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Abstract
We propose a novel quantum integrable model for every non-simply laced simple
Lie algebra g, which we call the folded integrable model. Its spectra correspond to
solutions of theBetheAnsatz equations obtained by folding theBetheAnsatz equations
of the standard integrable model associated with the quantum affine algebraUq(̂g′) of
the simply laced Lie algebra g′ corresponding to g. Our construction is motivated by
the analysis of the second classical limit of the deformed W -algebra of g, which we
interpret as a “folding” of the Grothendieck ring of finite-dimensional representations
of Uq(̂g′). We conjecture, and verify in a number of cases, that the spaces of states of
the folded integrable model can be identified with finite-dimensional representations
of Uq(

L ĝ), where L ĝ is the (twisted) affine Kac–Moody algebra Langlands dual to ĝ.
We discuss the analogous structures in the Gaudin model which appears in the limit
q → 1. Finally, we describe a conjectural construction of the simple g-crystals in
terms of the folded q-characters.
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1 Introduction

1.1 Integrable models

Exactly solvable quantum integrable models have played a prominent role in mathe-
matical physics ever since the groundbreaking work of Hans Bethe [3] in which he
described the spectrum of the Hamiltonian of the XXX spin chain in terms of the
solutions of what we call today the Bethe Ansatz equations. The XXX spin chain
naturally corresponds to the Yangian of sl2, and it can be generalized to quantum spin
chain models corresponding to the Yangian of an arbitrary simple Lie algebra g or
the corresponding quantum affine algebra Uq (̂g). In this paper, we focus on the latter
model, which we call XXZ-type model associated with Uq (̂g).

Using the universal R-matrix ofUq (̂g), one assigns a commuting family of Hamil-
tonians tV (z), z ∈ C, of this model, to every finite-dimensional representation V of
Uq (̂g), which is called an auxiliary space. These Hamiltonians, which are called the
transfer-matrices, act on any finite-dimensional representation W of Uq (̂g), which is
called a space of states (or physical space) of the model. Moreover, the transfer-matrix
construction extends to a compatible family of ring homomorphisms

hW : RepUq (̂g) → End(W )[[z]] (1.1)

sending the class of V in the Grothendieck ring RepUq (̂g) of Uq (̂g) to the corre-
sponding transfer-matrix tV (z) acting onW (viewed as a formal power series in z with
coefficients in End(W )). We will assume throughout that q ∈ C

× is not a root of unity.
In a generic situation, the spectra of these quantum Hamiltonians are expected to

be in one-to-one correspondence with the solutions of the generalized Bethe Ansatz
equations. For the XXZ-type model associated with Uq (̂g), where ĝ is an arbitrary
affine Kac–Moody algebra (twisted or untwisted) they were proposed in [54, 55, 57].
A pair of authors of the present paper subsequently conjectured in [25] an explicit
formula for the eigenvalues of the transfer-matrices tV (z) corresponding to a given
solution of these generalized Bethe Ansatz equations. This formula is written in terms
of the q-character of V .

Another pair of authors of the present paper then extended the above construction
to a larger algebra of quantum Hamiltonians [19]. Namely, the homomorphism hW
extends to a homomorphism

h′
W : Rep′ → End(W )(u)[[z]], (1.2)
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where Rep′ stands for the Grothendieck ring of the category O introduced in [33] or
its dual category O∗. The corresponding transfer-matrices tV (z, u) are formal power
series in z with coefficients depending on an element u of the Cartan subgroup H of
the simply-connected Lie groupG associated with g. The categoryO∗ is topologically
generated by the prefundamental representations R±

j (z), j ∈ I , where I is the set of
vertices of the Dynkin diagram of g. Hence, the eigenvalues of the quantum Hamilto-
nians are determined by the eigenvalues of the Q-operators Q±

j (z, u) = tR±
j
(z, u), the

transfer-matrices associated in [19] with the prefundamental representations R±
j (z).

It was proved in [19] that up to a universal factor depending on the representation
W , all eigenvalues of Q+

j (z, u) on W (which are a priori formal power series in
z) are in fact polynomials in z. Moreover, it follows from [19, 20] that the roots of
these polynomials are solutions of the Bethe Ansatz equations (more precisely, the
u-dependent version of the Bethe Ansatz equations) under a certain non-degeneracy
condition. (This condition was subsequently dropped in [15].) Finally, it was shown
in [19] that the eigenvalues of the transfer-matrix tV (z, u) corresponding to a finite-
dimensional representation V can be expressed in terms of the eigenvalues of the
Q+

j (z, u) and the q-character of V , proving the conjecture of [25]. These results
provide a link between the spectra of the XXZ-type model associated withUq (̂g) and
the solutions of the corresponding Bethe Ansatz equations (BAE).

Explicitly, if the space of states W is the tensor product of irreducible finite-
dimensional representations of Uq (̂g) with the Drinfeld polynomials Pi,k, i ∈ I , k =
1, . . . , N , then the BAE have the form:

N
∏

k=1

q
deg Pi,k
i

Pi,k(q
−1
i /w

(i)
r )

Pi,k(qi/w
(i)
r )

= −
∏

s �=r

w
(i)
r − w

(i)
s q−2

i

w
(i)
r − w

(i)
s q2i

∏

j �=i

m j
∏

s=1

w
(i)
r − w

( j)
s q−Bi j

w
(i)
r − w

( j)
s q Bi j

.

(1.3)

with one equation for each root w
(i)
r , r = 1, . . . ,mi , of the i th Baxter polynomial

Q+
i (z), with i ranging over the set I . Here (Bi j ) is the symmetrized Cartan matrix

of g: Bi j = diCi j , where (Ci j ) is the Cartan matrix and the di are relatively prime
integers, and we set qi = qdi .

Note that a typical factor on the right-hand side of (1.3) looks like this:

w
(i)
r − w

( j)
s q−Bi j

w
(i)
r − w

( j)
s q Bi j

(1.4)

1.2 Miura q-opers and folded Bethe Ansatz equations

In a recent paper [21], certain geometric objects on CP
1 called Miura (G, q)-opers

were introduced. It was shown in [21] (see also the earlier work [42] in the case
G = SLn) that there is a one-to-one correspondence between the set of Miura (G, q)-
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oper satisfying a non-degeneracy condition and the set of solutions of a system of
equations which look very similar to the BAE associated with Uq (̂g).1

In these equations, a typical factor with i �= j reads

(w
(i)
r − w

( j)
s q)−C ji

(w
(i)
r − w

( j)
s q−1)−C ji

, if i �= j, (1.5)

where (Ci j ) is the Cartan matrix of g. If g is simply laced, formulas (1.4) and (1.5)
coincide and so the equations are just the standard BAE associated withUq (̂g). There-
fore, in this case one obtains a “dual” description of the spectrum in terms of Miura
(G, q)-opers, giving rise to what in [21] was called the qDE/IM correspondence.

However, if g is not simply laced, we obtain this way a different system of equa-
tions. A Yangian version of these equations first appeared in the work of Mukhin and
Varchenko [47, 48]. We note that for g = B� similar equations were also obtained in
[8] in the context of 3d quiver gauge theories.

In this paper, wewill call these equations the folded Bethe Ansatz equations because
they can be obtained by “folding” the BAE for the simply laced simple Lie algebra g′
that gives rise to g (i.e. g′ is equipped with an automorphism of order 2 or 3 whose
invariant Lie subalgebra is g).

To explain this folding procedure and to illustrate the difference between the two
types of BAE, consider the case of g = C�. Then, g′ = A2�−1. In this case, di = 1
for i = 1, . . . , � − 1 and d� = 2. Therefore, only factors (1.4) for C� with i �= j and
the powers of q different from ±1 (which are the only powers of q appearing in the
factors with i �= j in the simply laced cases) occur for i = �, j = � − 1 or the other
way around. The first of them is

w
(�)
r − w

(�−1)
s q2

w
(�)
r − w

(�−1)
s q−2

= w
(�)
r − w

(�−1)
s q2

w
(�)
r − w

(�−1)
s

w
(�)
r − w

(�−1)
s

w
(�)
r − w

(�−1)
s q−2

. (1.6)

On the other hand, since the entry C�−1,� of the Cartan matrix of g = C� is equal to
−2, the corresponding factor (1.5) reads

(w
(�)
r − w

(�−1)
s q)2

(w
(�)
r − w

(�−1)
s q−1)2

. (1.7)

It can be obtained by folding the expression of the form:

w
(�)
r − w

(�−1)
s q

w
(�)
r − w

(�−1)
s q−1

w
(�)
r − w

(�+1)
s q

w
(�)
r − w

(�+1)
s q−1

(1.8)

appearing in the BAE of the simply laced Lie algebra g′ = A2�−1. Indeed, the auto-
morphism of the Dynkin diagram of A2�−1 preserves the �th vertex and exchanges the

1 More precisely, this was proved in [21] for Miura–Plücker (G, q)-opers, but in the subsequent work [43]
it was shown that this notion is equivalent to the notion of Miura (G, q)-oper.
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(� − 1)st and the (� + 1)st vertices. If we accordingly identify the variables w
(�−1)
s

and w
(�+1)
s in the expression (1.8), we obtain the factor (1.7). This is what we mean

by folding the BAE of a simply laced Lie algebra g′.
Note that the difference between (1.7) and (1.6) (as its RHS shows) is the difference

between f (w)2 and f (wq) f (wq−1).

Remark 1.1 After the first version of this paper was posted on arXiv, Heng-Yu Chen
and Taro Kimura informed us about their paper [7], in which they considered two
classical limits of the deformedW-algebraWq,t (g) in the context of the corresponding
5D fractional quiver gauge theory introduced in [41] (where these classical limits are
interpreted as the two Nekrasov–Shatashvili limits). They obtained a version of the
folded Bethe Ansatz equations of the present paper from the analysis of the partition
function of this theory in one of these limits. They did not consider the folded integrable
model, which is the main focus of the present paper, where these equations naturally
appear from certain subspaces of finite-dimensional representations of quantum affine
algebras (see Sect. 5). ��

1.3 Folded integrable model

According to [21], non-degenerate Miura (G, q)-opers encode solutions of the folded
BAE. But which integrable model do these equations correspond to?

In this paper (Sect. 5), we propose a conjectural answer to this question. Namely,
we conjecture the existence of what we will call the folded integrable model for every
non-simply laced simple Lie algebra g, whose spectra give rise to solutions of the
folded BAE (under a genericity condition). This folded integrable model combines in
a non-trivial way representations of the quantum affine algebraUq(̂g′), where g′ is the
corresponding simply-laced Lie algebra (these appear as the auxiliary spaces of the
folded model) and representations of the quantum affine algebraUq(

L ĝ), where L ĝ is
the twisted affine Kac–Moody algebra which is Langlands dual to ĝ (these appear as
the spaces of states of the folded model).

Remark 1.2 Note that to the twisted quantum affine algebra Uq(
L ĝ) one can also

associate an XXZ-type quantum integrable model. It is constructed in the same way
as for the untwisted quantum affine algebras, and its spectra correspond to the solutions
of the BAE that were proposed in [55, 57]. But this model is different from the folded
model. Namely, the typical factors of the BAE of this model read

(w
(i)
r )−C ji − (w

( j)
s q)−C ji

(w
(i)
r )−C ji − (w

( j)
s q−1)−C ji

, if i �= j, (1.9)

so they differ from the factors (1.5).
For example, in the case of g = C�, instead of the factor (1.7), we have

(w
(�)
r )2 − (w

(�−1)
s q)2

(w
(�)
r )2 − w

(�−1)
s q−1)2

= w
(�)
r − w

(�−1)
s q

w
(�)
r − w

(�−1)
s q−1

w
(�)
r + w

(�−1)
s q

w
(�)
r + w

(�−1)
s q−1

. (1.10)
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Thus, it can be obtained by folding the expression (1.8) if we also multiply the spectral
parameter by −1, i.e. identify w

(�−1)
s and −w

(�+1)
s in (1.8) (rather than w

(�−1)
s and

w
(�+1)
s ). In other words, the difference between (1.7) and (1.10) is the difference

between f (w)2 and f (w) f (−w). And similarly for other Lie algebras corresponding
to an automorphismof order 2. In the case ofg = G2,when the automorphismhas order
3, it is the difference between f (w)3 and f (w) f (wε) f (wε−1), where ε = e2π i/3. ��

1.4 QQ-system

There is an important intermediate object between the spectra of the XXZ-type model
associated with Uq (̂g) and the corresponding BAE called the QQ-system. It was
introduced in [45, 46] in the context of affine opers. In [20], it was shown that this QQ-
systemnaturally arises in the context of the homomorphismsh′

W (see the above formula
(1.2)). Namely, in addition to the set of prefundamental representations R+

j (z), j ∈ I ,
discussed above there is another set of representations, denoted by X j (z), j ∈ I ,
in the category O∗, such that properly rescaled classes of these two sets satisfy the
QQ-system. In other words, if we assign to R+

j (z), j ∈ I , the above Q-operators

Q j (z, u) and to X j (z), j ∈ I , the transfer-matrix ˜Q j (z, u) (the image of X j (z) under
the homomorphism h′

W , where W is a finite-dimensional representation of Uq (̂g)),
then these operators, properly rescaled, will satisfy the QQ-system.2 Note that for
g = sl2, this is the quantumWronskian relation introduced in [4], which provided the
initial motivation for this line of research.

Thus, the QQ-system encodes universal relations between the classes of the repre-
sentations R+

j (z) and X j (z), j ∈ I in Rep′ which translate under the homomorphism
(1.2) into relations between the corresponding transfer-matrices, and hence their eigen-
values, on any representation W .3

As explained in [20, 45, 46], the Bethe Ansatz equations (1.3) follow directly from
the QQ-system under a certain non-degeneracy condition. In fact, from the point of
view of the preceding paragraph, the QQ-system is more fundamental to the question
of describing the spectra of the XXZ-type models than the Bethe Ansatz equations.

Likewise, for the folded BAE, as shown in [21], these equations are equivalent to
the QQ-system proposed in [21] (under a non-degeneracy condition). We will call the
latter system the folded QQ-system because it can be obtained by folding the QQ-
system associated with the simply laced Lie algebra g′. Thus, this system appears as
an intermediate object between Miura (G, q)-opers and the folded BAE.

In this paper, we show that this folded QQ-system also appears naturally as a
relation satisfied by the transfer-matrices of our (conjectural) folded integrable model
associated with a non-simply laced Lie algebra g. The folded BAE equations follow
from the folded QQ-system under a non-degeneracy condition.

2 It was called Q˜Q-system in [20] but here, for the sake of brevity, we follow the terminology of [21] and
call it the QQ-system.
3 The fact that the same QQ-system arises both from the affine opers and the eigenvalues of the transfer-
matrices is a manifestation of the affine Langlands duality proposed in [11] and further elucidated in [20].
However, we will not discuss this duality in the present paper.
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1.5 DeformedW-algebras

Valuable insights about the folded quantum integrable model can be learned from
the deformed W-algebras introduced by two of the authors of the present paper in
[24]. Recall that this is a two-parameter algebraWq,t (g) associated with a simple Lie
algebra g. Recently, the algebraWq,t (g) found interesting applications in the study of
four-dimensional supersymmetric gauge theories, see [1, 10, 40, 41, 53].

The deformed W-algebra has two classical limits, in which the algebra becomes
commutative, and equipped with a Poisson structure: the first occurs when t → 1 and
the second when q → 1.

The first limit,Wq,1(g), is relatively well understood. It is isomorphic to the center
Zq (̂g) ofUq (̂g) at the critical level. The corresponding commutative algebra of gener-
ating fields can be identified, via a version of the transfer-matrix construction (see [23,
56]), with the representation ring RepUq (̂g).4 Moreover, under this identification the
free field realization of Wq,1(g) becomes the q-character homomorphism (this was
the motivation behind the definition of the q-characters in [25]).

If g is simply laced, then the second classical limit,W1,t (g), coincides with the first
one upon replacing t withq. But ifg is not simply laced, the second limit is substantially
different from the first one. In [24], W1,t (g) was linked to the t-deformed Drinfeld–
Sokolov reduction of the loop group associated with G introduced in [26, 59] and
some observations were made connecting elements of W1,t (g) to the q-characters of
Uq (̂g

∨), where ĝ∨ is the twisted affine algebra associated with g′ and σ . But that’s
pretty much all that has been known about the limit q → 1 until now.

In the present paper, we argue that it is this limit that is relevant to the “folded
structures” that we discuss here, including the folded Bethe Ansatz equations and the
folded integrable models. Thus, we can learn a lot about these models by studying this
limit. Its hybrid nature, i.e. the fact that it mixes in a non-trivial way quantum affine
algebras ̂g′ and L ĝ, shows that W1,t (g) is a fascinating Poisson algebra that deserves
further investigation.

The deformedW-algebraWq,t (g) creates a bridge between the two classical limits,
and hence between theXXZ-type quantum integrablemodel associatedwithUq (̂g) and
the corresponding folded quantum integrable model. However, the non-commutative
nature of Wq,t (g) makes deriving practical consequences of this bridge a daunting
task. For this reason, in this paper we replace Wq,t (g) with its simplified commuta-
tive version introduced by two of the authors in [18] under the name interpolating
(q, t)-characters. Using a slight refinement of these objects, we make our conjectures
concerning the folded quantum integrable models more precise. This also enables us
to explicitly verify our conjectures in a number of non-trivial cases (see Sect. 7).

4 More precisely, there is a homomorphism RepUq (̂g) → Zq (̂g)[[z±1]], so that every V ∈ RepUq (̂g)
gives rise to a formal power series TV (z), and the Fourier coefficients of these series topologically generate
Zq (̂g), see [25, Section 8.1].
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1.6 Connection to qKZ equations and quantum q-Langlands correspondence

It is known that the critical level limit of the solutions of the qKZ equations corre-
sponding to Uq (̂g) gives rise to eigenvectors of the XXZ-type model associated with
Uq (̂g). Thus, the qKZ systemprovides a deformation of the lattermodel.5 This can also
be seen from the fact that for a large class of representations of Uq (̂g), the difference
operators of the qKZ system become in the critical level limit the transfer-matrices of
the XXZ-type model (see Proposition 10.1).

In [1], a quantum q-Langlands correspondence was proposed. For a simply laced
simple Lie algebra g, it sets up a correspondence between solutions of the qKZ system
associated with Ut (̂g) and the deformed conformal blocks associated with Wq,t (̂g).
Here q depends on the level ofUt (̂g) in such a way that the limit q → 1 corresponds to
the critical level limit. In this limit, the quantum q-Langlands correspondence essen-
tially becomes the statement that the Hamiltonians of the XXZ-type model associated
with Ut (̂g) correspond to elements of W1,t (̂g). If g is simply laced, then W1,t (̂g)
indeed coincides with RepUt (̂g), so this statement comes down to the existence of the
homomorphisms hW given by formula (1.1).

However, if g is not simply laced, the algebra W1,t (̂g) is no longer isomorphic to
RepUt (̂g) and hence does not give rise to the Hamiltonians of the standard XXZ-type
model associated with Ut (̂g), which are the transfer-matrices associated with finite-
dimensional representations of Ut (̂g). Rather, as we argue in this paper, it gives rise
to the Hamiltonians of the folded quantum integrable model associated with g. These
Hamiltonians correspond to the transfer-matrices associated with finite-dimensional
representations of Ut (̂g′) rather than Ut (̂g).

This suggests that for non-simply laced g the quantum q-Langlands correspondence
might be more subtle. Namely, it follows from the preceding paragraph that the system
of q-difference equations appearing on one side of this correspondence is not the usual
qKZ system associated withUt (̂g). If this were the usual qKZ system associated with
Ut (̂g), then in the critical limit we would recover the eigenvectors of the XXZ-type
model associated withUt (̂g), but this would be inconsistent with the limit on the other
side of the correspondence which yields W1,t (g). As we discussed above, the latter
is not the algebra of Hamiltonians of the XXZ-type model associated with Ut (̂g), but
rather the algebra of Hamiltonians of the folded quantum integrable model introduced
in the present paper.

What should replace the qKZ system associated with Ut (̂g) in the quantum q-
Langlands correspondence for non-simply laced g? The above discussion shows that
this modified qKZ system should have the property that the leading terms of its
solutions in the critical level limit are eigenvectors of the folded integrable system
associated with g. As far as we know, the existence of such modified qKZ system is
an open question at the moment (naive ways to “fold” the qKZ system associated with
g′ don’t seem to work, see “Appendix” of this paper). But we expect that this ques-
tion can be answered using the geometric and K -theoretic methods of [1]. Perhaps,

5 The XXZ-type model is already quantum, but here by a deformation we mean a non-commutative defor-
mation of the commutative algebra of quantum Hamiltonians of the XXZ-type model. Therefore, it is a
kind of “second quantization.”
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these equations can also be constructed purely algebraically. We hope to return to this
question elsewhere.

1.7 The Gaudin limit

To gain further insights, it is instructive to consider the limit in which the second
parameter, denoted by t in the previous subsection, also goes to 1. In this limit, the
XXZ-type model associated with Ut (̂g) becomes the Gaudin model associated with
g [12, 16]; more precisely, its modification with a twist parameter χ , an element of
the Cartan subalgebra of g [13, 14, 58]. It turns out that in the limit t → 1 the folded
integrable model associated with g that we discuss in this paper becomes the Gaudin
model associated with Lg. Thus, in the Gaudin limit we do not find any new quantum
integrablemodels. In part, this is because in this limit the irreducible finite-dimensional
representations ofUq (̂g) decompose into a direct sum of irreducible representations of
the finite-dimensional Lie algebra g, so the affine Langlands duality ĝ → L ĝ reduces
to the finite-dimensional Langlands duality g → Lg, which was discovered in [12].

However, even in this limit, as we will show in Sect. 9, one can observe some
intriguing effects related to folding. In particular, using the results of [13], we will
construct embeddings of tensor products of irreducible representations of Lg into ten-
sor products of the corresponding irreducible representations of g′ (see Theorem 9.5).
In fact, it’s a family of embeddings depending on χ (which is assumed to be regu-
lar and generic). It maps eigenvectors of the Lg-Gaudin model with the twist χ to
eigenvectors of the corresponding g′-Gaudin model. Under a certain assumption (see
Conjecture 9.10 in the case of a single irreducible representation) this embedding can
be constructed explicitly.

1.8 Plan of the paper

In Sect. 2, we fix our notation for the Lie algebras and two-parameter Cartan matrices.
In Sect. 3, we recall the definition of the deformed W–algebra Wq,t (g) from [24].
We then consider its two classical limits. The first limit, t → 1, is relatively well
understood; it can be identified with the Grothendieck ring of finite-dimensional rep-
resentations of Uq (̂g) as we recall in Sect. 3.3. In Sect. 3.4 we obtain a description of
the second limit, q → 1 (which was much less understood), analogous to the descrip-
tion of the t → 1 limit (see Propositions 3.2 and 3.3). In Sect. 4, we recall the relation
between the t → 1 limit of the deformed W-algebra and the ring of q-characters of
finite-dimensional representations of Uq (̂g). We then relate the q → 1 limit to what
we call the ring of folded t-characters of finite-dimensional representations ofUt (̂g′),
where g′ is the simply laced Lie algebra fromwhich g is obtained as the Lie subalgebra
fixed by an automorphism (see Theorem 4.3). We also discuss the link between this
limit and the difference Drinfeld–Sokolov reduction. Finally, in Sect. 4.6 we introduce
the folded Bethe Ansatz equations.

In Sect. 5, we describe the folded quantum integrable model in which the spectra
of the Hamiltonians conjecturally correspond to solutions of the folded Bethe Ansatz
equations (see Conjectures 5.15 and 5.16). In Sect. 6, we recall the interpolating
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(q, t)-characters from [18], which may be viewed as commutative algebra analogues
of elements of the non-commutativeW-algebraWq,t (g). We then construct a refined
version of the interpolating (q, t)-characters. They are elements of a ring depend-
ing on the parameters q and t , which is equipped with 5 interesting specialization
homomorphisms to the rings of q- and t-characters of various affine Kac–Moody
algebras related to g (see Theorem 6.6). In Sect. 6.5, we partially prove our conjec-
tures in the important case of σ -fundamental representations (these are the irreducible
finite-dimensional representations of Uq(̂g′) with the σ -invariant highest monomials
of smallest possible degrees). In Sect. 7, we present a number of explicit examples
confirming our Conjectures 5.15 and 5.16. In Sect. 8, we formulate a conjecture link-
ing the folded t-characters to Kashiwara’s extension of Nakajima’s monomial model
of crystals to non-simply laced Lie algebras. In Sect. 9, we consider the Gaudin limit
of the folded quantum integrable models. In the “Appendix” we discuss a possible
construction of a folded version of the qKZ equations for non-simply laced Lie alge-
bras.

2 Notation and setup

2.1 Lie algebra

Let g be a simple Lie algebra of rank � and I = {1, . . . , �} the set of vertices of the
Dynkin diagram of g. Let (·, ·) be the invariant inner product on g, normalized so that
the square of the maximal root equals 2. Let {α1, . . . , α�} and {ω1, . . . , ω�} be the sets
of simple roots and of fundamental weights of g, respectively. We have:

(αi , ω j ) = (αi , αi )

2
δi, j .

Let d be the maximal number of edges connecting two vertices of the Dynkin diagram
of g. Thus, d = 1 for simply laced g, d = 2 for B�,C�, F4, and d = 3 for G2. We set
ε = eiπ/d .

Set

D = diag(d1, . . . , d�),

where

di = d
(αi , αi )

2
. (2.1)

All di ’s are integers, which are relatively prime with each other. For simply laced g,
D is the identity matrix.

Now let C = (Ci j )1≤i, j≤� be the Cartan matrix of g. We have:

Ci j = 2(αi , α j )

(αi , αi )
.
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Denote by (Ii j )1≤i, j≤� the incidence matrix,

Ii j = 2δi, j − Ci j .

Let B = (Bi j )1≤i, j≤� be the following matrix:

B = DC,

i.e.,

Bi j = d(αi , α j ).

Theweightsρ andρ∨ are defined by (ρ∨, αi ) = 1, d(ρ, αi ) = di for any 1 ≤ i ≤ �.

2.2 Lie algebras involved

We list here all Lie algebras involved in our study:
• g is a simple finite-dimensional Lie algebra.
• Lg is its Langlands dual Lie algebra. For example, if g = B�, then Lg = C�.
• ĝ is the untwisted affine Kac–Moody algebra, which is the central extension of
g[t, t−1]. For example, if g = B�, then ĝ = B(1)

� .

• L̂g is the untwisted affine Kac–Moody algebra, which is the central extension of
Lg[t, t−1]. For example, if g = B�, then L̂g = C (1)

� .
• L ĝ is the affine Kac–Moody algebra that is affine Langlands dual to ĝ. If g is
simply laced, then L ĝ = ĝ. But if g is non-simply laced, then L ĝ is a twisted affine
Kac–Moody algebra. Note that L ĝ contains Lg as the constant Lie subalgebra. For
example, if g = B�, then L ĝ = A(2)

2�−1 (whose constant subalgebra is
Lg = C�);

and if g = C�, then L ĝ = D(2)
�+1 (whose constant subalgebra is

Lg = B�).
• g′ is the unique simply laced Lie algebra equipped with an automorphism σ of
order d such that the Lie subalgebra of σ -invariants in g′ is g (i.e. g = (g′)σ ). For
example, if g = B�, then g′ = D�+1; and if g = C�, then g′ = A2�−1.

• ĝ∨ is ĝ, if g is simply laced. If g is non-simply laced, then ĝ∨ is the twisted
affine Kac–Moody algebra corresponding to g′ and σ . Note that its constant Lie
subalgebra is g itself. For example, (B(1)

� )∨ = D(2)
�+1 (its constant subalgebra is

B�), and (C (1)
� )∨ = A(2)

2�−1 (its constant subalgebra is C�). Note also that we have

ĝ∨ = L(L̂g).

It might be better to denote ĝ∨ by g′(d), but we will use below the notation ĝ∨
because it was used in [24].

Let us denote by I ′ the set of vertices of the Dynkin diagram of g′. Then, σ acts on
I ′ and the quotient is in bijection with the set I of vertices of the Dynkin diagram of I .
Note that the automorphism σ of the Dynkin diagram of g′ acts on the objects labeled
by the nodes of this diagram (such as simple roots, fundamental weights, etc.).
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2.3 Two-parameter Cartanmatrices

We follow the notation of [24], Sect. 2, except that we replace q by q−1 (however, for
t = 1 this notation is consistent with the notation of [25]).

Now let q, t be nonzero complex numbers which are not roots of unity. We will use
the standard notation for n ∈ Z

[n]q = qn − q−n

q − q−1 .

Let

qi = qdi .

We define � × � matrices C(q, t), D(q, t), and B(q, t) by the formulas

Ci j (q, t) = (qi t + q−1
i t−1)δi, j − [Ii j ]q , (2.2)

D(q, t) = diag([d1]q , . . . , [d�]q),
B(q, t) = D(q, t)C(q, t). (2.3)

Thus,

Bi j (q, t) = [di ]q
(

(qdi t + q−di t−1)δi, j − [Ii j ]q
)

. (2.4)

It is easy to see that the matrix B(q, t) is symmetric. For simply laced g,

Ci j (q, t) = Bi j (q, t) = (qt + q−1t−1)δi, j − Ii j .

We note that the determinants of these matrices are nonzero polynomials in q and t .
Hence, they are invertible over the field of rational functions in q and t .

Clearly, the limits of C(q, t), D(q, t), and B(q, t) as both q → 1 and t → 1
coincide with C , D, and B, respectively. We also have

Bi j (q, 1) = [Bi j ]q , Ci j (q, 1) = (qi + q−1
i )δi, j + [Ci j ]qδi �= j ,

and

Bi j (1, t) = di ((t + t−1)δi j − Ii j ).

Let C(q) = C(q, 1). It is invertible over the field of rational functions in q. We
denote its inverse by ˜C(q).
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3 DeformedW-algebras and screening operators

In this section, we recall the definition of the deformedW–algebraWq,t (g) and related
objects from [24]. We will then look at the two classical limits t → 1 and q → 1,
which are defined as the intersections of the kernels of two sets of classical screening
operators. The t → 1 limit was described in [22, 24, 25] and is closely related to the
Grothendieck ring RepUq (̂g) and the corresponding q-characters (as we recall in the
next section). A new result of this section is the analogous description of the q → 1
limit (see Propositions 3.2 and 3.3).

3.1 Heisenberg algebraHq,t(g)

Let Hq,t (g) be the Heisenberg algebra with generators ai [n], i = 1, . . . , �; n ∈ Z,
and relations

[ai [n], a j [m]] = 1

n
(qn − q−n)(tn − t−n)Bi j (q

n, tn)δn,−m (3.1)

where 1 ≤ i, j ≤ �; n,m ∈ Z\{0}.
Here and in what follows, it is understood that the 0th generator commutes with all

other generators: [ai [0], a j [m]] = 0, for all m ∈ Z.
The algebra Hq,t (g) becomes commutative in the limit q → 1 and in the limit

t → 1.
The generators ai [n] are “root” type generators of Hq,t (g). There is a unique set

of “fundamental weight” type generators, yi [n], i = 1, . . . , �; n ∈ Z, that satisfy:

[ai [n], y j [m]] = 1

n
(qni − q−n

i )(tn − t−n)δi, jδn,−m . (3.2)

They have the following commutation relations:

[yi [n], y j [m]] = 1

n
(qn − q−n)(tn − t−n)Mi j (q

n, tn)δn,−m, (3.3)

where (Mi j (q, t))1≤i, j≤� is the following matrix

M(q, t) = D(q, t)C(q, t)−1

= D(q, t)B(q, t)−1D(q, t). (3.4)

We have

ai [n] =
�
∑

j=1

C ji (q
n, tn)y j [n]. (3.5)
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Wewill use the colon notation for the standard normally ordered product of elements
of this algebra. Introduce the generating series

Ai (z) = t2(ρ
∨,αi )q2d(ρ,αi )+2ai [0] : exp

⎛

⎝

∑

m �=0

ai [m]z−m

⎞

⎠ :, (3.6)

Yi (z) = t2(ρ
∨,ωi )q2d(ρ,ωi )+2yi [0] : exp

⎛

⎝

∑

m �=0

yi [m]z−m

⎞

⎠ : . (3.7)

Recall that (ρ∨, αi ) = 1, d(ρ, αi ) = di .
Formula (3.5) implies that

Ai (z) =: Yi (zqi t)Yi (zq−1
i t−1)

×
∏

j :I ji=1

Y j (z)
−1

∏

j :I ji=2

Y j (zq)−1Y j (zq
−1)−1

×
∏

j :I ji=3

Y j (zq
2)−1Y j (z)

−1Y j (zq
−2)−1 : (3.8)

Thus, for g of non-simply laced type, the two classical limits of Ai (z) are quite
different: When t → 1, we have

Ai (z) = Yi (zqi )Yi (zq
−1
i )

×
∏

j :I ji=1

Y j (z)
−1

∏

j :I ji=2

Y j (zq)−1Y j (zq
−1)−1

×
∏

j :I ji=3

Y j (zq
2)−1Y j (z)

−1Y j (zq
−2)−1 (3.9)

but when q → 1, we have a much simpler expression

Ai (z) = Yi (zt)Yi (zt
−1)
∏

j �=i

Y j (z)
−I ji . (3.10)

Remark 3.1 (1) The first limit (3.9) coincides with the monomial Ai,z which appears
in the theory of q-characters of finite-dimensional representations of quantum affine
algebras introduced in [25]. This is not surprising because, as explained in [25] and in
Sect. 4.1, the q-characters may be viewed as limits of the fields from Wq,t as t → 1.

(2)There is a surprising connectionbetween the second limit (3.10) andKashiwara’s
extension to non-simply laced g [38] of Nakajima’s monomial model for crystals of
Ut (g) [51]. Let us recall that Nakajima’s monomial realization was originally moti-
vated by its relation with the q-characters in the symmetric cases. It turned out that this
crystal realization was a consequence of the embedding theorem [36], which makes
sense in the symmetrizable case [38]. But the relation between the monomial model
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and the q-characters was lost for non-simply laced types. Here we suggest an analo-
gous relation, inwhich the role of the t → 1 classical limit ofWq,t (g) (whose free field
realization is essentially the same as the q-character homomorphism, see Remark 4.1)
is played by the q → 1 classical limit.

Recall that in the monomial model the vertices of the crystal are represented by
certain monomials in the variables Yi (tk)±1, and the crystal operators are obtained
by multiplying them with some special monomials corresponding to the simple roots.
In the simply laced case, these are the monomials A±1

i,a occurring in the q-character

theory (as in formula (3.9)). But in the non-simply laced case the monomials A±1
i,a

in formula (3.9) do not work. Instead, as explained in [38], we have to replace these
monomials A±1

i,a with other monomials. A direct comparison shows that Kashiwara’s
monomials coincide with the monomials in the above formula (3.10). We formulate a
precise conjecture about this in Sect. 8 below. ��

3.2 Screening operators and definition ofWq,t(g)

Recall that we have two sets of screening operators introduced in [24]: S+
i (z) and

S−
i (z), i = 1, . . . , �. They satisfy the difference equations:

S+
i (zqi ) =: Ai (z)S

+
i (zq−1

i ) :, (3.11)

and

S−
i (zt) =: Ai (z)S

−
i (zt−1) : . (3.12)

The deformed W-algebra Wq,t (g) was defined in [24] as the intersection of kernels
of the residues S+

i of S+
i (z), i ∈ I , or of the residues S−

i of S−
i (z), i ∈ I .

More precisely,Wq,t (g) was defined in [24] as the associative topological algebra
depending on two parameters q and t , which is topologically generated by the Fourier
coefficients of certain fields from a deformed chiral algebra Wq,t (g). The latter was
defined in [24] as the maximal subalgebra commuting with the screening operators
S±
i , i ∈ I , in a deformed chiral algebra Hq,t (g) constructed from the Heisenberg

algebra Hq,t (g).
In the classical limits t → 1 (resp. q → 1), Hq,t (g) becomes commutative:

Hq,1(g) = C[Y j (zq
n j )±1] j∈I ,n j∈Z, H1,t (g) = C[Y j (zt

n j )±1] j∈I ,n j∈Z.

(3.13)

The corresponding classical limit of Wq,t (g) is a commutative subalgebra of this
polynomial algebra, which is equal to the intersection of the kernels of the classical
screening operators S+

i (resp. S−
i ), i ∈ I .

We will call these limits as the classical W-algebras and denote them by K+
q (g)

and K−
t (g), respectively. Below we describe both of these algebras. We will see that

they are quite different if g is non-simply laced.
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3.3 The t → 1 limit

In the limit t → 1, the family S+
i , i ∈ I , survives and gives rise to the following

derivations:

S+
i : C[Y j (zq

n j )±1]n j∈Z

→
(

⊕

m∈Z
C[Y j (zq

n j )±1]n j∈Z ⊗ S+
i (zqm)

)

/(S+
i (zq2i ) − Ai (zqi )S

+
i (z))

acting by the formula

S+
i · Y j (zq

n j )±1 = ±δi j Y j (zq
n j )±1 ⊗ S+

i (zqn j ). (3.14)

The following isomorphism was proved in [25, Proposition 6] and [22, Proposition
5.2]:

Ker S+
i = C[Y j (zq

n j )±1] j �=i;n j∈Z ⊗ C[Yi (zqni )(1 + Ai (zq
ni qi )

−1)]ni∈Z,

(3.15)

where Ai (z) is given by formula (3.9).
Now set

K+
q (g) :=

⋂

i∈I
Ker S+

i . (3.16)

Thus,K+
q (g) is the t → 1 limit ofWq,t (g). The following theorem was proved in [22,

Theorem 5.1].

Theorem 3.1 (1) The commutative algebra K+
q (g) is isomorphic to Repz Uq (̂g),

the Grothendieck ring of the tensor subcategory CZ of the category of finite-
dimensional representations of Uq (̂g) whose objects are representations with the
Jordan–Hölder constituents having Drinfeld polynomials with roots in qZ.

(2) Under this isomorphism, the embedding K+
q (g) → Hq,1(g) becomes the q-

character homomorphism.

FromTheorem3.1,we obtain a natural basis ofK+
q (g) consisting of theq-characters

of simple modules from CZ. It is known that these are parametrized by dominant
monomials, i.e. monomials in the variables Y j (zqn j ), j ∈ I , n j ∈ Z, with only non-
negative powers. In particular, the elements of this basis corresponding to the degree
one dominant monomials Y j (zn j ) coincide with the q-characters of the corresponding
fundamental representations (those are known to contain a unique dominantmonomial,
see [25, Corollary 4,(1)]).
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3.4 The q → 1 limit

Now consider the limit q → 1. Then, it is the family S−
i , i ∈ I , that survives and

gives rise to the derivations

S−
i : C[Y j (zt

n j )±1]n j∈Z

→
(

⊕

m∈Z
C[Y j (zt

n j )±1]n j∈Z ⊗ S+
i (ztm)

)

/(S−
i (zt2) − Ai (zt)S

−
i (z))

acting by the formula

S−
i · Y j (zt

n j )±1 = ±δi j Y j (zt
n j )±1 ⊗ S−

i (ztn j ), (3.17)

where Ai (z) = Yi (zt)Yi (zt−1)Y j (z)−I ji (formula (3.10)).
We have the following analogue of the isomorphism (3.15) (it is equivalent to (3.15)

if g is simply laced, but for a non-simply laced Lie algebra g this statement is new, as
far as we know).

Proposition 3.2 We have

Ker S−
i =

⋂

i∈I
C[Y j (zt

n j )±1] j �=i;n j∈Z ⊗ C[Yi (ztni )(1 + Ai (zt
ni+1)−1)]ni∈Z (3.18)

where Ai (z) = Yi (zt)Yi (zt−1)
∏

j �=i Y j (z)−I ji (formula (3.10)).

The proof is obtained by applying the argument used in the proof of (3.15) in [22,
Proposition 5.2].

Now set

K−
t (g) =

⋂

i∈I
Ker S−

i . (3.19)

Thus, K−
q (g) is the q → 1 limit of Wq,t (g).

Unlike the limit t → 1 (see Theorem 3.1), for non-simply laced g we do not have
an identification ofK−

t (g) with the Grothendieck ring of a category of representation.
Nonetheless, we do have a basis in K−

t (g) analogous to the basis of the q-characters
of simple modules in K+

q (g).

Proposition 3.3 (1) Every element of K−
t (g) is characterized by the multiplicities of

the dominant monomials contained in it (i.e. monomials in the Y j,tn j , j ∈ I ,
n j ∈ Z, with only non-negative powers).

(2) For every dominant monomial m, there is a unique element F(m) of K−
t (g) such

that m is the unique dominant monomial of F(m). Therefore, we obtain a basis
{F(m)} of K−(g) parametrized by dominant monomials m.
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Proof The proof is the same as the proof in [28, Theorem 5.13]. All that remains is
to check the existence of the F(Yi (zqn)) for rank 2 Lie algebras. For simply laced
types, this is true because we can use the ordinary q-characters of the fundamental
representations. For type B2, we find the following elements:

F(Y1(z)) = Y1(z) + Y1(zq
2)−1Y2(zq)2

+ 2Y2(zq)Y2(zq
3)−1 + Y2(zq

3)−2Y1(zq
2) + Y1(zq

4)−1,

F(Y2(z)) = Y2(z) + Y2(zq
2)−1Y1(zq) + Y1(zq

3)−1Y2(zq
2) + Y2(zq

4)−1,

and for type G2 we find

F(Y1(z)) = Y1(z) + Y1(zq
2)−1Y2(zq)3 + 3Y2(zq)2Y2(zq

3)−1

+3Y2(zq)Y2(zq
3)−2Y1(zq

2)

+Y2(zq
3)−3Y1(zq

2)2 + 3Y2(zq)Y2(zq
3)Y1(zq

4)−1

+ 2Y1(zq
2)Y1(zq

4)−1 + 3Y2(zq)Y2(zq
5)−1

+Y1(zq
4)−2Y2(zq

3)3 + 3Y2(zq
3)−1Y2(zq

5)−1Y1(zq
2)

+ 3Y1(zq
4)−1Y2(zq

3)2Y2(zq
5)−1

+ 3Y2(zq
3)Y2(zq

5)−2 + Y2(zq
5)−3Y1(zq

4) + Y1(zq
6)−1,

F(Y2(z)) = Y2(z) + Y2(zq
2)−1Y1(zq) + Y1(zq

3)−1Y2(zq
2)2 + 2Y2(zq

2)Y2(zq
4)−1

+Y2(zq
4)−2Y1(zq

3) + Y2(zq
4)Y1(zq

5)−1 + Y2(zq
6)−1.

This completes the proof, up to the fact that the algorithm may produce elements
F(Yi (zqn)) with an infinite number of terms. But it follows from Theorem 4.3 that
the elements F(Yi (zqn)) can also be obtained as folded q-characters of fundamental
representations of Uq(̂g′), which do have finite numbers of terms. ��

It follows from Proposition 3.3 that we have natural analogues F(Yi (ztn)) of the
q-characters of the fundamental representations. We also have natural analogues of
q-characters of the Kirillov–Reshetikhin modules (see Sect. 4.1).

Remark 3.2 This discussion motivates the following natural question: Is there a Hopf
algebra At (g) (an analogue of Ut (̂g)) together with an injective (t-character) homo-
morphism

Repz At (g) → C[Y j (zt
n j )±1] j∈I ;n j∈Z,

where Repz At (g) is a subring of the Grothendieck ring of the category of finite-
dimensional representations of At (g), whose image is K−

t (g)?
It is tempting to try to answer this question using an automorphism σ of the quantum

affine algebra Ut (̂g′) defined by formula (5.2) below. The subalgebra (Ut (̂g′))σ of σ -
invariants acts on every finite-dimensional representation V of Ut (̂g′). However, it is
not clear how to define a comultiplication on the algebra (Ut (̂g′))σ . Hence, it is not
clear how one could define a quantum integrable model this way. ��
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3.5 The deformedW-algebra for general q and t

The structure of the deformed chiral algebra Wq,t (g) for general values of q and t is
much more complicated than that of its classical limits discussed above. Conjecture 1
of [24] implies that every basis element ofWq,1(g) = K+

q (g) given by the q-character
of a simple module overUq (̂g) can be deformed to a basis element ofWq,t (g) (i.e. an
element of Hq,t (g) which lies in the kernel of the screening operators).

However, apart from a few explicit examples presented in [24], there is no proof
of existence of these elements in general. On the other hand, in [18] a simplified,
commutative version of Wq,t (g) was introduced, called the space of interpolating
(q, t)-characters. These are defined from certain subrings which are modeled on what
we expect the kernels of the screening operators to be (based on the description of
the kernels of screening operators associated with the ordinary q-characters). We will
recall this construction, and add further details to it, in Sect. 6.

At the moment, the relation between the interpolating (q, t)-characters and the
deformed W-algebra Wq,t (g) is conjectural. However, as we will see below, for our
purposes the (q, t)-characters provide a good substitute for elements of Wq,t (g).

4 Classical limits of the deformedW-algebra and q-characters

In this section, we first recall some details on the relation between the t → 1 limit
of the deformedW-algebra and the q-characters of finite-dimensional representations
of Uq (̂g). We then relate the q → 1 limit to what we call folded t-characters of
finite-dimensional representations of Ut (̂g′) (see Theorem 4.3).

4.1 Reminder on the q-characters of representations of quantum affine algebras

First, consider the untwisted quantum affine algebra Uq (̂g). Let RepUq (̂g) be the
Grothendieck ring of finite-dimensional representations of Uq (̂g). The q-character
homomorphism [25] is an injective ring homomorphism

χq : RepUq (̂g) → Yq = Z[Y±1
i,a ]i∈I ,a∈C× .

If we replace each Yi,a by yi , we recover the usual character homomorphism for
theUq(g)-module obtained by restriction ofUq (̂g)-module, which encodes its grading
by the lattice of integral weights of a Cartan subalgebra of the Lie algebra g. In
what follows, we will refer to these integral weights as g-weights. In particular, each
monomial in Yq has a g-weight.

It is proved in [22, 25] (see also Theorem 3.1 above) that

Im(χq) =
⋂

i∈I
Ki,q , (4.1)
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where

Ki,q = Z[Y±1
j,a ,Yi,a(1 + A−1

i,aqi
)] j �=i,a∈C× (4.2)

and Ai,a is defined by formula (3.9), where we replace Y j (za) with Y j,a .

Remark 4.1 Note that in the context of deformedW-algebras, it is convenient to restrict
ourselves to the variables Y j (zqn j ), n j ∈ Z (i.e. restrict ourselves to the multiplicative
lattice of spectral parameters a = zqn, n ∈ Z). But in the context of q-characters,
we usually consider all spectral parameters a ∈ C

× and denote the corresponding
variables by Y j,a (see [25, Sect. 7] for more detail).

In particular, comparing formulas (3.16) and (3.15) with formulas (4.1) and (4.2),
respectively, we find that if we replace the variables Y j (zqn j ), n j ∈ Z, by the variables
Y j,a, a ∈ C

×, then K+
q becomes Im(χq). That’s what we mean by the statement that

the t → 1 limit of the free field realization ofWq,t (g) corresponds to the q-character
homomorphism of Uq (̂g). ��

A monomial in Yq is called dominant if it is a product of positive powers of the
Yi,a, i ∈ I , a ∈ C

×. A simple Uq (̂g)-module is uniquely characterized by the highest
monomial (in the sense of its g-weight) in its q-character (this monomial encodes
the data of the Drinfeld polynomials; for the definition of the latter, see Theorem
12.2.6 of [6]). This monomial is dominant. An element of Im(χq) is characterized by
the multiplicities of its dominant monomials. A Uq (̂g)-module is said to be affine-
minuscule if its q-character has a unique dominant monomial.

If a dominant monomial is in Z[Y±1
i,a ]i∈I ,a∈qZ , then the q-character of the corre-

sponding simple module also belongs to this subring.
A Kirillov–Reshetikhin (KR) module ofUq (̂g) is a simple module with the highest

monomial of the form Yi,aYi,aq2i
· · · Y

i,aq2(k−1)
i

with a ∈ C
×, i ∈ I and k ≥ 0.

It was proved in [29, 52] that the KR modules of Uq (̂g) are affine-minuscule. For
k = 1, that is for fundamental representations, this was proved in [22].

4.2 Twisted affine algebras

Next, consider the twisted quantum affine algebra Ut (
L ĝ), and let RepUt (

L ĝ) be the
Grothendieck ring of the category of its finite-dimensional representations.

The twisted t-character homomorphism [30] is an injective ring homomorphism

χt : RepUt (
L ĝ) → Z[Z±1

i,ad
∨
i
]a∈C×,i∈I ,

where we have set

d∨
i = d + 1 − di . (4.3)

These are the analogues of the di for the Langlands dual Lie algebra Lg.
As in the untwisted case, we have the notions of dominant monomials, affine-

minuscule modules and KR modules. An element of Im(χt ) is again characterized by
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its dominant monomial and the KRmodules ofUt (
L ĝ) are affine-minuscule, as proved

in [30].
If a dominant monomial is in Z[Z±1

i,ad
∨
i
]a∈εZtZ,i∈I , then the twisted t-character of

the corresponding simple module also belongs to this subring.
The image of χt is equal to

⋂

i∈I
Z[Z±1

j,a
d∨
j
, Z

i,ad
∨
i
(1 + B−1

i,(at)d
∨
i
)] j �=i,a∈C× ,

where

Bi,a = Z
i,atd

∨
i
Z
i,at−d∨

i
×

∏

j∼i |d∨
j =d

Z−1
j,adi

×
∏

j∼i,a′|d∨
j =1,(a′)d

∨
i =a

Z−1
j,a′,

where we write i ∼ j if Ii j �= 0 (recall that (Ii j ) denotes the incidence matrix).
Note that a special definition should be used for the monomials Bi,a in the case of

type A(2)
2n , but we are not considering this case here because this affine Kac–Moody

algebra is not dual to an untwisted affine algebra (note that A(2)
2n does not appear in

Sect. 2.2).
According to Theorem 3.1, the t → 1 limit K+

q (g) of Wq,t (g) is isomorphic to
RepUq (̂g) so that the embedding of Wq,1(g) into Hq,1(g) becomes the q-character
homomorphism.

Our task is to relate the q → 1 limitK−
t (g) ofWq,t (g) to t-characters of representa-

tions of quantum affine algebras. We start with two examples and then derive a general
result. The upshot is that K−

t (g) is spanned by what we will call folded t-characters
of Ut (̂g′), where g′ is the simply laced Lie algebra equipped with an automorphism
whose invariant Lie subalgebra is g (the Dynkin diagram of g can be obtained by fold-
ing the Dynkin diagram of g′). These are the t-characters of the finite-representations
of Ut (̂g′) in which we identify the variables Yi (z) and Yσ(i)(z) for all i ∈ I ′.

4.3 Examples

Consider the case g = B�. Then, we have the following formula for the element T1(z)
of Wq,t (B�) corresponding to the first fundamental representation of Uq(B

(1)
� ) (see

[24], Sect. 5.1.2). Set

J = {1, . . . , �, 0, �, . . . , 1}
�i (z) =: Yi (zq2i−2t i−1)Yi−1(zq

2i t i )−1 :, i = 1, . . . , � − 1,

��(z) =: Y�(zq
2�−3t�−1)Y�(zq

2�−1t�−1)Y�−1(zq
2�t�)−1 :,

�0(z) = (q + q−1)(qt − q−1t−1)

q2t − q−2t−1 : Y�(zq
2�−3t�−1)Y�(zq

2�+1t�+1)−1 :,
��(z) =: Y�−1(zq

2�−2t�)Y�(zq
2�−1t�+1)−1Y�(zq

2�+1t�+1)−1 :,
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�i (z) =: Yi−1(zq
4�−2i−2t2�−i )Yi (zq

4�−2i t2�−i+1)−1 :, i = 1, . . . , � − 1.

Here and below we set Y0(z) = 1. According to [24],

T1(z) =
∑

i∈J

�i (z) (4.4)

commutes with the screening operators S±
i , i = 1, . . . , � and hence belongs to

Wq,t (B�).
The t → 1 limit of the rational function

f�(q, t) = (q + q−1)(qt−1 − q−1t)

q2t−1 − q−2t
(4.5)

is equal to 1. Hence, the limit of the above formula for T1(z) as t → 1 has 2� + 1
terms, and one can check that it coincides with the q-character of the first fundamental
representation of Uq(B

(1)
� ).

Now consider the q → 1 limit of (4.4). Note that f�(1, t) = 2, so in this limit the
term �0(z) appears with coefficient 2. As observed in [24, Sect. 6.3], the q → 1 limit
of T1(z) looks like the t-character of Ut (D

(2)
�+1) in which we remove all ε factors. For

this reason, it was conjectured in [24, Sect. 6.3] that the q → 1 limit of the elements of
Wq,t (g) in general (which are, by definition, elements of K−

t (g)) should be given by
the t-characters of finite-dimensional representations of Ut (̂g

∨) in which we remove
the ε factors (note that D(2)

�+1 = (B(1)
� )∨).

This conjecture is likely to be true, but the problem is that we don’t know how to
interpret this removal of ε factors in terms of representation theory, and therefore, this
does not help us with constructing the corresponding integrable models. Hence, in this
paper we give a different interpretation of this limit.

To explain it, let’s look more closely at the q → 1 limit of the formula (4.4) for
T1(z). This is an element of K−

t (B�) given by the same formula (4.4), where now

�i (z) = Yi (zt
i−1)Yi−1(zt

i )−1, i = 1, . . . , � − 1,

��(z) = Y�(zt
�−1)2Y�−1(zt

�)−1,

�0(z) = 2Y�(zt
�−1)Y�(zt

�+1)−1,

��(z) = Y�−1(zt
�)Y�(zt

�+1)−2,

�i (z) = Yi−1(zt
2�−i )Yi (zt

2�−i+1)−1, i = 1, . . . , � − 1.

Let’s compare this formula with the q → 1 limit of the formula for T1(z) from
Wq,t (D�+1) (see [24], Sect. 5.1.4). It is an elementK−

t (D�+1) given by formula (4.4)
but now with

J = {1, . . . , � + 1, � + 1, . . . , 1}
�i (z) = Yi (zt

i−1)Yi−1(t
i )−1, i = 1, . . . , � − 1,
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��(z) = Y�+1(zt
�−1)Y�(zt

�−1)Y�−1(zt
�)−1,

��+1(z) = Y�+1(zt
�−1)Y�(zt

�+1)−1,

��+1(z) = Y�(zt
�−1)Y�+1(zt

�+1)−1,

��(z) = Y�−1(zt
�)Y�(zt

�+1)−1Y�+1(zt
�+1)−1,

�i (z) = Yi−1(zt
2�−i )Yi (zt

2�−i+1)−1, i = 1, . . . , � − 1.

By inspecting these formulas, we obtain the following result (recall that K−
t (g) is

defined in formula (3.19)).

Lemma 4.1 If we identify the generators Y�+1(z)with Y�(z) for D�+1, then the formula
for T1(z) in K

−
t (D�+1) becomes the formula for T1(z) in K

−
t (B�).

Now observe that in this case g = B� and g′ = D�+1, with the corresponding
automorphism σ exchanging the �th and the (� + 1)st nodes of the Dynkin diagram.
Hence, the identification of Lemma 4.1 corresponds precisely to the folding of the
Dynkin diagram of D�, which gives the Dynkin diagram of B�.

Let us apply the same procedure in the case g = C�. Then, g′ = A2�−1 and σ

exchanges the i th and the 2�− i th nodes of the Dynkin diagram. Comparing formulas
in Sects. 5.1.1 and 5.1.3 of [24], we obtain

Lemma 4.2 Let us identify the generators Y2�−i (z), i = 1, . . . , � − 1, with Yi (z) for
A2�−1. Then, the formula for T1(z) in K−

t (A2�−1) becomes the formula for T1(z) in
K−

t (C�).

4.4 General case

Formula (3.10) shows that if we impose the relations Yi (z) = Yσ(i)(z) for all i ∈
I ′, then the generators Ai (z), i ∈ I ′ of K−

t (g′) go to the corresponding generators
Ai (z), i ∈ I , of K−

t (g). Here and below, abusing notation, we identify i ∈ I ′ with its
image in I = I ′/〈σ 〉.

Thus, we have natural commutative diagram

⋂

i∈I ′ C[Y j (ztn j )±1] j �=i;n j∈Z ⊗ C[Yi (ztni )(1 + Ai (ztni+1)−1)]ni∈Z −−−−−→ C[Y j (ztn j )±1] j∈I ′;n j∈Z
⏐

⏐

�

⏐

⏐

�

⋂

i∈I C[Y j (ztn j )±1] j �=i;n j∈Z ⊗ C[Yi (ztni )(1 + Ai (ztni+1)−1)]ni∈Z −−−−−→ C[Y j (ztn j )±1] j∈I ;n j∈Z

with the vertical maps being surjective and the horizontal maps being injective. This
proves the following theorem stating that K−

t (g) = W1,t (g) is spanned by the t-
characters of Ut (̂g′) in which we identify Yi (z) with Yσ(i)(z).
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Theorem 4.3 There is a surjective homomorphism Repz Ut (̂g′) → K−
t (g) that fits in

the commutative diagram

Repz Ut (̂g′) ∼−−−−−→ ⋂

i∈I ′ C[Y j (ztn j )±1] j �=i;n j∈Z ⊗ C[Yi (ztni )(1 + Ai (ztni+1)−1)]ni∈Z
⏐

⏐

�

⏐

⏐

�

K−
t (g)

∼−−−−−→ ⋂

i∈I C[Y j (ztn j )±1] j �=i;n j∈Z ⊗ C[Yi (ztni )(1 + Ai (ztni+1)−1)]ni∈Z

We will call the composition of the left vertical and the lower horizontal maps the
folded t-character homomorphism and denote it by fχt :

fχt : Repz Ut (̂g′) → C[Yi (ztni )]i∈I . (4.6)

It extends naturally to the entire RepUt (̂g′). We will also call K−
t (g) the folded t-

character ring.
Thus, we obtain an interpretation of the q → 1 limit K−

t (g) of Wq,t (g) as a
“folding” of the Grothendieck ring of finite-dimensional representations of Ut (̂g′).

4.5 Connection to the Drinfeld–Sokolov reduction and the center of quantum
affine algebra

In this subsection, we briefly discuss links between the classical limits ofWq,t (g) and
other (Poisson) algebras.

First, Conjecture 3 of [24] states that the limit q → 1 of Wq,t (g) is isomorphic,
as a Poisson algebra, to the Poisson algebra obtained by the deformed Drinfeld–
Sokolov reduction of G((z)) with parameter p = td . This was confirmed by an
explicit computations in the case of g = C2 presented in “Appendix” B of [24].

Second, recall that the t → 1 limit of Wq,t (g) is isomorphic, as a commutative
algebra, to the center Zq (̂g) of Uq (̂g) at the critical level. Indeed, we can associate
elements of Zq (̂g) with finite-dimensional representations of Uq (̂g) using a “double”
of the transfer-matrix construction [23, 56], and hence connect Zq (̂g) to RepUq (̂g),
which isK+

q (g) = Wq,1(g). In [23], it was shown that in the case of g = A� this is in
fact an isomorphism of Poisson algebra. We expect this to be true for a general g as
well.

If there exists an algebra At (g) satisfying the properties of Remark 3.2, then it is
reasonable to expect that the center of At (g) at its “critical level” is isomorphic to the
q → 1 limit of Wq,t (g).

Remark 4.2 Note that the limit of Zq (̂g) as q → 1 is the center of U (̂g) at the critical
level. According to the Feigin–Frenkel isomorphism, the latter is isomorphic to the
classical W-algebra of the Langlands dual Lie algebra Lg (and not of g). This is
consistent with the fact that in the q → 1 limit the screening operators S+

i , whose
joint kernel is the Poisson algebra Wq,1(g), become the screening operators of the
classical W-algebra of Lg. ��
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4.6 Bethe Ansatz equations from deformedW-algebras

First, consider the limit t → 1, in which we obtain the algebra of q-characters of
finite-dimensional representations of Uq (̂g). In [25, Sect. 6.3], it was shown how
to derive the corresponding Bethe Ansatz equation (BAE) from these q-characters.
Namely, according to the conjecture in [25, Sect. 6.1], which was proved in [19], the
eigenvalues of the transfer-matrices on the representation W = ⊗N

j=1 V (P j ) can be
expressed (up to an overall factor) as the q-characters inwhichwe replace the variables
Yi,a by the ratios Qi (aq

−1
i )/Qi (aqi ) of the corresponding Baxter polynomials. Then,

the seeming poles corresponding to the monomials of the form M and MA−1
i,aqi

in the
q-characters should cancel each other. Using formula (3.9), we obtain the following
BAE:

N
∏

k=1

q
deg Pi,k
i

Pi,k(q
−1
i /w

(i)
r )

Pi,k(qi/w
(i)
r )

= −
∏

s �=r

w
(i)
r − w

(i)
s q−2

i

w
(i)
r − w

(i)
s q2i

∏

j �=i

m j
∏

s=1

w
(i)
r − w

( j)
s q−Bi j

w
(i)
r − w

( j)
s q Bi j

.

(4.7)

where {w(i)
k } is the set of roots of the i th Baxter polynomial Qi (z), and Pj,i (z), j =

1, . . . , N ; i = 1, . . . , �, are the Drinfeld polynomials of W .

Remark 4.3 This formula corrects a typo in formula (6.6) of [25]; namely, the entries
Cli of the Cartan matrix there should be replaced by the entries Bli of the symmetrized
Cartan matrix. ��

Thus, the key point in deriving these BAE is formula (3.9) expressing variables
Ai (z) in terms of Y j (z).

Now consider the limit q → 1 and apply the argument of [25, Sect. 6.3] to formula
(3.10) instead of (3.9). In the same way as in [25], we then obtain the following
equations:

N
∏

k=1

q
deg Pi,k
i

Pi,k(t−1/w
(i)
r )

Pi,k(t/w
(i)
r )

= −
∏

s �=r

w
(i)
r − w

(i)
s t−2

w
(i)
r − w

(i)
s t2

∏

j �=i

m j
∏

s=1

(w
(i)
r − w

( j)
s t)−C ji

(w
(i)
r − w

( j)
s t−1)−C ji

.

(4.8)

This system is equivalent to the system of Bethe Ansatz equations obtained in [21]
(formula (6.16)). It can also be obtained by folding the BAE corresponding to g′. See
Sect. 1.2 for the explanation of the procedure of folding. We summarize this in the
following statement.

Proposition 4.4 The system (4.8) corresponding to the Lie algebra g is equivalent to
the system obtained by folding the BAE (4.7) corresponding to the Lie algebra g′, i.e.
assuming that mi = mσ(i) for all i ∈ I ′, identifying w

(i)
r ≡ w

σ(i)
r , and writing the

equations in terms of the variables w
(i)
r , i ∈ I .
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5 Folded integrable models

In this section, we describe a novel quantum integrable model in which the spectra of
theHamiltonians correspond (conjecturally) to solutions of theBetheAnsatz equations
(4.8).

5.1 Action of an automorphism�

Let W be a simple finite-dimensional representation of Uq(̂g′) whose highest mono-
mial is σ -invariant, i.e. it is a monomial in the elements ˜Yi,a defined in Sect. 6.1.6

Denote the corresponding highest g′-weight by �(W ). Clearly, σ(�(W )) = �(W ).
Denote by P the set of all g′-weights and by Pσ its subset of σ -invariant g′-weights.

For γ ∈ P , denote byWγ ⊂ W the weight γ subspace ofW . Let ̂W be the direct sum
of the subspaces of W corresponding to σ -invariant g′-weights γ :

̂W =
⊕

γ∈Pσ

Wγ ,

In particular, ̂W contains the one-dimensional highest weight subspace W�(W ) of W .
Next, let ˜W ⊂ W be the direct sumof �-weight subspaces ofW corresponding to the

σ -invariant �-weights (equivalently, σ -invariant monomials in χq(W )). Associating
with each �-weight the corresponding g′-weight, we obtain a grading on ˜W by σ -
invariant g′-weights:

˜W =
⊕

γ∈Pσ

˜Wγ .

We have an inclusion ˜W ⊂ ̂W respecting the grading by (σ -invariant) g′-weights:

˜Wγ ⊂ Wγ , γ ∈ Pσ . (5.1)

The restriction of this inclusion to ˜W�(W ) is an isomorphism. Next, we define an
automorphism of Uq(̂g′) corresponding to σ (abusing notation, we denote it in the
same way).

Lemma 5.1 There is a unique algebra automorphism σ of Uq(̂g′) defined on the Drin-
feld generators by the formulas

σ(hi,r ) = hσ(i),r , σ (x±
i,m) = x±

σ(i),m, σ (k±1
i ) = k±1

σ(i). (5.2)

Proof One checks directly that the map σ preserves the relations between the Drinfeld
generators. ��
6 More generally, we could consider the case when W is a tensor product of simple representations, with
the same invariance property for its highest monomial (but not necessarily for each simple factor). However,
we will not do so in this paper.

123



80 Page 28 of 86 E. Frenkel et al.

We associate with W its twist by the automorphism σ . Namely, if ρ : Uq(̂g′) →
End(W ) is the action ofUq(̂g′) onW , we define the σ -twisted action ofUq(̂g′) on the
same vector space by the formula

ρσ (g) = ρ(σ(g)), g ∈ Uq(̂g′).

Lemma 5.2 (1) The representations (W , ρ) and (W , ρσ ) are isomorphic, and there is
a unique linear automorphism σ̂ : W → W, such that

ρ(σ(g)) = σ̂ ρ(g)̂σ−1, ∀g ∈ Uq(̂g′) (5.3)

and the restriction of σ̂ to W�(W ) is the identity.
(2) The operator σ̂ maps every g′-weight (resp. �-weight) subspace of W correspond-

ing to the g′-weight γ (resp. monomial M in Yi,a) to a g′-weight (resp. �-weight)
subspace corresponding to σ(γ ) (resp. σ(M)). In particular, it preserves the sub-
spaces ̂W and ˜W and their graded components corresponding to σ -invariant
g′-weights and �-weights, respectively.

Proof (1) Drinfeld’s classification of irreducible finite-dimensional representations
of Uq(̂g′) (see [6]) shows that such a representation W is generated by its one-
dimensional highest weight subspace W� and is determined by the eigenvalues
of the Cartan–Drinfeld generators hi,r on it, which are recorded by the highest
monomial of its q-character (see Sect. 4.1). Formulas (5.2) imply that W� is still
the highest weight subspace of W under the twisted representation ρσ . The σ -
invariance of the highest monomial of the representation (W , ρ) implies that the
highest monomial of (W , ρσ ) is the same. Therefore, there is an isomorphism
σ̂ : W → W intertwining the representations (W , ρ) and (W , ρσ ) of Uq(̂g′) and
preserving the one-dimensional subspace W�. It follows that σ̂ satisfies formula
(5.3). By Schur’s lemma, there is a unique such σ̂ that is equal to the identity on
W�.

(2) Let {Xi , i ∈ I ′} be either {ki , i ∈ I ′} or {hssi,r , i ∈ I ′} with a fixed r �= 0, where
hssi,r is the semi-simplification of the action of hi,r on W . Suppose that v is a joint
eigenvector of {Xi , i ∈ I ′}, in W with the eigenvalues λi , i ∈ I ′. Then

Xi · σ̂ (v) = σ̂ (̂σ−1Xi σ̂ ) · v = σ̂ Xσ−1(i) · v = λσ−1(i)σ̂ (v). (5.4)

This completes the proof.
��

Remark 5.1 Let W σ̂ ⊂ W be the subspace of vectors fixed by σ̂ . It contains W�(W )

and is stable under the action of the subalgebra Uq(̂g′)σ of σ -invariant elements of
Uq(̂g′). However, in generalW σ̂ is not stable under the action of the Cartan generators
k±1
i , i ∈ I ′ or the Cartan–Drinfeld generators, and hence does not have a well-defined
character or q-character. Besides, the invariant subalgebra Uq(̂g′)σ does not have a
natural structure of Hopf algebra and has other deficiencies, as can be shown by an
argument similar to that of [30, Section 2.7].
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This is why we consider instead the subspaces ̂W and ˜W . Their graded subspaces
are preserved by σ̂ , and hence ̂W and ˜W have well-defined character and q-character,
respectively. ��

5.2 XXZ-typemodel associated with Uq(̂g
′)

Consider the Borel subalgebra Uq(̂b
′) of Uq(̂g′) and its category O∗ which contains

the prefundamental representations R+
j (a), R−

j (a) ( j ∈ I ′, a ∈ C
×) constructed in

[33].
For every j ∈ I ′, we have the Q-operator Q±

j (z, u) = tR±
j
(z, u) associated in [19]

with the prefundamental representation R±
j (z). This operator is a formal power series

in z, and it also depends on an element u of the Cartan subgroup H ′ of the simply
connected Lie group G ′ associated with g′.

More generally, for any V in the Grothendieck ring K0(O
∗), we have the corre-

sponding transfer-matrix tV (z, u).
The transfer-matrices tV (z, u), V ∈ K0(O

∗) (in particular, operators Q±
j (z, u), j ∈

I ′) commute with each other. These are the Hamiltonians of the XXZ-type model
associated to Uq (̂g

′). Every finite-dimensional representation W of Uq(̂g′) decom-
poses into a direct sum of the generalized eigenspaces of these Hamiltonians. In
this paper, we will focus on the eigenvalues of these Hamiltonians and ignore
the structure of the corresponding Jordan blocks. Hence, we introduce the semi-
simplification Q±,ss

i (z, u) of Q±
i (z, u), i.e., the unique diagonalizable operator on

W whose eigenspaces and eigenvalues are the generalized eigenspaces and eigenval-
ues of Q±

i (z, u). It follows that each Qss,±
i (z, u) can be expressed as a polynomial in

the original operator Q±
i (z, u), and therefore, Q±,ss

i (z, u) commuteswith all Q±
j (z, u)

and with all Q±,ss
j (z, u), j ∈ I ′.

Thus, for every u ∈ H ′, we have a direct sum decomposition of W into joint
eigenspaces of the operators Q±,ss

j (z, u), j ∈ I ′. The following is proved in [19,
Theorem 5.9] and [20].

Theorem 5.3 Let W be a simple module over Uq(̂g′). Then,

(1) The eigenvalues of Q+,ss
j (z, u) onW are polynomials in z, up to an overall function

in z depending only on W. Generically, the roots of these polynomials yield a
solution of the BAE (4.7) corresponding to g′.

(2) Every joint eigenspace of Q±,ss
j (z, u), j ∈ I ′, on W is a subspace of a g′-weight

subspace of W corresponding to the g′-weight �(W ) −∑ j∈I ′ n jα j , where n j is

the degree of the Baxter polynomial encoding the eigenvalue of Q+,ss
j (z, u).

We call the polynomials in part (1) of this theorem the Baxter polynomials.
Part (1) of the theorem implies that the decomposition of W into a direct sum of

joint eigenspaces of Q±,ss
j (z, u), j ∈ I ′, is a refinement of the decomposition of W

into a direct sum of its g′-weight subspaces. In other words, for every u ∈ H ′ and
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γ ∈ P (the set of g′-weights), the corresponding componentWγ ofW is a direct sum

Wγ =
⊕

λ∈Eγ (u)

Wγ,λ(u) (5.5)

where Eγ (u) is the set of distinct joint eigenvalues of Q±,ss
j (z, u), j ∈ I ′, onWγ , and

Wγ,λ(u) is the eigenspace corresponding to λ ∈ Eγ (u). Here, λ denotes a collection
{λ±

j (z, u), j ∈ I ′} of joint eigenvalues of Q±,ss
j (z, u), j ∈ I ′

As shown in [19, Proposition 5.5], Q+
j (z, u) has a well-defined u → 0 limit, which

is equal to

Tj (z) = exp

(

∑

m>0

zm
˜h j,−m

[d j ]q [m]q j

)

.

This is a generating series of the Cartan–Drinfeld generators

˜h j,−m =
∑

k∈I ′
˜Ck, j (q

m)hk,−m . (5.6)

According to this formula, we can recover all Cartan–Drinfeld generators hk,−m, k ∈
I ′,m > 0 from the Tj (z), j ∈ I ′.

It follows that the set Eγ (u) has a well-defined u → 0 limit, which we denote by
Eγ (0). Moreover, Eγ (0) can be identified with the set of �-weights with the underlying
g′-weight γ . For each �-weight λ ∈ Eγ (0), the eigenspaceWγ,λ(0) is the correspond-
ing �-weight subspace of Wγ .

Remark 5.2 The u → 0 limit of the Q-operator Q−
j (z, u) is equal to (Tj (z))−1. This

follows from a direct computation or from the decomposition of R+
i,a⊗R−

i,a in K0(O
∗).

Indeed, it is equal to the class [1] of the trivial one-dimensional representation plus the
classes of simple representations whose highest weights are equal to positive linear
combinations of the simple roots, which implies that they do not contribute to the
u → 0 limit. ��

5.3 The invariant subspace

Let us apply the automorphism σ of the algebra Uq(̂g′) given by formula (5.2) to the
transfer-matrices tV (z, u). Recall that they are constructed by taking the trace of u
times the universal R-matrix R of Uq(̂g′) over V (see, e.g. [19]).

Lemma 5.4 The automorphism σ is an automorphism of theHopf algebra structure on
Uq(̂g′). Moreover, it preserves the universal R-matrixR of Uq(̂g′): (σ ⊗ .σ )(R) = R.

Proof One checks directly that the comultiplication defined on the Drinfeld–Jimbo
generators is invariant under σ . For the i th Drinfeld–Jimbo generators, where i ∈ I ′,
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this is obvious. For the 0th Drinfeld–Jimbo generators, we use a formula expressing
them in terms of the Drinfeld generators from [6, p. 393].

The universal R-matrix ofUq(̂g′) corresponds to the canonical element in the double
ofUq(b+) under the identification of this double (modulo the Cartan subalgebra with
Uq(̂g′)), see [9]. It follows from its definition that the automorphism σ is compatible
with the double structure and therefore it sends the canonical element to itself. Hence,
it preserves the universal R-matrix of Uq(̂g′). ��

For any representation V in the categoryO∗, denote by σ ∗(V ) the twist of V by the
automorphism σ defined as in Sect. 5.1. It is clear that σ ∗ induces an automorphism of
the Grothendieck ring K0(O

∗). By construction, σ ∗(R±
j,a) � R±

σ( j),a . Note also that
σ defines an automorphism of the Cartan subgroup H ′ of G ′.

Lemma 5.5 We have

σ−1(tV (z, u)) = tσ ∗(V )(z, σ (u)), σ−1(Q±
j (z, u)) = Q±

σ( j)(z, σ (u)). (5.7)

From now on, we will assume that u is σ -invariant, and hence defines an element
of H = (H ′)σ , which is a Cartan subgroup of the group G = (G ′)σ . With this
assumption, formulas (5.7) become

σ−1(tV (z, u)) = tσ ∗(V )(z, u), σ−1(Q±
j (z, u)) = Q±

σ( j)(z, u). (5.8)

Now we come to a key definition.

Definition 5.6 We define the invariant subspace of W as

W (u) :=
⊕

γ∈Pσ

Wγ (u),

where Pσ is the set of σ -invariant g′-weights and

Wγ (u) := {w ∈ Wγ | Q±,ss
j (z, u).w = Q±,ss

σ( j)(z, u).w,∀ j ∈ I ′} ⊂ ̂Wγ . (5.9)

Since the prefundamental representations (topologically) generate the entire
Grothendieck ring K0(O

∗), we have

Wγ (u) = {w ∈ Wγ | t ssV (z, u).w = t ssσ ∗(V )(z, u).w,∀[V ] ∈ K0(O
∗)}.

Using formula (5.8) in the same way as in the proof of Lemma 5.2, we obtain the
following result.

Lemma 5.7 Wγ (u) is preserved by σ̂ .

We can also describe Wγ (u) as a span of joint eigenvectors of Q±,ss
j (z, u), j ∈ I ′.

123



80 Page 32 of 86 E. Frenkel et al.

Lemma 5.8 Wγ (u) is equal to the span of the joint eigenvectors of Q±,ss
j (z, u), j ∈ I ′,

in Wγ with eigenvalues λ±
j (z, u), j ∈ I ′, such that λ±

j (z, u) = λ±
σ( j)(z, u) for all

j ∈ I ′. In other words, in the notation of Sect. 5.2,

Wγ (u) =
⊕

λ:σ(λ)=λ

Wγ,λ(u). (5.10)

Proof Every vector v ∈ Wγ can bewritten as a linear combination of joint eigenvectors
of Q±,ss

j (z, u), j ∈ I ′:

v =
∑

aλvλ, (5.11)

where vλ denotes an eigenvector with the collection of joint eigenvalues λ =
{λ±

j (z, u), j ∈ I ′}. Now, if v ∈ Wγ (u), then

∑

aλλ
±
j (z, u)vλ =

∑

aλλ
±
σ( j)(z, u)vλ,

which implies that every collection λ = {λ±
j (z, u), j ∈ I ′} appearing in the decom-

position (5.11) with a nonzero coefficient aλ must be σ -invariant, i.e. λ±
j (z, u) =

λ±
σ( j)(z, u) for all j ∈ I ′. ��
Now, the discussion after Theorem 5.3 implies

Lemma 5.9 We have Wγ (0) = ˜Wγ , i.e. Wγ (0) is spanned by the �-weight vectors
corresponding to the σ -invariant �-weights whose underlying g′-weight is γ ∈ Pσ .

Remark 5.3 shows, however, that we do not expect the statement analogous to
Lemma 5.9 to hold for Wγ (u) with u �= 0.

Lemma 5.7 implies that W (u) is preserved by σ̂ . Lemma 5.9 implies that W (0) =
˜W . We also record the following useful result.

Lemma 5.10 Suppose that v ∈ W is an eigenvector of Q±,ss
j (z, u), j ∈ I ′ (resp. an

�-weight vector) such that σ̂ (v) = μv, where μ is a scalar (thus, μ is a d-th root of
unity). Then, the set of eigenvalues of Q±,ss

j (z, u), j ∈ I ′ on v (resp. the �-weight of
v) is σ -invariant.

Proof Let λ±
j (z, u), j ∈ I ′, be the eigenvalues of Q±,ss

j (z, u), j ∈ I ′ on v. Using
formulas (5.8) and (5.3), we obtain that

λ±
σ( j)(z, u)v = Q±,ss

σ( j)(z, u) · v = σ̂Q±,ss
j (z, u)̂σ−1(v)

= μ−1σ̂Q±,ss
j (z, u) · v = μ−1λ±

j (z, u)̂σ (v) = λ±
j (z, u)v,

for all j ∈ I ′. The proof for �-weight vectors is similar. ��
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Remark 5.3 In general, joint eigenspaces of the operators Q±,ss
j (z, u), j ∈ I ′, in Wγ

are not spanned by �-weight vectors. In other words, these eigenspaces differ from
their limits as u → 0. For example, let us take asW the tensor product V1 ⊗Va of two
fundamental representations of Uq(̂sl2) with the highest weight monomial Y1Ya . The
�-weight vectors in it are computed for example in [31, Example 3.3]. Let {w+, w−}
and {v+, v−} be bases of weight vectors in V1 and Va , respectively, with w+ and v+
being the highest weight vectors. Then,w−⊗v+ is an �-weight vector whose �-weight
is Y−1

q2
Ya .

On the other hand, the action of Q+(z, u) on the 0-weight subspace of V1 ⊗ Va ,
which is spanned byw− ⊗v+ andw+ ⊗v−, can be computed following [19, Example
7.8]. The result is

T (z)

1 − u2
+ zu2(q − q−1)

(1 − u2)(1 − u2q−2)
f1T (z) f0,

where T (z) is the u → 0 limit of Q+(z, u), which can be expressed (see formula (5.6)
above) as a generating function of the Cartan–Drinfeld elements, and f1, f0 are the
Drinfeld–Jimbo generators.

In particular, if we denote by g(z) the eigenvalue of T (z) on w+ ⊗ v+, then we
obtain

Q+(z, u).(1 − u2)(1 − u2q−2)(g(z))−1(w− ⊗ v+)

= (1 − zq−1 − u2q−2 + q−1zu2)w− ⊗ v+ + zu2(1 − q−2)w+ ⊗ v−.

Hence, w− ⊗ v+ is not an eigenvector of Q+(z, u) if u �= 0. ��

5.4 Eigenvalues of transfer-matrices on the invariant subspace

Since the operators Q±,ss
j (z, u), j ∈ I ′, commute with each other, they have a well-

defined joint spectrum on the invariant subspaceW (u). Using Proposition 4.4 (the fact
that the system of folded BAE (4.8) for g is obtained by folding of the system of BAE
(4.7) for g′) and Theorem 5.3, we can now link the eigenvalues of Q±,ss

j (z, u), j ∈ I ′,
on W (u) and solutions of the folded BAE (4.8) for g.

Theorem 5.11 Suppose that the Baxter polynomials encoding the joint eigenvalues
of Q+,ss

j (z, u), j ∈ I ′, on a vector in W (u) are generic, so that their roots satisfy
the BAE (4.7) for g′. Then, after the identification of the roots of these polynomials
corresponding to Q+,ss

j (z, u) and Q+,ss
σ( j)(z, u), we obtain a solution of the folded BAE

(4.8).

Next, the following result is proved in [19, Theorem 5.11]:

Theorem 5.12 The eigenvalues of the transfer-matrix tV (z, u), where V is in
RepUq(̂g′), on a simple module W can be expressed (up to an overall factor) as the
q-character of V , in which we replace each Yi,a, i ∈ I , by a ratio of the corresponding
Baxter polynomials.
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We now use this result to describe the eigenvalues of tV (z, u) on W (u) ⊂ W .

Theorem 5.13 Let V be a finite-dimensional representation of Uq(̂g′). Then, the
transfer-matrix tV (z, u) preserves the subspace W (u) and its generalized eigenval-
ues are given (up to an overall factor) by the folded t-character fχt (V ) (obtained by
identifying Yi,a with Yσ(i),a in χt (V )) in which we further replace each Yi,a by a ratio
of the corresponding Baxter polynomials.

This theorem gives us the sought-after link between the spectra of commuting
quantum Hamiltonians and solutions of the folded Bethe Ansatz equations. Namely,
the quantum Hamiltonians are the transfer-matrices tV (z, u) of the XXZ-type model
associated withUq(̂g′) (so the auxiliary spaces are representations ofUq(̂g′), or more
general objects of the corresponding categoryO∗), but we restrict them to the invariant
subspaces W (u) of the irreducible finite-dimensional representations W of Uq(̂g′)
and consider the corresponding spectra (so the spaces of states are the subspaces
W (u) ⊂ W ).

However, for non-simply laced g this answer does not quite define a quantum
integrable model since we have not yet described the invariant subspaces W (u) as
representations of aHopf algebra. In the next subsection, we conjecture such a descrip-
tion. More precisely, we conjecture that there is a certain distinguished subspace
W (u) ⊂ W (u) which is isomorphic to a representation of the twisted quantum affine
algebra Uq(

L ĝ). If this is true, then we can indeed describe the spaces of states as
representations of a Hopf algebra, and then we indeed obtain a quantum integrable
model.

5.5 Defining the folded integrable model

As before, let W be a simple representation of Uq(̂g′) whose highest monomial is
σ -invariant, i.e. it is a monomial in the elements ˜Yi,a defined in Sect. 6.1.

Recall that for a Lie algebra g, we refer to the integral weights of the Cartan
subalgebra of g as g-weights. We will use the following simple fact demonstrated
below in Sect. 9.1:

Lemma 5.14 There is a natural isomorphism between the lattice Pσ of σ -invariant
g′-weights and the lattice L P of Lg-weights.

In particular, since W (u) and ˜W = W (0) are, by definition, vector spaces graded
by Pσ , we can view them as vector spaces graded by the lattice L P of Lg-weights.

Conjecture 5.15 (i) For generic u, there is an isomorphism W (u) � ˜W of vector
spaces graded by Lg-weights.

(ii) Forgeneric u, there is a subspaceW (u)ofW (u)which is stable under the operators
Q±,ss

j (z, u) and isomorphic, as a vector space graded by Lg-weights, to the vector

space underlying a Uq(
L ĝ)-module M(W ) (which does not depend on u).

In Sect. 7, we explicitly verify this conjecture, as well as Conjecture 5.16, in a
number of examples. In Sect. 6.5, we identify the representation M(W ), in terms of
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the closely related Conjecture 5.16, for the simplestUq(̂g′)-modules with σ -invariant
highest monomials (modulo Conjecture 6.11).

Remark 5.4 A possible candidate for W (u) is the subspaceW(u) :=⊕γ∈Pσ Wγ (u),
where

Wγ (u) := {w ∈ Wγ | Q±
j (z, u).w = Q±

σ( j)(z, u).w,∀ j ∈ I ′} ⊂ ̂Wγ . (5.12)

The difference with formula (5.9) is that we now consider the operators Q±
j (z, u),

rather than their semi-simplifications.We expect that for genericu,W(u) is isomorphic
to W(0) ⊂ W (0) = ˜W , which is defined similarly in terms of Tj (z) (not their semi-
simplifications).

Another candidate for W (u) is the subspace Wσ (u) ⊂ W(u) spanned by the σ -
invariant generalized eigenvectors. ��

Conjecture 5.15 means that for any non-simply laced simple Lie algebra g, there
exists a folded quantum integrable system with the quantum Hamiltonians being the
transfer-matrices tV (z, u), corresponding to finite-dimensional representations V of
RepUt (̂g′), or more general objects of the corresponding category O∗ (these are the
auxiliary spaces of this integrablemodel). TheseHamiltonians act on vector spaces that
underlie finite-dimensional representations ofUt (

L ĝ) (these are the spaces of states of
this integrable model) and, according to Theorem 5.13, the spectra of tV (z, u) can be
expressed in terms of the folded t-character of V and the correspondingBaxter polyno-
mials. Moreover, by Theorem 5.11, the roots of these Baxter polynomials correspond
to solutions of the folded BAE (4.8) associated with g.

Remark 5.5 (1) In all examples we have studied so far, with W a simple module,
we found a simple Uq(

L ĝ)-module M(W ) that satisfies the statements of this
conjecture.

(2) Suppose that a weight subspace ̂Wγ , γ ∈ Pσ , of ̂W is one-dimensional. Then,
the automorphism σ̂ from Lemma 5.2 must act on ̂Wγ as a nonzero scalar. By
Lemma 5.10, this implies that ̂Wγ = ˜Wγ and ̂Wγ = Wγ (u) for all u. Hence the
statement of part (i) of the conjecture is clear for such weight subspaces.

(3) In the statement of part (ii) of the conjecture, one might be tempted to replace
Ut (

L ĝ) with Ut (L̂g). Indeed, the statement involves a vector space W (u) graded
by Lg-weights, and therefore it could come from a representation of Ut (

Lg) (the
quantum group of the simple finite-dimensional Lie algebra Lg), which is a sub-
algebra of both Ut (

L ĝ) and Ut (L̂g).
In fact, in the examples we have considered so far (see Sect. 7), the character of
W (u) is not only the character of a representation ofUt (

L ĝ) but also the character
of a representation of Ut (L̂g). But the representations of Ut (L̂g) that appear here
are significantly less natural than the representations of Ut (

L ĝ). For instance,
as we illustrate below (see Sects. 7.2, 7.3, 7.4, 7.5), in most cases they are not
simple, and often contain direct sums of copies of the trivial representation as direct
summands (even for representations of small dimension). Even more importantly,
if we consider representations of Ut (L̂g), we can only reproduce the ordinary
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character of its restriction to Ut (
Lg), and not its t-character. On the other hand,

in all examples we consider below, we can reproduce the t-character of a Ut (
L ĝ)-

module M(W ) using interpolating (q, t)-characters, see Conjecture 5.16 below.
(4) It would be interesting towrite explicit formulas for the action ofUt (

L ĝ) onM(W ),
at least in the cases when M(W ) � ˜W .

��
Wewill give amore detailed description of themoduleM(W ), andhence amore pre-

cise formulation of Conjecture 5.15, using the theory of interpolating (q, t)-characters
which we will recall (and refine) in Sect. 6. Namely, we have the following conjecture.

Conjecture 5.16 The t-character χt (M(W )) of the Ut
(

L ĝ
)

-module M(W ) can be

obtained via the specialization map �t from an element Xq,t ∈ Kq,t (g). In fact, Xq,t

has the following three specializations:

Xq,t

�t �′
t

�t

fχt (W ) χt (M(W )) fχt (W ′)

where

fχt (W ) ∈ K−
t (g) is the folded t-character of the Ut

(

̂g′)-module W,

fχt (W ′) ∈ K−
t (Lg) is the folded t-character of a Ut

(

̂(Lg
)′
)

-module W ′.

5.6 The subspaceW(u)

Here, we discuss the question of how to describe the subspace W (u) ⊂ W (u) in
general.

Note that the fixed subspace W σ̂ ⊂ W is not necessarily stable under the action of
the operators Q±,ss

j (z, u) in general. But let us introduce the subspace W σ (u) ⊂ W σ̂

spanned by all joint eigenvectors of Q±,ss
j (z, u), j ∈ I ′, which belong to W σ̂ .

Recall the decomposition (5.10) of Wγ (u):

Wγ (u) =
⊕

λ:σ(λ)=λ

Wγ,λ(u). (5.13)

Lemma 5.17 We have

W σ (u) =
⊕

γ∈Pσ

⊕

λ:σ(λ)=λ

W σ
γ,λ(u) ⊂ W (u) (5.14)

where W σ
γ,λ(u) is the σ̂ -invariant subspace of Wγ,λ(u).
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Proof According to Theorem 5.3,(1), every joint eigenvector v of Q±,ss
j (z, u), j ∈

I ′, belongs to a weight subspace Wγ ⊂ W , γ ∈ P . By Lemma 5.2,(2) σ̂ maps
Wγ , γ ∈ P , to Wσ(γ ). Therefore, if σ̂ (v) = v, then v ∈ Wγ , γ ∈ Pσ . Next, we have
the decomposition (5.5) of Wγ , γ ∈ Pσ , into eigenspaces of Q±,ss

j (z, u). Applying

formula (5.4) with Xi = Q±,ss
i (z, u), j ∈ I ′, we obtain that if v ∈ Wγ,λ, then

σ̂ (v) ∈ Wγ,σ (λ). Hence, if σ̂ (v) = v, then σ(λ) = λ. It follows that the subspaceWγ,λ

with γ ∈ Pσ and σ(λ) = λ is preserved by σ̂ . Thus, Wγ,λ decomposes into a direct
sum of eigenspaces of σ̂ , which are labeled by the d-th roots of unity. Denoting the
invariant part (on which σ̂ acts the identity) byW σ

γ,λ(u), we obtain the decomposition
(5.14). ��

There is an analogue of the subspace W σ (u) ⊂ W (u) for u = 0; namely, the
subspace ˜W σ spanned by all σ̂ -invariant �-weight vectors in W . In the same way as
in the proof of Lemma 5.17, one shows that

˜W σ =
⊕

γ∈Pσ

⊕

M :σ(M)=M

˜W σ
γ,M ⊂ ˜W , (5.15)

where ˜W σ
γ,M is σ̂ -invariant part of the �-weight subspace of ˜Wγ , γ ∈ Pσ , whose

�-weight corresponds to a monomial M (note that ˜W σ
γ,M is preserved by σ̂ if and

only if M is a σ -invariant monomial, see Lemma 5.2,(2)). Thus, ˜W σ is a subspace of
˜W = W (0).
We expect that W (u) is a subspace of ˜W σ (although they are not equal in general,

as we can see from the example in Sect. 7.5). In addition to the examples that will be
presented in Sect. 7, some supporting evidence comes from the following result in the
finite-type case.

Let W be a simple finite-dimensional representation of Uq(g
′) with a σ -invariant

highest weight. Then, as in the affine case, σ gives rise to an automorphism σ̂ of W .
Let W σ be the span of all weight vectors in W which belong to W σ̂ . In the same way,
as in the proof of Lemma 5.17, one shows that

W σ =
⊕

γ∈Pσ

W σ
γ ,

where W σ
γ is the subspace of σ̂ -invariant vectors in Wγ , γ ∈ Pσ . Recall from

Lemma 5.14 that we can view elements of the set Pσ of σ -invariant g′-weight spaces
as Lg-weights. Thus, the character χ(W σ ) is a linear combination of Lg-weights.

Proposition 5.18 χ(W σ ) is invariant under the action of the Weyl group of Lg, and
hence it is the character of a virtual representation of Uq(

Lg).

Proof For i ∈ I ′, denote by Ui the Uq(sl2) subalgebra of Uq(g
′) generated by ei , fi ,

k±1
i .
Let us show that χ(W σ ) is invariant under the simple reflections of Lg associated

with the σ -orbits of i ∈ I ′. This is clear if σ(i) = i as W σ is stable under the action
of Ui and hence its character is invariant under the i th reflection of Lg.
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Suppose σ(i) �= i . Since g′ is not of type A2n , the subalgebra Uσ
i of Uq(g

′)
generated by the Uq(sl2) subalgebras Uσ k (i), 1 ≤ k ≤ d, is isomorphic to Uq(sl2)

⊗d .
To simplify notation, let us assume that d = 2 (the proof for d = 3 is quite similar).

Viewed as a representation of Uσ
i , W is semi-simple:

W =
⊕

j

L j , L j = L(1)
j ⊗ L(2)

j , (5.16)

where L(1)
j and L(2)

j are simple representations of the subalgebrasUi andUσ(i), respec-
tively.

If x is a weight vector which belongs to W σ (i.e. the weight of x is σ -invariant),
then so are the vectors e.x and f .x , where

e = ei eσ(i), f = fi fσ(i).

Hence, W σ is stable under e and f .
Let ω be a weight such that that the weight subspace (W σ )ω is nonzero. Then,

ω(α∨
i ) = ω(α∨

σ(i)) = m ∈ Z. Suppose that m ≥ 0. Using the decomposition (5.16),
we can write any weight vector v in (W σ )ω as v =∑ j v j , where

v j ∈
(

L(1)
j

)

m
⊗
(

L(2)
j

)

m
,

(L(1)
j )m and (L(2)

j )m being theweight subspaces corresponding toweightm in L(1)
j and

L(2)
j , respectively. From representation theory of Uq(sl2) we know that these weight

subspaces are one-dimensional, so v j = v
(1)
j ⊗ v

(2)
j is a pure tensor. Moreover, we

have

f
m
.
(

v
(1)
j ⊗ v

(2)
j

)

=
(

f mi .v
(1)
j

)

⊗
(

f mσ(i).v
(2)
j

)

�= 0.

Hence, we obtain an injective linear map :

f
m : (W σ )ω → (W σ )ω−m(αi+ασ(i))

and so

dim(W σ )ω ≤ dim(W σ )ω−m(αi+ασ(i))

if m ≥ 0.
The opposite inequality is obtained by considering the action of em on

(W σ )ω−m(αi+ασ(i)). This completes the proof. ��
We expect that this virtual representation is an actual representation of Uq(

Lg)
(although it is not clear to us how to construct the corresponding action of Uq(

Lg)).
In Sect. 9.7, we will show (assuming Conjecture 9.10) that in the limit q → 1 it
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is possible to construct an explicit embedding of the irreducible representation of
Lg with the highest weight corresponding to that of W (which is σ -invariant by our
assumption) into W σ .

In the rest of this section, we discuss the corresponding QQ-system.

5.7 TheQQ-system

The QQ-system (or Q˜Q-system in the terminology of [20]) of type ̂g′ reads
[

−α′
i

2

]

Qi,aq−1 ˜Qi,aq −
[

α′
i

2

]

Qi,aq ˜Qi,aq−1 =
∏

j �=i

Q
−C ′

j,i
j,a ,

where C ′ (resp. α′
i ) is the Cartan matrix (resp. a simple root) of g′. It was written

in [45] in the context of affine opers, and established [20] as a system of relations in
K0(O

∗), with the Qi,a and ˜Qi,a being the properly normalized classes of certain simple
modules; namely, the module R+

i,a for Qi,a and another module, which we denote by
X ′
i,aq−2

i
, divided by an invertible element which does not depend on a (recall that

here we consider the category O∗, see [20, Remark 3.2 (iii)]). The
[

−α′
i
2

]

are classes

of certain one-dimensional representations in O∗. Then, on W (u), the eigenvalues of
Q j,a are identified with those of Qσ( j),a and the eigenvalues of ˜Qi,a are identified
with the eigenvalues of ˜Qσ( j),a . Hence, we obtain the following result.

Theorem 5.19 The following QQ-system holds on the invariant subspace W (u):

[

−αi

2

]

Qi,aq−1 ˜Qi,aq −
[αi

2

]

Qi,aq ˜Qi,aq−1 =
∏

j �=i

Q
−C j,i
j,a , (5.17)

where C is the Cartan matrix of g, Qi,a (resp. ˜Qi,a) is, up to an invertible constant,
the Q-operator Q+

i,a (resp. the transfer-matrix associated with Xi,aq−2
i
).

Note that for a non-simply laced g, this is neither the QQ-system of type ĝ (as
defined in [20, 46]) nor the QQ-system of the twisted type ĝ∨ conjectured in [20,
Section 3.3]. But this system is equivalent to the QQ-system obtained in [21] in the
context of Miura (G, q)-opers (we note that a Yangian version of this system first
appeared in the work of Mukhin and Varchenko [47, 48]). We will call it the folded
QQ-system associated with g.

According to Theorem 5.19, the spectra of theHamiltonians of the folded integrable
model introduced in this section give rise to solutions of the folded QQ-system. This
is in agreement with Theorem 5.11 because, as shown in [21], under a genericity
condition there is a bijection between solutions of the folded QQ-system and solutions
of the folded BAE (4.8).

Remark 5.6 (1) Recall that each character ω ∈ H∗ of the commutative group H gives
a one-dimensional representation Uq(̂b)-module [ω] which is in O and in O∗. We
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obtain a subring K0(H) ⊂ K0(O) of representationswhose simple constituents are
of this form. These are called constant elements as the associated transfer-matrices
are constant (independent of the spectral parameter). The ordinary character of a
representation in O can be viewed as an element of K0(H).

(2) According to [20], the precise relation between the solutions of Q˜Q-system (5.17)
and elements of K0(O) is as follows. The variables Qi,z and ˜Qi,z correspond to
the classes [L+

i,z] and [Xi,zq−2
i

], respectively, renormalized by constant invertible

elements of K0(O).
However, KeyuWang has pointed out that the proof of [20, Lemma 4.11] is incom-

plete. In that lemma a formula χ(Xi,a) = (1 − [−αi ])−1∏
j �=i χ

−C j,i
j for the

character of Xi,a was given in terms of the characters χi = χ(L+
i,a) of the prefun-

damental representations, and the normalization used in [20] (see the preceding
paragraph) was based on this formula. Although we believe that this character
formula is correct (and so the normalization used in [20] is correct), at the moment
we do not have a proof of this character formula. Hence, we propose to slightly
modify formulas (3.1) and (3.2) in [20] for the normalizing factors, so we can
avoid relying on this character formula. We explain this normalization in the next
subsection.

(3) According to Theorem 5.19 and to Sect. 5.4, eigenvectors in the subspace W (u)

give solutions of the folded QQ-system (or, under some genericity condition, of
the folded BAE (4.8)). However, we then restrict to a smaller subspace W (u)

of W (u), which means that we only take a subset of these solutions (we will
see in the example in Sect. 7.5 that W (u) can in fact be strictly smaller than
W (u)). This is likely related to the fact that taking various limits of elements of
the deformed W-algebras, or various specializations of the corresponding inter-
polating (q, t)-characters (as discussed in Sect. 6), may very well have different
numbers of monomials. Hence, it is natural to expect that there is a characteriza-
tion of the solutions corresponding to the eigenvectors that belong to the subspace
W (u) through a similar kind of interpolation, which would enable us to tell which
solutions of the folded QQ-system (and the folded BAE) correspond to the repre-
sentation M(W ) for the Langlands dual quantum affine and which do not. At the
moment, this remains as an open question.

��

5.8 Normalization ofQi,z and ˜Qi,z

Proposition 5.20 The functions

Qi,z = [L+
i,z]/χi , ˜Qi,z = [Xi,zq−2

i
]/χ̃i ,

where

χi = χ(L+
i,z) and χ̃i = χ(Xi,z)

([αi

2

]

−
[

−αi

2

])

,
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solve the Q˜Q-system (in the notation of [20]).

Remark 5.7 Here, in contrast to [20],wedonot specify a precise relation between the χ̃i

and theχi . In addition, for symmetry, we have chosen to renormalize [L+
i,z] by dividing

by χi , although in [20] Qi,z is [L+
i,z] without renormalization. Both normalizations

are compatible, as the Q˜Q-system written with the normalization in [20] implies that
the variables in the Proposition above satisfy also the Q˜Q-system. ��
Proof We give the proof of the proposition for the category O. The analogous result
in K0(O

∗) is obtained in the same way.
We establish the following q-character formula

χq(Xi,1) = [˜� i,1]χi,1χ(Xi,1)(1 − [αi ]) (5.18)

where˜� i,1 is the highest�-weight of Xi,1 andχi,1 =∑m≥0(Ai,1Ai,q−2
i

· · · Ai,q−2m
i

)−1.

This formula implies the Q˜Q-system in K0(O) by the arguments given in [20].
The proof of (5.18) is based on the results in [20], except that we do not use the

complete proof of [20, Lemma 4.11], but only [20, Lemma 4.10]. Indeed, it implies
only

χq(Xi,1) = [˜� i,1]
∑

m≥0

(Ai,1Ai,q−2
i

· · · Ai,q−2m
i

)−1χ(m),

where for m ≥ 0, χ(m) ∈ K0(H) is a constant element. It suffices to prove that χ(m)

do not depend on m.
To do this, consider for r ≥ 0 the representation X (r)

i,1 = L(˜� i,1� i,q−2r
i

). Then, we
obtain from [32, Theorem 8.1] that

χq(X
(r)
i,1) = ˜� i,1� i,q−2r

i

∏

j �=i

χ
−Ci, j
j

∑

0≤m≤r

(Ai,1Ai,q−2
i

· · · Ai,q−2m
i

)−1.

Hence, the class of Xi,1 ⊗ L+
i,q−2r

i
can be decomposed as a sum

[Xi,1 ⊗ L+
i,q−2r

i
] = [X (r)

i,1]χ ′
r +

∑

� ′
n� ′ [L(� ′)]

where χ ′
r ∈ K0(H) is an invertible constant, the n� ′ are positive integers and the

�-weight � ′ which occur in the sum are, up to a constant, of the form

˜� i,1� i,q−2r
i

A−1
i,1 · · · A−1

i,q−2m
i

for some m ≥ 0. We claim that only �-weights � ′ with m ≥ r can occur, that is the
class of L(˜� i,1� i,q−2r

i
A−1
i,1 · · · A−1

i,q−2m
i

) cannot occur in the decomposition form < r .
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Indeed, for m < r , A−1
i,q−2m

i
is a factor of one of the �-weight of the simple module

L(˜� i,1� i,q−2r
i

A−1
i,1 · · · A−1

i,q−2m
i

). This follows from an sl2-reduction, as an elementary

analysis shows that A−1
q−2m occurs in an �-weight of the representation in the sl2-case

L(�q2�
−1
q−2m�−1

q−2m−2�q−2r ) � L(�q2�
−1
q−2m ) ⊗ L(�−1

q−2m−2�q−2r ),

which is the tensor product of L(�q2�
−1
q−2m ) evaluation representation of a Verma

module and L(�−1
q−2m−2�q−2r ) finite-dimensional representation. So, if this represen-

tation appeared in the decomposition, then all its �-weights would be occur in the
q-character of Xi,1 ⊗ L+

i,q−2r
i

. In particular, A−2
i,q−2m

i
would be the factor of one of the

�-weights of Xi,1 ⊗ L+
i,q−2r

i
, which is a contradiction.

Now, as χq(Xi,1 ⊗ L+
i,q−2r

i
) = χq(Xi,1)[�+

i,q−2r
i

]χi , by identifying for m ≤ r the

coefficients of (Ai,1Ai,q−2
i

· · · Ai,q−2m
i

)−1, we obtain:

χ ′
r

∏

j �=i

χ
−Ci, j
j = χ(m)χi .

This implies that all the χ(m) are equal and we obtain the q-character formula (5.18).
��

6 Interpolating (q, t)-characters

Our approach to the folded quantum integrable systems associatedwith quantum affine
algebras, as formulated in Conjectures 5.15 and 5.16, involves the interpolating (q, t)-
characters introduced in [18] as a tool for the study of a certain Langlands duality
between finite-dimensional representations of quantum affine algebras. In this sec-
tion, we extend and refine the definition of the interpolating (q, t)-characters from
[18]. They are defined as elements of the refined Grothendieck ring Kq,t (g), which
is defined in this section (Theorem 6.6). It turns out that they have 5 interesting
specializations corresponding to various q- and t-characters. Moreover, the interpo-
lating (q, t)-characters may be viewed as commutative analogues of elements of the
deformed W-algebra Wq,t (g).

6.1 Notation for monomials

For j ∈ I ′, a node of the Dynkin diagram of g′, let us set

˜Y j,a =

⎧

⎪

⎨

⎪

⎩

Y j,a if σ( j) = j,

Y j,aYσ( j),a if σ 2( j) = jand σ( j) �= j,

Y j,aYσ( j),aYσ 2( j),a if σ 3( j) = jand σ( j) �= j .
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For i ∈ I , a node of the Dynkin diagram of g, let us set

Y i,a = Y 1+d−di
i,a , (6.1)

Wi,a =

⎧

⎪

⎨

⎪

⎩

Yi,a if di = d,

Yi,aq−1Yi,aq if di = d − 1,

Yi,aq−2Yi,aYi,aq2 if di = d − 2,

(6.2)

Zi,a1+d−di =

⎧

⎪

⎨

⎪

⎩

Yi,a if di = d,

Yi,aYi,ε2a if di = d − 1,

Yi,aYi,ε2aYi,ε4a if di = d − 2.

(6.3)

Note that di can equal d − 1 (resp. d − 2) only if d = 2 (resp. d = 3), and recall
that ε = eiπ/d .

Note that L(Wi,a) is a KR module over Uq (̂g). It is a fundamental representation
if di = d (in particular, for simply laced types, these representations are always
fundamental).

6.2 Polynomial rings and specialization homomorphisms

Nowwe recall the definition of the ring of interpolating (q, t)-characters from [18] and
then define a refined version of this ring. We start with some preliminary definitions.

Consider the ring

Yq,t = Z[W±1
i,a , αY±1

i,a , α]i∈I ,a∈qZtZ ⊂ Z[α,Y±1
i,a ]i∈I ,a∈qZtZ .

where α is an indeterminate.

Remark 6.1 For simply laced types, Yq,t is just Z[Y±1
i,a , α]i∈I ,a∈qZtZ . ��

The ring of interpolating (q, t)-charactersKq,t (g) was defined in [18] as a subring
of a quotient˜Yq,t of Yq,t . This quotient is defined from the specialization maps

�q = �t=1,α=1 : Yq,t → Z[Y±1
i,a ]i∈I ,a∈qZ ,

�t = �q=ε,α=0 : Yq,t → Z[Z±1
i,a ]i∈I ,a∈tZεZ ,

by the formula

˜Yq,t = Yq,t/(Ker(�q) ∩ Ker(�t )).

For our purposes, we alsowant to use the additional specialization homomorphisms

�t = �q=1,α=d : Yq,t → Z[Y±1
i,a ]i∈I ,a∈tZ ,

�q = �t=1,α=0 : Yq,t → Z[W±1
i,a ]i∈I ,a∈qZ .
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These specialization homomorphisms arewell definedonYq,t , but�t does not descend
to˜Yq,t if d > 1 (indeed, α2 − α projects onto 0 in˜Yq,t , but �t (α

2 − α) = d2 − d).
For this reason, we will work with an intermediate quotient

Yq,t = Yq,t/(Ker(�q) ∩ Ker(�t ) ∩ Ker(�q) ∩ Ker(�t ))

for which we have surjective ring homomorphisms

Yq,t � Yq,t �˜Yq,t .

Remark 6.2 (1) The interpolating (q, t)-characters are defined below as elements of
a subalgebra of the commutative algebra Yq,t . Their purpose is to imitate the
properties of elements of the non-commutative deformed W-algebra Wq,t (g). In
particular, the variable α is introduced in order to imitate the behavior of the
rational functions like (4.5) arising in the formulas for elements of the deformed
W-algebra Wq,t (g) such as (4.4). This is why in the above specializations we set
α equal to 1, 0, or d depending on the situation.

(2) There is a polynomial P(α) in α so that αd P(α) is equal to α in the quotient Yq,t

(for example, using a Lagrange interpolating polynomial). Hence, for an arbitrary
monomialm in the variables Y±1

i,a , as αNm is inYq,t for N large enough, αm makes

sense in Yq,t . ��
Let us recall some terminology from [18]. By amonomial in˜Yq,t wewill understand

an element m of the form P(α)M , where P(α) is a polynomial in α and M is a
monomial in the Y±1

j,a . Note that a monomial in˜Yq,t may be written in various ways as
for example αYi,a = αYi,at and (1− α)Yi,aq2d = (1− α)Yi,a . A monomial is said to

be i-dominant if it can be written by using only the variables α, Yi,a and Y±1
j,a , where

j �= i . Let Bi be the set of i-dominant monomials and for J ⊂ I , let BJ = ∩ j∈J B j .
Finally, let B = BI be the set of dominant monomials.

We will use the analogous definition of i-dominant (resp. dominant) monomials in
Yq,t .

Lemma 6.1 A monomial in Yq,t is i -dominant if and only if its specializations under
�q , �t and �t are all i -dominant.

Proof The direct implication is clear. For the converse, let us first consider a monomial
m in Yq,t which is a product of various Y±1

i,a , a ∈ qZtZ (for this question, we may

discard the other variables Y±1
j,a with j �= i). Suppose m specializes to i-dominant

monomials

m1 =
∏

s∈Z
Y
ui,s (m1)

i,qs , m2 =
∏

s∈Z,ε′∈εZ

Y
ui,ε′,s (m2)

i,ε′t s , m3 =
∏

s∈Z
Y
ui,s (m3)

i,t s

for the respective specializations t = 1, q = ε, q = 1. Then, the sum

ui =
∑

s∈Z
ui,s(m1) =

∑

s∈Z,ε′∈εZ

ui,ε′,s(m2) =
∑

s∈Z
ui,s(m3) ≥ 0
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of the various powers of the various variables is the same for m1, m2 and m3. We also
have for any ε′ = εR , R ∈ Z, the relation

∑

s∈Z
ui,ε′,s(m2) =

∑

s∈R+2dZ

ui,s(m1).

Hence we can construct an i-dominant monomial M in Yq,t so that its specializations
at t = 1 and q = ε are m1 and m2, respectively. Such a monomial is not unique, but,
for example, the powers in the variables in M can be defined inductively by a standard
combinatorial algorithm, starting from the r0, s0 where r0 (resp. s0) is minimal so that
ui,r0(m1) �= 0 (resp. ui,s0(m3) �= 0). Then, M specializes necessarily to m3 at q = 1
as for any s ∈ Z

ui,s(m3) =
∑

ε′∈εZ

ui,s,ε′(m2).

In particular, m gets identified with M in˜Yq,t and so m is i-dominant. The case when
the monomial has a factor depending of α is treated in a similar way. ��

Remark 6.3 The analogous statement is not true in Yq,t for non-simply laced types
(with r > 1). For example, Yi,1Y

−1
i,t Yi,tqd is not i-dominant, but specializes at t = 1,

q = ε, q = 1, respectively, to Yi,qd , Yi,1, Yi,1 which are all i-dominant. But in Yq,t

this monomial gets identified with Yi,qd , and so it is i-dominant, in accordance with
Lemma 6.1. ��

6.3 Definition of interpolating (q, t)-characters

Recall the definition of the ring Kq,t of interpolating (q, t)-characters from [18]. It
is defined as the intersection of subrings Ki,q,t ⊂ ˜Yq,t , i ∈ I , by analogy with the
characterization of Im χq as the intersection of the subrings Ki,q (see formulas (4.1)
and (4.2)) as well as the definition ofWq,t (g) as the intersection of the kernels of the
screening operators in [24] and Sect. 3.2.

Wewill need the following analogues of the generating series Ai (z) in the deformed
W-algebra Wq,t (g) given by formula (3.6):

˜Ai,a = Yi,a(qi t)−1Yi,aqi t ×
∏

j∈I ,C j,i=−1

Y−1
j,a ×

∏

j∈I ,C j,i=−2

Y−1
j,aq−1Y

−1
j,aq

×
∏

j∈I ,C j,i=−3

Y−1
j,aq−2Y

−1
j,aY

−1
j,aq2

. (6.4)
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Definition 6.2 Let Ki,q,t be the subring of ˜Yq,t generated by the variables α, W±1
j,a ,

αY±1
j,a ( j �= i , a ∈ qZtZ), the αYi,a(1 + ˜A−1

i,aqi t
) (a ∈ qZtZ) and

Wi,a ×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

1 + ˜A−1
i,aqi t

)

if di = d,
(

1 + α˜A−1
i,aq2t

+ ˜A−1
i,aq2t

˜A−1
i,at

)

if di = d − 1,
(

1 + α˜A−1
i,aq3t

+ α˜A−1
i,aq3t

˜A−1
i,aqt + ˜A−1

i,aq3t
˜A−1
i,aqt

˜A−1
i,aq−1t

)

if di = d − 2,

(6.5)

where a ∈ qZtZ.
Following [18], we define the ringKq,t (g) of interpolating (q, t)-characters asso-

ciated with g as the following ring intersection:

Kq,t (g) :=
⋂

i∈I
Ki,q,t ⊂˜Yq,t .

Remark 6.4 If g is simply laced,

˜Ai,a = Yi,a(qt)−1Yi,aqt ×
∏

j∈I ,I ji=−1

Y−1
j,a

coincides with Ai,qt . Hence, Ki,q,t is the image in˜Yq,t of:

Z[α,Y±1
j,a ,Yi,a(1 + A−1

i,aqt )]a∈qZtZ ⊂ Yq,t .

��
The following result was proved in [18].

Theorem 6.3 (i) Kq,t (g) is nonzero.
(ii) Every element F ∈ Kq,t (g) (resp. ∈ Ki,q,t , i ∈ I ) is uniquely determined by the

multiplicities of the dominant monomials (resp. i-dominant monomials) occurring
in F.

(iii) For each dominant monomial m, there is a unique Fq,t (m) ∈ Kq,t (g) such that
m is the unique dominant monomial occurring in Fq,t (m) (moreover, there is an
algorithm to construct Fq,t (m) explicitly).

In particular, the interpolating (q, t)-character Fq,t (Yi,a) corresponding to the i th
fundamental representation is well defined, as are the interpolating (q, t)-characters

Fq,t

(

Yi,aYi,aq2i
· · · Y

i,q2(k−1)
i

)

corresponding to the KR modules.
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Remark 6.5 (1) In general, the ringKq,t (g) cannot be lifted to a subring of Yq,t satis-
fying the properties listed in Theorem 6.3. For example, suppose that di = d − 1 and
consider the following element:

α2Yi,q−1

(

1 + ˜A−1
i,t

)

Yi,q
(

1 + ˜A−1
i,q2t

)

− α2Wi,1

(

1 + α˜A−1
i,q2t

+ ˜A−1
i,q2t

˜A−1
i,t

)

= (α2 − α3)Wi,1˜A
−1
i,q2t

+ α2Wi,1˜A
−1
i,t (6.6)

Viewed as an element of ˜Yq,t , it can be identified with αWi,1˜A
−1
i,1 which belongs to

Ki,q,t and is an i-dominant monomial.
However, viewed as an element of Yq,t , it does not contain any i-dominant mono-

mials. This contradicts property (ii) of Theorem 6.3.
(2) Ifg is simply laced, there is no suchobstruction andwecan consider interpolating

(q, t)-characters as elements of Yq,t . These are just the ordinary q-characters, but with

the quantum parameter qt instead of q. More precisely, for r ∈ Z, let K(r)
q,t (g) be the

subring of elements ofKq,t (g) involving only variables Y
±1
i,qd (tq)s

, i ∈ I , s ∈ Z. Then,

K
(r)
q,t (g) is isomorphic toK(0)

q,t (g) as it is obtained from K
(0)
q,t (g) by the automorphism

shifting spectral parameters by qd . Moreover,

Kq,t (g) � Z[α] ⊗
⊗

r∈Z
K

(r)
q,t (g).

By Remark 6.4, K(0)
q,t (g) is the image in˜Yq,t of

Im(χqt ) ⊂ Yq,t

where

χqt : K0(CZ) → Z[Y±1
i,(qt)r ]i∈I ,r∈Z

is the ordinary q-character homomorphism, but with quantum parameter q replaced
by qt and CZ is the subcategory of finite-dimensional representations ofUqt (̂g)whose
simple constituents have Drinfeld polynomials have roots that are powers of qt . ��
Theorem 6.4 Kq,t (g) can be lifted to a subring Kq,t (g) ⊂ Yq,t so that we have a
commutative diagram:

Yq,t

�t ,�q

Kq,t (g) Yq,t
�t ,�q

Z[Y±1
j,b ] j∈I ,b∈tZqZ

Kq,t (g) ˜Yq,t

.
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This theorem follows from Theorem 6.6.

6.4 The refined ring of interpolating (q, t)-characters

Let us consider the completion Y
∞
q,t of the ring Yq,t which includes infinite linear

combinations of monomials whose g-weights belong to a finite union of cones {μ �
ω}, with � being the standard ordering (as for the q-characters in the category O).
Next, we define the subrings Ki,q,t ⊂ Y

∞
q,t in the same way as the subrings Ki,q,t of

˜Yq,t , except that we include infinite which make sense in Y
∞
q,t . Note that the elements

generating Ki,q,t are well defined in Yq,t and in Y
∞
q,t by (2) in Remark 6.2.

Definition 6.5 We define the refined ring of interpolating (q, t)-charactersKq,t (g) as
the intersection

⋂

i∈I
Ki,q,t ⊂ Y

∞
q,t .

Theorem 6.6 The refined ring of interpolating (q, t)-characters Kq,t (g) satisfies the
same properties as the properties of Kq,t (g) listed in Theorem 6.3. In particular, it
contains a unique element

Fq,t (m) ∈ Kq,t (g)

for each dominant monomial m.

Proof All proofs in [18] remain valid if we replace˜Yq,t by Y
∞
q,t . More precisely,

(i) follows from (iii).
(ii) The property for the i-dominant monomials is proved as for [18, Lemma 4.1].

In the simply laced cases (d = 1), the proof is the same as for ordinary q-character as
discussed above (see Remark 6.5). If d = 2, the crucial point is indeed that the formula
(6.6) has an i-dominant monomial: its respective specializations under �t , �q , �t

are 0, Yi,q−1Yi,q A
−1
i,1 , 0, which are i-dominant. Hence, expression (6.6) identifies with

α(2 − α)Yi,q−1Yi,q A
−1
i,1 in Y

∞
q,t which is i-dominant. An analogous reasoning gives

the result for d = 3.
The property for dominant monomials is proved exactly as in [18, Lemma 4.2] from

the property we just obtained for the i-dominant monomials.
(iii) This is proved as in [18, Section 4.2]: an algorithm is proposed which produces

the F(Wi,a) for any i, a, and from which the F(m) are obtained as algebraic combi-
nations of these F(Wi,a). For the F(Wi,a), the algorithm and the proof that it does not
fail are the same. This proof is obtained by induction on the rank of the Lie algebra.
That is why we have to check for n = 1 (type A1) and n = 2 (types A1 × A1, A2,
C2, G2). The simply laced cases are clear by Remark 6.4. For type C2, the formulas
obtained in [18] for Kq,t (g) work as well for Kq,t (g):
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Fq,t (Y2,1) = Y2,1 + Y−1
2,q4t2

Y1,qtY1,q3t + αY1,qtY
−1
1,q5t3

+ Y−1
1,q3t3

Y−1
1,q5t3

Y2,q2t2 + Y−1
2,q6t4

,

(6.7)
Fq,t (W1,1) = Y1,q−1Y1,q + αY1,q−1Y−1

1,q3t2
Y2,q2t + Y−1

1,qt2
Y−1
1,q3t2

Y2,t Y2,q2t

+αY1,q−1Y1,q5t2Y
−1
2,q6t3

+ Y2,q2t Y
−1
2,q4t3

+ Y−1
1,qt2

Y1,q5t2Y
−1
2,q6t3

Y2,t

+αY1,q−1Y−1
1,q7t4

+ Y−1
2,q4t3

Y−1
2,q6t3

Y1,q3t2Y1,q5t2 + αY−1
1,qt2

Y−1
1,q7t4

Y2,t

+αY−1
2,q4t3

Y1,q3t2Y
−1
1,q7t4

+ Y−1
1,q5t4

Y−1
1,q7t4

, (6.8)

Fq,t (αY1,1) = α
(

Y1,1 + Y−1
1,q2t2

Y2,qt + Y−1
2,q5t3

Y1,q4t2 + Y−1
1,q6t4

)

. (6.9)

For the type G2, the formulas obtained in [18, Section 5.2] work as well. ��

Now let us consider the various specializations of Kq,t (g). We have first the three
specializations corresponding to the respective specializations of the deformed W-
algebras at t = 1, q = ε and q = 1.

• The specialization �q = �t=1,α=1: we get the q-character of a Uq (̂g)-module,
that is an element of K+

q (g) (this is proved in [18]).
• The specialization �t = �q=ε,α=0: we get the t-character of a Ut (

L ĝ)-module
(this is proved in [18]).

• The specialization�t = �q=1,α=d : we get the t-character of an element ofK−
t (g)

(in light of Proposition 3.2, the proof is parallel to the proof for the other special-
izations since �t (Ki,q,t ) = Ker(S−

i )). Hence, it can also be viewed as the folded
t-character of a Ut (̂g′)-module (see Sect. 4.3).

There are also two additional interesting specializations:

• The specialization �′
t = �q=1,α=0: it is well defined as the composition of �t

and the homomorphism

Z[W±1
i,a ]i∈I ,a∈tZεZ → Z[Y±1

i,a ]i∈I ,a∈tZ

(see formula (6.1) for the definition of Y i,a) identifying ε with 1. We get the
t-character of an element of K−

t (Lg) which is defined in terms of the variables
Y i,a instead of Yi,a (this is parallel to the proof for the other specializations as
�′

t (Ki,q,t ) = Ker(S−
i )). Hence, it can also be viewed as the folded t-character of

a Ut

(

̂(Lg
)′
)

-module (see Sect. 4.3).

• The specialization �q = �t=1,α=0: we obtain elements of Im(χ L
q ), i.e. q-

characters of modules over the Langlands dual quantum affine algebra Uq(
L ĝ),

as defined in [32, Section 12] (in the context of the parametrization of simple
representations of shifted quantum affine algebras).
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5 interesting specializations of the refined ring of interpolating (q, t)-characters:

RepUt (
L ĝ) ∼= RepUt ((̂Lg)′)

RepUq (̂g) ∼= K+
q (g) Kq,t (g)

�t�q

�t

�′
t�q

K−
t (g) RepUt (̂g′)

Im(χ L
q ) K−

t (Lg) RepUt ((̂Lg)′))

.

Remark 6.6 To get the t-characters ofUt (
L ĝ)-modules in the sense of [30] (as recalled

above), one has to change the sign in the definition of the variables Zi,a , as described
in [18] (formula (2) for r = 2 and Section 3.2 for r = 3). In this paper, to simplify
our notation, we do not make this sign change. ��
Remark 6.7 In [18, Lemma 4.16], we proved that the generators of Kq,t (g), i.e. the
fundamental elements Fq,t (Wi,a), are finite linear combinations of monomials. In the
case of the refined ringKq,t (g) the algorithm in the proof of Theorem 6.6 produces the
fundamental elements Fq,t (Wi,a) but so far we have only been able to prove that they
are (possibly infinite) linear combinations of monomials with weights in the union
of finitely many cones. That’s why we have allowed such linear combinations in the
definition of the Ki,q,t above. However, we also know that the specializations under
�q , �t , �t and �′

t of an interpolating (q, t)-character with a finite number of dom-
inant monomials are finite linear combinations. This follows from Proposition 6.10.
Therefore, finiteness of elements ofKq,t (g) follows from Conjecture 6.11 saying that
the coefficients of all monomials in Fq,t (Wi,a) are positive (see Corollary 6.12). ��
Example 6.7 Let us consider the interpolating (q, t)-character (6.7) corresponding
to the second fundamental representation of Uq(C

(1)
2 ). In this case, we have L ĝ =

D(2)
3 ,̂g′ = A(1)

3 , (̂Lg)′ = D(1)
3 � A(1)

3 (the last isomorphism involves switching the
indices 1 ↔ 2 ∈ {1, 2, 3} = I ′).

The above 5 specializations (listed in the same clockwise order) are, respectively,

• the q-character of the fundamental representation L(Y2,1) of Uq(C
(1)
2 ):

Y2,1 + Y−1
2,q4

Y1,qY1,q3+Y1,qY
−1
1,q5

+Y−1
1,q3

Y−1
1,q5

Y2,q2 +Y−1
2,q6

,

• the twisted t-character of the fundamental representation L(Z2,1) of Ut (D
(2)
3 ):

Z2,1+Z−1
2,t2

Z1,−t2 +Z−1
1,−t6

Z2,−t2 +Z−1
2,−t4

,

• the t-character in K−
t (C2) of highest monomial Y2,1:

Y2,1 + Y−1
2,t2

Y 2
1,t + 2Y1,t Y

−1
1,t3

+ Y−2
1,t3

Y2,t2 + Y−1
2,t4

,
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also equal to the folded t-character of the fundamental representation L(Y2,1) of
Ut (A

(1)
3 ),

• the t-character in K−
t (LC2) of highest monomial Y 2,1:

Y 2,1 + Y
−1
2,t2Y 1,t + Y

−1
1,t3Y 2,t2 + Y

−1
2,t4 ,

which after switching the indices 1 and 2 is equal to the folded t-character of the
fundamental representation L(Y1,1) of Ut (A

(1)
3 ), defined in terms of the variables

Y i,a instead of Yi,a .
• the Langlands dual q-characters of the fundamental representation L(Z2,1) of
Uq(D

(2)
3 )

W2,1 + W−1
2,q4

W1,q2 + W−1
1,q4

W2,q2 + W−1
2,q6

.

Example 6.8 Let us consider the interpolating (q, t)-character (6.8) corresponding to
the representation L(W1,1) of Uq(C

(1)
2 ). The 5 specializations are, respectively,

• the q-character of the 11-dimensional representation L(Y1,q−1Y1,q) of Uq(C
(1)
2 ).

• the twisted t-character of the fundamental representation L(Z1,−1) of Ut (
L ĝ) =

Ut (D
(2)
3 ).

Z1,−1 + Z−1
1,−t4

Z2,t Z2,−t + Z2,−t Z
−1
2,t3

+ Z−1
2,−t3

Z2,t + Z−1
2,t3

Z−1
2−t3

Z1,−t4 + Z−1
1,−t8

.

• the t-character in K−
t (C2) of highest monomial Y 2

1,1:

(

Y1,1 + Y−1
1,t2

Y2,t + Y−1
2,t3

Y1,t2 + Y−1
1,t4

)2
,

also equal to the folded t-character of the representation L(Y1,1Y3,1) of Ut (A
(1)
3 )

• the t-character in K−
t (LC2) of highest monomial Y 1,1:

Y 1,1 + Y
−1
1,t2Y

2
2,t + 2Y 2,t Y

−1
2,t3 + Y

−2
2,t3Y 1,t2 + Y

−1
1,t4

which after switching the indices 1 and 2 is equal to the folded t-character of the
fundamental representation L(Y2,1) of Ut (A

(1)
3 ), defined in terms of the variables

Y i,a instead of Yi,a .
• the Langlands dual q-characters of the fundamental representation L(Z2,1) of
Uq(D

(2)
3 )

W1,1 + W−1
1,q2

W2,1W2,q2 + W2,q2W
−1
2,q4

+ W−1
1,q2

W1,q4W
−1
2,q6

Y2,t

+W−1
2,q4

W−1
2,q6

W1,q4 + W−1
1,q6

.
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Example 6.9 Let us consider the interpolating (q, t)-character (6.9) corresponding to
the first fundamental representation ofUq(C

(1)
2 ). The specializations under�t ,�′

t ,�q

are zero because of theα factor. The specializations under�q and�t are, respectively:

• the q-character of the fundamental representation L(Y1,1) of Uq(C
(1)
2 ):

Y1,1 + Y−1
1,q2

Y2,q + Y−1
2,q5

Y1,q4 + Y−1
1,q6

,

• the t-character in K−
t (C2) of highest monomial 2Y1,1:

2(Y1,1 + Y−1
1,t2

Y2,t + Y−1
2,t3

Y1,t2 + Y−1
1,t4

)

also equal to (the double of) the folded t-character of the representation L(Y1,1)

of Ut (A
(1)
3 ).

6.5 �-fundamental interpolating (q, t)-characters

In this subsection, we identify the representation M(W ) of Uq(
L ĝ) in terms of Con-

jecture 5.16 for the simplest Uq(̂g′)-modules with σ -invariant highest monomials.
These monomials have the form Yi,a if σ(i) = i and

∏

1≤k≤d Yσ k (i),a if σ(i) �= i .
For this reason, we call theseUq(̂g′)-modules σ -fundamental. Note, however, that the
corresponding Ut (

L ĝ)-modules (see the second part of Proposition 6.10) are in fact
fundamental.

Consider a Uq(̂g′)-module of the form L(˜Yi,a), i ∈ I (the set of vertices of the
Dynkin diagram of g = (g′)σ ) and with a ∈ qZ.

Let

X (i)
q,t := Fq,t (Wi,a) ∈ Kq,t (g).

We call it the i th σ -fundamental interpolating (q, t)-character. The following propo-
sition shows that X (i)

q,t satisfies the properties of the element Xq,t whose existence is
stated in Conjecture 5.16 in the case when W = L(˜Yi,a).

Proposition 6.10 The specializations of X (i)
q,t under �q , �t , �t , �′

t , �q are respec-
tively

• the q-character of the simple Uq (̂g)-module of highest monomial Wi,a. It is a KR
module (a fundamental representation if di = d).

• the t-character of the fundamentalUt (
L ĝ)-module of highest monomial Z

i,(aq=ε )
d∨
i

(see (4.3) for the definition of d∨
i ), with aq=ε the specialization of a at q = ε.

• the t-character of the element F(Y i,a) = F(Yi,a)d
∨
i inK−

t (g) (defined in terms of
the variables Y j,b) of highest monomial Y i,a. It is also the folded t-character of
the simple Ut (̂g′)-module of highest monomial ˜Yi,a (this is a tensor product of the
fundamental representations).
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• the t-character of the element F(Y i,a) in K−
t (Lg) (which is defined in terms of

the variables Y j,b instead of Y j,b) of highest monomial Y i,a. It is also, after
the appropriate permutation of indices, equal to the folded t-character of the

fundamental Ut

(

̂(Lg
)′
)

-module of highest monomial Yi,a.

• the Langlands dual q-character of the fundamental Uq(
L ĝ)-module of highest

monomial Z
i,ad

∨
i
.

Proof By construction, following the algorithm in [18, Section 4.2.4], the interpolating
(q, t)-character Fq,t (Wi,a) is the sum of Wi,a plus other monomials of the form:

Wi,a˜A
−1
i,aqd t

˜A−1
j1,b1

· · · ˜A−1
jN ,bN

where jk ∈ I , b j ∈ aqZtZ and the ˜A j,b are given by formula (6.4). Though the argu-

ment in [18] concerns Fq,t (Wi,a), the algorithm constructing X (i)
q,t = Fq,t (Wi,a) in

Yq,t is the same, hencewe obtain that X (i)
q,t satisfies the same property. This implies that

each of the 5 specializations considered in the statement of the proposition has a unique
dominant monomial; namely, the corresponding specialization of the highest mono-
mialWi,a . Then, as explained in [18], the first two specializations are, respectively, the
q-character of a KR module ofUq (̂g) and the t-character of a fundamental module of
Ut (

L ĝ), which are known to have a unique dominant monomial by [29, 30]. The third
specialization is an element ofK−

t (g) with a unique dominant monomial Y i,a ; hence,
it is equal to F(Y i,a). Moreover, the simple Ut (̂g′)-module of highest monomial ˜Yi,a
is a simple tensor product of fundamental representations, and, as a consequence of
[22], its (folded) t-character belongs to Y i,a + Y i,a A

−1
i,atZ[A−1

j,b] j∈I ,b∈atZ , with the
A j,b as in formula (3.10). Hence, it has a unique dominant monomials and is equal
to F(Y i,a). We use an analogous argument for the fourth specialization. For the last
specialization, this is the Langlands dual q-character which is precisely defined as the
specialization of the interpolating (q, t)-character Fq,t (Wi,a). ��

The following conjecture is true in all examples known to us.

Conjecture 6.11 X (i)
q,t can bewritten in such away that all coefficients of its monomials

are positive.

Corollary 6.12 If Conjecture 6.11 holds, then X (i)
q,t is a polynomial and therefore every

element of Kq,t (g) is a polynomial (a finite linear combination of monomials).

Proof Positivity of coefficients of X (i)
q,t implies that if X (i)

q,t were an infinite combination

of monomials, then so would be �t (X
(i)
q,t ), which is not the case. Since the elements

X (i)
q,t generate Kq,t (g), it follows that every element of Kq,t (g) is finite as well. ��

Remark 6.8 The statement analogous to Conjecture 6.11 for the elements Fq,t (Wi,a)

of the original ring Kq,t (g) is also a conjecture. At present, we are not aware of a
uniform proof of this statement or of Conjecture 6.11. We expect, however, that it is
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possible to write an explicit positive and finite expression for these elements for Lie
algebras g of classical types, and to check the statement with the help of a computer
for g of exceptional types. There is a similar question for the corresponding elements
of the deformed W-algebra. We hope to discuss this in another paper.

Assuming Conjecture 6.11, we obtain a proof of the second part of Conjec-
ture 5.15,(ii) (modulo Conjecture 5.15,(i)) and Conjecture 5.16 for W = L(˜Yi,a).

Theorem 6.13 Let W = L(˜Yi,a), i ∈ I , a ∈ C
×. Suppose that Conjecture 6.11 holds.

Then, there exists a subspace W ⊂ ˜W isomorphic, as a vector space graded by
Lg-weights, to a Uq(

L ĝ)-module M(W ), which is the simple Ut (
L ĝ)-module of high-

est monomial Z
i,(aq=ε )

d∨
i
. Moreover, it satisfies Conjecture 5.16 for the interpolating

(q, t)-character X (i)
q,t .

Proof We have seen in Proposition 6.10 that �t (X
(i)
q,t ) is the folded t-character of W

and that �t (X
(i)
q,t ) = χt (M(W )) where M(W ) is the fundamental Ut (

L ĝ)-module of

highest monomial Z
i,(aq=ε )

d∨
i
. The positivity of X (i)

q,t implies that the multiplicities of

weights in �t (X
(i)
q,t ) (for which α = 0) are lower than in �t (X

(i)
q,t ) (for which α = d).

Hence, the result. ��

7 Examples

In this section,we present five explicit examples confirmingConjectures 5.15 and 5.16.

7.1 First example: the fundamental representation L(Y2,1) of Uq(A
(1)
3 )

Consider the Lie algebra g′ of type A3 with the automorphism σ exchanging the nodes
1 and 3 of its Dynkin diagram. We have the Lie algebra g = C2 with d1 = 1, d2 = 2
and its Langlands dual is Lg = B2. We also have

(

Lg
)′ = A3, but with the nodes 1

and 3 exchanged in comparison with the original g′, and L ĝ = D(2)
3 .

Then, the algebra Uq(̂g′) = Uq(A
(1)
3 ) acts on its 6-dimensional fundamental rep-

resentation W = L(Y2,1) whose q-character is

Y2,1 + Y−1
2,q2

Y1,qY3,q + Y−1
1,q3

Y3,q + Y−1
3,q3

Y1,q + Y2,q2Y
−1
1,q3

Y−1
3,q3

+ Y−1
2,q4

.

Wehave the Q-operators Q±
i (z, u) = tR±

i
(z, u) associatedwith the prefundamental

representations R+
i (z), i = 1, 2, 3, of Uq(̂g′). The roots of the corresponding Baxter

polynomials satisfy the BAE (4.7) of type A(1)
3 . Now we consider the subspace W (u)

of W where the actions of Q±,ss
1 (z, u) and Q±,ss

3 (z, u) coincide. We also have the
4-dimensional subspace ̂W ⊂ W which is the direct sum of the σ -invariant weight
subspaces W and the subspace ˜W which is the direct sum of the �-weight subspaces
corresponding to the σ -invariant �-weights (or monomials in the q-character).
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In the present case, all σ -invariant weights have multiplicity 1. Therefore, by
Remark 5.5,(2), for all values of u we have

W (u) = ˜W = ̂W = W σ (u).

Thus, part (i) of Conjecture 5.15 is verified in this case.
This implies that only σ -invariant solutions of the BAE (4.7) appear in this case.

Identifying the eigenvalues of the operators Q±,ss
1 (z) = Q±,ss

3 (z), we obtain the folded
BAE (4.8) corresponding to the Lie algebra g = C2.

The q-character of the subspace ˜W is given by the formula

Y2,1 + Y−1
2,q2

(Y1,qY3,q) + Y2,q2(Y1,q3Y3,q3)
−1 + Y−1

2,q4
.

Setting ˜Y1,q = Y1,qY3,q , one gets

Y2,1 + Y−1
2,q2
˜Y1,q + Y2,q2˜Y

−1
1,q3

+ Y−1
2,q4

. (7.1)

The corresponding character

y2 + y−1
2 y1 + y−1

1 y2 + y−1
2

is equal to the character of a fundamental representation ofUt (
L ĝ) = Ut (D

(2)
3 ). Thus,

part (ii) of Conjecture 5.15 is verified.
Finally, we discuss Conjecture 5.16 in the present case. We have the interpolating

(q, t)-character (6.7) of the second fundamental representation ofUq(C
(1)
2 ) studied in

Example 6.7. We verify Conjecture 5.16:
The specialization of the interpolating (q, t)-character (6.7) under �t is equal to

the t-character of the fundamental representation M(W ) of Ut (
L ĝ) = Ut (D

(2)
3 ).

Its specialization under �t is the folded t-character of the Ut (̂g′) = Ut (A
(1)
3 )-

module W .
Its specialization under �′

t is (after switching the indices 1 and 2) the folded t-

character ofW ′, the fundamental representation L(Y1,1) ofUt (A
(1)
3 ), defined in terms

of the variables Y i,a instead of Yi,a .
Thus, we find that both Conjectures 5.15 and 5.16 hold in this case. In other words,

we obtain an example of the folded quantum integrable system associated with g = C2
whose spectra correspond to the solutions of the folded BAE equation (4.8) associated
with g = C2, with the space of states being isomorphic to a representation ofUq(

L ĝ =
D(2)
3 ).

7.2 Second example: representation L(Y1,1Y2n−1,1) of Uq(A
(1)
2n−1)

We work with the Lie algebras g′ = A2n−1, g = Cn , Lg = Bn ,
(

Lg
)′ = Dn+1 and

L ĝ = D(2)
n+1 (we assume that n ≥ 2).
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Consider the representation W = L(Y1,1Y2n−1,1) of Uq(A
(1)
2n−1). It is 4n2-

dimensional and is isomorphic to the tensor product of the fundamental representations
L(Y1,1) ⊗ L(Y2n−1,1). Its q-character has 2n σ -invariant monomials, including one
with multiplicity 2:

χq(˜W ) = Y1,1Y2n−1,1 + Y−1
1,q2

Y−1
2n−1,q2

Y2,qY2n−2,q + · · · + Y−1
n−1,qnY

−1
n,qnY

2
n,qn−1

+2Yn,qn−1Y−1
n,qn+1 + Y−2

n,qn+1Yn−1,qnYn+1,qn + · · · + Y−1
1,q2n

Y−1
2n−1,q2n

.

All weight subspaces of W are one-dimensional, except for the 0-weight subspace
W0 of W which is 2n-dimensional, containing as a proper subspace its intersection
with ˜W , which is the 2-dimensional �-weight space associated with the σ -invariant
monomial Yn,qn−1Y−1

n,qn+1 (the other n−1 monomials of weight 0 are not σ -invariant).

This �-subspace is therefore precisely the intersection ˜W ∩ W0, and Lemma 5.2,(2)
implies that σ̂ preserves this �-weight subspace. We are going to show that σ̂ acts on
it as the identity.

Let v be a generating vector of the weight subspace Wαn , which is one-
dimensional, and hence is an �-weight subspace. The corresponding monomial is
Y 2
n,qn−1Y

−1
n−1,qnY

−1
n−1,qn . Under the action of the Uq(̂sl2) subalgebra corresponding to

the node n, the vector v generates a representation of dimension 4with a 2-dimensional
0-weight space, which is spanned by the x−

n,m .v, m ∈ Z. Since Wαn is preserved by
σ̂ , it follows that σ̂ (v) = ±v. In fact, it is easy to see that σ̂ (v) = v by restricting W
to Uq(g) and taking the limit q → 1. Then, W decomposes into the direct sum of the
adjoint representation of A2n−1 and the trivial one-dimensional representation, and
the weight subspace Wαn appears in the former. It is easy to see that the operator σ̂

acts on the adjoint representation as the automorphism induced by the automorphism
σ of the Dynkin diagram of A2n−1 (whose invariant Lie subalgebra is Cn). From this
we readily obtain that σ̂ acts as the identity on Wαn .

Next, we have σ(x−
n,m) = x−

n,m for any m ∈ Z, so we obtain that σ̂ (x−
n,m .v) =

x−
n,m .v. This implies that the vectors in ˜W ∩ W0 are indeed σ̂ -invariant. This implies
that ˜W σ = ˜W .

Now we derive from this that for generic u the intersection W (u) ∩ W0 is two-
dimensional.

We have the 2n-dimensional weight subspace W0 of W . By analyzing the q-
character of W , we have found that it decomposes into a direct sum of n − 1
two-dimensional subspaces, each containing two �-weight subspaces corresponding to
a pair of monomials M1 �= M2 such that σ(M1) = M2 (and therefore σ̂ interchanges
them, according to Lemma 5.2,(2)), and the two-dimensional �-weight subspace cor-
responding to the σ -invariant monomial Yn,qn−1Y−1

n,qn+1 on which σ̂ acts as the identity,
as we have shown above. This implies that the trace of σ̂ on W0 is equal to 2.

On the other hand, W0 also has a basis of joint eigenvectors of Q±,ss
i (u), i ∈ I ′,

with eigenvalues λ(u) = (λ±
i (u)). By applying the argument of Lemma 5.2,(2), we

find that σ̂ maps such an eigenvector to another one with eigenvalues σ(λ(u)). In the
limit u → 0 the eigenspaces of Q±,ss

i (u), i ∈ I ′ become �-weight spaces. Hence,
we find from the preceding paragraph that for generic u we have at least 2(n − 1)
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eigenvalues λ(u)which are not σ -invariant, and the set of these eigenvalues breaks into
n−1 pairs, with the eigenvalues in each pair (and the corresponding one-dimensional
eigenspaces) exchanged byσ . If the remaining 2 eigenvalueswere notσ -invariant, then
the corresponding 2 one-dimensional eigenspaces would have to be exchanged by σ .
But then the trace of σ̂ onW0 would be equal to 0, which is a contradiction. Therefore,
for generic u there must be one σ -invariant eigenvalue λ(u) with multiplicity 2, such
that the corresponding two-dimensional eigenspace is σ̂ -invariant (this is the necessary
condition for the trace of σ̂ on this subspace, and hence on W0, to be equal to 2). But
then this two-dimensional subspace is contained in W (u), and moreover in W σ (u).
This implies that W (u) ∩ W0 = W σ (u) ∩ W0 is two-dimensional.

Since the other weight spaces are 1-dimensional, it follows from Remark 5.5,(2)
that for generic u we have

W (u) � ˜W

as vector spaces graded by Lg-weights, in agreement with Conjecture 5.15,(1). More-
over, we obtain that W (u) = W σ (u).

Now, setting ˜Yi,a = Yi,aY2n−i,a for 1 ≤ i ≤ n − 1, we obtain that

χq(˜W ) = ˜Y1,1 + ˜Y−1
1,q2
˜Y2,q + · · · + ˜Y−1

n−1,qnY
2
n,qn−1 + 2Yn,qn−1Y−1

n,qn+1

+˜Yn−1,qnY
−2
n,qn+1 + · · · + ˜Y−1

1,q2n
.

The corresponding character is

y1 + y−1
1 y2 + · · · + y−1

n−1y
2
n + 2 + y−2

n yn−1 + · · · + y−1
1 ,

which coincides with the character of the (2n + 2)-dimensional fundamental rep-
resentation M(W ) of Ut (

L ĝ) = Ut (D
(2)
n+1). Moreover, as we will see below, the

specialization �t of corresponding interpolating (q, t)-character gives rise to the t-
character of this representation of Ut (D

(2)
n+1).

The above character can also be interpreted as the character of the direct sum of
the (2n + 1)-dimensional fundamental representation and the trivial representation of
Ut (L̂g) = Ut (B

(1)
n ). But we cannot obtain its t-character from the interpolating (q, t)-

character below because this t-character contains the monomial 1 (compare with the
discussion in Remark 5.5,(3)).

The interpolating (q, t)-character of the simple representation L(Y1,q−1Y1,q) of

Uq(C
(1)
n ) is given by formula (6.8) in Example 6.8 for n = 2. For general n, the

statements about its specializations follow from Proposition 6.10:
Its specialization under �t it is equal to fχt (W ).
Its specialization under �t is the t-character of the fundamental representation

M(W ) of Ut (
L ĝ) = Ut (D

(2)
n+1).

Its specialization under�′
t is (after switching the indices i and n+1−i) is the folded

t-character of W ′, the fundamental representation L(Yn,1) of Ut (A
(1)
2n−1), defined in

terms of the variables Y i,a instead of Yi,a .
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All of this is in agreement with Conjectures 5.15 and 5.16.

7.3 Third example: the fundamental representation L(Y3,1) of Uq(A
(1)
5 )

Consider the Lie algebra g′ of type A5 with σ being the unique automorphism of the
Dynkin diagram of order 2. Then, g = C3 with d1 = d2 = 1, d3 = 2 and its Langlands
dual Lie algebra is Lg = B3. We also have

(

Lg
)′ = D4 and L ĝ = D(2)

5 .

The fundamental representation L(Y3,1) of Uq(̂g′) = Uq(A
(1)
5 ) is 20-dimensional.

It has 8 invariant monomials:

χq(˜W ) = Y3,1 + Y−1
3,q2

Y4,qY2,q + Y1,q2Y5,q2Y
−1
2,q3

Y−1
4,q3

Y3,q2 + Y1,q2Y5,q2Y
−1
3,q4

+Y3,q2Y
−1
1,q4

Y−1
5,q4

+Y−1
1,q4

Y−1
5,q4

Y2,q3Y4,q3Y
−1
3,q4

+ Y3,q4Y
−1
2,q5

Y−1
4,q5

+ Y−1
3,q6

.

In this case, all ordinaryweights havemultiplicity 1. Therefore, Remark 5.5,(2) implies
that for any u we have

W (u) = ˜W = ̂W = W σ (u).

Setting ˜Y1,a = Y1,aY5,a and ˜Y2,a = Y2,aY4,a , we obtain that χq(˜W ) equals

Y3,1 + Y−1
3,q2
˜Y2,q + ˜Y1,q2˜Y−1

2,q3
Y3,q2 + ˜Y1,q2Y−1

3,q4
+ Y3,q2˜Y

−1
1,q4

+˜Y−1
1,q4
˜Y2,q3Y

−1
3,q4

+ Y3,q4˜Y
−1
2,q5

+ Y−1
3,q6

.

The corresponding character is

y3 + y2y
−1
3 + y3y

−1
2 y1 + y−1

3 y1 + y3y
−1
1 + y−1

3 y2y
−1
1 + y−1

2 y3 + y−1
3 ,

which is the character of the third fundamental representation M(W ) of Ut (
L ĝ) =

Ut (D
(2)
5 ).

Actually, it is also the character of the fundamental representation L(Y3,1) of
Ut (L̂g) = Ut (B

(1)
3 ). But we cannot obtain the t-character of this representation from

the interpolating (q, t)-character, whereas we can do it for the third fundamental rep-
resentation of Ut (D

(2)
5 ) (see the discussion in Remark 5.5,(3)).

In fact, the interpolating (q, t)-character of the simple representation L(Y3,1) of
Uq (̂g) = Uq(C

(1)
3 ) was computed in [18, Section 4.5] (note however that there was a

typo there for the monomials Y2,q5t3 and Y2,q7t5 , which we correct here):

Y3,1 + Y−1
3,q4t2

Y2,qtY2,q3t + αY1,q4t2Y2,qtY
−1
2,q5t3

+Y3,q2t2Y
−1
2,q3t3

Y−1
2,q5t3

Y1,q4t2Y1,q2t2 + αY−1
1,q6t4

Y2,qt

+Y−1
3,q6t4

Y1,q4t2Y1,q2t2 + αY3,q2t2Y
−1
2,q3t3

Y−1
1,q6t4

Y1,q2t2
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+αY−1
3,q6t4

Y−1
1,q6t4

Y1,q2t2Y2,q5t3 + Y3,q2t2Y
−1
1,q6t4

Y−1
1,q4t4

+αY1,q2t2Y
−1
2,q7t5

+ Y−1
3,q6t4

Y2,q3t3Y2,q5t3Y
−1
1,q6t4

Y−1
1,q4t4

+αY2,q3t3Y
−1
2,q7t5

Y−1
1,q4t4

+ Y−1
2,q5t5

Y−1
2,q7t5

Y3,q4t4 + Y−1
3,q8t6

.

There are 14-monomials, 8 with multiplicity 1 and 6 with multiplicity α.
Its specialization under�t , has 20 terms, and it is equal toχt (W ) after identification

of the variables Y1,a ∼ Y5,a , Y2,a ∼ Y4,a .
Its specialization under �t has 8 terms:

Z3,1 + Z−1
3,t2

Z2,−t2 + Z3,−t2 Z
−1
2,−t6

Z1,t4 + Z−1
3,−t4

Z1,t4

+ Z3,−t2 Z
−1
1,t8

+ Z−1
3,−t4

Z2,−t6 Z
−1
1,t8

+ Z−1
2,−t10

Y3,t4 + Z−1
3,t6

,

and is the t-character of the fundamental representationM(W ) ofUt (
L ĝ) = Ut (D

(2)
5 ).

Its specialization under �′
t is the folded t-character

Y 3,1 + Y
−1
3,t2Y 2,t + Y 3,t2Y

−1
2,t3Y 1,t2 + Y

−1
3,t4Y 1,t2

+Y 3,t2Y
−1
1,t4 + Y

−1
3,t4Y 2,t3Y

−1
1,t4 + Y

−1
2,t5Y 3,t4 + Y

−1
3,t6

of the fundamental representation L(Y3,1) ofUt

(

̂(Lg
)′
)

= Ut (D
(1)
4 ), defined in terms

of the variables Y i,a instead of Yi,a .
All of this is in agreement with Conjectures 5.15 and 5.16.

7.4 Fourth example: the trivalent fundamental representation L(Y1,1) of Uq(D
(1)
4 )

Now we consider the Lie algebra g′ of type D4 with an automorphism σ of order 3
and denote by i = 1 the trivalent node. Then, g = G2 with d1 = 3, d2 = 1 and
its Langlands dual Lie algebra is Lg = G2 with d∨

1 = 1 and d∨
2 = 3. We also have

(

Lg
)′ = D4 (but with the trivalent node now being i = 2) and L ĝ = D(3)

4 .
Let us consider the example of the fundamental representation W = L(Y1,1) of

Uq(̂g′) = Uq(D
(1)
4 ). Its q-character is computed in [50, Example 5.3.2]. It has 27

monomials, all of multiplicity 1 except one (Y1,q2Y
−1
1,q4

) of multiplicity 2. It has 8
invariant monomials for an automorphism σ of order 3, including one of multiplicity
2:

χq(˜W ) = Y1,1 + Y−1
1,q2

Y2,qY3,qY4,q + Y 2
1,q2Y

−1
2,q3

Y−1
3,q3

Y−1
4,q3

+ 2Y1,q2Y
−1
1,q4

+ Y−2
1,q4

Y2,q3Y3,q3Y4,q3

+Y1,q4Y
−1
2,q5

Y−1
3,q5

Y−1
4,q5

+ Y−1
1,q6

.
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All weight spaces of W are one-dimensional, except for the 0-weight space W0 of
W which is 5-dimensional, containing as a proper subspace its intersection with ˜W ,
which is the 2-dimensional �-weight space associated with Y1,q2Y

−1
1,q4

(the other 3

monomials of weight 0 are Y2,qY
−1
2,q5

, Y3,qY
−1
3,q5

, Y4,qY
−1
4,q5

, which are not σ -invariant).
Let v be a generating vector of the weight spaceWα1 , which is one-dimensional and

whose correspondingmonomial is Y 2
1,q2

Y−1
2,q Y

−1
3,q Y

−1
4,q . Under the action of theUq(̂sl2)-

subalgebra corresponding to the node 1, the vector v generates a representation of
dimension 4 with a 2-dimensional 0-weight space. We obtain as in Sect. 7.2 above
that for generic u we have dimW (u) ∩ W0 = dim ˜W ∩ W0 = 2.

Since the other weight spaces are 1-dimensional, it follows from Remark 5.5,(2)
that for generic u we have

W (u) � ˜W

as vector spaces graded by Lg-weights. Moreover, it follows thatW σ (u) = W (u) and
˜W σ = ˜W .
Setting ˜Y2,a = Y2,aY3,aY4,a , we obtain that

χq(˜W ) = Y1,1 + Y−1
1,q2
˜Y2,q + Y 2

1,q2
˜Y−1
2,q3

+ 2Y1,q2Y
−1
1,q4

+ Y−2
1,q4
˜Y2,q3

+Y1,q4˜Y
−1
2,q5

+ Y−1
1,q6

.

The corresponding character

y1 + y2y
−1
1 + y21 y

−1
2 y1 + 2 + y2y

−2
1 + y−1

2 y1 + y−1
1

is the character of the first fundamental representation M(W ) of Ut (
L ĝ) = Ut (D

(3)
4 ).

Note that it is also the character of the direct sum of the first fundamental representa-
tion and the trivial one-dimensional representation of Ut (L̂g) = Ut (G

(1)
2 ). Therefore,

we cannot obtain the t-character of this representation of Ut (G
(1)
2 ) from the corre-

sponding interpolating (q, t)-character, whereas we can do it for the first fundamental
representation of Ut (D

(3)
4 ) (compare with the discussion in Remark 5.5,(3)).

In fact, the interpolating (q, t)-character of the simple representation L(Y1,1) of
Uq(G

(1)
2 ) was computed in [18, Section 5.2]. It has 15 monomials, 8 with multiplicity

1 and 7 with multiplicity α.
Its specialization under �t has 29 terms and is equal to fχt (W ).
Its specialization under �t , has 8 terms:

Z1,1 + Z−1
1,t2

Z2,−t3 + Z−1
2,−t9

Z1,−εt2 Z1,ε2t2 + Z1,εt2 Z
−1
1,ε2t4

+ Z1,ε2t2 Z
−1
1,−εt4

+ Z−1
1,ε2t4

Z−1
1,−εt4

Z−2,t9 + Z−2,t15 Z1,t4 + Z−1
1,t6

and is the t-character of the fundamental representationM(W ) ofUt (
L ĝ) = Ut (D

(3)
4 ).
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Its specialization under �′
t is the folded t-character

Y 1,1 + Y
−1
1,t2Y 2,t + Y

−1
2,t3Y

2
1,t2 + 2Y

−1
1,t4Y 1,t2 + Y 2,t3Y

−2
1,t4 + Y

−1
2,t5Y 1,t4 + Y

−1
1,t6

of the fundamental representation L(Y1,1) ofUt

(

̂
(

Lg
)
′) = Ut (D

(1)
4 ), defined in terms

of the variables Y i,a instead of Yi,a .
All of this is in agreement with Conjectures 5.15 and 5.16.

7.5 Fifth example: a simple tensor product of 4 fundamental representations of
Uq(A

(1)
3 )

Here we study an example in which W (u) is not equal to the whole space W (u).
We work with the same Lie algebras g′ = A3, g = C2, Lg = B2,

(

Lg
)′ = A3 and

L ĝ = D(2)
3 as in the first example.

Consider the following simple tensor product of 4 fundamental representations of
Uq(̂g′) = Uq(A

(1)
3 ),

W = L(Y 2
1,1Y

2
3,1) � L(Y1,1)

⊗2 ⊗ L(Y3,1)
⊗2.

Its highest monomial Y 2
1,1Y

2
3,1 is σ -invariant.

It is the tensor square of the 16-dimensional representation W1 = L(Y1,1Y3,1)
studied inSect. 7.2 (withn = 2),whose invariant subspace ˜W1 = W1(0)has dimension
6. Its dimension is 256, and its subspace ˜W = W (0) contains a subspace of dimension
62 = 36 corresponding to the square of the q-character of the invariant subspace ˜W1
of L(Y1,1Y3,1):

˜Y 2
1,1 + 2˜Y1,1˜Y

−1
1,q2
˜Y 2
2,q + 4˜Y1,1˜Y2,q˜Y

−1
2,q3

+˜Y−2
1,q2
˜Y 4
2,q + 4˜Y−1

1,q2
˜Y 3
2,q
˜Y−1
2,q3

+ 2˜Y1,1˜Y1,q2˜Y
−2
2,q3

+ 6˜Y 2
2,q
˜Y−2
2,q3

+ 2˜Y1,1˜Y
−1
1,q4

+ 4˜Y2,q˜Y
−3
2,q3
˜Y1,q2 + 2˜Y−1

1,q2
˜Y−1
1,q4
˜Y 2
2,q + ˜Y−4

2,q3
˜Y 2
1,q2

+ 4˜Y2,q˜Y
−1
2,q3
˜Y−1
1,q4

+ 2˜Y−2
2,q3
˜Y1,q2˜Y

−1
1,q4

+ ˜Y−2
1,q4

. (7.2)

However, the analysis of the q-character

χq(W ) = (Y1,1 + Y−1
1,q2

Y2,q + Y−1
2,q3

Y3,q2 + Y−1
3,q4

)2(Y3,1 + Y−1
3,q2

Y2,q + Y−1
2,q3

Y1,q2

+Y−1
1,q4

)2

shows that ˜W is larger: it has dimension 54 and χq(˜W ) equals

˜Y 2
1,1 + 4˜Y1,1˜Y

−1
1,q2
˜Y 2
2,q + 8˜Y1,1˜Y2,q˜Y

−1
2,q3

+ ˜Y−2
1,q2
˜Y 4
2,q

+ 4˜Y−1
1,q2
˜Y 3
2,q
˜Y−1
2,q3

+ 4˜Y1,1˜Y1,q2˜Y
−2
2,q3

+ 6˜Y 2
2,q
˜Y−2
2,q3

123



80 Page 62 of 86 E. Frenkel et al.

+ 4˜Y1,1˜Y
−1
1,q4

+ 4˜Y2,q˜Y
−3
2,q3
˜Y1,q2 + 4˜Y−1

1,q2
˜Y−1
1,q4
˜Y 2
2,q + ˜Y−4

2,q3
˜Y 2
1,q2

+8˜Y2,q˜Y
−1
2,q3
˜Y−1
1,q4

+ 4˜Y−2
2,q3
˜Y1,q2˜Y

−1
1,q4

+ ˜Y−2
1,q4

.

But the corresponding character is not equal to the character of a representation of
the twisted quantum affine algebra Uq(D

(2)
3 ). Indeed, the dimensions of the simple

Uq(D
(2)
3 )-modules whose highest Lg-weight is y21 are 36 (simple tensor square of

the first fundamental representation), 35 (L(Z1,t Z1,t4)) or 32 (KR modules). The
dimension of the remaining space and the multiplicity of the highest weight y22 within
it are, respectively, 18 and 2y22 , 19 and 2y22 , 22 and 3y22 . But the dimension of the
simple modules of highest weight y22 are 16 (simple tensor product of fundamental
representation), 15 (L(Z2,t Z2,t4)) or 10 (KR modules). This means that this is not the

character of a representation of Uq(D
(2)
3 ).

Hence, in this case W (u) cannot be equal to the whole W (u). Rather, it should
be a subspace of the space isomorphic to the one whose q-character is (7.2). We
expect that M(W ) is a simple tensor square of the first fundamental representation of
Uq(D

(2)
3 ). The computation of the specialization�t of the corresponding interpolating

(q, t)-interpolating character confirms it.
We also note that M(W ) is smaller than ˜W σ in this case. Indeed, the weight spaces

associated with the Lg-weights 2ω∨
1 , 2ω

∨
2 and ω∨

1 have respective dimensions 1, 4 and
8 in ˜W of dimension 54. The dimensions of the corresponding weight spaces in ˜W σ

are 1, 3 and 6 (indeed, denoting by v a highest weight vector of W , the generators for
2ω∨

2 are x−
1,0x

−
3,0.v, x

−
1,1.x

−
3,1.v, (x

−
1,0x

−
3,1 + x−

1,1x
−
3,0).v, and for ω∨

1 their images under

the action of x−
2,0 and x−

2,1). So the dimension of ˜W σ is smaller than 51, and then by a
symmetry argument (by considering the opposite weights), it is smaller than 48. We
have seen that the dimensions of the simple modules overUq(D

(2)
3 ) of highest weight

ω∨
1 are 36, 35 or 32. The dimension of the remaining space in ˜W σ is smaller than

12, 13 and 20, respectively, and the multiplicity of the weights 2ω∨
2 , ω∨

1 within are,
respectively, y22 + 2y1, y22 + 2y1 and 2y22 + 3y1. But the dimensions of the simple
modules of highest weight 2ω∨

2 are 16, 15 or 10. Only the last case is possible, and it
corresponds to a KR-module which contributes to ω∨

1 with multiplicity 1. In all cases,
the remaining space has dimension smaller than 3 with a space associated with ω∨

1 of

dimension 1. This means that this is not the character of a representation ofUq(D
(2)
3 ).

Now let us interpret this in terms of the interpolating (q, t)-character of the simple
representation L(Y1,q−1Y1,q)⊗2 of Uq(C

(1)
2 ), that is the square of the formula (6.8)

studied in Example 6.8.
Its specialization under �t is equal to fχt (W ).
Its specialization under �t is the t-character of the 36-dimensional simple repre-

sentation M(W ) = L(Z1,−1)
⊗2 of Ut (

L ĝ) = Ut (D
(2)
3 ).

Its specialization under �′
t is (after switching the indices 1 and 2) the folded t-

character of W ′, the 36-dimensional simple representation L(Y2,1)⊗2 of Ut (A
(1)
3 ),

defined in terms of the variables Y i,a instead of Yi,a .
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8 Connection tomonomial crystals

In this section, we formulate a conjecture linking folded t-characters to Kashiwara’s
extension of Nakajima’smonomial model of crystals to non-simple laced Lie algebras.
We have previously mentioned it in Remark 3.1,(2).

Recall that a g-crystal is a setC together with an assignment to each element c ∈ C
a g-weight wt(c); the crystal operators ẽi , ˜fi : C → C � {0}, i ∈ I (crystallized
versions of Chevalley operators of Uq(g)); and maps εi , φi : C → Z satisfying the
axioms of the crystal theory (in general, εi , φi could have infinite values, but we do
not consider this possibility here). There is a corresponding notion of morphisms and
isomorphisms of g-crystals as well as that of g-subcrystals. For example, each simple
finite-dimensional representation V (λ) ofUq(g) of highest weight λ is known to have
a crystal basis. The set of its elements has the structure of a g-crystal, which is denoted
by B(λ). This g-crystal is called a simple crystal and it has various realizations. One
of them is the monomial crystal which was introduced by Nakajima [51] and further
studied by Kashiwara [38]. We now recall the definition.

Let s : I → {0, 1} (i �→ si ) be a map such that Ci, j ≤ −1 implies si + s j = 1.
Consider the set of monomials M generated by the Y±1

i,qr such that r ≡ si mod [2].
For m =∏ j∈I ,l∈Z Y

u j,l

j,ql
∈ M, define its g-weight by the formula

wt(m) =
∑

j∈I ,l∈Z
u j,lω j .

Next, set for i ∈ I ,

φi (m) = max{φi,L(m) | L ∈ Z} where φi,L(m) =
∑

l≤L

ui,l(m),

εi (m) = max{εi,L(m) | L ∈ Z} where εi,L(m) = −
∑

l≥L

ui,l(m).

Finally, define ẽi , ˜fi : M → M ∪ {0} for i ∈ I by the formulas

ẽi (m) =
{

0 if εi (m) = 0,

mAi,q pi (m)−1 if εi (m) > 0,

˜fi (m) =
{

0 ifφi (m) = 0,

mA−1
i,qqi (m)+1 ifφi (m) > 0,

where the A j,qd are given by formula (3.10) and

pi (m) = max{L ∈ Z | εi,L(m) = εi (m)} = max{L ∈ Z |
∑

l<L

ui,l(m) = φi (m)},

qi (m) = min{L ∈ Z | φi,L(m) = φi (m)} = min{L ∈ Z | −
∑

l>L

ui,l(m) = εi (m)}.
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Theorem 8.1 [38, 51]

(1) The collection (M,wt, εi , φi , ẽi , ˜fi ) is a g-crystal. It is called the monomial crys-
tal.

(2) For a dominant m ∈ M, letM(m) ⊂ M be the g-subcrystal generated by m. Then,
M(m) is isomorphic, as a g-crystal, to B(wt(m)).

For example, for g = A2 we have

M(Y1,1) = {Y1,1,Y2,qY−1
1,q2

,Y−1
2,q3

} � B(ω1) (8.1)

and for g = C2 we have

M(Y2,1) = {Y2,1,Y−1
2,q2

Y 2
1,q ,Y1,qY

−1
1,q3

,Y−2
1,q3

Y2,q2 ,Y
−1
2,q4

} � B(ω2). (8.2)

Observe that the first set (8.1) is the set of monomials of the q-character of a
fundamental representation of Uq(A

(1)
2 ), but the second set (8.2) in not the set of

monomials of the q-character of a representation of Uq(C
(1)
2 ).

In fact, if g is a simply laced Lie algebra, there is a precise relation between the
monomial crystals and the q-characters of modules over Uq (̂g) discovered by Naka-
jima [51]. Namely, it is proved in [51, Theorem 3.3] that for a dominant monomial
m in M, the set V(m) of monomials (without multiplicities) of the q-character of the
standard module V (m) associated withm (i.e. V (m) is the corresponding tensor prod-
uct of the fundamental representations) is a g-subcrystal of the monomial crystal M
(in particular, its union with {0} is stable by the crystal operators). Moreover, for each
dominant g-weight λ, there is a choice of a dominant monomial m ∈ M of weight
wt(m) = λ so that the g-crystal V(m) is equal toM(m). By Theorem 8.1,(2), V(m) is
isomorphic, as a g-crystal, to the corresponding simple crystal B(λ) [51, Proposition
3.4] (for a fundamental weight λ = ωi we can choose m = Yi,a).

We will now conjecture an analogous result for non-simply laced g, with the q-
characters of representations of quantum affine algebras in K+

q (g) replaced by the

t-characters in the folded t-character ring K−
t (g) introduced in Sect. 4.4. Note that

we now denote the quantum parameter inM by t instead of q to fit the notation of the
previous sections.

Conjecture 8.2 (1) The set of monomials (without multiplicities) of a product of the
fundamental elements F(Yi,tr ) ∈ K−

t (g), with Yi,tr ∈ M, is a g-subcrystal of the
monomial crystal M.

(2) For each dominantweightλ, there is a product of the fundamental elements F(Yi,a)
with highest monomial m ∈ M of weight λ whose set of monomials is equal to
M(m) and hence is a g-crystal isomorphic to B(λ). ��
In particular, for i ∈ I , we expect that the set of monomials (without multiplicities)

occurring in F(Yi,1) ∈ K−
t (g) is equal toM(Yi,1) and so is isomorphic, as a g-crystal,

to B(ωi ). We also expect that ˜W = W ′ in this case (see Conjecture 5.16).
For example, we have the following element in K−

t (C2):

Y2,1 + Y−1
2,t2

Y 2
1,t + 2Y1,t Y

−1
1,t3

+ Y−2
1,t3

Y2,t2 + Y−1
2,t4

.
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The set of its monomials is the set (8.2), which is equal to M(Y2,1), and so it is
isomorphic, as a g = C2-crystal, to B(ω2).

One of ourmotivations for this conjecture in the following. Consider the representa-

tion L(˜Yi,1) ofUq(
̂(Lg
)′
). It is a simple tensor product of fundamental representations.

By Theorem 8.1, the set of monomials of its q-character,M(L(˜Yi,1)), has the structure
of a simple

(

Lg
)′
-crystal.

Now, the action of σ on M(L(˜Yi,1)) is an automorphism of
(

Lg
)′
-crystal. It then

follows from the general results on crystals in [37] that the subset of monomials
(M(L(˜Yi,1)))σ fixed by σ has the structure of a simple L(Lg) = g-crystal isomorphic
to B(ωi ).

On the other hand, the identification of variables Y j,b ≡ Y j,σ (b) is injective
on (M(L(˜Yi,a)))σ . Hence, the set (M(L(˜Yi,1)))σ can be identified with a subset
(M(L(˜Yi,a)))σ, f of the set of monomials of the folded t-character

χ
f
t (L(˜Yi,a)) = F(Y i,a) ∈ K−

t (Lg).

Hence, this subset (M(L(˜Yi,a)))σ, f inherits the structure of a simple g-crystal.
In Proposition 6.10,we have established thatχ L

t (L(˜Yi,a)) is the specialization of the
interpolating (q, t)-character Fq,t (Wi,1) ∈ Kq,t (

Lg) under �t . But the specialization
under �′

t of the same interpolating (q, t)-character Fq,t (Wi,1) is F(Y i,1) ∈ K−
t (g)

(defined in terms of the variables Y j,b instead of Y j,b).
We expect that the monomials of F(Y i,1) correspond through this interpolation to

themonomials in the subset (M(L(˜Yi,a)))σ, f , and so the set of thesemonomials should
inherit the structure of a g-crystal. This leads us to the statement of Conjecture 8.2.
Proving this identification requires a finer analysis. We plan to come back to this
question in another paper.

For example, consider g = C2 as above. Then,
(

Lg
)′ = A3 and the set ofmonomials

of L(˜Y1,1) � L(Y1,0) ⊗ L(Y3,1) has 15 elements

M(˜Y1,1) = {Y1,1,Y−1
1,q2

Y2,q ,Y
−1
2,q3

Y3,q2 ,Y
−1
3,q4

} × {Y3,1,Y−1
3,q2

Y2,q ,Y
−1
2,q3

Y1,q2 ,Y
−1
1,q4

},

(Y2,1Y
−1
2,3 occurs with multiplicity 2 in the q-character). The set of fixed monomials

is

M(˜Y1,1)
σ = {˜Y1,1,˜Y−1

1,q2
˜Y 2
2,q ,

˜Y2,q˜Y
−1
2,q3

,˜Y−2
2,q3
˜Y1,q2 ,˜Y

−1
1,q4

}.

It has the structure of a C2-crystal isomorphic to B(ω2) by the general results
mentioned above. In this explicit example, we can check directly that the above iden-
tification gives the C2-crystal (8.2). Indeed, by folding, this set is identified with

M(˜Y1,1)
σ, f = {Y 2

1,1,Y
−2
1,q2

Y 2
2,q ,Y2,qY

−1
2,q3

,Y−2
2,q3

Y 2
1,q2 ,Y

−2
1,q4

},

which is a subset of the set of monomials of χ
f
t (L(˜Y1,1)). The corresponding inter-

polating (q, t)-character Fq,t (W1,1) is given by Formula (6.8) in type B2 (with 1 and
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2 exchanged), see Example 6.8. Its specialization under �t is the folded t-character
of the representation L(˜Y1,1) above. Its specialization under �′

t is the t-character of
an element inK−

t (C2), whose set of monomials is the setM(˜Y1,1)σ, f and is equal to

{Y 1,1,Y
−1
1,q2Y

2
2,q ,Y 2,qY

−1
2,q3 ,Y

−2
2,q3Y 1,q2 ,Y

−1
1,q4}.

Exchanging the indices 1 and 2, we recover the set (8.2) (with the variables Y i,a instead
of the Yi,a) as expected.

9 The Gaudinmodel

In this section, we consider the Gaudin limit of the folded integrable model discussed
above. In this case, Bethe Ansatz equations simplify and we can study more directly
the links between the objects associated with the Lie algebras g, Lg, and g′.

9.1 The appearance of Lg

First, some general observations about finite-dimensional representations of these
three Lie algebras. Recall that g′ is a simply laced Lie algebra with an automorphism
σ of order 2 or 3, and g is its Lie subalgebra of σ -invariant elements. Let h′ be a Cartan
subalgebra of g′. Then, its subspace h of σ -invariant elements is a Cartan subalgebra
of g.

Consider for simplicity the case when σ has order 2. The case of order 3 can be
analyzed in a similar way.

The Cartan subalgebra h′ is generated by the coroots α̌′
i , i ∈ I ′. Here I ′ is the set of

vertices of the Dynkin diagram of g′. Recall that σ acts on I ′, and the set I of vertices
of the Dynkin diagram of g is the quotient of I ′ by this action. For each i ∈ I , let Ji be
the preimage of i in I ′. It either consists of one element stable by σ , or two elements
exchanged by σ . The coroot generators α̌i , i ∈ I , of h are

α̌i =
∑

j∈Ji

α̌′
j . (9.1)

In other words, they have the form

α̌′
i , if σ(i) = i; α̌′

i + α̌′
σ(i), if σ(i) �= i . (9.2)

Consider now the dual spaces (h′)∗ and h∗. We have a surjective map (h′)∗ � h∗
dual to the inclusion h ↪→ h′. We can try to embed h∗ into (h′)∗ so that the pairing
between the image of this embedding of h∗ and h ⊂ h′ is the pairing we have on
h, but then an interesting thing happens: if σ(i) = i , then we can take as the image
of the corresponding fundamental weight ωi of g in (h′)∗ to be equal to ω′

i , the i th
fundamental weight of g′. But if σ(i) �= i , then we have to take half the sum of the
fundamental weights:
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1

2
(ω′

i + ω′
σ(i)). (9.3)

Indeed, we need to have 〈ωi , α̌ j 〉 = δi j , and then formula (9.2) shows that we must
insert the factor 1

2 . The same factor appears in the expressions for the simple roots of
g.

This has an important consequence: the integral weight lattice associated with g
does not embed into the integral weight lattice of g′. Instead, we have an embedding
of the integral weight lattice associated not with g but with Lg—the Langlands dual
Lie algebra!—into the integral weight lattice of g′.

Actually, this is clear from the fact that Lh = h∗, and so (Lh)∗ = h, which, as
we have seen above, naturally embeds into h′. We then identify the latter with (h′)∗
using the unique W -invariant bilinear form normalized so that the square length of
each root of g′ is equal to 2. Thus, we obtain an embedding (Lh)∗ ↪→ (h′)∗. Under
this embedding, a fundamental weight of Lg is mapped to

ω′
i + ω′

σ(i). (9.4)

Unlike formula (9.3), there is no factor 1
2 now. The same holds for the simple roots

of Lg. Thus, we have proved the statement of Lemma 5.14 that there is a natural
isomorphism between the lattice of integral Lg-weights and the lattice of σ -invariant
g′-weights.

Now suppose that we have a finite-dimensional irreducible representation W of g′
whose highest weight λ is σ -invariant. By analogywith Lemma 5.2, we then prove that
there is a unique automorphism σ̂ of W which intertwines the representation of g′ on
W with its σ -twist and acts as identity on the highest weight subspace. As in Sect. 5.6,
define the subspace W σ ⊂ W as the direct sum of the σ̂ -invariant parts of the weight
subspaces ofW corresponding to σ -invariant weights. According to Proposition 5.18,
its character is the character of a virtual representation of Lg. In Sect. 9.7, wewill show
that in fact it is possible (modulo Conjecture 9.10) to explicitly embed the irreducible
representation of Lg with the highest weight corresponding to λ into W σ .

So, an interesting switch happens: we start with a simply laced Lie algebra g′ with
an automorphism σ whose fixed-point Lie subalgebra is g. Of course, every irreducible
representationW of g′ restricts to a representation of g. However, because the integral
weight lattice of g does not embed into the integral weight lattice of g′, it’s not natural
to describe it in terms of weight spaces corresponding to the σ -invariant weights of g′.
Instead, it turns out that we can construct inside the direct sum of σ -invariant weight
subspaces ofW (actually, inside its subspaceW σ ) an irreducible representation of the
Langlands dual Lie algebra Lg, which at first glance has nothing to do with g′. This
can be done using the results of [13] on the spectra of the Hamiltonians of the Gaudin
model.

Remark 9.1 In [17] and references therein, it was shown that representations of Lg
can be extracted from irreducible finite-dimensional representations of g. In contrast,
here we aim to extract representations of Lg from irreducible representations of g′. It

123



80 Page 68 of 86 E. Frenkel et al.

would be interesting to see whether there is a connection between the two approaches.
��

9.2 Gaudinmodel for g′

Here we discuss the Gaudin model associated with g′, more precisely, its modification
with the twist parameter χ ′ ∈ h′. It appears as the q → 1 limit of the XXZ-type
quantum integrable model associated withUq(̂g′) (χ ′ is the analogue of the parameter
u ∈ H ′ of the XXZ-type model).

We will use the results of [12–14, 16, 58]. Let λk, k = 1, . . . , N , be a collec-
tion of dominant integral weights of g′. Denote by V ′

λk
the corresponding irreducible

finite-dimensional representations of g′. For a collection zk, k = 1, . . . , N , of dis-
tinct complex numbers, let V ′

λk
(zk), k = 1, . . . , N , be the corresponding evaluation

representations of the current algebra g′[z]. Consider their tensor product

N
⊗

k=1

V ′
λk

(zk) (9.5)

and its subspace of weight

γ =
∑

k

λk −
m
∑

j=1

α′
i j . (9.6)

These are the spaces of states of the Gaudin model associated with g′.
Next we discuss the Bethe Ansatz equations. Their solutions are in one-to-one cor-

respondence with theMiura g′-opers on CP
1 with trivial monodromy representation.

They can be represented by g′-valued connections on CP
1 of the form

∂z +
∑

i∈I ′
f ′
i −

N
∑

k=1

λ̌k

z − zk
+

m
∑

j=1

α̌′
i j

z − w j
+ χ ′. (9.7)

Here the f ′
i , i ∈ I ′, are generators of the lower nilpotent subalgebra of g′, and we are

using the above identification between h′ and (h′)∗ bymeans of the normalized bilinear
form; namely, {λ̌k} denote the elements of h′ ⊂ g′ corresponding to {λk ∈ (h′)∗}, and
{α̌′

i , i ∈ I ′} is the set of simple coroots of g′, which correspond to the simple roots
{α′

i , i ∈ I ′} under the identification (h′)∗ � h.
We will assume that w j ’s are distinct complex numbers such that w j �= zk for all

j and k.
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Proposition 9.1 [12, 14, 16] The condition that connection (9.7) has trivial mon-
odromy is equivalent to the following system of Bethe Ansatz equations:

N
∑

k=1

〈α′
i j
, λ̌k〉

w j − zk
−
∑

s �= j

〈α′
i j
, α̌′

is
〉

w j − ws
= 〈α′

i j , χ
′〉, j = 1, . . . ,m. (9.8)

These equations can be obtained by taking the limit q → 1 of the Bethe Ansatz
equations (4.7) of the XXZ-typemodel associated withUq(̂g′). Themonic polynomial
with the roots w j where i j = i (i.e. those points on CP

1\∞ at which the connection
(9.7) has residue α̌′

i ),

Qi (z) =
∏

i j=i

(z − w j ), (9.9)

is the analogue of theBaxter polynomial Qi (z), i ∈ I ′ (see Theorem5.3) in theGaudin
model.

Note that if we apply a permutation to the set of roots of each polynomial Qi (z)
(which we recall are assumed to be distinct) we also obtain a solution of the system
(9.8). In what follows, by a solution of Bethe Ansatz equations we will understand an
equivalence class of solutions under these permutations.

In [12, 14, 16] a joint eigenvector of the Gaudin Hamiltonians (Bethe vector) is
constructed for each solution of the BAE (9.8). It is known, however, that for general
λk’s and γ these Bethe vectors do not yield a basis of the weight subspace of (9.5) of
weight γ given by formula (9.6). In fact, explicit examples have been constructed in
[49] showing that for χ = 0 this is so even for generic zk’s (and fixed λk’s and γ ).
We are not aware of such counterexamples for generic χ ′, so it is possible that in this
case Bethe vectors do yield a basis for generic zk’s. For N = 1, this is the statement
of Conjecture 9.10 below.

As explained in [16, Sect. 5.5] (in the case χ ′ = 0, but the picture is similar for
all χ ′) that the true parameters of the spectra of the quantum Gaudin Hamiltonians
are not the Miura g′-opers of the form (9.7) but rather g′-opers on CP

1 with trivial
monodromy, regular singularities at z1, . . . , zN with respective residues λ̌1, . . . , λ̌N

(coweights of g′ corresponding to the weight λ1, . . . , λN ), and irregular singularity
at ∞ of order 2 with 2-residue corresponding to χ ′ (see [13, 14] for more details).
Denote the set of these g′-opers by Opχ

(λ̌i ),(zi )
(g′).

Theorem 9.2 [13] For any regular χ ′ ∈ h′ and any collection z1 . . . , zN there is a
bijection between Opχ

(λ̌i ),(zi )
(g′) and the spectrum of the Gaudin Hamiltonians on the

space (9.5). Moreover, the eigenspace corresponding to every g′-oper inOpχ

(λ̌i ),(zi )
(g′)

is always one-dimensional. In addition, for generic z1 . . . , zN and χ ′ the Gaudin
Hamiltonians are diagonalizable.

In other words, for any regular χ and general z1 . . . , zN there is at most one Jordan
block for each joint eigenvalue of the Gaudin Hamiltonians (this is expressed in [13,
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Corollary 5] as the statement that the commutative algebra of Gaudin Hamiltonians
has a cyclic vector in (9.5)). Moreover, for generic χ and z1 . . . , zN all Jordan blocks
have size 1 (see [13, Corollary 6]).

Following the argument in [16, Sect. 5.5] in the case χ ′ = 0, one can show that
every g′-oper in Opχ

(λ̌i ),(zi )
(g′) corresponds to a unique Miura g′-oper of the form

∂z +
∑

i∈I ′
f ′
i −

N
∑

k=1

gk(λ̌k + ρ̌′) − ρ̌′

z − zk
+

m
∑

j=1

ρ̌′ − g̃ j (ρ̌
′)

z − w j
+ χ ′, (9.10)

where the w j , j = 1, . . . ,m, are distinct complex numbers such that w j �= zk for all
j and k; gk, k = 1, . . . , N , and g̃ j , i = 1, . . . ,m, are elements of the Weyl group of
g′; and ρ̌′ is the sum of the dominant coweights of g′.

A Miura g′-oper of the form (9.10), and the corresponding g′-oper, are called non-
degenerate (see [16, Sect. 5.2]) if gk = 1 for all k = 1, . . . , N , and each g̃ j is a simple
reflection si j from the Weyl group of g′. Since ρ̌′ − si j (ρ̌

′) = α̌′
i j
, a Miura g′-oper of

the form (9.10) is non-degenerate g′-oper if and only if it has the form (9.7). Further,
according to Proposition 9.1, the no-monodromy condition is then equivalent to BAE
(9.8).

Theorem9.2 implies that non-degenerateMiura g′-opers of the form (9.7) satisfying
(9.8) correspond to a subset in the spectrum of the Gaudin Hamiltonians on the weight
subspace of (9.5) of weight γ . But in general, this is not the entire spectrum; there may
be other joint eigenvalues of the Gaudin Hamiltonians on this weight subspace which
correspond to degenerate Miura g′-opers of the form (9.10) with at least one gk not
equal to the identity or at least one of the g̃ j not equal to a simple reflection, or both. For
such Miura g′-opers, the equations expressing the no-monodromy condition are more
complicated, as are the corresponding eigenvectors (though they can be constructed
in principle by a certain algorithm). See [16, Sect. 5.5] for more details.

9.3 Gaudinmodel for Lg

Next, consider the Gaudinmodel for the Lie algebra Lgwith a twist byχ ∈ (Lh)∗ = h.
The space of states of the model is then a tensor product of evaluation representations
of the current algebra Lg[z] corresponding to irreducible finite-dimensional represen-
tations of Lg:

N
⊗

k=1

Vμk (zk) (9.11)

where μ1, . . . , μN are dominant integral weights of Lg and z1, . . . , zN are distinct
complex numbers. According to the results of [12–14, 16], the spectrum of the Gaudin
Hamiltonians exhibits Langlands duality; namely, the joint eigenvalues of the Lg-
Gaudin Hamiltonians are described in terms of g-opers rather than Lg-opers.
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More precisely, let μ̌k ∈ h = (Lh)∗ be the integral coweight of g corresponding to
μk . Let Op

χ

(μ̌i ),(zi )
(g) be the set of g-opers on CP

1 with trivial monodromy, regular
singularities at z1, . . . , zN with respective residues μ̌1, . . . , μ̌N , and irregular singu-
larity at ∞ of order 2 with 2-residue corresponding to χ (see [13, 14] for details).
Then, we have the following analogue of Theorem 9.2.

Theorem 9.3 [13] For any regular χ ∈ h and any collection z1 . . . , zN there is a
bijection between Opχ

(μ̌i ),(zi )
(g) and the spectrum of the Lg-Gaudin Hamiltonians

on the space of (9.11). Moreover, the eigenspace corresponding to every g-oper in
Opχ

(μ̌i ),(zi )
(g) is always one-dimensional. In addition, for generic z1 . . . , zN and χ the

Gaudin Hamiltonians are diagonalizable.

9.4 Embedding of the space of states

This theorem has an intriguing consequence. Note that each coweight μ̌k of g defines
a coweight μ̌′

k of g
′ while the corresponding weight μk of Lg defines a weight of g′,

and the element χ ∈ h defines an element χ ′ ∈ h′.
Next, define the nilpotent generators fi , i ∈ I , of g by the formulas

fi = f ′
i if σ(i) = i, fi = f ′

i + f ′
σ(i) if σ(i) �= i .

Then, we obtain that the embedding g ↪→ g′ maps the principal nilpotent element of
g to that of g′:

p− :=
∑

i∈I
fi �→ p′− :=

∑

i∈I ′
f ′
i . (9.12)

In the same way, we obtain that the element ρ̌ of g (the sum of its dominant coweights)
maps to the corresponding element ρ̌′ of g′. Recall that there is a unique nilpotent
element p+ ∈ g which is a linear combination of the generators ei , i ∈ I , such that
{p−, 2ρ̌, p+} is an sl2 triple in g. Likewise, we have an sl2 triple {p′−, 2ρ̌′, p′+} in g′.
Uniqueness implies that p′+ is the image of p+ in g′.

Using these sl2 triples, we construct the Kostant slices K (g) and K (g′) of regular
conjugacy classes in g and g′, respectively. Namely,

K (g) = p− + span{p j } j=1,...,�,

where {p j } j=1,...,� is a basis of the subspace of ad p+-invariants in the upper nilpotent
subalgebra n+ of g, such that [ρ̌, p j ] = d j p j , with {d1, . . . , d�} being the set of
exponents of g. The Kostant slice K (g′) in g′ is defined similarly. The fact that the
embedding g ↪→ g′ maps the above sl2 triples to each other then implies that we have
a natural embedding

K (g) ↪→ K (g′). (9.13)
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Beilinson and Drinfeld have constructed [2] canonical representatives of g-opers
in terms of K (g) (see [14, Sect. 4.2]). Using the embedding (9.13), we obtain the
following.

Lemma 9.4 There is a natural embedding

Opχ

(μ̌i ),(zi )
(g) ↪→ Opχ ′

(μ̌′
i ),(zi )

(g′). (9.14)

Now we derive from Theorem 9.3 and Lemma 9.4 the following surprising result.

Theorem 9.5 For generic regular χ ∈ h, such that χ ′ ∈ h′ is regular, and generic
z1, . . . , zN there exists an embedding of the tensor product (9.11) of simple Lg-modules
with highest weights μk into the tensor product of the simple g′-modules with the
corresponding highest weights μ′

k:

N
⊗

k=1

Vμk (zk) ↪→
N
⊗

k=1

V ′
μ′
k
(zk). (9.15)

Proof By Theorem 9.3, for generic χ and z1, . . . , zN there exists an eigenbasis {em}
of the Gaudin Hamiltonians in (9.11) labeled by g-opers m ∈ Opχ

(μ̌i ),(zi )
(g) with each

g-oper corresponding to exactly one basis vector. Under the embedding (9.14), each of

these g-opers gives a g′-operm′ ∈ Opχ ′
(μ̌′

i ),(zi )
(g′). Applying Theorem 9.3 in the case of

the Lie algebra g′ and the tensor product of simple g-modules with the corresponding
highest weightsμ′

k, k = 1, . . . , N , we find that eachm′ obtained this way corresponds
to the one-dimensional eigenspace Em′ of the Hamiltonians of the g′-Gaudin model.
Mapping each basis vector em in (9.11) to a nonzero vector in Em′ , we obtain the
desired embedding. ��

The embedding (9.15) is not unique since we can rescale the images of the basis
elements em by arbitrary nonzero numbers. Another issue is that the embedding (9.14)
is defined in a rather abstract way (using Kostant slices). It turns out that we can obtain
amore concrete realization of (9.14) if all g-opers in Opχ

(μ̌i ),(zi )
(g) are non-degenerate,

and hence correspond to solutions of the Bethe Ansatz equations. In this case we can
also construct the corresponding eigenvectors (Bethe vectors) explicitly, so we obtain
a more concrete realization of the embedding (9.15) as well. This may be viewed as
an analogue of the statement of our main Conjecture 5.15 in the case of simple Lie
algebras. We explain it in the next subsection.

Remark 9.2 Alternatively, under the conditions of Theorem 9.5 we can construct a
surjective map

N
⊗

k=1

V ′
μ′
k
(zk) �

N
⊗

k=1

Vμk (zk) (9.16)
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instead of an embedding (9.15). Indeed, the inclusion (9.14) gives rise to a surjective
homomorphism of the corresponding algebras of functions

Fun Opχ ′
(μ̌′

i ),(zi )
(g′) � FunOpχ

(μ̌i ),(zi )
(g). (9.17)

The corresponding algebras of g- and g′-Gaudin Hamiltonians were denoted in [13] by
Aχ (z1, . . . , zN ) andAχ ′(z1, . . . , zN ). According to Theorem 9.3, for generic regular
χ ∈ h and generic z1, . . . , zN , the algebra FunOpχ

(μ̌i ),(zi )
(g) is equal to the image

of Aχ (z1, . . . , zN ) in the algebra of endomorphisms of
⊗N

k=1 Vμk (zk). Moreover,
Fun Opχ

(μ̌i ),(zi )
(g) then has a cyclic vector in

⊗N
k=1 Vμk (zk). If we choose such a

cyclic vector, we obtain an isomorphism of vector spaces

N
⊗

k=1

Vμk (zk) � FunOpχ

(μ̌i ),(zi )
(g). (9.18)

On the other hand, according to Theorem 9.2, Fun Opχ ′
(μ̌′

i ),(zi )
(g′) is the quotient of

the image of Aχ ′(z1, . . . , zN ) in the algebra of endomorphisms of
⊗N

k=1 Vμk (zk) by
its radical. Choosing a cyclic vector of Aχ ′(z1, . . . , zN ) in

⊗N
k=1 V

′
μ′
k
(zk) and using

the homomorphism (9.17), we obtain a surjective map (9.16).
This construction can be generalized to the case when χ is a regular nilpotent

element of g and χ is the corresponding element of g′. Then, we can choose as the
cyclic vectors the highest weight vectors in the tensor products (9.16), so that the
resulting map becomes canonical up to a scalar.

Constructing surjective maps (9.16) may seem more appealing than constructing
the embeddings (9.15). However, in the case when all g-opers in Opχ

(μ̌i ),(zi )
(g) are

non-degenerate, the embedding (9.15) can be linked to the inclusion of the sets of
solutions of the corresponding Bethe Ansatz equations, as we explain in the next sub-
section. Therefore, we can make contact to the folded integrable models. (Moreover,
the embedding (9.15) can then be constructed rather explicitly using Bethe vectors,
see Sect. 9.7.) It is for this reason that we focus on the embeddings (9.15) rather than
the surjections (9.16), even though the latter also deserve to be studied. ��

9.5 Embedding in the case of non-degenerate g-opers

As in the case of g′-opers discussed in Sect. 9.2, each g-oper in Opχ

(μ̌i ),(zi )
(g) can be

represented in a unique way by a Miura g-oper given by a formula similar to (9.10).
Among them are the non-degenerate Miura g-opers of the form

∂z +
∑

i∈I
fi −

N
∑

k=1

μ̌k

z − zk
+

m
∑

j=1

α̌i j

z − w j
+ χ, (9.19)
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where α̌i , i ∈ I , are the simple coroots of g. The no-monodromy condition on (9.19)
is equivalent to the Bethe Ansatz equations similar to (9.8) (see equation (6.11) in
[14]):

N
∑

k=1

〈αi j , μ̌k〉
w j − zk

−
∑

s �= j

〈αi j , α̌is 〉
w j − ws

= 〈αi j , χ〉, j = 1, . . . ,m. (9.20)

The image of a non-degenerate Miura g-oper (9.19) under the embedding (9.14) is
particularly easy to describe. Namely, we interpret formula (9.19) as a Miura g′-oper
of the form (9.7) as follows: According to formula (9.12), the first summation in (9.19)
is equal to the first summation in (9.7). Next, the second summation in (9.19) is equal
to the second summation in (9.7) with λ̌k = μ̌′

k .
Finally, every term in the third summation in (9.19) can be written as the sum of

terms appearing in the third summation of (9.7). Namely, for i ∈ I ′ such that σ(i) = i ,
we map

α̌i

z − w j
�→ α̌′

i

z − w j
, (9.21)

and for i ∈ I such that if σ(i) �= i , we map

α̌i

z − w j
�→ α̌′

i

z − w j
+ α̌′

σ(i)

z − w j
. (9.22)

In other words, each term corresponding to i ∈ I such that σ(i) = i in (9.19) gives
us the corresponding term in (9.7), whereas in the case σ(i) �= i it gives us the sum
of two terms in (9.7).

Observe that if the terms (9.22) are present in (9.19), then the corresponding g′-
Miura oper (9.7) is degenerate because its residue at the corresponding point w j is
equal to

α̌′
i + α̌′

σ(i) = ρ̌′ − si sσ(i)(ρ̌
′) (9.23)

(the simple reflections si and sσ(i) commute with each other, so it doesn’t matter in
which order we take their product).

Thus, the Miura g′-opers we obtain this way have the form (9.10), with gk = 1 for
all k = 1, . . . , N , and g̃ j being equal to the simple reflection si of the Weyl group of
g′ if the residue of this Miura g′-oper at w j is equal to a σ -invariant simple coroot α̌′

i
of g′, but g̃ j is equal to the product of two simple reflections, si sσ(i), if residue at w j

is equal to (9.23). We have obtained the following result.

Proposition 9.6 Under the embedding (9.14), every non-degenerate g-oper in
Opχ

(μ̌i ),(zi )
(g) which is represented by a Miura g-oper of the form (9.19) maps to
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the g′-oper in Opχ ′
(μ̌′

i ),(zi )
(g′) represented by the Miura g′-oper

∂z +
∑

i∈I ′
fi −

N
∑

k=1

μ̌′
k

z − zk
+

∑

σ(i j )=i j

α̌′
i j

z − w j
+

∑

σ(i j ) �=i j

α̌′
i j

+ α̌′
σ(i j )

z − w j
+ χ ′. (9.24)

According to Theorem 9.2, the Miura g′-oper (9.24) defines a point in the spectrum
of the g′-Gaudin model.

9.6 Folded Bethe Ansatz equations

From the point of view of the Bethe Ansatz equations, we interpret this as follows. In
the system of BAE (9.8), it makes sense to impose the condition

{w j | i j = i} = {w j | i j = σ(i)} (9.25)

for all i ∈ I ′. That’s because for i �= σ(i) we have 〈α̌′
i , α̌

′
σ(i)〉 = 0, so no singularities

occur in equations (9.8). Equivalently, this condition may be expressed as Qi (z) =
Qσ(i)(z) for all i ∈ I , so this is the Gaudin model analogue of the condition we used
to define the folding of the Bethe Ansatz equations in the XXZ-type model associated
with Uq(̂g′) (see Proposition 4.4).

Lemma 9.7 The system (9.8) of Bethe Ansatz equations of the g′-Gaudin model
together with the condition Qi (z) = Qσ(i)(z) for all i ∈ I ′ is equivalent to the
system (9.20) of Bethe Ansatz equations of the Lg-Gaudin model.

Thus, the folding of the BAE of the g′-Gaudin model gives the BAE of the Lg-
Gaudin model. In particular, we obtain that the q → 1 limit of the system (4.8) of
folded Bethe Ansatz equations for Uq(̂g′) coincides with the Bethe Ansatz equations
of the Lg-Gaudin model.

Now we define an analogue of the space W (u) from Sect. 5.3, with the role of
the twist parameter u played by χ (more precisely, this is an analogue of the sub-
space W(u) ⊂ W (u) introduced in Remark 5.4). Recall that we have identified the
lattice of integral Lg-weights (equivalently, integral g-coweights) with the lattice of σ -
invariant integral g′-weights (equivalently, integral g′-coweights).We have a collection
μ̌k, k = 1, . . . , N , of g-coweights. Let μk, k = 1, . . . , N , be the corresponding Lg-
weights and μ′

k, k = 1, . . . , N , the corresponding g′-weights. Consider the following
representation of g′:

W =
N
⊗

k=1

V ′
μ′
k
(zk). (9.26)

Definition 9.8 The subspace W (χ) of W is the span of eigenvectors of the g′-Gaudin
Hamiltonians with the twist parameter χ whose eigenvalues correspond to solutions
of the BAE (9.8) satisfying the condition Qi (z) = Qσ(i)(z), i ∈ I ′.
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Theorems 9.2 and 9.3 and Lemma 9.7 imply the following.

Theorem 9.9 Suppose that the Lg-Gaudin Hamiltonians are diagonalizable on the
tensor product (9.11) and all g-opers in Opχ

(μ̌i ),(zi )
(g) are non-degenerate, so they

correspond to non-degenerate Miura g-opers of the form (9.19) or equivalently, solu-
tions of the corresponding Bethe Ansatz equations. Then, there is a natural embedding
of the corresponding set of solutions of the BAE of this Lg-Gaudin model into the spec-
trum of the g′-Gaudin model with the spaces of states (9.26). Moreover, we obtain an
embedding

N
⊗

k=1

Vμk (zk)
∼−→ W (χ) ⊂ W (9.27)

where W is the tensor product (9.26) of representations of g′ and W (χ) is given in
Definition 9.8.

We can construct the embedding (9.27) explicitly using the formulas given in [14]
for the eigenvectors (Bethe vectors) of the Lg-Gaudin model associated with solutions
of the corresponding BAE. In the next subsection, we will explain this in the case
N = 1.

9.7 The case N = 1

If N = 1, the space (9.11) is an irreducible representation Vμ of Lg with highest
weight μ ∈ (Lh)∗ and (9.26) is the irreducible representation V ′

μ′ of g′ with the σ -
invariant g′-highest weight μ′ corresponding to μ. As before, we denote by μ̌ and μ̌′
the corresponding coweights of g and g′. Let χ be a regular element of the Cartan
subalgebra of g. As before, we will denote by χ ′ its image in h′, and we will assume
that it is a regular element of h′ as well.

The Gaudin model for general N is invariant under simultaneous shifts of the
spectral parameters zi . Using this symmetry, we will set the only parameter z1 in the
case N = 1 equal to 0. The algebra of Gaudin Hamiltonians in this case is known as
the shift of argument subalgebra Aχ of the universal enveloping algebra U (g) (see
[13, 14, 58]).

The corresponding non-degenerate Miura g-opers (9.19) have the form

∂z +
∑

i∈I
fi − μ̌

z
+

m
∑

j=1

α̌i j

z − w j
+ χ. (9.28)

ThisMiura g-oper has trivial monodromy if and only if the following BAE are satisfied
(see formula (6.16) of [14]):

〈αi j , μ̌〉
w j

−
∑

s �= j

〈αi j , α̌is 〉
w j − ws

= 〈αi j , χ〉, j = 1, . . . ,m. (9.29)
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Suppose that these equations are satisfied. Then, as shown in [14], the following Bethe
vector is an eigenvector of the Gaudin Hamiltonians (provided that it is nonzero) of
weight γ = μ −∑m

j=1 αi j :

φ(w
i1
1 , · · · , wim

m )

=
∑

τ∈Sm

fiτ (1) fiτ (2) · · · fiτ (m)

(wτ(1) − wτ(2))(wτ(2) − wτ(3)) · · · (wτ(m−1) − wτ(m))wτ(m)

vμ, (9.30)

where the sum is over all permutations τ on m letters (see formula (6.15) of [14]).
According to Theorem 9.3, for generic χ the spectrum of the algebraAχ of Gaudin

Hamiltonians on Vμ is simple and in bijection with the set Opχ

μ̌,0(g) of g-opers on

CP
1 with trivial monodromy, regular singularity at 0 with the residue μ̌, and irregular

singularity of order 2 at ∞ with the 2-residue χ .

Conjecture 9.10 For generic regular χ ∈ h, all g-opers appearing in the spectrum of
this Gaudin model are non-degenerate, and so the spectrum is parametrized by Miura
g-opers (9.28) with trivial monodromy, or equivalently, by collections {w1, . . . , wm}
and {α̌i1, . . . , α̌im } solving the system of BAE (9.29). Moreover, the corresponding
Bethe vectors (9.30) form an eigenbasis ofAχ in the irreducible representation Vμ of
g.

Assuming this conjecture, we can construct explicitly an embedding of Vμ into
the irreducible representation V ′

μ′ of g′. Namely, suppose that we have collections

{w1, . . . , wm} and {α̌i1 , . . . , α̌im } satisfying the BAE (9.29) of the Lg-Gaudin model.
Then, we have the corresponding non-degenerate Miura g-oper (9.28) with trivial
monodromy, towhichwe associate aMiura g′-oper with trivial monodromy via Propo-
sition 9.6. It has the form (9.24):

∂z +
∑

i∈I ′
fi − μ̌′

z
+

∑

σ(i j )=i j

α̌′
i j

z − w j
+

∑

σ(i j ) �=i j

α̌′
i j

+ α̌′
σ(i j )

z − w j
+ χ ′. (9.31)

Wewish to associatewith thisMiura g′-oper an eigenvector of the g′-GaudinHamil-
tonians in V ′

μ′ . There are two ways to do it, which give the same result. The first
is to apply the construction of [14, Sect. 6.3] but insert at every point w j such that
σ(i j ) �= i j the vector eRi j ,−1e

R
σ(i j ),−1|0〉 in the correspondingWakimotomodule, rather

than eRi j ,−1|0〉 (see formula (6.4) in [14]). The second way (which is more direct) is

to apply formula (9.30) directly to the g′-oper (9.31). The problem is that if i j is such
that σ(i j ) �= i j , then the corresponding w j appears twice giving rise to seeming sin-
gularities in (9.30). However, since for σ(i) �= i we always have [ fi , fσ(i)] = 0, it is
easy to see that these singularities cancel out, so we do obtain a well-defined vector
φ′(wi1

1 , . . . , w
im
m ) inV ′

μ′ . It then follows that it is an eigenvector of theg′-GaudinHamil-

tonians with the eigenvalue corresponding to the g′-oper in Opχ ′
μ̌′,0(g

′) represented by
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(9.31). Moreover, it is a weight vector of the sameweight as φ(w
i1
1 , . . . , w

im
m ); namely,

γ = μ −∑m
j=1 αi j (here we identify

Lg-weights with σ -invariant g′-weights).
Now recall that in Sect. 5.6 we defined the invariant subspace (V ′

μ′)σ of V ′
μ′ as

the direct sum of the subspaces of σ̂ -invariant vectors in all weights subspaces of V ′
μ′

corresponding toσ -invariantweights. Using the explicit formula forφ′(wi1
1 , . . . , w

im
m ),

we obtain that it belongs to (V ′
μ′)σ . We summarize this as follows.

Lemma 9.11 The vector φ′(wi1
1 , . . . , w

im
m ) ∈ V ′

μ′ is a well-defined eigenvector of the

g′-Gaudin Hamiltonians corresponding to the g′-oper inOpχ ′
μ̌′,0(g

′)which is the image
of the g-oper inOpχ

μ̌,0(g) represented by (9.28) under the embedding (9.14). Moreover,

it is σ -invariant, so it belongs to (V ′
μ′)σ .

This implies the following statement.

Theorem 9.12 Suppose that χ is generic, so that Conjecture 9.10 holds. Assume also
that the vectors φ′(wi1

1 , . . . , w
im
m ) are nonzero in V ′

μ′ . Then the map Vμ → V ′
μ′ sending

φ(w
i1
1 , . . . , w

im
m ) ∈ Vμ to φ′(wi1

1 , . . . , w
im
m ) ∈ V ′

μ′ defines an embedding of Vμ into
V ′

μ′ whose image is the subspace V ′
μ′(χ) (see Definition 9.8). Moreover, V ′

μ′(χ) is
contained in (V ′

μ′)σ .

We view this result as an analogue of our main Conjecture 5.15.

9.8 Example

Let V ′
α′
max

be the adjoint representation of g′. Its highest weight is the maximal root

α′
max of g

′, which is σ -invariant. It is easy to describe the automorphism σ̂ : g′ → g′
from Lemma 5.2 (adapted to simple Lie algebras) in this case.

Lemma 9.13 The automorphism σ̂ : V ′
α′
max

→ V ′
α′
max

is equal to σ−1.

Proof For g ∈ g′, we have ρ(g) · x = [g, x],∀x ∈ W = g′. Hence, ρσ (g) · x =
[σ(g), x]. The operator σ̂ is uniquely defined by the equation

σ̂ ρ(g)̂σ−1 = ρ(σ(g)), ∀g ∈ g′ (9.32)

and the condition that the restriction of σ̂ to the highest weight subspace of W is the
identity.We claim that σ̂ = σ−1 satisfies these conditions. Indeed, it acts as the identity
on the highest weight subspace of W = g′, and the equation (9.32) is equivalent to

σ̂ · [σ(g), σ̂−1(x)] = [g, x],∀x ∈ g′.

Setting σ̂ = σ−1, we obtain

[σ(g), σ (x)] = σ([g, x]),

which follows from the fact that σ is an automorphism of g′. ��
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Now let g′ = A2n−1 = sl2n with its order two automorphism σ . Then, g = Cn =
sp2n and Lg = Bn = so2n+1. The highest weight α′

max of the adjoint representation
of g′ is equal to ω′

1 + ω′
2n−1 in this case. By the above lemma, σ̂ = σ−1 = σ .

Therefore, we have following description of the invariant subspace (V ′
ω′
1+ω′

2n−1
)σ (the

direct sumof the subspaces of σ̂ -invariant vectors in allweights subspaces ofV ′
ω′
1+ω′

2n−1
corresponding to σ -invariant weights).

Lemma 9.14 (V ′
ω′
1+ω′

2n−1
)σ is the direct sum of the root subspaces of V ′

ω′
1+ω′

2n−1
cor-

responding to the roots

±αn and ±(αi + αi+1 + . . . + α2n−i−1 + α2n−i ), i = 1, . . . , n − 1,

as well as the n-dimensional invariant subspace of the zero weight subspace of W,
which is the Cartan subalgebra of g = Cn inside the Cartan subalgebra of g′.

Expressing σ -invariant g′-weights as Lg-weights, we obtain:

Lemma 9.15 (V ′
ω′
1+ω′

2n−1
)σ is isomorphic, as a vector space graded by Lg-weights, to

the direct sum of the first fundamental representation Vω1 = C
2n+1 of Lg = so2n+1

and (n − 1) copies of the trivial representation of Lg.

AssumingConjecture 9.10, we obtain that we can embed Vω1 into V
′
ω′
1+ω′

2n−1
in such

a way that the image is the subspace V ′
ω′
1+ω′

2n−1
(χ) (the span of eigenvectors of the g′-

Gaudin Hamiltonians for which Qi (z) = Qσ(i)(z), i ∈ I ′). The latter is the analogue
of the subspace W (u) from Sect. 5.3 which we used to define the folded integrable
model. Moreover, using Proposition 9.12 we can construct this embedding explicitly,
using the Bethe vectors (9.30), and this shows that V ′

ω′
1+ω′

2n−1
(χ) is contained in

(V ′
ω′
1+ω′

2n−1
)σ . Theweight subspaces of these twovector spaces coincide for all nonzero

weights, but their weight 0 subspaces are different: the former is 1-dimensional and
the latter is n-dimensional.

Remark 9.3 At first glance, it may appear that this result is in contradiction with the
results of Sect. 7.2, where we considered a similar example in the case of the quantum
affine algebras associated with g′ = A2n−1 and g = Cn . Namely, we showed that if
we take as W the irreducible representation L(Y1,1Y2n−1,1) of Uq(A

(1)
2n−1), then its

subspaceW (u) defined in Sect. 5.6 is (2n+2)-dimensional for generic u. This means
that the corresponding subspace in the limit q → 1 should have dimension at least
2n+ 2. And yet, we have found that in the case of the adjoint representation of A2n−1
the analogous subspace V ′

ω′
1+ω′

2n−1
(χ) (which is the image of Vω1 in V ′

ω′
1+ω′

2n−1
) has

dimension 2n + 1 for generic χ .
The explanation is that the evaluation representation of Uq(A

(1)
2n−1) corresponding

to the adjoint representation of An−1 (of dimension 4n2 −1) is not L(Y1,1Y2n−1,1) but
L(Y1,1Y2n−1,q2n ). The highest monomial of L(Y1,1Y2n−1,q2n ) is not σ -invariant and
therefore we cannot define the operator σ̂ and related structures on L(Y1,1Y2n−1,q2n ).
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On the other hand, the highest monomial of L(Y1,1Y2n−1,1) is σ -invariant, but the
dimension of this representation is 4n2, i.e. it is greater than the dimension of the
adjoint representation V ′

ω′
1+ω′

2n−1
of An−1 by 1. Hence, it is not surprising that the sub-

space W (u) of W = L(Y1,1Y2n−1,1) has dimension greater by 1 than the dimension
of V ′

ω′
1+ω′

2n−1
(χ). In fact, as shown in Sect. 7.2, the weight 0 subspace of W (u) is

two-dimensional and can be identified with the weight 0 subspace of a 4-dimensional
irreducible representation of the Uq(̂sl2) subalgebra of Uq(A

(1)
2n−1) corresponding to

node n of the Dynkin diagram of A2n−1. But the corresponding irreducible represen-
tation of the sl2 Lie subalgebra corresponding to node n is 3-dimensional and so its
weight 0 subspace is 1-dimensional. This is the weight 0 subspace of V ′

ω′
1+ω′

2n−1
(χ).

As the result, W (u) is actually isomorphic, as a vector space graded by weights
of Lg = Bn , to an irreducible representation of Uq(

L ĝ), where L ĝ = D(2)
n+1, whereas

V ′
ω′
1+ω′

2n−1
(χ) is isomorphic to an irreducible representation of Lg = Bn . ��

Remark 9.4 The above example gives us a nice illustration of how the affineLanglands
duality of the folded integrable model becomes in the limit q → 1 the finite-
dimensional Langlands duality of the Gaudin model. The point is that when we take
the q → 1 limit, we restrict finite-dimensional representations of Uq (̂g) toUq(g) and
then take the limit q → 1 (the latter is an equivalence of categories if q is generic).
The smallest finite-dimensional representation W of Uq (̂g) with σ -invariant highest
monomial that has μ as the highest Lg-weight is usually isomorphic, as a Uq(g)-
module, to the direct sum of Vμ and many other irreducible representations.7 So it is
not surprising that the intersection of an irreducible representation M(W ) of Uq(

L ĝ),
which is embedded into W according to Conjecture 5.15,(2), with Vμ would be an
irreducible representation of Uq(

Lg).
This is closely related to another seeming paradox. According to a result of [13] that

we used in this section, every eigenspace in the space of states of the Gaudin model is
one-dimensional (if the Gaudin Hamiltonians are not diagonalizable, this means that
there can be atmost one Jordan block for every joint eigenvalue). In particular, for every
irreducible representation Vμ of Lg, the joint eigenspace of the algebra Aχ is one-
dimensional for all joint eigenvalues. On the other hand, we expect that the analogous
spaces in the folded integrable model for generic q can have dimensions greater than
one. The explanation is that components other than Vμ in the decomposition ofW as a
representation ofUq(g)may well contain (in the limit q → 1) additional eigenvectors
of Aχ . ��

9.9 Conclusion

It follows that, somewhat surprisingly, we can realize the Lg-Gaudin model inside the
g′-Gaudin model by embedding the space of states (9.11) of the former into the space
of states (9.26) of the latter in such a way that on the dual side this corresponds to

7 In the case of g = sln , every finite-dimensional irreducible representation of Uq (sln) can be lifted to
Uq (̂sln), but the highest monomial of the resulting representation of Uq (̂sln) is not σ -invariant, see the
above example. The representations with σ -invariant monomials are generally much larger.
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the embedding of the Miura g-opers (9.19) into the Miura g′-opers (9.7). This is an
intriguing consequence of the Langlands duality in the Gaudin models discovered in
[12] and the results of [13], which deserves further study.

The embedding of the Miura g-opers (9.19) into the Miura g′-opers (9.7) means
that the Baxter polynomials Qi (z) and Qσ(i)(z) (see formula (9.9)) associated with a
g′-oper obtained this way will be equal. Thus, the folding of the g′-Gaudin model is
equivalent to the Lg-Gaudin model. This statement may be viewed as a q → 1 limit
of Conjecture 5.15, so it provides support for this conjecture.
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Appendix: Toward constructing a folded version of the qKZ equations
for non-simply laced Lie algebras

The qKZ equations [27] for Uq (̂g) (with the twist parameter u, which is an element
of the Cartan subgroup H as above), can be written in the form

�(z1, . . . , pz j , . . . , zN ) = R
Vj Vj−1
j, j−1 (pz j/z j−1) · · · RVj V1

j,1 (pz j/z1) · u j ·
R
Vj VN
j,N (z j/zN ) · · · RVj Vj+1

j, j+1 (z j/z j+1)�(z1, · · · , z j , · · · , zN ). (10.1)

Here, each Vi denotes an irreducible finite-dimensional representation ofUq (̂g), Vi (zi )

is its shift by the spectral parameter zi , and R
Vj Vi
j,i (z j/zi ) is the R-matrix acting on

Vj (z j ) ⊗ Vi (zi ) normalized so that it acts as the identity on v j ⊗ vi , where v j and vi
are highest weight vectors in Vj (z j ) and Vi (zi ), respectively. Also, u j denotes u|Vj .

Let us denote the operator on the right-hand side of the j th equation by K j (p).
The critical level limit corresponds to p → 1. In this limit, we have

K j (1) = R
Vj Vj−1
j, j−1 (z j/z j−1) · · · RVj V1

j,1 (z j/z1) · u j

·RVj VN
j,N (z j/zN ) · · · RVj Vj+1

j, j+1 (z j/z j+1). (10.2)

Recall that for an auxiliary representation V of Uq (̂g) we have the transfer matrix
tV (z, u). These transfer-matrices commute with each other for a fixed u and different
V and z. In what follows, we will use the same notation tV (z, u) for the action of the
transfer-matrix tV (z, u) on the tensor product VN (zN ) ⊗ . . . ⊗ V1(z1). Thus,

tV (z, u) = Tra(ua R
VVN
a,N (z/zN ) · · · RVV1

a,1 (z/z1)), (10.3)

where the subscript a indicates the auxiliary representation V (z).
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Proposition 10.1 Suppose that Vj is such that up to a scalar, RVj Vj (1) = P, the
permutation operator on Vj (z) ⊗ Vj (z) sending x ⊗ y to y ⊗ x. Then, K j (1) =
tVj (z j , u).

Proof If RVj Vj (1) = P , then formula (10.3) with V (z) = Vj (z j ) becomes

tV (z, u)

= Tra(ua R
Vj VN
a,N (z j/zN ) · · · RVj Vj+1

a, j+1 (z j/z j+1)Paj R
Vj Vj−1
a, j−1 (z j/z j−1) · · · RVj V1

a,1 (z j/z1)).

(10.4)

Using the identify Aa Paj = Paj A j , we rewrite the RHS of (10.4) as

Tra(Paj u j R
Vj VN
j,N (z j/zN ) · · · RVj Vj+1

j, j+1 (z j/z j+1)R
Vj Vj−1
a, j−1 (z j/z j−1) · · · RVj V1

a,1 (z j/z1)).

(10.5)

Next, using the cyclic property of the trace, we rewrite (10.5) as:

Tra(R
Vj Vj−1
a, j−1 (z j/z j−1) · · · RVj V1

a,1 (z j/z1)Paj u j R
Vj VN
j,N (z j/zN ) · · · RVj Vj+1

a= j, j+1(z j/z j+1)).

(10.6)

Using formula Aa Paj = Paj A j again, we rewrite (10.6) as:

Tra(Paj R
Vj Vj−1
j, j−1 (z j/z j−1) . . . R

Vj V1
j,1 (z j/z1)u j R

Vj VN
j,N (z j/zN ) . . . R

Vj Vj+1
a= j, j+1(z j/z j+1)).

(10.7)

In the last formula, the only operator depending on the auxiliary space is Paj and its
trace over the auxiliary space is the identity operator on Vj (z j ). Hence, (10.7) is equal
to K j (1). ��

Next, we discuss under what conditions RVV (1) = P .

Lemma 10.2 Let V be an irreducible representation of Uq (̂g) such that V ⊗ V is also
irreducible. Then, RVV (1) = P.

Proof It follows from the definition that P ◦ RVV (1) is an intertwining operator V ⊗
V → V⊗V . IfV⊗V is irreducible, thenbySchur’s lemma it is a scalar operator.Under
our normalization, it then has to be the identity operator, and hence RVV (1) = P . ��

Note that a representation V satisfying the condition of Lemma 10.2 is called real
in [34]. Not all irreducible representations ofUq (̂g) are real, as shown in [44], see [34,
Sect. 13.6].However, there is a large class of real representations:Kirillov–Reshetikhin
modules.

Proposition 10.3 Let V be any Kirillov–Reshetikhin module over Uq (̂g). Then, V ⊗V
is irreducible.
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Proof There are several possible arguments. It follows from [5] that V ⊗ V is cyclic
and cocyclic, and hence is irreducible. The statement also follows from the fact that
the square of the q-character of a Kirillov–Reshetikhin module has a unique dominant
monomial; namely, its highest monomial. The latter follows from the results of [35,
Sect. 3.2.2]. In addition, the statement has been established by a different method in
[39]. ��

Note however that even if V ⊗ V is reducible, we may still have RVV (1) = P . It
would be interesting to describe all irreducible representations V of Uq (̂g) satisfying
the condition RVV (1) = P .

In any case, the above results readily imply that in the case when all Vj ’s are
Kirillov–Reshetikhin modules, the operators K j (1), j = 1, . . . , N , are commuting
Hamiltonians of the XXZ-type integrable model associated with Uq (̂g). It is in this
sense that we say that one recovers this integrable model in the critical level limit of
the qKZ equations.

Similarly, under the above condition onVj , the operator K j (p) is the transfer-matrix
tVj (z j , u) acting on

VN (zN ) ⊗ · · · ⊗ Vj (z j ) ⊗ Vj−1(z j−1 p
−1) ⊗ V1(z1 p

−1).

However, because of the shifts by p−1 these operators do not commute with each other
if p �= 1.

Now suppose that g is a non-simply laced simple Lie algebra. We would like to
construct a “folded qKZ system” such that in the critical level limit the operators
on the right hand side become the Hamiltonians of the folded quantum integrable
model described in this paper. This means, in particular, that they should correspond
to transfer-matrices of Uq(̂g′) rather than Uq (̂g). Thus, each Vi (zi ) should be a repre-
sentation of Uq(̂g′).

Unfortunately, naive attempts to construct this folded qKZ system appear to fail:

(1) For each Vi (zi ), we have its subspace (Vi (zi ))(u) defined as above and we can take
the tensor product of these subspaces, ⊗N

i=1(Vi (zi ))(u). However, it is not clear
why this subspace would be preserved by the operators K j or their p-deformed
versions K j (p) appearing on the RHS of (10.1).

(2) We take the subspace V (u) of the entire tensor product V = ⊗N
i=1Vi (zi ). Accord-

ing to Conjecture 5.15,(ii), it contains a subspace isomorphic to a representation
M(V ) ofUq(

L ĝ). Moreover, since the algebra of transfer-matrices ofUq(̂g′) com-
mutes with the Baxter operators Q j (z), j ∈ I ′, it follows that all transfer-matrices
of Uq(̂g′) preserve this subspace V (u). In particular, the operators K j given by
formula (10.2), being the transfer-matrices ofUq(̂g′), preserve V (u). But the prob-
lem is that on the right-hand side of these qKZ equations we have the operators
K j (p) with p �= 1, which are the transfer matrices acting on the tensor product
of representations in some of which (namely, the ones with i = 1, . . . , j − 1)
there is a multiplicative shift in the spectral parameter by p−1. It is not clear
why these operators should preserve V (u) (where V is the tensor product of the
representations Vi (zi ) without any shift by p−1).
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Hence, at the moment it is unclear to us how to fold the qKZ equations for Uq(̂g′)
in such a way that in the critical level limit we recover the commuting Hamiltonians
of the folded quantum integrable model associated with Uq (̂g).
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