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Abstract
We present variational formulations of gauge theories and Einstein–Yang–Mills equa-
tions in the spirit of Kaluza–Klein theories. For gauge theories, only a topological
fibration is assumed. For gravitation coupledwith gauge fields, no fibration is assumed:
Fields are defined on a ‘space-time’ Y of dimension 4+ r without any structure a pri-
ori, where r is the dimension of the structure group. If the latter is compact and simply
connected, classical solutions allow to construct a manifoldX of dimension 4 to be the
physical space-time, in such a way that Y acquires the structure of a principal bundle
over X and leads to solutions of the Einstein–Yang–Mills systems. The special case
of the Einstein–Maxwell system is also discussed: It suffices that at least one fiber
closes in on a circle to deduce that the five-dimensional space-time has a fiber bundle
structure.

Keywords Kaluza–Klein · Gauge theories · General Relativity · Differential
Geometry

1 Introduction

Kaluza–Klein theories (see [1] for an account) goback to theworkofKaluza [2] in 1921
and Klein [3] in 1926, in an attempt to unify gravity and electromagnetism as a man-
ifestation of a five-dimensional relativistic gravity theory on a manifold fibered over
some four-dimensional space-time. This theory was abandoned for various reasons
before arousing new interest in the context of supergravity and string theory. Some
inconsistency was observed and fixed through the introduction of additional fields
(radion or dilaton) independently by Jordan [4] in 1947 and Thiry [5] in 1948. The
introduction of this field, the physical meaning of which is not clear, can be avoided by
not imposing the Einstein equation on the higher-dimensional space-time and instead
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by looking for the critical points of the Einstein–Hilbert action when assuming a fiber
bundle structure and equivariance constraints. By following this alternative option, the
theory was extended to Yang–Mills fields by Kerner [6] in 1968, leading to the exact
Einstein–Yang–Mills system (see also [7]).

Another problem is to explain why the extra dimensions cannot be observed. One of
the most common hypothesis, due to Klein, is to suppose that the extra dimensions are
tiny, so that, in the quantized version, higher modes are too energetic to be observable.
Another one is simply to assume that the metric is invariant along extra dimensions.
But this assumption needs to be justified.

This is the question we address here: We propose theoretical models coupling
gravity with electromagnetism or gauge fields such that, at the classical level, the
invariance of fields along extra dimensions follows from dynamical equations, so that
there is no need to assume this condition a priori.

Hence, in the following models, fields which are not solutions of the dynamical
equations depend, in general, on 4 + r variables, where r is the number of extra
dimensions. But some of the dynamical equations, caused by auxiliary fields which
play the role of Lagrange multipliers, force the apparition of a fibration of the higher-
dimensional space-time over some four-dimensional physical space-time.

However, these auxiliary fields may spoil the result (in a way similar to dilatons)
by creating some artificial matter sources in the final equations. This is where an
unexpected cancellation phenomenon (20) comes into play, leading to the vanishing
of terms coming from auxiliary fields in the equations, when these are projected on
the space-time.

2 Results

In the following, we present several models of growing generality, in order to expound
the various mechanisms underlying our theory. In Sect. 3, we present a model leading
to Maxwell equations on a fixed space-time but by replacing the usual principalU (1)-
bundle by a topological circle bundle. As a consequence, the gauge symmetry group
is larger than in the standard theory since, in addition to the usual gauge symmetries,
the action functional is invariant by fibration-preserving diffeomorphisms. This shows
how the invariance of some fields along extra dimensions can be achieved and also
gives a first glance at the cancellation mechanism.

In Sect. 4, we extend this construction for Yang–Mills fields, still over a fixed space-
time, for a structure groupwhich is compact and simply connected (e.g., any product of
SU (k)’s). It generalizes results in [8] (where we needed to assume a principal bundle
structure a priori).

In Sect. 5, we then turn on the general Kaluza–Klein model for a compact and
simply connected structure group. Fibers are obtained by integrating an exterior dif-
ferential system through Frobenius’s theorem. Most of these results were obtained in
[9] (without a bare cosmological constant).

The previous model, however, does not work forU (1) since this group is not simply
connected. This question is addressed in Sect. 6 where we show that, if there exists
at least one integral curve of the exterior differential system which closes, then we
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obtain a four-dimensional space-time, a fibration and, at the very end, a solution of
the Einstein–Maxwell system.

Throughout the paper, all fields are assumed to be smooth.

3 Model for Maxwell equations

Consider a connected four-dimensional space-time manifold X 4 with a fixed Rie-
mannian metric gμν , a five-dimensional space-time Y5 and suppose that there exists

a smooth projection map Y5 P−→ X 4 such that dP has a maximal rank (equal to 4)
everywhere and that, for any x ∈ X 4, the inverse image fx := P−1(x) is a topological
circle. We denote by x = (xμ)0≤μ≤3 the coordinates on X 4, by y the coordinate on
fibers fx and set z = (z I )0≤I≤4 = (x, y). We describe the metric on X 4 through a
fixed co-vierbein ea = eaμ(x)dxμ for 0 ≤ a ≤ 3, so that gμν = ηabeaμe

b
ν , where ηab is

the Minkowski metric.
Dynamical fields on Y5 are pairs (θ, π), where θ = θμ(x, y)dxμ + θ4(x, y)dy =

θI (z)dz I and π = 1
3!πI J K (z)dz I ∧ dz J ∧ dzK . We will, however, privilege another

decomposition of π . Indeed, we assume that θ4 �= 0 so that (e0, e1, e2, e3, θ) provides
us with a co-5-bein on Y5. We define

e(4) = e0 ∧ e1 ∧ e2 ∧ e3, e(3)
a = 1

3!εabcde
b ∧ ec ∧ ed and e(2)

ab = 1

2!εabcde
c ∧ ed

This allows us to decompose

π = 1
2π

ab(x, y)e(2)
ab ∧ θ − πa(x, y)e(3)

a (1)

We set ‖π‖2 = 1
2π

abπab, where πab = ηacηbdπ
cd , and define the action functional

A[θ, π ] =
∫
Y5

1

2
‖π‖2e(4) ∧ θ + π ∧ dθ (2)

or A[θ, π ] = ∫
Y5

( 1
4π

abπab + 1
2�abπ

ab + �aπ
a
)
e(4) ∧ θ , where we set dθ =

1
2�abea ∧ eb + �aea ∧ θ .

3.1 Euler–Lagrange equations

We denote by (eI )0≤I≤4 the 5-bein dual to (ea, θ). The Euler–Lagrange equations are

dθ(ea, ∂y)/θ4 = �a = 0 (a)
�ab + πab = 0 (b)

dπ = 1
2‖π‖2e(4) (c)

(3)
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where Equations (a), (b) and (c) correspond to variations with respect to πa , πab and
θ , respectively. Equation (3a) has the following consequence. Consider two points
x1, x2 ∈ X 4 and a path γ joining x1 to x2 in X 4. Its inverse image by P is a surface
S ⊂ Y5 with boundary ∂S = fx2 − fx1 . Since ∂y is tangent to S, we have by (3a)

∫
fx2

θ −
∫
fx1

θ =
∫
S
dθ = 0 (4)

Hence, q := ∫
fx

θ is independent of x in X 4. We can thus define the new coordinate

s = f (x, y) =
∫ y

0
θ4(x, y

′)dy′ mod [q]

and replace the coordinates (x, y) by (x, s), where s ∈ R/qZ. The form θ then reads
θ = Aa(x, s)ea + ds, where Aa(x, f (x, y)) = (θ − d f )(x,y)(ea). Equation (3a)
further implies ∂sAa = 0, so that

θ = Aa(x)e
a + ds (5)

Hence, dθ = F = 1
2Fabea ∧ eb, where Fab = ∂aAb − ∂aAb. We define pab(x, s) and

pa(x, s) such that

pa(x, f (x, y)) = πa(x, y) − πab(x, y)Ab(x, f (x, y))
pab(x, f (x, y)) = πab(x, y)

Then, π = 1
2 p

abe(2)
ab ∧ ds − pae(3)

a , where pab = −Fab by (3b).
Let γ a

b be the spin connection on X 4 for the vierbein (ea). It satisfies the torsion-
free condition

dγ ea := dea + γ a
b ∧ eb = 0. (6)

By setting dγ pab := dpab + γ a
c pcb + γ a

c pac and dγ pa := dpa + γ a
c pc and by

using (6), we find that dπ = 1
2d

γ pab ∧ e(2)
ab ∧ ds − dγ pa ∧ e(3)

a . By decomposing
dγ pab = ∂

γ
c pabec + ∂s pabds and dγ pa = ∂

γ
c paec + ∂s pads, we hence get dπ =

(∂
γ

b pab + ∂s pa)e
(3)
a ∧ ds − ∂

γ
a pae(4). Thus, (3c) is equivalent to

∂
γ

b F
ab(x) = ∂s pa(x, s) (a)

∂
γ
a pa(x, s) = − 1

2‖F‖2(x) (b) (7)

The key point to conclude that A is a solution of Maxwell equations in vacuum is to
observe that the l.h.s of (7a) is independent of s, thus

∂
γ

b F
ab =

∫ q
0 ∂

γ

b F
abds∫ q

0 ds
=

∫ q
0 ∂s pads

q
= 0 (8)
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because pa is q-periodic in s. Equation (7b) involves fields which are not observable
a priori.

3.2 Gauge symmetries

The action (2) is invariant under several types of gauge symmetries:

(i) by diffeomorphisms of Y5 which preserves the orientation and the map Y5 P−→
X 4, i.e., of the form T (x, y) = (x, f (x, y)), through pullback (θ, π) 
−→
(T ∗θ, T ∗π);

(ii) by gauge transformations θ 
−→ θ + dV , where V is a function of x ∈ X 4;
(iii) by transformations π 
−→ π + ψ , where ψ is any closed 3-form on X 4 which

decays at infinity.

4 Non-Abelian gauge fields

Theprevious theory canbe extended to nonlinear gauge theories.We letGbe a compact
simply connected Lie group of dimension r , and we replace Y5 by a manifold YN+1

of dimension N + 1 = 4 + r . We still assume the existence of a smooth projection

mapYN+1 P−→ X 4 such that dP has maximal rank and, for any x ∈ X 4, fx := P−1(x)
is a connected submanifold of YN+1 of dimension r . Local coordinates on YN+1 are
z = (z I )0≤I≤N = (x, y) = (xμ, yi )0≤μ≤3<i≤N , where (xμ)0≤μ≤3 are coordinates on
X 4 as previously.

Let g be the Lie algebra ofG, (ti )3<i≤N a basis of g and cijk the structure coefficients

such that [ti , t j ] = cki j tk . We note g∗ the dual space of g and (ti )3<i≤N its dual basis.
A consequence of the compactness of G is that g is unimodular, which reads

cii j = ciji = 0 (9)

We let k be a scalar product on g which is invariant by the adjoint action of G and we
set ki j = k(ti , t j ). Fields are pairs (θ, π) where

θ = θ i ti = (θ iμ(z)dxμ + θ i j (z)dy j )ti
π = πi ti = 1

(N−1)!πi I1···IN−1(z)dz
I1 ∧ · · · ∧ dz IN−1 ti

As for Maxwell case, we assume that the rank of (ea, θ i )0≤a≤3<i≤N is maximal, equal
to N + 1. Hence, by introducing the notations

θ̄
(r−α)
i1···iα = 1

(r − α)!εi1···iα jα+1··· jr θ jα+1 ∧ · · · ∧ θ jr (10)

for 0 ≤ α ≤ r and where all indices run from 4 to N , we instead decompose π as

πi = 1

2
π i

abe(2)
ab ∧ θ̄ (r) − π i

ake(3)
a ∧ θ̄

(r−1)
k + 1

2
π i

jke(4) ∧ θ̄
(r−2)
jk (11)
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where coefficients π i
J K are functions of z = (x, y).

The action functional is

A[θ, π ] =
∫
YN

1

2
‖π‖2e(4) ∧ θ̄ (r) + πi ∧ �i (12)

where ‖π‖2 = 1
2π i

abπ i
ab with π i

ab = ki jπ j
cdηacηbd and �i := dθ i + 1

2 [θ ∧ θ ]i =
dθ i + 1

2c
i
jkθ

j ∧ θk .

4.1 Euler–Lagrange equations

Using the decomposition �i = 1
2�

i
abea ∧ eb + �i

akea ∧ θk + 1
2�

i
jkθ

j ∧ θk and

denoting dθπi = dπi − c jkiθ
k ∧ π j , the dynamical equations read

π i
ab + �i

ab = 0 (a)
�i

ak = 0 (b)
�i

jk = 0 (c)
dθπi = 1

2‖π‖2e(4) ∧ θ̄
(r−1)
i (d)

(13)

whereEquations (a), (b), (c) and (d) correspond to variationswith respect toπ i
ab,π i

ak ,
π i

jk and θ i , respectively. We first use (13c), which implies that, for any 3 < i ≤ N
and for any x ∈ X 4, the restriction of �i = dθ i + 1

2c
i
jkθ

j ∧ θk on f = fx vanishes.
Hence, by Frobenius’ theorem (see [10]), given a point z ∈ f, we can construct a
unique map g from a neighborhood of z in f to G such that the restriction to f of
θ − g−1dg vanishes and such that g(z) = 1. Since the rank of (θ i )3<i≤N is r , this
map is a local diffeomorphism. Actually, the inverse map can be extended globally as
a map Tf : G → f which associates with any g ∈ G the end value v(1) of the path
v : [0, 1] −→ f which is a solution of v(0) = z, ea( dv

dt ) = 0 for 0 ≤ a ≤ 3 and
θ( dv

dt ) = u−1 du
dt where u : [0, 1] −→ G is a path such that u(0) = 1G and u(1) = g.

Indeed, the definition of Tf(g) does not depend on the choice of the path u since G
is simply connected. Tf is then a covering map of f. Hence, since G is compact, f is
compact and is diffeomorphic to a quotient Gf of G by a finite subgroup.

But all fibers are diffeomorphic to the samegroupG0. Indeed, for anyfixed ξ = ξata
in g, consider the vector fieldX = X(ξ) onYN+1 defined by ea(X) = ξa and θ i (X) = 0.
Then, by (6) which, by setting γ a

b = γ a
bcec, reads dea = γ a

bceb ∧ ec, the Lie
derivative of ea by X satisfies LXea = 0 mod [eb], for any 0 ≤ a, b ≤ 3. This implies
that the image of a fiber f by the flowmap of X is another fiber. We can thus construct a
diffeomorphism betweenGf × B4(0, ε) � f× B4(0, ε) (where B4(0, ε) is the ball of
a sufficiently small radius ε inR4) and a neighborhood of a leaf f inYN+1 by mapping
(z, ξ) to eX(ξ)(z). Its inverse map provides us with a local trivialization ofYN+1. Since
this construction can be done everywhere, YN+1 → X 4 is endowed with a structure
of principal bundle with a structure group G0.

By choosing a local trivialization of this bundle, we can improve the use of Equation
(13c) to show the existence of a map g from an open subset of YN+1 to G0 such that
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the restriction of θ − g−1dg to f vanishes for any fiber f. This means that, if we set
A = gθg−1 − dg g−1 and decompose A = Aaea + Aiθ

i , then Ai = 0. Hence,
θz = g−1(z)Aa(z)g(z)ea + g−1(z)dgz .

Equation (13b) then reads ∂kAa = 0, so that actually Aa(z) = Aa(x) and

θ = g−1Aa(x)ge
a + g−1dg. (14)

Thus, YN+1 → X 4 is endowed with the connection form A. We define F = dA +
1
2 [A ∧ A] = 1

2Fab(x)ea ∧ eb, so that we have � := �i ti = g−1Fg.

Let
(
Sij

)
be the matrix of the adjoint action of g on g in the basis (ti )3<i≤N , i.e.,

such that gt j g−1 = Sij ti . We define ei = Sij e
j and, by using the same conventions as

in (10), ē(r), ē(r−1)
i and ē(r−2)

i j . Then, by (9), ē(r) = θ̄ (r), ē(r−1)
i = (S−1)

j
i θ̄

(r−1)
j and

ē(r−2)
i j = (S−1)ki (S

−1)�j θ̄
(r−2)
k� . We also set

pi = (S−1)
j
i π j , pi ab = (S−1)

j
i π j

ab

pi ak = (S−1)
j
i S

k
�π j

a�, pi jk = (S−1)�i S
j
m Sknπ�

mn

Then,

pi = 1

2
pi

abe(2)
ab ∧ ē(r) − pi

ake(3)
a ∧ ē(r−1)

k + 1

2
pi

jke(4) ∧ ē(r−2)
jk (15)

Then, (13a) reads pi ab + Fi
ab = 0, where pi ab = ki jηacηbd p j

cd , or, by setting
Fi

ab = ki jηacηbdF j
cd ,

pi
ab + Fi

ab = 0 (16)

Lastly, by defining dA pi = dpi − c jkiA
k ∧ p j and ‖p‖2 = 1

2 p
i
ab pi ab, Equation (13d)

translates as

dA pi = 1

2
‖p‖2e(4) ∧ ē(r−1)

i (17)

The computation of dA pi requires some further notations. We denote by ∂a and ∂i
the operators such that, for any function f , d f = (∂a f )ea + (∂i f )ei and by Ai

a the
coefficients such that Ai = Ai

aea . As in Sect. 3, we let γ a
b be the spin connection

coefficients and we set γ a
c = γ a

cbeb. Lastly, we define

∂
γ,A
b pi ab = ∂b pi ab − Ak

bc�
ki p�

ab + γ a
cb pi cb + γ b

cb pi ac

∂
γ,A
b pi jb = ∂b pi jb − Ak

bc�
ki p�

jb + Ak
bc

j
k� pi

�b + γ b
cb pi jc
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Then, we obtain by using (6) and (9) that

dA pi = (∂
γ,A
b pi

ab + ∂k pi
ak) e(3)

a ∧ ē(r)

+
(

∂
γ,A
b pi

jb + ∂k pi
jk + 1

2
F j

ab pi
ab + 1

2
c jk� pi

k�
)

e(4) ∧ ē(r−1)
j (18)

By taking into account (16), we deduce that (17) is equivalent to

∂
γ,A
b Fi

ab = ∂k pi ak

∂
γ,A
b pi jb + ∂k pi jk + 1

2c
j
k� pi

k� = 1
2‖F‖2δi j + 1

2Fi
abF j

ab
(19)

As in Maxwell theory, a key point is to observe that the l.h.s. in the first equation in
(19) does not depend of y (or g). Hence, since the fibers are compact,

∂
γ,A
b Fi

ab =
∫
fx

∂
γ,A
b Fi

ab ē(r)

∫
fx
ē(r)

=
∫
fx

∂k pi ak ē(r)

∫
fx
ē(r)

=
∫
fx
d(pi ak ē

(r−1)
k )∫

fx
ē(r)

= 0. (20)

Hence, A is a solution of Yang–Mills equations. The second equation in (19) involves
fields which are not observable.

4.2 Gauge symmetries

The action (12) is invariant under the following gauge symmetries:

(i) by diffeomorphisms of YN+1 which preserves the orientation and the map

YN+1 P−→ X 4, i.e., of the form T (x, y) = (x, f (x, y)), through pullback
(θ, π) 
−→ (T ∗θ, T ∗π);

(ii) by gauge transformations

θ 
−→ Adgθ − dg g−1

π 
−→ Ad∗
gπ

(21)

for any map g : X 4 −→ G and where Adgθ = gθg−1 and, if Adgt j = Sij ti ,

Ad∗
gπ = (S−1)

j
i π j ti ;

(iii) by transformations π 
−→ π + χ , where χ has the form

χ = χ i
bke(3)

b ∧ θ̄
(r−1)
k + 1

2
χ i

jke(4) ∧ θ̄
(r−2)
jk

decays at infinity and satisfies θ i ∧ dθχi = 0.
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5 Einstein–Yang–Mills model

The previous theory can be modified in order to couple gravitation with gauge fields.
We consider the metric h onR4×g such thatR4 ⊥ g, h coincides with theMinkowski
metric ηab on R4 and with k on g. We still assume here that G is compact and simply
connected, and we still work on a higher-dimensional ‘space-time’ YN+1. However,

(i) We replace the fixed co-vierbein (ea)0≤a≤3 by a dynamical one (θa)0≤a≤3,
and we assume that the dynamical fields (θ I )0≤I≤N = (θa, θ i )0≤a≤3<i≤N

forms a co-(N + 1)-bein on YN+1.
(ii) No more fibration of YN+1 nor the existence of X 4 is assumed a priori.

Even better, we do not make assumption on its topology, beside the fact
that YN+1 is oriented and connected. Instead, we introduce extra auxiliary
fields (πa)0≤a≤3 which are (N − 1)-forms and which play the role of
Lagrange multipliers for creating a fibration.

(iii) We also introduce the field ϕ I
J = ϕ I

J (z)dzK with coefficients in the Lie
algebra so(R4 ⊕ g,h) of the Lorentz group, i.e., such that ϕ I J +ϕ J I = 0,
where ϕ I

J = ϕ I KhK J .
(iv) In the action we replace the term 1

2‖π‖2e(4) ∧ θ̄ (r) by the (N + 1)-

dimensional Einstein–Palatini density 1
2 θ̂

(N−1)
I J ∧ �I J , where �I J :=

dϕ I J + ϕ I
K ∧ ϕK J and θ̂ (N+1) = θ0 ∧ · · · ∧ θN and, for 0 ≤ α,

θ̂
(N−α)
I0···Iα = 1

(N − α)!εI0···Iα Jα+1···JN θ Jα+1 ∧ · · · ∧ θ JN

(v) Lastly, we impose the constraint

θa ∧ θb ∧ πc = θa ∧ θb ∧ πi = 0 (22)

To summarize: dynamical fields are the 1-forms (θ I )0≤I≤N = (θa, θ i )0≤a≤3<i≤N ,
of rank N +1 everywhere, (ϕ I J )0≤I ,J≤N with ϕ I J +ϕ J I = 0 and the (N −1)-forms
(πI )0≤I≤N = (πa, πi )0≤a≤3<i≤N . Constraint (22) is assumed, i.e., θa ∧ θb ∧πI = 0.
The basic action is

A0[θ, ϕ, π ] =
∫
YN+1

1

2
θ̂

(N−1)
I J ∧ �I J + πI ∧ �I (23)

where

�a := dθa for 0 ≤ a ≤ 3
�i := dθ i + 1

2c
i
jkθ

j ∧ θk for 3 < i ≤ N

We shall also incorporate a bare cosmological constant �0 and consider the action

A�0 [θ, ϕ, π ] = A0[θ, ϕ, π ] −
∫
YN+1

�0θ̂
(N+1) (24)
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Constraint (22) can actually be rephrased through the decomposition

πI = −π I
akθ(3)

a ∧ θ̄
(N )
k + 1

2
π I

jkθ(4) ∧ θ̄
(N−1)
jk (25)

(i.e., π I
ab vanishes). We also use the decomposition

�I = 1

2
�I

J K θ J ∧ θK (26)

or �I = 1
2�

I
abθ

a ∧ θb + �I
akθ

a ∧ θk + 1
2�

I
jkθ

j ∧ θk .

5.1 Euler–Lagrange equations

We set dϕθ̂
(N−1)
I J := dθ̂ (N−1)

I J − ϕK
I ∧ θ̂

(N−1)
K J − ϕK

J ∧ θ̂
(N−1)
I K , dθπa = dπa if

0 ≤ a ≤ 3, dθπi = dπi − c jkiθ
k ∧ π j if 3 < i ≤ N . Then, the Euler–Lagrange

equations of A�0 [θ, ϕ, π ] read:

�I
ak = 0 (a)

�I
jk = 0 (b)

dϕθ̂
(N−1)
I J = 0 (c)

dθπI + 1
2 θ̂

(N−2)
I J K ∧ �J K − �K

I J πK
�J θ̂

(N )
� = �0θ̂

(N )
I (d)

(27)

where Equations (a), (b), (c) and (d) correspond to variations with respect to π I
ak ,

π I
jk , ϕ I J and θ I , respectively. Consider a solution of this system. We endow YN+1

with the metric hμνdzμ ⊗ dzν := hI J θ
I ⊗ θ J , and we assume that (YN+1,h) is

complete, meaning that any geodesic curve is defined for all ‘time.’
Equation (27c) is equivalent to dϕθ I := dθ I +ϕ I

J ∧ θ J = 0 thanks to the identity
dϕθ̂

(N−1)
I J = dϕθK ∧ θ̂

(N−2)
I J K . It means that the spin connection defined by ϕ I J is

torsionfree and, hence, coincides with the Levi–Civita connection on (YN+1,h).
Equation (27b) implies first dθa = 0 mod [θb], for any 0 ≤ a, b ≤ 3. This allows us

to apply Frobenius’ theorem (see [10]) to prove thatYN+1 is foliated by r -dimensional
submanifolds (leaves) f such that the restriction of θa to f vanishes, for any 0 ≤ a ≤ 3.
We then define X to be the set of leaves of this foliation (not yet a manifold!).

By using the same reasoning as in Sect. 4 (replacing (13c) by (27b), which implies
that the restriction to f of �i = dθ i + 1

2c
i
jkθ

j ∧ θk vanishes), we prove that each leaf
f is compact and diffeomorphic to a quotient Gf of G by a finite subgroup.

We then prove that the foliation forms actually a fibration. For any fixed ξ = ξata ,
consider the vector field X = X(ξ) on YN+1 defined by θa(X) = ξa and θ i (X) = 0.
By (27a,b), we have dθa = 1

2�
a
bcθ

b ∧ θc and thus LXθ
a = �a

bcξ
bθc. Hence,

LXθ
a = 0 mod [θb], for any 0 ≤ a, b ≤ 3. By reasoning as in Sect. 4, we can construct

a local diffeomorphism betweenGf × B4(0, ε) � f× B4(0, ε) and a neighborhood of
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f in YN+1. The setX 4 = X can thus be endowed with a structure of four-dimensional
manifold and YN+1 with a structure of principal bundle over X with structure group
G0.

Again as in Sect. 4, a further use of (27b) allows to show the existence of a map g
from an open subset of YN+1 to G0 and of a map A = Aaea , with Aa = Ai

ati , such
that θz = g−1(z)Aa(z)eag(z)+g−1(z)dgz and, by (27a)Aa depends only on x inX 4,
so that A = gθg−1 − dg g−1 is a 1-form on X 4. We define F := dA + 1

2 [A ∧ A] =
1
2Fabθ

a ∧ θb.
We now let (SIJ )0≤I ,J≤N such that Sab = δab , S

a
j = Sib = 0 and Sij ti = Adg(t j ) =

gt j g−1 (note that SKI SLJ hK L = hI J since k is invariant by Adg), and we introduce

eI = SIJ θ
J , i.e., ea := θa and ei = Sijθ

j

pI = (S−1)JI πJ i.e., pa := πa and pi = (S−1)
j
i π j

ωI J = SIK S
J
LϕK L − dSIK S

J
Lh

K L

�I J = SIK S
J
L�K L

We observe that Fi = Sij�
j and �I J = dωI J + ωI

K ∧ ωK J . We define ê(N+1)

:= e0 ∧ · · · ∧ eN and ê(N )
I , ê(N−1)

I J and ê(N−2)
I J K in the same way as previously.

We note that, by (9), ê(N+1) = θ̂ (N+1), ê(N )
I = (S−1)JI θ̂

(N )
J , and ê(N−1)

I J K =
(S−1)I

′
I (S−1)J

′
J (S−1)K

′
K θ̂

(N−1)
I ′ J ′K ′ .

By setting dA pa = dpa and dA pi = dpi − c jkiA
k ∧ p j (27d) translates as

dA pI + 1

2
ê(N−2)
I J K ∧ �J K − FJ

Ib pJ
jb ê(N )

j = �0ê
(N )
I (28)

The computation of dA pI leads to the same result as in the Yang–Mills case (18), by
replacing index 4 ≤ i ≤ N by 0 ≤ I ≤ N and with the extra simplification that
coefficients pI ab vanish. We observe that 1

2 ê
(N−2)
I J K ∧ �J K = −Ein(h)I

J e(N )
J , where

Ein(h)I
J = Ric(h)I

J − R(h)δ I
J is the Einstein tensor for the metric h on YN+1.

Hence, by splitting indices (28) thus gives

Ein(h)a
b + �0δa

b = ∂k pabk (a)
Ein(h)i

b = ∂k pi bk (b)
Ein(h)a

j = ∂Ac pa jc + ∂k pa jk + 1
2 pa

k�c jk� − FJ
ac pJ

jc (c)
Ein(h)i

j + �0δi
j = ∂Ac pi jc + ∂k pi jk + 1

2 pi
k�c jk� (d)

(29)

where

∂Ac pa jc = ∂c pa jc + Ak
cc

j
k� pa

�c

∂Ac pi jc = ∂c pi jc − Ak
cc�

ki p�
jc + Ak

cc
j
k� pi

�c (30)
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The key point now is that, on the one hand, Ein(h)I
J is constant on any fiber f =

P−1(x) and, on the other hand, since f is compact without boundary,

∫
f
∂k pI

bk ê(N+1) =
∫
f
d(pI

bk ê(N )
k ) = 0

Hence, by the same reasoning as in (20) we deduce from (29 a,b) that

Ein(h)a
b + �0δa

b = Ein(h)i
b = 0 (31)

(We also deduce a posteriori that Ein(h)a
j = 0 because of the symmetry of the

Einstein tensor.)
The remaining task is to recognize that (31) is equivalent to the Einstein–Yang–

Mills system on X 4 equipped with the metric g = ηabea ⊗ eb and the connection A.
This computation is performed (in the tensorial language) in [6] and [7]. We present
it here using the vierbein formalism.

The spin connection coefficients on X 4 for the metric g are γ a
b = γ a

bcec with

γ a
bc = 1

2
(�a

bc − ηadηbe�
e
dc − ηadηce�

e
db)

The relation between the γ a
b’s and the spin connectionωI J = ωI

Kh
K J of h onYN+1

is given by

ωa
b = γ a

b − 1
2ki jη

acF j
cbei

ωa
i = 1

2ki jη
acF j

bceb

ωi
a = 1

2F
i
abeb

ωi
j = 1

2c
i
jk(e

k − 2Ak)

(32)

This leads to the expression of the Einstein tensor of h in terms of the Einstein tensor
of g:

Ein(h)a
b = Ein(g)ab − 1

2F
i
acFi

bc + 1
4 (‖F‖2 + |c|2)δab

Ein(h)i
a = 1

2∂
γ,A
b Fi

ab

Ein(h)i
j = 1

4Fi
abF j

ab − 1
4c

k
i�c

j
kmk

�m + 1
4 (‖F‖2 + |c|2)δi j

(33)

where ‖F‖2 = 1
2Fi

abFi
ab, |c|2 = 1

2c
i
�kc

�
i jk

jk and ∂
γ,A
b Fi

ab = ∂bFi
ab−c jkiA

k
bF j

ab+
Fi

cbγ a
cb + γ c

bcFi
ab. Hence, (31) translates as

Ein(g)ab + �δa
b = 1

2 (F
i
acFi

bc − 1
2‖F‖2δab)

∂
γ,A
b Fi

ab = 0
(34)
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where � = �0 + 1
4 |c|2. By choosing the signature of ηab to be (−,+,+,+), the first

equation reads as the Einstein equation in the presence of a cosmological constant �
and the stress–energy tensor of the gauge fields, and the second one is the Yang–Mills
equation on (X 4, g).

Note that |c|2 is equal to 1
2 Bjkk

jk , where Bjk is the Killing form of g. In particular,
if G is compact semi-simple (which is the case, e.g., for SU (k) or SU (2) × SU (3))
Bjk is negative definite. Since on the other hand k jk must be positive definite (in order
to ensure that the energy of the gauge fields be nonnegative), this implies |c|2 < 0,
i.e., � < �0.

5.2 Gauge symmetries

The action (23) and the constraint (22) are invariant by orientation preserv-
ing diffeomorphisms T : YN+1 −→ YN+1 acting on fields through pullback
(θ, ϕ, π) 
−→ (T ∗θ, T ∗ϕ, T ∗π). They are also invariant through the transforma-
tion (θ I , ϕ I J , πJ ) 
−→ (SIJ θ

J , SIK S
J
LϕK L , (S−1)JI πJ ) where (SIJ ) is the matrix of

Adg , for some g ∈ G which is constant. (If g is not constant, the curvature 2-form
�I J does not transform in a tensorial way.)

6 Einstein–Maxwell model

What changes if we replace the compact simply connected group G by U (1)? The
action in (23) becomes

A0[θ, ϕ, π ] =
∫
Y5

1

2
θ̂

(3)
I J ∧ �I J + πI ∧ dθ I (35)

where πI = −π I
aθ

(3)
a . Critical points of the action A�0 in (24) satisfy System (27),

except that (27b) does not exist. This has no incidence for solving the system obtained
by imposing that the restriction of θa on f vanishes since the integral leaves are just
curves. The key point is thatU (1) is not simply connected. Hence, we cannot conclude
that the integral leaves are compact and form a fibration in general.

However, we shall prove that, if we know that at least one leaf closes, then all
leaves close and are diffeomorphic and we hence get the existence of a space-timeX 4

and a fibration of Y5 over it.
Let Y be the vector field such that θa(Y) = 0 for any 0 ≤ a ≤ 3 and θ4(Y) = 1.

Assume that some integral leaf f0 closes. It means that there exists amap u : R −→ Y5

which is a solution of du
ds = Y(u), the image of which is f0 and which is periodic,

i.e., that there exists q > 0 such that u(t + q) = u(t). W.l.g. we can assume that q is
minimal. For any ξ = (ξa)0≤a≤3 inR4, let X be the vector field defined by θa(X) = ξa

for 0 ≤ a ≤ 3 and θ4(X) = 0. Then, [X, Y] = 0 since dθ I (X, Y) = 0 because of (27a).
Consider its flow map e·X and, for a fixed t ∈ R, the map v : R −→ Y5 defined by
v(s) = etX(u(s)). Since X and Y commute dv

ds = Y(v). This shows that etX(f0), the
image of f0 by etX, is an integral leaf f of X. Since f0 is compact and etX is continuous
f is compact and hence does not intersect from f0 if t is sufficiently small. Since this
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works for all values of ξ and since Y5 is connected, this endows Y5 with a topological
bundle structure. By proceeding as in Sect. 3, we can achieve the normalization (4)
and then obtain a solution of the Einstein–Maxwell system by using arguments from
Sects. 4 and 5.

By replacing G by, for example, U (1) × SU (2) × SU (3), the situation is similar:
We do not obtain a fibration in general, but we do if at least one leaf closes.

Conclusion

Models presented in Sects. 3 and 4 provide gauge theories which, in addition to
the usual gauge symmetries, are invariant by the action of diffeomorphisms which
respect a topological fibration, enforcing thus the similarity between gauge theories
and general relativity. Models in Sects. 5 and 6 unify gravity and gauge theories at
the classical level without symmetry hypotheses. All these models are based on the
introduction of auxiliary ‘ghosts’ fields (but not in the Faddeev–Popov sense), which
are not observable at the classical level. The presence of these ‘ghosts’ fields enforces
the existence of a principal bundle structure, through the dynamical equations. The
key point is that, when projecting the dynamical equations on the base manifolds,
these ghosts fields cancel in the equations. One may ask whether these ‘ghosts’ fields
could create physically observable phenomena in a quantum version of the theory.

An intriguing fact is that, although invariant by diffeomorphisms our Kaluza–Klein
theory is not invariant by standard gauge transformation. This may be connected to
the difficulty to lift the theory on the bundle of orthonormal frames over space-time
(or its spin cover) in the spirit of the group manifold approach as initiated in [11, 12]
and as done in [13] and further extended in the presence of spinors in [14].
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