gfg~! and, if Adgt; = Sj.t,-,
Adim = (S~ m;tl;
(iii) by transformations m —— 7 + x, where x has the form

N RO I N R I )
X=xi"e, A6, +§X']e A O

decays at infinity and satisfies 6 A d’ x; = 0.
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5 Einstein-Yang-Mills model

The previous theory can be modified in order to couple gravitation with gauge fields.
We consider the metric h on R* x g such that R* L g, h coincides with the Minkowski
metric 7., on R* and with k on g. We still assume here that & is compact and simply
connected, and we still work on a higher-dimensional ‘space-time” YV 1. However,

(i) We replace the fixed co-vierbein (¢%)o<,<3 by a dynamical one (6%)p<4<3,
and we assume that the dynamical fields (91)05151\/ = (04, Qi)0§a§3<,~§N
forms a co-(N + 1)-bein on YNV+1.

(i) No more fibration of YN *! nor the existence of X* is assumed a priori.
Even better, we do not make assumption on its topology, beside the fact
that yN +1 is oriented and connected. Instead, we introduce extra auxiliary
fields (74)0<a<3 which are (N — 1)-forms and which play the role of
Lagrange multipliers for creating a fibration.

(iii) We also introduce the field ¢’ ; = ¢! ;(z)dzX with coefficients in the Lie
algebra so(R* @ g, h) of the Lorentz group, i.e., such that ¢!/ + ¢/ =0,
where ¢! ; = ¢/ Khg .

(iv) In the action we replace the term %||n||2e(4) A 67 by the (N + 1)-
dimensional Einstein—Palatini density %é,“}lfl) A @ where &1/ =
do! + ol gk A K7 and 6N+D =90 A ... A 0N and, for 0 < a,

fola = (N — a)!

€l durt Iy O A A O
(v) Lastly, we impose the constraint
0 NP AT =0 ANOP AT =0 (22)
To summarize: dynamical fields are the 1-forms (OI)OS,SN = (64, Qi)05053<i5N,
of rank N + 1 everywhere, ((p”)oSIJSN with ¢!’ 4+ ¢/ = 0 and the (N — 1)-forms

(mr)o<r<n = (4, Ti)o<a<3<i<n- Constraint (22) is assumed, i.e., 69 A 0 Amr; = 0.
The basic action is

L ave
Aolb, ¢, ] =/yN+1 59}’} DAd! 4 A0 (23)

where

0 := dg* for0<a<3
O :=do’ + 3¢, 07 A 6K for3 <i<N

We shall also incorporate a bare cosmological constant A and consider the action

An,[6. 0. 7] = Aol6, 9. 7] — / AgBNHD 24)
%

N+1
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Constraint (22) can actually be rephrased through the decomposition
_ 1 . _
N N—1
np =m0 A + oW A6 (25)

ab

(i.e., m ;*” vanishes). We also use the decomposition

1
el = 5@’,Kef A 0K (26)

or ® = 107,09 A 0P + O 109 A6k + 1O ;107 A k.

5.1 Euler-Lagrange equations

We set d‘/’él(ljv_l) = délujv_l) — oK A HAI%_I) — oK, A Q(N D o, = dn, if
0<a <3, dgm = dm; — c,ﬂié’k Amjif 3 < i < N. Then, the Euler-Lagrange
equations of Ax,[0, ¢, 7] read:

Ol =0 (a)
elir=0 (b)
d(pé(N_l) —0 © 27
dem + 91(}]\11{2) @JK _ ®KIJ ZJ G(N) Q(N) (d)

where Equations (a), (b), (c) and (d) correspond to variations with respect to 1k

1%, ¢!/ and 67, respectively. Consider a solution of this system. We endow V!
with the metric hy,,dz* ® dz¥ := h;;0! ® 67, and we assume that (YN F! h) is
complete, meaning that any geodesic curve is defined for all ‘time.’

Equation (27¢) is equivalent to d?6” := d8’ + ¢’ ; A67 = 0 thanks to the identity
a6V = dv6k A é](ljvgz). It means that the spin connection defined by ¢!’
torsionfree and, hence, coincides with the Levi—Civita connection on (yN +1, h).

Equation (27b) implies first d8¢ = 0 mod [Qb ],forany O < a, b < 3. This allows us
to apply Frobenius’ theorem (see [10]) to prove that YN *! is foliated by r-dimensional
submanifolds (leaves) f such that the restriction of 6¢ to f vanishes, forany 0 < a < 3.
We then define X to be the set of leaves of this foliation (not yet a manifold!).

By using the same reasoning as in Sect 4 (replacing (13c) by (27b), which implies
that the restriction to f of @ = do’ 4 1 c ik 91 A 0% vanishes), we prove that each leaf
f is compact and diffeomorphic to a quotlent s of & by a finite subgroup.

We then prove that the foliation forms actually a fibration. For any fixed § = £,
consider the vector field X = X(£) on YN+ defined by #%(X) = £% and 6/ (X) = 0.
By (27a,b), we have d9¢ = 1©%,.60” A 6 and thus Lx0® = ©%£26¢. Hence,
Lx6% = 0 mod [Qb], forany O < a, b < 3. Byreasoning as in Sect. 4, we can construct
a local diffeomorphism between &¢ x B*(0, &) ~ f x B*(0, &) and a neighborhood of
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fin YV*1 The set X* = X can thus be endowed with a structure of four-dimensional
manifold and YN*+! with a structure of principal bundle over X’ with structure group
By.

Again as in Sect. 4, a further use of (27b) allows to show the existence of a map g
from an open subset of YN+ 0 By and of a map A = A,e?, with A, = A’ t;, such
that 0, = g~ '(2)Aa(z)e?g(z) + g~ (z)dg, and, by (27a) A, depends only on x in X4,
sothat A = gfg~! —dg g~ ! isa I-form on X*. We define F := dA + J[A A A] =
TFap09 A 6P, . ‘

We now let (55)051,151\/ such that S} = 47, S]“. =S, =0and S}ti = Ad,(tj) =
gtjg_1 (note that Sf SﬁhKL = hyy since k is invariant by Ad,), and we introduce

el =5767, e, e’ :=0"ande = S0/

pr = (S_I)IJT[J i.e., pg :=1m, and p; = (S_l){rrj
ol = SL§] oKL — dsk s{nkE
Q! = sp 5] dkL

We observe that F' = S’;@j and QY = do!’ + o'k A X7, We define 6D

0 A(N)  5(N=1) A(N-2)
1

= e Ao Al and &), e and e¢;; .~ in the same way as previously.
We note that, by (9), eNV+tD = gWN+D, éﬁN) = (S*U{@}N’, and é%l_{l) =
_ / _ ’ _ I A(N—1
(STHTsHY s HKaN L. |
By setting d® p, = dp, and dA p; = dp; — c,il.Ak A pj (27d) translates as

1. n-2 ib AN A(N
i+ ey A QK —F 1y p It ) = noéf (28)

The computation of d® p; leads to the same result as in the Yang—-Mills case (18), by
replacing index 4 < i < N by 0 < I < N and with the extra simplification that
coefficients p ;%% vanish. We observe that %é%;z) A Q'K = —Ein(h);’ e(JN), where
Ein(h);’/ = Ric(h);’ — R(h)8;’ is the Einstein tensor for the metric h on YN+
Hence, by splitting indices (28) thus gives

Ein(h),” + Aoda” = dpa’* (a)
Ein(h);® = dp;* (b)
: i aA e ik 1 ke J i (29)
Einth),/ = 9. pa’® + 0k pa’™ + 2Pa Cpp — F'ucps’c (¢)
Ein(h);/ + Ao8;/ = 82 p; /¢ + dkpi/* + S pi*ic], (d)
where
ac pajc = 3cpajc + Akccjigpaec (30)

Aj j k L j k .J J2
0 pil = 0cpi’C — A cckipé"c +A cCrePi ¢
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The key point now is that, on the one hand, Ein(h);”’ is constant on any fiber f =
P~1(x) and, on the other hand, since f is compact without boundary,

~ ~(N
ﬂakplbke(N+l) — /f'd(plbke](( )) -0

Hence, by the same reasoning as in (20) we deduce from (29 a,b) that
Ein(h),” + Aod.” = Ein(h);* =0 (31)

(We also deduce a posteriori that Ein(h),/ = 0 because of the symmetry of the
Einstein tensor.)

The remaining task is to recognize that (31) is equivalent to the Einstein—Yang—
Mills system on X'* equipped with the metric g = n.pe® ® e and the connection A.
This computation is performed (in the tensorial language) in [6] and [7]. We present
it here using the vierbein formalism.

The spin connection coefficients on X'* for the metric g are y%, = y“p.e¢ with

1
Ve = E(Gabc - nadﬂheGedc - nadnce@)edh)

The relation between the ;s and the spin connection !’/ = g h&/ of hon YN +!
is given by

a

% =y — 5kijn®F el

o = Skijn“Fpeel

, : (32)
0, = %Flubeb
a)ij = %cgk(ek — 2Ak)

This leads to the expression of the Einstein tensor of h in terms of the Einstein tensor
of g:

Ein(h),” = Ein(@)e" — 3F acFi" + 1 (IF* + lc)8,”

Ein(h);¢ = 1o) " F; (33)

Ein(h)i/ = {FiF/ gy — fckycl, K™ + JUFI2 + le)8:7

where [[F||? = 1F;%F g, |c|? = Lc el k/ and ) AR = 9,F;% — ¢l A%, F 90 +
FiChy”C;, +y hCFl“b. Hence, (31) translates as

Ein(g),’ + As.” = J(F . F;b — 1||F|%5,)

1
2 34
3 AF e =0 G
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where A = Ay + }‘Ic|2. By choosing the signature of 1,4, to be (—, +, +, +), the first
equation reads as the Einstein equation in the presence of a cosmological constant A
and the stress—energy tensor of the gauge fields, and the second one is the Yang—Mills
equation on (X4, g).

Note that |c|? is equal to %B ik k/*, where B ik is the Killing form of g. In particular,
if & is compact semi-simple (which is the case, e.g., for SU (k) or SU(2) x SU(3))
B is negative definite. Since on the other hand k jx must be positive definite (in order
to ensure that the energy of the gauge fields be nonnegative), this implies |c|> < 0,
i.e., A < Ao.

5.2 Gauge symmetries

The action (23) and the constraint (22) are invariant by orientation preserv-
ing diffeomorphisms 7 : YN*! — YN+1 acting on fields through pullback
@, 9, 7) —> (T*0,T*p, T*m). They are also invariant through the transforma-
tion (01, ¢!/, 7)) —> (SjGJ, SIQSZgDKL, (S_l)‘[’rrj) where (Sj) is the matrix of
Adg, for some g € & which is constant. (If g is not constant, the curvature 2-form
&'/ does not transform in a tensorial way.)

6 Einstein—-Maxwell model

What changes if we replace the compact simply connected group & by U (1)? The
action in (23) becomes

1.
Aolf, ¢, 7] =/ 59,(3} A 4 Ade! (35)
yS

where m; = —m 1“9,53) . Critical points of the action Ay, in (24) satisfy System (27),
except that (27b) does not exist. This has no incidence for solving the system obtained
by imposing that the restriction of 8¢ on f vanishes since the integral leaves are just
curves. The key point is that U (1) is not simply connected. Hence, we cannot conclude
that the integral leaves are compact and form a fibration in general.

However, we shall prove that, if we know that at least one leaf closes, then all
leaves close and are diffeomorphic and we hence get the existence of a space-time X*
and a fibration of )% over it.

Let Y be the vector field such that 6(Y) = 0 forany 0 < a < 3 and 94(Y) =1.
Assume that some integral leaf fy closes. It means that there exists amap u : R —> )
which is a solution of Z—‘S‘ = Y(u), the image of which is fy and which is periodic,
i.e., that there exists ¢ > 0 such that u (¢ + ¢) = u(z). W.1.g. we can assume that g is
minimal. Forany & = (§%)p<4<3 in R*, let X be the vector field defined by %(X) = &¢
for 0 < a < 3 and #*(X) = 0. Then, [X, Y] = 0 since d8/ (X, Y) = 0 because of (27a).
Consider its flow map eX and, for a fixed ¢t € R, the mapv : R — )? defined by
v(s) = X (u(s)). Since X and Y commute fl_g = Y(v). This shows that e’X(fy), the
image of fo by ¢’X, is an integral leaf f of X. Since fq is compact and ¢X is continuous
f is compact and hence does not intersect from fy if ¢ is sufficiently small. Since this
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works for all values of & and since )% is connected, this endows )° with a topological
bundle structure. By proceeding as in Sect. 3, we can achieve the normalization (4)
and then obtain a solution of the Einstein—-Maxwell system by using arguments from
Sects. 4 and 5.

By replacing & by, for example, U (1) x SU(2) x SU (3), the situation is similar:
We do not obtain a fibration in general, but we do if at least one leaf closes.

Conclusion

Models presented in Sects. 3 and 4 provide gauge theories which, in addition to
the usual gauge symmetries, are invariant by the action of diffeomorphisms which
respect a topological fibration, enforcing thus the similarity between gauge theories
and general relativity. Models in Sects. 5 and 6 unify gravity and gauge theories at
the classical level without symmetry hypotheses. All these models are based on the
introduction of auxiliary ‘ghosts’ fields (but not in the Faddeev—Popov sense), which
are not observable at the classical level. The presence of these ‘ghosts’ fields enforces
the existence of a principal bundle structure, through the dynamical equations. The
key point is that, when projecting the dynamical equations on the base manifolds,
these ghosts fields cancel in the equations. One may ask whether these ‘ghosts’ fields
could create physically observable phenomena in a quantum version of the theory.

An intriguing fact is that, although invariant by diffeomorphisms our Kaluza—Klein
theory is not invariant by standard gauge transformation. This may be connected to
the difficulty to lift the theory on the bundle of orthonormal frames over space-time
(or its spin cover) in the spirit of the group manifold approach as initiated in [11, 12]
and as done in [13] and further extended in the presence of spinors in [14].
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