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Abstract
We study a Sturm–Liouville-type operator with operator-valued coefficients and
its iso-spectral deformations, related to a new two-component Camassa–Holm-type
completely integrable dynamical systems. Based on a specially devised gradient-
holonomic scheme, generalizing the one before developed for studying a Sturm–
Liouville-type spectral problem on a spatially multidimensional Hilbert–Schmidt
operator-valued Hilbert space, we constructed the related two compatible Poisson
structures and an infinite hierarchy of commuting to each other conservation laws
of the derived two-component Camassa–Holm-type Hamiltonian system. The latter
makes it possible to state under some additional constraints its complete integrability,
and in particular, to develop the corresponding inverse spectral-type-based method for
constructing its exact solutions.
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1 Introduction

We study a Sturm–Liouville-type spectral problem of second order, defined on a spa-
tially multidimensional Hilbert–Schmidt operator-valued space, whose iso-spectral
deformations describe two-component operator-valued Camassa–Holm-type [1–3]
completely integrableHamiltonian systems. The corresponding classical systemswere
widely investigated [5, 7] during past decades, where there have been demonstrated
very interesting singular peakon-type properties [3, 10, 17] of their solutions. The
presented results concern new operator-valued two-component Camassa–Holm-type
completely integrable dynamical systems,which are basedon studying analytical prop-
erties of the corresponding Sturm–Liouville-type spectral problem and its iso-spectral
deformations and, respectively, constitute continuation of a previously developed ana-
lytical scheme in works [11–14, 16], devoted to studying a Sturm–Liouville-type
spectral problem on a spatially multidimensional Hilbert–Schmidt operator-valued
Hilbert space, generating generalized operator-valued Korteweg–de Vries-type non-
linear dynamical systems within the gradient-holonomic approach, initiated before
by S.P. Novikov in his classical works [18, 19]. As the corresponding classical spec-
tral problem generates, respectively, the two-component Camassa–Holm-type [3, 5,
8] hydrodynamic-type evolution systems, we succeeded in constructing both their
operator-valued Hamiltonian generalizations with respect to suitably related com-
patible Poisson structures and an infinite hierarchy of commuting to each other
conservation laws. The latter makes it possible to prove under some additional con-
straints the complete integrability of the generalized operator-valued two-component
Camassa–Holm-type dynamical system, and in particular, to develop the correspond-
ing inverse spectral-type-based method for constructing its exact solutions.

2 Bilocal periodic spectral problem

Consider the following Sturm–Liouville-type periodic spectral problem:

Lg(x) := −∂2g(x)/∂x2 + (μI + v(x)λ + ρ(x)λ2 I )g, (1)

where μ ∈ R is a fixed parameter, λ ∈ C is the corresponding spectral parameter,
coefficients v, ρ ∈ C∞(R/{2πZ};B) and a function g ∈ C2(R;B), with B being a
unital operator algebra of theHilbert–Schmidt [20, 21] operators on aHilbert space H .

Wealsowill assume that the coefficient ρ ∈ C∞(R/{2πZ};B) belongs to the center of
the algebra B2, that is [ρ(x),B] = 0 for all x ∈ R/{2πZ}. The algebra B is endowed
with a natural trace-norm || · ||, defined by the relationship ||A|| := (Tr(A∗ A))1/2 for
an operator A ∈ B. The spectrum σ(L) ⊂ C of the operation (1) is determined by
the condition supx∈R || f (x)|| < ∞. Its structure is in a general case very complicated
[4, 18] even in the classical case of the algebra B0 = C; nonetheless, we will analyze
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it, following the approach devised in [14, 16], having assumed that there holds the
constraint [ρ(x),B] = 0 for all x ∈ R/{2πZ} and made use of general functional–
operator relationships, generated by the related spectral problem (1).

Let us preliminarily represent the differential–operator expression (1) in the fol-
lowing differential matrix form:

d f /dx = l(x; λ) f , (2)

with f := ( f1, f2)ᵀ ∈ C1(R;B2) and

l(x; λ) :=
(

0 I
w(x; λ) 0

)
, (3)

where we denoted byw(x; λ) := μI +λv(x)+λ2ρ(x) = μI +〈w(x)|(λ, λ2)ᵀ〉 ∈ B,
w(x) := (v(x), ρ(x))ᵀ ∈ B2, x ∈ R,λ ∈ C, aswell aswe also denoted, for brevity, by
〈·|·〉 the usual bilinear form on C2. Solutions to the matrix problem (2) are effectively
described by means of its fundamental solution F(x; s) ∈ C2(R; B2 ⊗ B∗,2) for any
x, s ∈ R, satisfying the following properties:

d F(x, s; λ)/dx = l(x; λ))F(x, s; λ), F(x, s; λ)|x=s = I (4)

for all λ ∈ C. Taking into account that the operator-valued function w(x; λ) ∈ B is
2π -periodic with respect to the variable x ∈ R, based on the fundamental solution
F(x, s; λ) ∈ C2(R; B2 ⊗B∗,2), x, s ∈ R, one can construct [22] the corresponding
monodromy matrix S(x; λ) := F(x, x; λ) ∈ C2(R; B2 ⊗ B∗,2), x ∈ R, satisfying
[14, 19] the following differential–commutator Novikov–Lax relationship:

d S(x; λ)/dx = [l(x; λ), S(x; λ)] (5)

and study the corresponding iso-spectral deformations of the Sturm–Liouville-type
spectral problem (1). We will be mainly interested in the functional properties of the
trace-functional

γ (λ) := Tr (S(x; λ)) = reg
∫
Rn

tr S(x; λ; y|y)dy), (6)

where “tr” is the usual matrix trace operation and “reg (...)” means the usual linear
regularization of the corresponding trace-functional, whose existence a priori follows
[20] owing to the Hilbert–Schmidt structure of the operator algebra B. Note here that
owing to the commutator structure of (5) one immediately follows that dγ (λ)/dx = 0
for all x ∈ R, λ ∈ C, that is the expression (6) defines a smooth functional invariant
�(λ) : M → C on a suitably chosen operator–functional manifold M ⊂ {v, ρ ∈
C∞(R/{2πZ};B)}.
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3 Functional–operator properties of �(�)

It is easy to observe that the functional (6) is analytical with respect to the parameter
λ ∈ C. Assuming, in addition, that it is also smooth by Fréchet on the introduced
above operator manifoldM, one can calculate the corresponding gradient ϕ(x; λ) :=
grad�(x; λ) ∈ T (M) ⊂ C∞(R; B2) as an element of the cotangent space T (M)

to the functional–operator manifold M, which is defined by means of the following
variational relationship:

δγ (λ) = (ϕ(x; λ)|δw(x)) :=
∫ 2π

0
dxTr〈ϕ(x; λ)|δw(x)〉. (7)

The latter can be represented bymeans of simple calculations in the following compact
and useful form:

δγ (λ) = ( gradγ (x; λ)|δw(x)) =
∫ 2π

0
dxTr (S(x; λ)δl(x; λ)) , (8)

resulting in the following gradient covector expression:

gradγ (x; λ) = (λs12(x; λ), λ2s12(x; λ))ᵀ (9)

for all x ∈ R, λ ∈ C. Moreover, as it follows from the matrix relationship (5), the
gradient covector (9) satisfies the characteristic Magri-type [23] relationship:

λϑ grad�(x; λ) = η grad�(x; λ), (10)

where operators ϑ, η : T ∗(M) → T (M) are Poisson, compatible [14, 23, 24]
operators on the functional–operator manifold M and equal to the following skew-
symmetric differential–integral operator–matrix expressions:

ϑ =
(

1/2
(
∂xv

+ + v+∂x
)

∂xρ + ρ∂x − 1/2v−∂−1
x v−

∂xρ + ρ∂x − 1/2v−∂−1
x v− 0

)
(11)

and

η =
(

I (∂3x /2 − 2μ∂x ) 0
0 ∂xρ + ρ∂x − 1/2v−∂−1

x v−
)

, (12)

where we denoted by v± : B → B, respectively, the anti-commutator/commutator
v±(·) := [v, (·)]± and took into account that ρ−B := [ρ,B] = 0 owing to the
assumption imposed on the coefficient ρ ∈ C∞(R/{2πZ};B). Thus, we have proved
the following proposition.

Proposition 1 The differential–integral matrix operator expressions (11) and (12)
determine a compatible pair of Poisson structures on the operator–functional manifold
M.
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The Poisson operators (11) and (12) make it possible to construct the corresponding
symmetry recursion operator  := ϑ−1η : T ∗(M) → T ∗(M), generating a count-
able hierarchy of commuting to each other functionals γ j : M → R, j ∈ Z+, via the
relationships

 gradγ j = gradγ j+1, (13)

where ϑ gradγ0 := 0, that is

{γ j , γk}ϑ = 0 = {γ j , γk}η (14)

for all j, k ∈ Z+ with respect to the following two compatible Poisson brackets:

{α, β}ϑ := ( gradα|ϑ gradβ), {α, β}η := ( gradα|ηgradβ), (15)

defined for arbitrary smooth functionals α, β : M → R.

4 Camassa–Holm-type Hamiltonian systems and their reduction

Consider the constructed above invariant functionals γ j : M → R, j ∈ Z+, on
the Poisson manifold M and define the following infinite hierarchy of Hamiltonian
systems:

∂

∂t j
(v, ρ)ᵀ := −η gradγ j [v, ρ], (16)

where t j ∈ R, j ∈ Z+, are the related evolution parameters. Having assumed now
that t0 := x ∈ R at γ0 := H0, one can easily obtain that

vx = −(∂3x /2 − 2μ∂x ) gradv H0,

ρx = − [
(∂xρ + ρ∂x ) − 1/2v−∂−1

x v−]
gradρ H0.

(17)

The latter allows to define a new operator variable u ∈ B via the substitution v :=(−∂2x + 4μ
)

u + k ∈ B for some constant operator k ∈ B, subject to which there hold
the following relationships:

gradv H0 = 2u = −2
(
∂2x − 4μ)

)−1
(v − k), gradρ H0 = −I , (18)

generated by the following Hamiltonian functional:

H0 =
∫ 2π

0
dxTr (uv − uk − ρ) . (19)

Making use of the Hamiltonian functional (19) and the first Poisson operator (11), one
can construct a new evolution operator flow

∂

∂t
(v, ρ)ᵀ := −ϑ gradH0[v, ρ], (20)
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on the operator manifold M with respect to the temporal evolution parameter t ∈ R,

or, equivalently,

−uxxt + 4μut = −2v+ux − v+
x u + ρx − 1/2v−∂−1

x v−

ρt = −2ρx u − 4ρux + v−∂−1
x

(
v−u

)
,

(21)

being exactly a two-component Camassa–Holm-type operator dynamical system, nat-
urally generalizing the one before obtained in [5]. We formulate the obtained results
as the following theorem.

Theorem 2 The two-component Camassa–Holm-type system (21) possesses an infinite
hierarchy of commuting conservation laws and represents a completely integrable bi-
Hamiltonian operator flow on the operator–functional manifold M.

It is hereworth to observe, similarly to that in thework [25], that thewhole construc-
tion, presented above, remains unchanged, if we replace the scalar parameter μ ∈ R

by a constant linear operator μ̃ ∈ B, where for any a(x) ∈ B, x ∈ R, the kernel of
the operator μ̃a ∈ B equals (μ̃a)(x; y|z) = ∫

Rn dsμ̃(y|s)a(x; s|z)dx for y, z ∈ R
n .

Then, one easily constructs the corresponding skew-symmetric differential–integral
matrix operators

ϑ̃ =
(

1/2
(
∂xv

+ + v+∂x − μ̃−∂−1
x v− − v−∂−1

x μ̃−)
∂xρ + ρ∂x − 1/2v−∂−1

x v−
∂xρ + ρ∂x − 1/2v−∂−1

x v− 0

)

(22)

and

η̃ =
(

I∂3x /2 − μ̃+∂x 0
0 ∂xρ + ρ∂x − 1/2v−∂−1

x v−
)

, (23)

which prove to be Poisson and compatible on the operator manifoldM, satisfying the
related gradient relationships

ϑ̃ gradγ̃ j+1 = η̃ gradγ̃ j (24)

for an infinite hierarchy of commuting to each other smooth functionals γ̃ j : M →
R, j ∈ Z+, that is

{γ̃ j , γ̃k}ϑ̃ = 0 = {γ̃ j , γ̃k}η (25)

with respect to the corresponding two compatible Poisson brackets:

{α, β}ϑ̃ := ( gradα|ϑ̃gradβ), {α, β}η := ( gradα|η̃ gradβ), (26)

defined for arbitrary smooth functionals α, β : M → R. The obtained result we can
formulate as the following proposition.

Proposition 3 The skew-symmetric differential–integral matrix operator expressions
(22) and (23) determine on the operator–functional manifold M a compatible pair of
Poisson structures.
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The hierarchy of smooth functionals γ̃ j : M → R, j ∈ Z+, is naturally generated
by a Hamiltonian functional H̃0 : M → R via the recursion expressions

gradγ̃ j :=
(
ϑ̃−1η̃

) j
gradH̃0, (27)

and satisfies the determining condition

vx = −(∂3x /2 − μ̃+∂x ) gradv H̃0,

ρx = − [
(∂xρ + ρ∂x ) − 1/2v−∂−1

x v−]
gradρ H̃0.

(28)

Upon the operator substitution (∂2x − 2μ̃+)u := v − k̃ ∈ B for a constant operator
element k̃ ∈ B, one easily obtains the functional expression,

H̃0 =
∫ 2π

0
dxTr(uv − uk̃ − ρ), (29)

simultaneously generating a new two-component Camassa–Holm-type Hamiltonian
flow

∂

∂t
(v, ρ)ᵀ := −ϑ̃gradH̃0[v, ρ] (30)

with respect to the temporal evolution parameter t ∈ R, equivalent to the following
new two-component Camassa–Holm-type integrable system

uxxt − 4μ+ut = −2v+ux − v+
x u + ρx + μ̃−∂−1

x

(
v−u

) + v−∂−1
x

(
μ̃−u

) − 1/2v−∂−1
x v−,

ρt = −2ρx u − 4ρux + v−∂−1
x

(
v−u

)
,

(31)
on the operatormanifoldM.The obtained result we can formulate as the next theorem.

Theorem 4 The two-component Camassa–Holm-type system (31) possesses an infinite
hierarchy of commuting conservation laws and represents a completely integrable bi-
Hamiltonian operator flow on the operator–functional manifold M.

It can be easily checked that the above-obtained operator-valued two-component
Camassa–Holm-type Hamiltonian systems (21) and (31) on the operator manifold
M reduce in the case, when the algebra B → C, to the classical two-component
Camassa–Holm-type Hamiltonian system. What is important to mention subject to
the spectral problem (1) that it generates nontrivial integrable operator Hamiltonian
systems only for the case when the coefficient constraint [ρ(x),B] = 0 is imposed for
all x ∈ R/{2πZ}. Exactly such a special matrix operator case was already constructed
in [6] for the well-known Kontsevich [9] dynamical system )

du/dx := {h, u}� = uv − uv−1 − v−1

dv/dx := {h, v}� = −vu + vu−1 + u−1

}
(32)
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on the operator space B = C〈u±1, v±〉, which is Hamiltonian with respect to the
following Hamiltonian function h = u + v + u−1 + v−1 + u−1 + v−1 ∈ B and the
Poisson bracket

{u, v}� = −uv, {u, u}� = 0� = {v, v}� (33)

for generating elements u, v ∈ B. This system possesses the Lax-type representation

d S(u, v; λ)/dx = [l(u, v; λ), S(u, v; λ)], (34)

where operator matrices l, S ∈ End(B2) are equal to such expressions:

S(u, v; λ) =
(

λ
(
v−1 + u

)
λ2v + λ

(
v−1u−1 + u−1 + 1

)
λv−1 + u 1 + λ

(
v + v−1u−1 + u−1

)
)

, (35)

l(u, v; λ) =
(

v−1 − v + u λv

v−1 u

)
, (36)

where λ ∈ R is an arbitrary spectral parameter, S(u, v; λ) := λ2 gradγ (λ)|+ ∈
End(B2)[λ] owing to (8), and was recently analyzed in [15] by means of the Lie-
algebraic approach. A more detailed analysis of the related spectral problem

d f (x; λ)/dx = l(u, v; λ) f (x; λ) (37)

for generating elements u, v ∈ C∞(R/{2πZ};B) on the space of functions f ∈
L∞(R;B) is under investigation and planned to be presented in a forthcoming work.

5 Conclusions

We have analyzed a generalized periodic Sturm–Liouville-type spectral problem with
coefficients from some operator ring and studied its invariant iso-spectral deforma-
tions by means of a previously developed gradient-holonomic analytic scheme. Based
on specially constructed compatible Poisson structures, we succeeded in deriving an
infinite hierarchy of commuting to each other smooth functionals on our operator
manifold and, respectively, related commuting Hamiltonian systems, among which
we presented a new two-component operator Camassa–Holm-type integrable Hamil-
tonian system and some its modification.
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