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Abstract
We consider massive Dirac equations on asymptotically static spacetimes with a
Cauchy surface of bounded geometry. We prove that the associated quantized Dirac
field admits in and out states, which are asymptotic vacuum states when some time
coordinate tends to ∓∞. We also show that the in/out states are Hadamard states.
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1 Introduction

1.1 In/out vacuum states

The construction of a distinguished quantum state for a quantized field on a curved
background has been studied extensively in various contexts in QuantumField Theory.

If the background spacetime has no global symmetries but only asymptotic ones,
one can try to specify a distinguished quantum state by its asymptotic behavior, for
example at early or late times.

An often studied situation arises when the background spacetime (M, g) has a
product structure M = R×� and the metric g becomes asymptotic to static metrics
when t → ±∞. One can then at least heuristically consider asymptotic vacua, the

B Christian Gérard
christian.gerard@math.u-psud.fr

Théo Stoskopf
theo.stoskopf@universite-paris-saclay.fr

1 Département de Mathématiques, Université Paris-Saclay, 91405 Orsay Cedex, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-022-01556-9&domain=pdf
http://orcid.org/0000-0003-4103-6918


63 Page 2 of 46 C. Gérard, T. Stoskopf

so-called in and out states, which look like vacuum states for the asymptotic static
metrics when t →∓∞.

Let us mention for example the wave and Klein–Gordon fields on Minkowski
space, in external electromagnetic potentials [25, 36, 41], or on curved spacetimes
with special asymptotic symmetries, [7–9, 44].

Besides the existence of the in and out states, an important question is to ensure
that they satisfy the Hadamard condition [26].

Nowadays regarded as an indispensable ingredient in the perturbative construction
of interacting fields (see, e.g., the recent reviews [10, 22]), this property accounts
for the correct short-distance behavior of two-point functions. It can be conveniently
formulated as a condition on the wave front set of the state’s two-point functions [34].

The above questions were solved in [14] for massive Klein–Gordon fields, using a
combination of scattering theory arguments and global pseudodifferential calculus.

In this paper we consider this problem for massive Dirac fields, using similar meth-
ods. Let us now describe in more details the results of this paper.

1.2 Free Dirac fields

To define the in/out vacuum states, we first briefly recall some background on free
Dirac fields, see Sect. 2 for more details.

Let (M, g) an even-dimensional globally hyperbolic spacetime, equipped with a
spin structure. We denote by S(M) the bundle of spinors and by D = /D +m a Dirac
operator on M .

The CAR ∗-algebra of free Dirac fields, denoted byCAR(D), is the unital ∗-algebra
generated by symbols

ψ(u), ψ∗(u),1, for u ∈ C∞0 (M; S(M)),

with relations

(i) u �→ ψ∗(u) resp. u �→ ψ(u) is C linear resp. anti-linear,
(i i) ψ(u)∗ = ψ∗(u),

(i i i) φ(Du) = φ∗(Du) = 0,
(iv) [ψ(u), ψ(v)]+ = [ψ∗(u), ψ∗(v)]+ = 0, [ψ(u), ψ∗(v)]+ = i(u|Gv)M1,

(1.1)

where [·, ·]+ is the anti-commutator, G is the causal propagator for D and (·|·)M is
the canonical hermitian scalar product on spinors. Conditions iii) and iv) express the
field equation and the CAR respectively.

CAR(D) is an example of the abstract CAR ∗-algebra CAR(Y, ν), see Sect. 2.3
for the pre-Hilbert space

(Y, ν) =
(

C∞0 (M; S(M))

DC∞0 (M; S(M))
, i(·|G·)M

)
.

123



Hadamard property of the in and out states for Dirac… Page 3 of 46 63

The ’field operators’ ψ(∗)(u) for u ∈ C∞0 (M; S(M)) are traditionally called ’space-
time fields’.

Other equivalent pre-Hilbert spaces are also convenient to discuss Dirac fields,
see 2.3.3. One of them is the space Solsc(D) of smooth, space compact solutions of
Du = 0, with the Hilbertian scalar product recalled in (2.14), or equivalently the
space C∞0 (�; S(�)) of Cauchy data, equipped with the Hilbertian scalar product ν�

recalled in (2.15).
The use of space-time fields is important to formulate the Hadamard condition for

states on CAR(D), see 1.3.4 below.

1.2.1 Quasi-free states

We recall that a quasi-free state ω on CAR(Y, ν) is uniquely determined by its covari-
ances λ±, which have hermitian forms on Y satisfying

λ± ≥ 0, λ+ + λ− = ν. (1.2)

Their relationship with the state ω is given by

ω(ψ(y1)ψ
∗(y2)) = y1 ·λ+y2, ω(ψ∗(y2)ψ(y1)) = y1 ·λ−y1, y1, y2 ∈ Y .

It is convenient to identify λ± with linear maps c± on Y by setting

λ±=:ν ◦ c±.

The conditions (1.2) become

c± ≥ 0 for ν, c+ + c− = 1. (1.3)

Going back to Dirac fields, it follows that after fixing a Cauchy surface �, a pair of
linear maps c± : C∞0 (�; S(�))→ D′(�; S(�)) such that

c+ + c− = 1, c± ≥ 0 for ν�,

defines a unique quasi-free state ω on CAR(D).

1.3 Results

Let us now describe more in details the results of this paper. We first describe the class
of spacetimes that we will consider.
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1.3.1 Asymptotically static spacetimes

We will consider a spacetime of even dimension n of the form M = R×�, where �

is a d-dimensional manifold, equipped with a metric

g = −c2(x)dt2 + (dxi + bi (x)dt)hi j (x)(dx j + b j (x)dt),

where x = (t, x) ∈ M , c ∈ C∞(M;R) is a strictly positive function, b ∈
C∞(M; T �) and h ∈ C∞(M;⊗2

s T ∗�) is a t-dependent Riemannian metric on �.
We will assume that when t →±∞ the metric g converges to static metrics

gout/in = −cout/in(x)dt2 + hout/in(x)dx
2.

The convergence of g to gout/in is assumed to be uniform in the space variable x. More
precisely, one assumes that there exists μ > 0 such that

∂k
t ∂α

x (h(x)− hout/in(x)) ∈ O(〈t〉−μ−k),

∂k
t ∂α

x b(x) ∈ O(〈t〉−1−μ−k),

∂k
t ∂α

x (c(x)− cout/in(x)) ∈ O(〈t〉−μ−k),

k ∈ N, α ∈ N
d , (1.4)

in an appropriate uniform sense in x ∈ �, using the notion of Riemannian manifolds
of bounded geometry, see hypotheses (H1), (H2) in 3.1.3 for the precise formulation.

We consider a Dirac operator

D = /D + m

and assume that m(t, x) converges to mout/in(x) when t → ±∞ in a similar uniform
way, see hypothesis (H3) in 3.1.3 for the precise formulation.

It follows that D converges when t →±∞ to asymptotic Dirac operators Dout/in,
which are associated to the static metrics gout/in.

1.3.2 Vacua for the asymptotic Dirac operators

The vector field ∂t is Killing for the static metrics gout/in, which implies that one can
define the vacuum states ωvac

out/in for Dout/in, see Sect. 2.4, using the projections

c±vacout/in:=1R±(Hout/in),

where Hout/in are selfadjoint operators on L2(�; S(�)), for the canonical Hilbertian
scalar product on S(�). The operators Hout/in are the generators of the unitary group
induced by the spinorial Lie derivativeL∂t on solutions of Dout/inψ = 0, see Sect. 2.4.

To define the vacuum states ωvac
out/in in an unambiguous way, one needs to assume

that

Ker Hout/in = {0}, (1.5)
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i.e., the absence of zero modes. If (1.5) is violated, then in physics language one needs
to decide if zero modes are considered as particles or as anti-particles.

In this paper, we strengthen (1.5) by requiring that

0 /∈ σ(Hout/in),

see hypothesis (H4), ie that the asymptotic Dirac operators Dout/in are massive in the
terminology of 2.4.3.

1.3.3 The in/out vacuum states

Let us now explain the definition of the in/out states for D. We set �s = {s} ×�, fix
the reference time t = 0 and denote by U (t, s) : C∞0 (�s; S(�s))→ C∞0 (�t ; S(�t ))

the Cauchy evolution for the Dirac operator D.
Let us set for ±T � 1:

c±T = U (0, T )c±vacout/inU (T , 0), acting on C∞0 (�0; S(�0)).

The maps c±T correspond intuitively to the vacuum state at (late or early) time T .
One expects that the limits

c±out/in = lim
T→±∞U (0, T )c±vacout/inU (T , 0) (1.6)

exist in an appropriate sense (actually in some operator norm topology).
One can show that c±out/in are supplementary projections acting onC∞0 (�0; S(�0)),

which are selfadjoint for the Hilbertian scalar product ν� .
Therefore, one can associate to c±out/in quasi-free states ωout/in on CAR(D), which

are called the in/out vacuum states for D.
If we go back to space-time fields, we obtain

ωout/in(ψ(u)ψ∗(u)) = (u|�+out/inu)M ,

ωout/in(ψ
∗(u)ψ(u)) = (u|�−out/inu)M , u ∈ C∞0 (M; S(M)),

where

�±out/in : C∞0 (M; S(M))→ C∞(M; S(M))

are defined by

�±out/in(t, s) = U (t, 0)iγ (n)c±out/inU (0, s), (1.7)

and we write �±out/in as operator-valued Schwartz kernels in the time variable, ie we
use the formal identity

Au(t) =
∫
R

A(t, s)u(s)ds,
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to define the ’time kernel’ of some operator A acting on M . In (1.7) n is the future
directed unit normal to�0 and γ are the ’gammamatrices’ (orCliffordmultiplications)
obtained from the spin structure on (M, g).

The operators �±out/in satisfy the analog of (1.1):

(i) �±out/in ≥ 0 for (·|·)M ,

(ii) �+out/in +�−out/in = iG,

(iii) D ◦�±out/in = �±out/in ◦ D = 0.

1.3.4 Hadamard property of the in /out states

As explained above, the Hadamard condition allows to select among the plethora of
states the physically meaningful ones, which should resemble theMinkowski vacuum,
at least in the vicinity of any point of M .

The microlocal definition of Hadamard states for Dirac fields was first introduced
by Hollands [21], who also proved its equivalence with the older characterization by
the short distance asymptotics of its two-point functions. Hadamard states for Dirac
fields were further studied in [24, 29, 37, 39].

To our knowledge the first paper proving existence of Hadamard states for Dirac
fields in the general case is the recent paper by Islam and Strohmaier [23], although the
construction of Hadamard states by the deformation argument of Fulling, Narcowich
and Wald [11] was quite probably known to experts.

Another construction of Hadamard states on spacetimes of bounded geometry was
given in [17] using global pseudodifferential calculus on a Cauchy surface. The meth-
ods used in the present paper are to a large extend an adaptation of the strategy in [17]
to a scattering situation.

Let us now state the main result of this work, referring the reader to Sect. 3.1 for
hypotheses (H).

Theorem 1.1 Assume hypotheses (Hi), 1 ≤ i ≤ 4. Then

(1) The norm limits (1.6) exist and define by (1.7) pure quasi-free states ωout/in called
the in/out vacuum states.

(2) ωout/in is a Hadamard state, ie

WF(�±out/in) ⊂ N± ×N±

where N± are the two connected components of the characteristic set N =
{(x, ξ) ∈ T ∗M \o : ξ ·g−1(x)ξ = 0} of D.

1.3.5 Relationship with asymptotic fields

The definition of the out/in vacua is often introduced using asymptotic fields. Let us
now explain the relationship between these two methods, using the space of Cauchy
data C∞0 (�; S(�)) as our pre-Hilbert space.
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If g satisfies (1.4) for μ > 1 (with a similar short-range condition for the conver-
gence of m(t, x) when t →±∞), then it is easy to construct Möller operators

�out/in = lim
t→±∞Uout/in(0, t)U (t, 0),

where U (t, s) resp. Uout/in(t, s) are the Cauchy evolutions for D resp. Dout/in.
Since �out/in are unitary for the scalar product ν� , they induce automorphisms

τout/in of CAR(D) defined by

τout/in(ψ
(∗)( f )) = ψ(∗)(�out/in f )=:ψ(∗)

out/in( f ), f ∈ C∞0 (�; S(�)).

The out/in vacuum states can then be equivalently defined by

ωout/in = ωvac
out/in ◦ τout/in. (1.8)

Note that the existence of the Möller operators �out/in requires the short-range con-
dition μ > 1, while the direct construction of ωout/in that we use here requires only
the weaker condition μ > 0, as was also the case in [14] for Klein–Gordon fields.

1.4 Outline of the proof

Let us now briefly explain the main ingredients in the proof of Theorem 1.1, which
follows the general strategy in [17]. The first step consists in reducing the metric to
the simpler form

g = −dt2 + h(t, x)dx2,

where the time-dependent Riemannian metric h(t, x)dx2 on � converges to Rieman-
nianmetrics hout/in(x)dx2 when t →±∞. This is done in the usualway, by combining
a conformal transformation and the well-known argument using the flow of the vector
field ∇t .

One can use the covariance of Dirac operators and two-point functions under con-
formal transformations, see Sects. 2.2 and 2.3.7, to reduce ourselves to this simple
situation.

In a second step, one uses parallel transport with respect to the vector field ∂t to
identify the spinor bundles at different times, and to reduce theDirac equation Dψ = 0
to a time-dependent Schroedinger equation:

∂tψ − iH(t)ψ = 0,

where H(t) = H(t, x, ∂x) is a first-order elliptic differential operator on �.
The third step is analogous to [17], where Hadamard states for Dirac fields are

constructed using pseudodifferential calculus, with the difference that in our case we
need to control the behavior of various operators when t →±∞.
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We construct time-dependent projections P±(t) such that

(1) P±(t)− 1R±(Hout/in) ∈ O(t−μ) when t →±∞,

(2) ∂tU (0, t)P±(t)U (t, 0) ∈ O(t−1−μ)�−∞,

where �−∞ is some ideal of smoothing operators on �. (1) implies that to prove the
existence of the limits (1.6), it suffices to consider instead

lim
t→±∞U (0, t)P±(t)U (t, 0)

which exists by (2) and the Cook argument. This prove the existence of the in /out
states ωout/in for D. Integrating (2) from 0 to ±∞, we also obtain that

c±out/in − P±(0) are smoothing operators on �.

It is shown in [17] that P±(0) are projections which generate a Hadamard state, which,
since c±out/in − P±(0) are smoothing, proves the Hadamard property of ωout/in.

1.5 Plan of the paper

Let us now discuss the plan of this paper.
In Sect. 2 we recall the quantization of Dirac fields on curved spacetimes. In Sect. 3

we describe the geometric framework of asymptotically static spacetimes and the spin
structures and Dirac operators on such spacetimes.

In Sect. 4 we give a brief overview of Shubin’s pseudodifferential calculus on
manifolds of bounded geometry and of its time-dependent version that we will use in
this paper. Finally, Sect. 5 contains the proof of Theorem 1.1 and the various reduction
procedures that are used.

1.6 Notation

1.6.1 Lorentzian manifolds

We use the mostly + signature convention for Lorentzian metrics. All Lorentzian
manifolds considered in this paper will be orientable and connected.

1.6.2 Bundles

If E
π−→ M is a bundle, we denote by C∞(M; E) resp. C∞0 (M; E) the set of smooth

resp. smooth and compactly supported sections of E .
If E

π−→ M is a vector bundle, we denote byD′(M; E) resp. E ′(M; E) the space of
distributional resp. compactly supported distributional sections of E .
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1.6.3 Matrices

Since we will often use frames of vector bundles, we will denote by MMM a matrix in
Mn(R) or MN (C) and by M the associated endomorphism.

1.6.4 Frames and frame indices

We use the letters 0 ≤ a ≤ d for frame indices on T M or T ∗M , and 1 ≤ a ≤ d for
frame indices on T � or T ∗�, if � ⊂ M is a space like hypersurface. If g is a metric
on M and (ea)0≤a≤d is a local frame of T M , we set gab = ea·geb and gab = ea·g−1eb,
where (ea)0≤a≤d is the dual frame.

We use capital letters 1 ≤ A ≤ N for frame indices of the spinor bundle S(M).
If F is, for example, a local frame of T M , we denote by Fttt the frame obtained by

the right action of ttt ∈ Mn(R) on F .
We use capital letters 1 ≤ A ≤ N for frame indices of the spinor bundle S(M).

1.6.5 Vector spaces

if X is a real or complex vector space, we denote by X ′ its dual. If X is a complex
vector space, we denote by X ∗ its anti-dual, ie the space of anti-linear forms on X
and by X its conjugate, ie X equipped with the complex structure −i.

A linearmap a ∈ L(X ,X ′) is a bilinear form onX , whose action on pairs of vectors
is denoted by x1 ·ax2. Similarly a linear map a ∈ L(X ,X ∗) is a sesquilinear form
on X , whose action is denoted by x1 ·ax2. We denote by a′, resp. a∗ the transposed
resp. adjoint of a. The space of symmetric resp. hermitian forms on X is denoted by
Ls(X ,X ′) resp. Lh(X ,X ∗).

1.6.6 Maps

Wewrite f : A
∼−→ B if f : A→ B is a bijection.We use the same notation if A, B are

topological spaces resp. smooth manifolds, replacing bijection by homeomorphism,
resp. diffeomorphism.

2 Quantization of Dirac equations on curved spacetimes

In this section we recall well-known facts, see, e.g., [6, 21, 30, 43] about Dirac equa-
tions and Dirac quantum fields on curved spacetimes.

2.1 Dirac equations on curved spacetimes

Let us denote by SO↑(1, d) and Spin↑(1, d) the restricted Lorentz and Spin groups
(ie the connected component of I d in O(1, d) and Pin(1, d)) and Ad : Spin↑(1, d)→
SO↑(1, d) the double sheeted covering.

We recall that a spacetime is an oriented and time oriented Lorentzian manifold.
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2.1.1 Spin structures

Let (M, g) a spacetime of even dimension n = 1 + d and let PSO↑(M, g) the
SO↑(1, d)-principal bundle of oriented and time oriented orthonormal frames of T M .

We recall that a spin structure on (M, g) is given by a Spin↑(1, d)-principal bundle
PSpin(M, g) with a bundle morphism χ : PSpin(M, g)→ PSO↑(M, g) such that
the following diagram commutes:

Spin↑(1, d) PSpin(M, g)

M .

SO↑(1, d) PSO↑(M, g)

Ad

π ′

χ

π

(2.1)

We assume that (M, g) has a spin structure PSpin(M, g). Let us recall that a
Lorentzian manifold admits a spin structure if and only if its second Stiefel–Whitney
class w2(T M) is trivial, see [32, 33]. It admits a unique spin structure if in addition
its first Stiefel–Whitney class w1(M) is trivial, which is equivalent to the fact that M
is orientable, see, e.g., [33]. In our situation, M is orientable hence spin structures on
(M, g) are unique if they exist. If n = 4 and (M, g) is globally hyperbolic, it admits
a (unique) spin structure, see [18, 19].

We denote by Cliff(M, g), S(M) the associated Clifford and spinor bundles.
The map T M → End(S(M)) obtained from the embedding T M → Cliff(M, g)

and the canonical map Cliff(M, g)→ End(S(M)) will be denoted by

T M � u �→ γ (u) ∈ End(S(M)), (2.2)

and is often called the Clifford multiplication. The spin connection will be denoted by
∇S .

It is well known, see, e.g., [43], [12, Sect. 17.6] that there exists a (unique up to
multiplication by strictly positive constants) non-degenerate Hermitian form β acting
on the fibers of S(M) such that

γ ∗(u)β = −βγ (u), u ∈ T M,

iβγ (e) > 0, for all e ∈ T M time-like and future directed,
u ·ψ ·βψ = ∇S

u ψ ·βψ + ψ ·β∇S
u ψ, ∀u ∈ C∞(M; T M), ψ ∈ C∞(M; S(M)).

(2.3)

For later use we summarize the properties of∇S , γ and β that we will need. We have:

∇S
u γ (v)ψ = γ (v)∇uψ + γ (∇uv)ψ,

u ·ψ ·βψ = ∇S
u ψ ·βψ + ψ ·β∇S

u ψ,

u, v ∈ C∞(M; T M), ψ ∈ C∞(M; S(M)),

(2.4)

123



Hadamard property of the in and out states for Dirac… Page 11 of 46 63

where ∇ is the metric connection on (M, g)

2.1.2 Dirac operators

Fixing a smooth section m ∈ C∞(M; L(S(M))) with m∗β = βm, we consider a
Dirac operator

D = /D + m, (2.5)

where /D is locally expressed (on an open set U ⊂ M over which S(M) and T M are
trivialized) as

/D = gabγ (ea)∇S
eb

,

where (ea)0≤a≤d is a local frame over U .

2.1.3 Selfadjointness

For ψ1, ψ2 ∈ C∞(M;S(M)) one defines the 1-form J (ψ1, ψ2) ∈ C∞(M; T ∗M) by

J (ψ1, ψ2)·u:=ψ1 ·βγ (u)ψ2, u ∈ C∞(M; T M),

and one deduces from (2.4) that

∇μ Jμ(ψ1, ψ2) = −Dψ1 ·βψ2 + ψ1 ·βDψ2, ψi ∈ C∞(M; S(M)).

Using thenStokes formula, this implies that theDirac operator D is formally selfadjoint
on C∞0 (M; S(M)) with respect to the indefinite Hermitian form

(ψ1|ψ2)M :=
∫

M
ψ1 ·βψ2 dVolg. (2.6)

2.1.4 Characteristic manifold

The principal symbol σpr(D) equals

σpr(D)(x, ξ) = γ (g−1(x)ξ), (x, ξ) ∈ T ∗M \o,

whereo = X × {0} is the zero section in T ∗M .
The characteristic manifold of D is

Char(D):={(x, ξ) ∈ T ∗M \o : σpr(D)(x, ξ) not invertible},

equal to

Char(D) = {(x, ξ) ∈ T ∗M \o : ξ ·g−1(x)ξ = 0}=:N ,
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by the Clifford relations. We denote as usual by N± the two connected components
of N , where

N±:={(x, ξ) ∈ N : ±ξ ·v > 0 for v ∈ Tx M future directed}. (2.7)

2.1.5 Retarded/advanced inverses

Let us assume in addition that (M, g) is globally hyperbolic. Then, (see [6] for Dirac
operators in 4 dimensions, or [31] for more general prenormally hyperbolic oper-
ators), D admits unique retarded/advanced inverses Gret/adv : C∞0 (M; S(M)) →
C∞sc (M; S(M)) such that:

{
DGret/adv = Gret/advD = 1,

suppGret/advu ⊂ J±(supp u), u ∈ C∞0 (M; S(M)),

where J±(K ) are the future/past causal shadows of K � M .
Using the fact that D is formally selfadjointwith respect to (·|·)M and the uniqueness

of Gret/adv, we obtain that

G∗ret/adv = Gadv/ret,

where the adjoint is computed with respect to (·|·)M . One defines then the causal
propagator

G:=Gret − Gadv

which satisfies
⎧⎨
⎩

DG = G D = 0,
suppGu ⊂ J (supp u), u ∈ C∞0 (M; S(M)),

G∗ = −G,

(2.8)

where J (K ) = J−(K ) ∪ J+(K ) is the causal shadow of K � M .

2.1.6 The Cauchy problem

Let� ⊂ M be a smooth, space-like Cauchy surface and denote by n its future directed
unit normal and by S(�) the restriction of the spinor bundle S(M) to � and

�� : C∞(M; S(M)) � ψ �−→ ψ��∈ C∞(�; S(�))

the restriction to �. The Cauchy problem

{
Dψ = 0,
��ψ = f , f ∈ C∞0 (�; S(�)),
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is globally well-posed, see, e.g., [31], the solution being denoted by ψ = U� f . We
have, see, e.g., [5, Thm. 19.63]:

U� f (x) = −
∫

�

G(x, y)γ (n(y)) f (y)dVolh, (2.9)

where h is the Riemannian metric induced by g on �.
We equip C∞0 (�; S(�)) with the indefinite Hermitian form

( f1| f2)� :=
∫

�

f 1 ·β f2 dVolh . (2.10)

For g ∈ E ′(�; S(�)), we define �∗�g ∈ D′(M; S(M)) by

∫
M

�∗�g ·βu ddVolg:=
∫

�

g ·β��udVolh, u ∈ C∞(�; S(�)),

i.e., �∗� is the adjoint of �� with respect to the scalar products (·|·)M and (·|·)� . We
can rewrite (2.9) as

U� f = (��G)∗γ (n) f , f ∈ C∞0 (�; S(�)). (2.11)

2.1.7 Cauchy evolution

Let us assume that M is foliated by a family (�t )t∈R of space-like smooth Cauchy
surfaces, for example the level sets of a Cauchy time function, see Sect. 3.1 for the
definition.

Denoting the restriction of S(M) to �t by S(�t ) and ��t by �t , one can introduce
the Cauchy evolution

U (t, s) : C∞0 (�s; S(�s))→ C∞0 (�t ; S(�t )), t, s ∈ R

defined by

U (t, s) f = �tU�s f f ∈ C∞0 (�s; S(�s)).

2.2 Conformal transformations

We briefly discuss conformal transformations and refer to [17, 2.7.2] or [12, Sect.
17.13] for details.
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Let c ∈ C∞(M) with c(x) > 0 and g̃ = c−2g. Then the spin and spinor bundles
for (M, g̃) are identical to those for (M, g). One has:

γ̃ (X) = c−1γ (X), β̃ = cβ,

∇̃S
C = ∇S

C − 1
2c−1γ (X)γ (∇c)+ 1

2c−1X ·dc,
/̃D = c

n+1
2 /Dc

1−n
2 ,

D̃:= /̃D + m̃ = c
n+1
2 Dc

1−n
2 for m̃ = cm.

(2.12)

2.3 Quantization of Dirac equation on curved spacetimes

We now recall the algebraic quantization of Dirac equations, due to Dimock [6].

2.3.1 CAR ∗-algebras

Let (Y, ν) be a pre-Hilbert space. The CAR ∗-algebra over (Y, ν), denoted by
CAR(Y, ν), is the unital complex ∗-algebra generated by elements ψ(y), ψ∗(y),
y ∈ Y , with the relations

ψ(y1 + λy2) = ψ(y1)+ λψ(y2),
ψ∗(y1 + λy2) = ψ(y1)+ λψ∗(y2), y1, y2 ∈ Y, λ ∈ C,

[ψ(y1), ψ(y2)]+ = [ψ∗(y1), ψ∗(y2)]+ = 0,
[ψ(y1), ψ∗(y2)]+ = y1 · νy21, y1, y2 ∈ Y,

ψ(y)∗ = ψ∗(y), y ∈ Y,

(2.13)

where [A, B]+ = AB + B A is the anti-commutator.

2.3.2 Quasi-free states

As usual a state on CAR(Y, ν) is a linear map ω : CAR(Y, ν)→ C which is positive
and normalized, ie

ω(A∗A) ≥ 0, ω(1) = 1, A ∈ CAR(Y, ν).

– a state ω is quasi-free if:

ω(
∏n

i=1 ψ∗(yi )
∏m

j=1 ψ(y′j )) = 0, if n �= m,

ω(
∏n

i=1 ψ∗(yi )
∏n

j=1 ψ(y′j )) =
∑

σ∈Sn
sgn(σ )

∏n
i=1 ω(ψ∗(yiψ(yσ(i))),

where Sn is the set of permutations of {1, . . . , n}.
– a quasi-free state is uniquely determined by its covariances λ± ∈ Lh(Y,Y∗),
defined by

ω(ψ(y1)ψ
∗(y2))=:y1 ·λ+y2, ω(ψ∗(y2)ψ(y1))=:y1 ·λ−y2, y1, y2 ∈ Y .

The following two results are well-known, see, e.g., [5, Sect. 17.2.2].
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Proposition 2.1 Let λ± ∈ Lh(Y,Y∗). Then the following statements are equivalent :

(1) λ± are the covariances of a gauge invariant quasi-free state on CAR(Y, ν);
(2) λ± ≥ 0 and λ+ + λ− = ν.

Proposition 2.2 A quasi-free state ω on CAR(Y, ν) is pure if and only if there exist
projections c± ∈ L(Y) such that

λ± = ν ◦ c±, c+ + c− = 1.

2.3.3 Pre-Hilbert spaces

We now recall several equivalent pre-Hilbert spaces appearing in the quantization of
the Dirac equation.

Let us denote by Solsc(D) the space of smooth, space compact solutions of the
Dirac equation

Dψ = 0.

For ψ1, ψ2 ∈ Solsc(D) we set

ψ1 ·νψ2:=
∫

�

iJμ(ψ1, ψ2)n
μdVolh = (��ψ1|iγ (n)��ψ2)�, (2.14)

where � is a smooth space-like Cauchy surface.
Using that ∇μ Jμ(ψ1, ψ2) = 0, the rhs in (2.14) is independent on the choice of �.

Moreover, by (2.3) ν is a positive definite scalar product on Solsc(D).
Setting:

f 1 ·ν� f2:=i
∫

�

f 1 ·βγ (n) f2dVolh, (2.15)

we obtain that

�� : (Solsc(D), ν)→ (C∞0 (�; S(�)), ν�)

is unitary, with inverse U� .
It is also well-known, see, e.g., [6], that G : C∞0 (M; S(M))→ Solsc(D) is surjec-

tive with kernel DC∞0 (M; S(M)) and that

G :
(

C∞0 (M; S(M))

DC∞0 (M; S(M))
, i(·|G·)M

)
→ (Solsc(D), ν)

is unitary. Summarizing, the maps

(
C∞0 (M;S(M))

DC∞0 (M;S(M))
, i(·|G·)M )

G−→ (Solsc(D), ν)
��−→ (C∞0 (�; S(�)), ν�) (2.16)

are unitary maps between pre-Hilbert spaces.
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2.3.4 CAR∗-algebra for Dirac fields

We denote by CAR(D) the ∗-algebra CAR(Y, ν) for (Y, ν) one of the equivalent
pre-Hilbert spaces in (2.16).

Weuse theHermitian form (·|·)M in (2.6) to pairC∞0 (M; S(M))withD′(M; S(M))

and to identify continuous sesquilinear formsonC∞0 (M; S(M))with continuous linear
maps from C∞0 (M; S(M)) to D′(M; S(M)).

We use the Hermitian form (·|·)� in (2.10) in the same way on the Cauchy surface
�.

It is natural to require a weak continuity of the spacetime covariances �± of a state
ω on CAR(D) defined by:

(u|�+u)M :=ω(ψ(u)ψ∗(u)), (u|�−u):=ω(ψ∗(u)ψ(u)), u ∈ C∞0 (M; S(M)).

Therefore, one considers states on CAR(D) whose spacetime covariances satisfy:

(i) �± : C∞0 (M; S(M))→ D′(M; S(M)) are linear continuous,
(ii) �± ≥ 0 with respect to (·|·)M ,

(iii) �+ +�− = iG,

(iv) D ◦�± = �± ◦ D = 0.

(2.17)

Alternatively, one can define ω by its Cauchy surface covariances λ±� , which satisfy

(i) λ±� : C∞0 (�; S(�))→ D′(�; S(�)) are linear continuous,
(ii) λ±� ≥ 0 for (·|·)�,

(iii) λ+� + λ−� = iγ (n).

(2.18)

Using (2.11) one can show by the same arguments as for Klein–Gordon fields, see
[16, Prop. 7.5] that

�± = (��G)∗λ±�(��G),

λ±� = (�∗�γ (n))∗�±(�∗�γ (n)).
(2.19)

We recall that if Ei
πi−→ Mi , i = 1, 2 are two vector bundles with typical fibers Vi ,

one can define the vector bundle E1 � E2
π−→ M1 × M2 with typical fiber V1 ⊗ V2. If

{Ui, ji } ji∈Ii and ti, ji ,ki are coverings and transition maps for Ei
πi−→ Mi , then one takes

{U1, j1×U2, j2}( j1, j2)∈I1×I2 as covering of M1×M2 and t1, j1,k1⊗ t2, j2,k2 ∈ L(V1⊗V2)

as transition maps of E1 � E2
π−→ M1 × M2.

By the Schwartz kernel theorem, we can identify �± with distributional sections
in D′(M × M; S(M) � S(M)), still denoted by �±.

2.3.5 The role of the Cauchy evolution

Recall from 2.1.7 that we denoted by U (t, s) the Cauchy evolution associated to a
foliation by the Cauchy surfaces (�t )t∈R.
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If ω is a quasi-free state on CAR(D), then denoting by λ±(t) its Cauchy surface
covariances on �t one has obviously

λ±(t) = U (s, t)∗λ±(s)U (s, t), t, s ∈ R. (2.20)

2.3.6 Hadamard states

The wavefront set of A ∈ D′(M × M; S(M) � S(M)) is defined in the natural way:
introducing local trivializations of S(M)one can assume that A ∈ D′(M×M;MN (C))

where N = rankS(M) and the wavefront set of a matrix valued distribution is simply
the union of the wavefront sets of its entries.

We will identify T ∗(M × M) with T ∗M × T ∗M . If � ⊂ T ∗M × T ∗M then one
sets

�′:={((x, ξ), (x ′, ξ ′)) : ((x, ξ), (x ′,−ξ ′) ∈ �}.

For example WF(δ(x − x ′)) = �, where � ⊂ T ∗M × T ∗M is the diagonal.
We recall that N± are the two connected components of N , see (2.7).
The following definition of Hadamard states is due to Hollands [21].

Definition 2.3 ω is a Hadamard state if

WF(�±)′ ⊂ N± ×N±.

The following proposition, see [17, Prop. 3.8] gives a sufficient condition for the
Cauchy surface covariances λ±� to generate a Hadamard state.

Proposition 2.4 Let

λ±�=:iγ (n)c±

be the Cauchy surface covariances of a quasi-free state ω. Assume that c± are con-
tinuous from C∞0 (�;S�) to C∞(�;S�) and from E ′(�;S�) to D′(�;S�), and that
for some neighborhood U of � in M we have

WF(U� ◦ c±)′ ⊂ (N± ∪ F)× T ∗�, over U ×�, (2.21)

where F ⊂ T ∗M is a conic set with F ∩N = ∅. Then ω is a Hadamard state.

2.3.7 Action of conformal transformations

Let us now study the action of the conformal transformations recalled in Sect. 2.2. If
D̃ is the Dirac operator for g̃, its causal propagator is

G̃ = c
n−1
2 Gc−

n+1
2 .
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If we set

W ψ̃ = c
1−n
2 ψ̃, ψ̃ ∈ C∞0 (M; S(M)),

W ∗ψ = c
n+1
2 ψ, ψ ∈ C∞0 (M, ; S(M)),

U f = c
n−1
2 f , f ∈ C∞0 (�; S(�)),

then a routine computation gives the following proposition.

Proposition 2.5 The following diagram is commutative, with all arrows unitary:

(
C∞0 (M;S(M))

DC∞0 (M;S(M))
, (· |iG ·)M )

G−−−−→ (Solsc(D), ν)
��−−−−→ (C∞0 (�; S(�)), ν�)⏐⏐�W ∗

⏐⏐�W−1
⏐⏐�U

(
C∞0 (M̃;S(M))

D̃C∞0 (M̃;S(M))
, (· |iG̃ ·)M̃ )

G̃−−−−→ (Solsc(D̃), ν̃)
�̃�−−−−→ (C∞0 (�; S(�)), ν̃�)

Let us now consider the action of conformal transformations on quasi-free states.
Let �± be the spacetime covariances of a quasi-free state ω for D. Then

�̃± = c
n−1
2 �±c−

n+1
2 (2.22)

are the spacetime covariances of a quasi-free state ω̃ for D̃, and

λ̃±� = (U∗)−1λ±�U−1 = c
n−1
2 λ±�c

1−n
2 ,

if λ±� , resp. λ̃
±
� are the Cauchy surface covariances of ω, resp. ω̃.

Clearly ω is a Hadamard state iff ω̃ is.

2.4 The vacuum state for Dirac fields on static spacetimes

The basic example of a state for Dirac fields is the vacuum state on static spacetimes.
Let us recall its definition, following [4].

2.4.1 Vacuum state associated to a Killing field

Let (M, g) a globally hyperbolic spacetime with a spin structure. The Lie derivative
of a spinor field is defined as (see [28]):

LXψ = ∇S
Xψ + 1

8 ((∇a X)b − (∇b X)a)γ aγ bψ,

ψ ∈ C∞(M; S(M)), X ∈ C∞(M; T M).
(2.23)

If X is a complete Killing vector field, and themassm in (2.5) satisfies X·dm = 0, then
[D,LX ] = 0, see, e.g., [13, Appendix A]. It follows that the flow φs generated by LX

preserves Solsc(D) and one can easily show, using (2.4) and (2.23) that it preserves
the Hilbertian scalar product ν.
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It hence defines a unique strongly continuous unitary group (eis H )s∈R on the com-
pletion of (Solsc(D), ν), whose generator H is, by Nelson’s invariant domain theorem,
the closure of i−1LX on Solsc(D).

If � is a smooth space-like Cauchy surface, we denote by H� the corresponding
generator on the completion of (C∞0 (�; S(�)), ν�).

The following definition is taken from [4].

Definition 2.6 Assume that

Ker H� = {0}. (2.24)

The vacuum state ωvac associated to the complete Killing field X is the quasi-free state
defined by the Cauchy surface covariances:

λ±vac:=iγ (n)1R±(H�).

Unlike the bosonic case, X does not need to be time-like in order to be able to define
the associated vacuum state.

2.4.2 Vacuum state on static spacetimes

Wenowdiscuss the vacuum state on static spacetimes.Wewill assume that M = R×�

is equipped with the static metric g = −c2(x)dt2 + h(x)dx2, where c ∈ C∞(�;R)

with c(x) > 0 and h is a Riemannian metric on �. We set

g̃ = c−2g = −dt2 + h̃(x)dx2,

which is ultra-static. The restriction of S(M) to �t is independent on t and denoted
by S(�), see [17, Subsect. 7.1].

We consider a static Dirac operator

D = /D + m,

where m ∈ C∞(�, ;R) is independent on t .
The corresponding Dirac operator on (M, g̃) is

D̃ = /̃D + m̃, m̃ = cm.

If (ẽ j )1≤ j≤d is a local orthonormal frame for h̃ and ẽ0 = ∂t , we have setting
γ̃0 = γ̃ (ẽ0):

D̃ = −γ̃0(∂t − iH̃�)

for

H̃� = iγ̃0(γ̃ (ẽ j )∇̃S
ẽ j
+ m̃)=: H̃0� + iγ̃0m̃. (2.25)
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From (2.23), we obtain that Lẽ0 = ∇̃S
ẽ0
= ∂t and hence the generator of the Lie

derivative w.r.t. the Killing vector field ∂t equals H̃� onC∞0 (�; S(�)). We still denote
by H̃� its closure for the Hilbertian scalar product ν̃� .

Let us now consider the original Dirac operator D. Using (2.12), one checks that

D = −c−1γ (e0)(∂t − iH�), (2.26)

H� :=c
1−n
2 H̃�c

n−1
2 , (2.27)

where ea = c−1ẽa . By Proposition 2.5 we know that H� with domain c
1−n
2 Dom H̃�

is selfadjoint for the scalar product ν� . It equals the generator of the unitary group
associated to L∂t considered in 2.4.1.

Applying the discussion in 2.3.7, we can define:

Definition 2.7 Assume that Ker H� = {0}. Then the vacuum state ωvac for D is the
quasi-free state with Cauchy surface covariances

λ±vac = iγ (e0)1R±(H�).

2.4.3 Massive Dirac operators

Definition 2.8 The static Dirac operator D is called massive if

0 /∈ σ(H�). (2.28)

It is a standard fact that if (2.28) holds, thenωvac is aHadamard state, see, e.g., [38,Thm.
5.1]. Another proof is given in [17, Subsect. 7.1]. If 0 ∈ σ(H�) but Ker H� = {0},
then one can encounter infrared problems.

Let us give a simple sufficient condition for (2.28). Using the Clifford relations and
(2.4), we obtain that

H̃2
� = H̃2

0� + γ̃ (h̃−1dm̃)+ m̃2.

Since A = γ̃ (h̃−1dm̃) is selfadjoint for ν̃� with A2 = dm̃ ·h̃−1dm̃, we obtain that if

inf
�

m̃2 − dm̃ ·h̃−1dm̃ > 0 (2.29)

Then 0 /∈ σ(H̃). In terms of c, m (2.29) becomes:

inf
�

(c2m2 − d(cm)·h−1d(cm)) > 0, (2.30)

Note that (2.30) holds if c ≡ 1 and m(x) ≡ m0 �= 0.
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3 Dirac operators on asymptotically static spacetimes

3.1 Asymptotically static spacetimes

We fix an orientable d−dimensional manifold � equipped with a reference Rieman-
nian metric k such that (�, k) is of bounded geometry, and consider M = Rt × �x,
setting x = (t, x), n = 1+ d is even.

3.1.1 Bounded geometry

Roughly speaking a Riemannian manifold (�, k) is of bounded geometry if its radius
of injectivity is strictly positive and if the metric and all its derivatives, expressed in
normal coordinates at a point x, satisfy estimates which are uniform with respect to
the point x.

The two basic examples are compact Riemannian manifolds and R
d with the flat

metric, but many other non-compact Riemannian manifolds are of bounded geometry,
like for example asymptotically hyperbolic Riemannian manifolds.

After fixing a background Riemannian metric, one can define in a canonical way
various global spaces, like spaces of bounded tensors, Sobolev spaces, bounded dif-
ferential operators.

Roughly speaking an object is bounded, if, when expressed in normal coordinates
at a base point x, the object and all its derivatives satisfy estimates which are uniform
with respect to x.

The main interest for us is that on a Riemannian manifold of bounded geometry
one can define a global pseudodifferential calculus, the Shubin calculus, which shares
several important propertieswith thepseudodifferential calculus on compactmanifolds
or the uniform pseudodifferential calculus on R

d .

3.1.2 Lorentzian metric

We equip M with a Lorentzian metric g of the form

g = −c2(x)dt2 + (dxi + bi (x)dt)hi j (x)(dx j + b j (x)dt), (3.1)

where c ∈ C∞(M;R), c(x) > 0, b ∈ C∞(M; T �) and h ∈ C∞(M;⊗2
s T ∗�) is a

t-dependent Riemannian metric on �.
We recall that t̃ ∈ C∞(M;R) is called a time function if∇ t̃ is a time-like vector field.

It is called aCauchy time function if in addition its level sets are Cauchy hypersurfaces.
By [2, Thm. 2.1] we know that (M, g) is globally hyperbolic and t is a Cauchy

time function.

3.1.3 Asymptotically static spacetimes

We consider also two static metrics on M :

gout/in = −c2out/in(x)dt2 + hout/in(x)dx
2,
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where hout/in, resp. cout/in are two Riemannian metrics, resp. smooth functions on �

such that:

hout/in ∈ BT 0
2(�, k), h−1out/in ∈ BT 2

0(�, k), c±∞, c−1±∞ ∈ BT 0
0(�, k). (H1)

Concerning the asymptotic behavior of g when t →±∞, we assume that

h(x)− hout/in(x) ∈ S−μ(R±; BT 0
2(�, k)),

b(x) ∈ S−1−μ(R; BT 1
0(�, k)),

c(x)− cout/in(x) ∈ S−μ(R±; BT 0
0(�, k)),

(H2)

for some μ > 0, where BT p
q (�, k) is the Fréchet space of bounded q, p-tensors,

see, e.g., [42] or [17, Subsect. 4.1], and the space Sδ(R;F) for F a Fréchet space is
defined in Sect. 4.2.

In otherwords themetric g is asymptotic to the staticmetrics gout/in when t →±∞.
For later use we also fix m ∈ C∞(M;R), representing a variable mass and m±∞ ∈

C∞(�;R) such that

m(x)− m±∞(x) ∈ S−μ(R±; BT 0
0(�, k)). (H3)

3.1.4 Orthogonal decomposition

We recall now thewell-knownorthogonal decomposition of g associated to theCauchy
time function t . We set

v:= g−1dt

dt · g−1dt
= ∂t + bi∂xi ,

which using (H1), (H2) is a complete vector field on M . Denoting its flow by φt , we
have:

φt (0, y) = (t, x(t, 0, y)), t ∈ R, y ∈ �,

where x(t, s, ·) is the flow of the time-dependent vector field b on �. We also set

χ : R×� � (t, y) �→ (t, x(t, 0, y)) ∈ R×�. (3.2)

The following lemma is proved in [14, Appendix A.4]. Bounded diffeomorphisms on
a manifold of bounded geometry are defined for example in [14, Def. 3.3].

Lemma 3.1 Assume (H1), (H2). Then

ĝ:=χ∗g = −ĉ2(t, y)dt2 + ĥ(t, y)dy2, (3.3)
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for ĉ ∈ C∞(R× M), ĥ ∈ C∞(R; T 0
2 (�)). Moreover, there exist bounded diffeomor-

phisms xout/in of (�, k) such that if:

ĥout/in:=x∗out/inhout/in,

ĉout/in:=x∗out/incout/in,

then:

ĥout/in ∈ BT 0
2(�, k), ĥ−1out/inBT 2

0(�, k),

ĉout/in, ĉ−1out/in ∈ BT 0
0(�, k),

and furthermore,

ĥ − ĥout/in ∈ S−μ(R±, BT 0
2(�, k)),

ĉ − ĉout/in ∈ S−μ(R±, BT 0
0(�, k)),

χ∗m − m±∞ ∈ S−μ(R±, BT 0
0(�, k)).

After applying the isometry χ : (M, ĝ)
∼−→ (M, g) in Lemma 3.1, removing the

hats to simplify notation and denoting y again by x, we can assume that

g = −c2(t, x)dt2 + h(t, x)dx2,

with

h − hout/in ∈ S−μ(R±, BT 0
2(�, k)),

c − cout/in ∈ S−μ(R±, BT 0
0(�, k)),

m − m±∞ ∈ S−μ(R±, BT 0
0(�, k)),

hout/in ∈ BT 0
2(�, k), h−1out/inBT 2

0(�, k),

cout/in, c−1out/in ∈ BT 0
0(�, k).

(3.4)

3.1.5 Conformal transformation

We set

g̃:=c−2g = −dt2 + h̃(t, x)dx2

and obtain that

h̃ − h̃out/in ∈ S−μ(R±, BT 0
2(�, k)), with

h̃out/in = c−2out/inhout/in ∈ BT 0
2(�, k), h̃−1out/inBT 2

0(�, k).
(3.5)
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3.2 Spin structures

Let us assume that (M, g) admits a spin structure PSpin(M, g). We denote by
Cliff(M, g), S(M) the Clifford and spinor bundles over (M, g).

By well-known results on conformal transformations of spin structures, see, e.g.,
[30, Lemma 5.27], [20] [17, 2.7.2] (M, g̃) also admits a spin structure and the spinor
bundle for (M, g̃) is equal to S(M).

Before further discussing the spin structure on (M, g) or (M, g̃), we prove a lemma.
We set h̃t = h̃(t, ·).
Lemma 3.2 Let us fix a bounded atlas (Vi , ψi )i∈N for (�, h̃0).

Let Fi = (ei, j )1≤ j≤d oriented orthonormal frames for h̃0 over Vi such that ei, j for
i ∈ N, 1 ≤ j ≤ d are a bounded family in BT 1

0(Vi , k). Let Fi (t) = (ei, j (t))1≤ j≤d

the oriented orthonormal frames for h̃t over Vi obtained by parallel transport with
respect to ∂t of Fi for the metric g̃. Then:

(1) ei, j (±∞) = limt→±∞ ei, j (t) exist and the family ei, j (±∞) for i ∈ N,1 ≤ j ≤ d
is bounded in BT 1

0(Vi , k).
(2) R

± � t �→ ei, j (t)− ei, j (±∞) form a bounded family in S−μ(R, BT 0
0(Vi , k)).

Proof Let us forget the index i for themoment. Let xα , 1 ≤ α ≤ d be local coordinates
on V obtained fromψ : V → Bd(0, 1) and let x0 = t . Denoting by�

μ
�ν the Christoffel

symbols for g in the local coordinates (xμ)0≤μ≤d over U = R × V , we have �
μ
0ν =

1
2hμ�∂t h�ν .

Putting back the index i we see from (3.5) that R ∈ t �→ �
μ
i,0ν(t) form a bounded

family inS−1−μ(R, BT 0
0(Vi )). Denoting ei, j (t) simply by u(t) and setting u = uα∂xα

over V , we obtain that u(t) solves:

{
∂t uα(t)+ �α

0β(t)uβ(t) = 0,
uα(0) = eα

i, j .

From the above estimates on �
μ
i,0ν(t) and standard estimates on solutions of linear

differential equations, we obtain (1). It follows that u(t) also solves

{
∂t uα(t)+ �α

0β(t)uβ(t) = 0,
limt→±∞ uα(t) = uα(±∞).

Again the same estimates (integrating now from t = ±∞ instead of from t = 0) prove
(2) and complete the proof of the lemma. ��

3.2.1 Spin structures

Since M is a Cartesian product and from the form of g̃, further simplifications occur,
see, e.g., [1] or [17, Subsect. 2.6].

Let us set R = R ∪ {−∞,+∞} and set h̃in/out = h̃∓∞ for coherence of notation.
We can use the local frames Fi (t) over Vi to obtain local trivializations of

PSO(�, h̃t ) for t ∈ R. The associated transition functions are independent on t .
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By the arguments in [17, Subsect. 2.6], we obtain unique spin structures on (�, h̃t )

for t ∈ R.
The transition functions of PSpin(M, g̃) are independent on t and induce a spin

structure on (�, h̃t ) whose transition functions are also independent on t . If St (�)

denotes the restriction of S(M) to �t , then St (�) is independent on t and denoted by
S(�).

Conversely the spin structure on (�, h̃±∞) induces a spin structure on (�, g̃±∞)

for g̃±∞ = −dt2 + h̃±∞(x)dx2 and by conformal invariance a spin structure on
(M, g±∞). The associated spinor bundle is again equal to S(M).

3.3 Dirac operators

We consider the Dirac operator locally given by

D:= /D + m, /D = gabγ (ea)∇S
eb

(3.6)

where (ea)0≤a≤d is some local frame of T M and ∇S is the spin connection.

3.3.1 Conformal transformation

By Sect. 2.2 we obtain that

D = c−
n+1
2 D̃c

n−1
2 for D̃ = /̃D + m̃, m̃ = cm, (3.7)

with

m̃ − m̃out/in ∈ S−μ(R±, BT 0
0(�, k)),

m̃out/in = cout/inmout/in, m̃out/in, m̃−1out/in ∈ BT 0
0(�, k).

(3.8)

3.3.2 Asymptotic Dirac operators

Let

Dout/in = /Dout/in + mout/in

the asymptotic Dirac operators obtained from the spin structures PSpin(M, gout/in).
We will assume

Dout/in are massive ie 0 /∈ σ(Hout/in), (H4)

see 2.4.3. A sufficient condition for (H4) is given in (2.30).
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4 Pseudodifferential calculus

In this section we will recall Shubin’s global pseudodifferential calculus on manifolds
of bounded geometry and its time-dependent versions. We refer the reader to [27,
42] for the original exposition and to [16] for a more recent one. We are interested in
pseudodifferential operators acting on sections of spinor bundles,which are considered
in [17].

4.1 Notations

Let (�, k) a Riemannian manifold of bounded geometry see [3, 35] or [16, Thm. 2.2]
for an equivalent definition. We refer the reader to [17, Subsect. 4.1] for the definitions
below.

We denote by BT p
q (�, k) the space of bounded (q, p) tensors on �. Let also

E
π−→ � a vector bundle of bounded geometry.
We denote by Sm

ph(T
∗�; L(E)) the space of L(E)-valued poly-homogenous sym-

bols of order m on �, see, e.g., [17, Sect. 4.1].
The ideal of smoothing operators is denoted by W−∞(�; L(E)), and one sets

�m(�; L(E)) = Op(Sm
ph(T

∗�; L(E)))+W−∞(�; L(E)),

for some quantization map Op obtained from a bounded atlas and bounded partition
of unity of (�, k).

4.2 Time-dependent pseudodifferential operators

We will also consider time-dependent pseudodifferential operators, adapted to the
geometric situation considered in Sect. 3.2.

We first introduce some notation.
LetF a Fréchet spacewhose topology is defined by the seminorms ‖·‖p, p ∈ N and

δ ∈ R. We denote by Sδ(R;F) the space of smooth functions f : R→ F such that
supR〈t〉k−δ‖∂k

t f (t)‖p <∞ for all k, p ∈ N. Equipped with the obvious seminorms,
it is itself a Fréchet space.

Note that Sδ(R;F) = 〈t〉δS0(R;F) so we can always reduce ourselves to δ = 0.
Similarly we denote by C∞b (R;F) the space of smooth functions f : R → F

such that supR ‖∂k
t f (t)‖p < ∞ for all k, p ∈ N, with the analogous Fréchet space

topology.
We use this notation to define the spaces Sδ(R; Sm

ph(T
∗�; L(E))),

Sδ(R,W−∞(�; L(E))) and Sδ(R;�m(�; L(E))).
For example, if (�, k) equals R

n equipped with the flat metric, then
Sδ(R; Sm

ph(T
∗
R

n)) is the space of smooth functions a : R × T ∗Rn → C such that
there exist for j ∈ N functions am− j : R × T ∗(Rn) → C, homogeneous of degree
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m − j in ξ with

sup
R×T ∗Rn\o

〈t〉−δ+k〈ξ 〉−m+ j |β||∂k
t ∂α

x ∂
β
ξ am− j (t, x, ξ)| <∞, k ∈ N, α, β ∈ N

n,

and for any N ∈ N

sup
R×T ∗Rn\o

〈t〉−δ+k〈ξ 〉−m+N+1+|β||∂k
t ∂α

x ∂
β
ξ (a −

N∑
j=0

am− j (t, x, ξ))|

<∞, k ∈ N, α, β ∈ N
n .

Similarly Sδ(R,W−∞(Rn)) is the space of smooth functions a : R → B(L2(Rn))

such that

sup
R

〈t〉−δ+k‖∂k
t a(t)‖B(H−m (Rn),Hm (Rn)) <∞, k, m ∈ N,

where Hm(Rn) are the usual Sobolev spaces.
For simplicity of notation Sδ(R; Sm

ph(T
∗�; L(E))) or Sδ(R;�m(�; L(E))) will

often simply be denoted by Sδ,m , �δ,m .

4.2.1 Principal symbol

If A(t) = Op(a(t))+ R−∞(t) ∈ Sδ(R;�m(�; L(E))), its principal symbol is

σpr(A)(t):=[a](t) ∈ Sδ(R; Sm
ph(T

∗�; L(E)))/Sδ(R; Sm−1
ph (T ∗�; L(E))).

σpr(A)(t) is independent on the decomposition of A(t) as Op(a)(t)+ R−∞(t) and on
the choice of the good quantization map Op. As usual we choose a representative of
σpr(A)(t) which is homogeneous of order m on the fibers of T ∗�.

4.2.2 Ellipticity

An operator A(t) ∈ Sδ(R;�m(�; L(E))) is elliptic if σpr(A)(t, x, ξ) is invertible for
all t ∈ R and

sup
t∈R,(x,ξ)∈T ∗�,|ξ |=1

‖σpr(A)−1(t, x, ξ)‖ <∞.

To define the norm above, one chooses a bounded Hilbert space structure on the fibers
of E , the definition being independent on its choice.

Proposition 4.1 Let A(t) ∈ Sε(R;�m(�; L(E))), ε ∈ R, m ≥ 0 elliptic. Then the
following holds:

(1) A(t) is closeable on C∞0 (�; E) with Dom Acl(t) = Hm(�; L(E)).
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(2) if there exists δ > 0 such that [−δ, δ] ∩ σ(Acl(t)) = ∅ for t ∈ R, then A−1(t) ∈
S−ε(R;�−m(�; L(E))) and

σpr(A−1)(t) = (σpr(A))−1(t).

Proof the same result is proved in [17, Prop. 5.8], with Sδ(R;�m) replaced by
C∞b (R;�m), where C∞b (R;F) is defined at the beginning of Sect. 4.2. Note that
a(t) ∈ Sδ(R;F) iff 〈t〉−δ−n∂n

t a(t) ∈ C∞b (R;F) for all n ∈ N. Using that
∂t A−1(t) = −A−1(t)∂t A(t)A−1(t) and similar identities for higher derivatives of
A−1(t) combined with the above remark, we obtain the proposition. ��

4.3 Functional calculus

4.3.1 Elliptic selfadjoint operators

Let us fix a bounded Hilbertian structure (·|·)E on the fibers of E and define the scalar
product

(u|v) =
∫

�

(u(x)|v(x))EdV olg, u, v ∈ C∞0 (�; E).

Let H(t) ∈ Sδ(R;�m(�; L(E))) be elliptic, symmetric onC∞0 (�; E). Using Propo-
sition 4.1, one easily shows that its closure is selfadjoint with domain Hm(�; E). Note
also that its principal symbol σpr(H)(t, x, ξ) is selfadjoint for the Hilbertian scalar
product on Ex .

4.3.2 Functional calculus

We now extend some results in [17] on functional calculus for selfadjoint pseudodif-
ferential operators to our situation. We first recall some definitions from [17, Subsect.
5.3] about pseudodifferential operators with parameters.

One denotes by S̃m(�; L(E)) the space of symbols b ∈ C∞(Rλ × T ∗�; L(E))

such that if b(λ) = b(λ, ·) ∈ C∞(T ∗�; L(E)) and Ti b(λ) are the push-forwards of
b(λ) associated to a covering {Ui }i∈N of �, we have:

∂
γ
λ ∂α

x ∂
β
ξ bi (λ, x, ξ) ∈ O(〈ξ 〉 + 〈λ〉)m−|β|−γ , (λ, x, ξ) ∈ R× T ∗B(0, 1)

uniformlywith respect to i ∈ N. One denotes by S̃m
h (T ∗�; L(E)) the subspace of such

symbols which are homogeneous w.r.t. (λ, ξ) and by S̃m
ph(T

∗�; L(E)) the subspace
of poly-homogeneous symbols.

One also defines the ideal W̃−∞(�; L(E)) as the set of smooth functions b : R ∈
λ �→ b(λ) ∈W−∞(�; L(E)) such that

‖∂γ
λ b(λ)‖B(H−m (�),Hm (�)) ∈ O(〈λ〉−n), ∀, m, n, γ ∈ N,
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and set

�̃m(�; L(E)):=Op(S̃m
ph(T

∗�; L(E)))+ W̃−∞(�; L(E)).

As usual one defines the time-dependent versions of the above spaces:

Sδ(R; S̃m
ph(T

∗�; L(E))), Sδ(R; W̃−∞(�; L(E))),Sδ(R; �̃m(�; L(E))).

We define the principal symbol of A(t) ∈ Sδ(R; �̃m(�; L(E))) as in 4.2.1, using the
poly-homogeneity.

Proposition 4.2 Let H(t) ∈ Sδ(R;�1(�; L(E))) elliptic and formally selfadjoint.
Let us still denote by H(t) its closure, which is selfadjoint on H1(�; E) by Proposi-
tion 4.1. Assume that there exists δ > 0 such that [−δ, δ] ∩ σ(H(t)) = ∅ for t ∈ I .

Then λ �→ (H(t)+ iλ)−1 belongs to Sδ(R; �̃−1(�; L(E))) with principal symbol
(σpr(H(t))+ iλ)−1.

Proof The C∞b version of the proposition is proved in [17, Prop. 5.9]. We use the same
remark as in the proof of Proposition 4.1 to extend it to the Sδ case. Details are left to
the reader. ��
Proposition 4.3 Let H(t) ∈ S0(R;�1(�; L(E)))be elliptic, symmetric on C∞0 (�; E),
and let us denote still by H(t) its selfadjoint closure. Assume that there exists δ > 0
such that [−δ, δ] ∩ σ(H(t)) = ∅ for t ∈ R.

Assume in addition that there exist H∞ ∈ �1(�; L(E)), elliptic symmetric on
C∞0 (�; E) with 0 /∈ σ(H∞) such that

H(t)− H∞ ∈ S−μ(R;�1(�; L(E))).

Then

(1) the spectral projections 1R±(H(t)) belong to S0(R;�0(�; L(E))) and

σpr(1R±(H(t))) = 1R±(σpr(H(t))).

Moreover, 1R±(H(t))− 1R±(H∞) belongs to S−μ(R;�0(�; L(E))).

(2) S(t) = (H2(t)+ 1)
1
2 belongs to S0(R;�1(�; L(E))) and

σpr(S(t)) = |σpr(H(t))|.

Moreover, S(t)− S∞ belongs to S−μ(R;�1(�; L(E))) for S∞ = (H2∞ + 1)
1
2 .

Proof By Proposition 4.2 we have

(iλ− H(t))−1 = Op(a(t, λ))+ R−∞(t, λ), (4.1)
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where a(t) ∈ S0(R; S̃−1(T ∗�; L(E))) and R−∞(t) ∈ S0(R; W̃−∞(�; L(E)) satis-
fies:

〈t〉p‖∂n
λ∂

p
t R−∞(t, λ)‖B(H−m (�),Hm (�)) ∈ O(〈λ〉)−m, ∀p, m, n ∈ N,

uniformly for t ∈ R.
The principal symbol of a(t) is (iλ− σpr(H))−1, which means that

Op(a(t, λ))− Op((iλ− σpr(H)(t))−1 ∈ S0(R; �̃−2(�; L(E))). (4.2)

For a �= 0 we have

|a|−1 = 2

π

∫ +∞
0

(a + iλ)−1(a − iλ)−1dλ, (4.3)

hence

|H(t)|−1 = 2

π

∫ +∞
0

(H(t)+ iλ)−1(H(t)− iλ)−1dλ. (4.4)

From Proposition 4.2 we obtain that |H(t)|−1 ∈ S0(R;�−1(�; L(E))). We also
deduce from (4.4) using the second resolvent formula that |H(t)|−1 − |H∞|−1 ∈
S−μ(R;�−1(�; L(E))). This implies that sgn(H(t)) ∈ S0(R;�−0(�; L(E))) and
sgn(H(t))− sgn(H∞) ∈ S−μ(R;�0(�; L(E))).

Moreover, since the principal symbol of (H(t)+ iλ)−1 equals (σpr(H(t))+ iλ)−1,
applying once more (4.3) we obtain that σpr(sgn(H(t))) equals sgn(σpr(H(t))).

Writing 1R±(λ) = 1
2 (1 ± sgn(λ)) this implies (1). To prove (2) we deduce from

(4.3) that

(a + 1)−
1
2 = 2

π

∫ +∞
0

(a + s2 + 1)−1ds

= 2

π

∫ +∞
1

(a + λ2)−1λ(λ2 − 1)−
1
2 dλ, (4.5)

hence

(H2(t)+ 1)−
1
2 = 2

π

∫ +∞
1

(H(t)+ iλ)−1(H(t)− iλ)−1λ(λ2 − 1)−
1
2 dλ. (4.6)

we obtain that (H2(t) + 1)− 1
2 ∈ S0(R;�−1(�; L(E))). We also deduce from (4.6)

that (H2(t)+1)− 1
2−(H2∞+1)−

1
2 ∈ S−μ(R;�−1(�; L(E))).Wewrite then (H2(t)+

1)
1
2 = (H2 + 1)(H2(t)+ 1)− 1

2 and obtain (2). ��
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5 The in/out vacuum states

In this section we prove Theorem 1.1.

5.1 Reduction of the Dirac operator

In this subsection we consider the Dirac operator D̃ obtained from D by conformal
transformation, see Sects. 2.2 and 3.1.5, 3.3.1. We recall that the spinor bundle for
(M, g̃) is identical to the one for (M, g) and hence denoted by S(M), and that the
restriction St (�) of the spinor bundle S(M) to �t is independent of t , and denoted by
S(�).

We recall also fromSect. 2.2 that S(M) is equippedwith the time positiveHermitian
form β̃ see (2.12) and we denote by β̃t its restriction to S(�). Also we denote by
γ̃t : T�t M → L(St (�)) the restrictions of γ̃ defined in (2.12) to S(�t ).

We will denote by (x, k) local coordinates on T ∗� and by (t, x, τ, k) local coordi-
nates on T ∗M .

The first step consists in reducing the Dirac equation D̃ψ = 0 to a time-dependent
Schroedinger equation

∂tψ − iH(t)ψ = 0,

where H(t) is some time-dependent selfadjoint operator. To this end it is necessary
to identify the elements of spinor bundles at different times by parallel transport. We
recall that e0 = ∂t and (e j )1≤ j≤d are the local frames constructed in Lemma 3.2. We
start by an easy proposition.

Proposition 5.1

(i) γ̃t (e0)− γ̃±∞(e0) ∈ S−μ(R±;C∞b (V ; L(S(�)))),

(i i) γ̃t (e j (t))− γ̃±∞(e j (±∞)) ∈ S−μ(R±;C∞b (V ; L(S(�)))),

(i i i) βt − β±∞ ∈ S−μ(R±;C∞b (V ; L(S(�), S(�)∗))),
(iv) ∇S

e0 −∇S±∞
e0 ∈ S−μ(R±;�1(�; S(�))),

(v) ∇S
e j (t)
−∇S±∞

e j (±∞) ∈ S−μ(R±;�1(�; S(�))).

Proof We fix a bounded atlas (Vi , ψi )i∈N of (�, h0) and set Ui = R × Vi . We fix
a bounded family (Fi )i∈N of oriented orthonormal frames for h0 over Vi and denote
by Fi (t) = (ei, j (t))1≤ j≤d the orthonormal frames obtained by parallel transport as
in Lemma 3.2. Since e0 = ∂t , Ei = (ei,a)0≤a≤d are then oriented, time-oriented
orthonormal frames for g over Ui = R× Vi .

We use the spin frames Bi (t) = (Ei,A(t))1≤A≤N of S(�) associated to the frames
Ei (t) = (ei,a(t))0≤a≤d over {t} × Vi . From the estimates in Lemma 3.2, we obtain
that Bi (±∞) = limt→±∞ Bi (t) exist and that

Ei,A(±∞) ∈ C∞b (Vi , S(�)),

Ei,A(t)− Ei,A(±∞) ∈ S−μ(R±;C∞b (Vi , S(�))) uniformly w.r.t. i ∈ N.

(5.1)
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We recall from 3.2.1 that from the transition functions oooi j (±∞) : Vi j → SO(d) one
obtains the spin structures PSpin(�; h±∞) introduced above. The frames Bi (±∞)

are the frames associated to the Ei (±∞) for this spin structure.
Let us now forget the index i and denote by (ψψψ A)1≤A≤N ∈ C

N the components of
ψ in the frame B. The dual frames are as usual denoted by (ea)0≤a≤d , (E A)1≤A≤N so
for example ψψψ A = ψ ·E A.

Denoting by γγγ t (u) the matrix of γ̃t (u) in the frame B(t), we have also

γγγ t (u) = γγγ aua(t), ua(t):=u ·ea(t). (5.2)

where γγγ a ∈ MN (C) for 0 ≤ a ≤ d are the usual gamma matrices. Using Lemma 3.2
and (5.1), we obtain that limt→±∞ γ̃t (ea(t)) ∈ L(S(�)) exist and that

γ̃t (ea(t))− lim
t→±∞ γ̃t (ea(t)) ∈ S−μ(R±;C∞b (V ; L(S(�)))). (5.3)

If we reintroduce the index i and set V = Vi , then the seminorms in (5.3) are uniform
with respect to i ∈ N. Because of (5.2), the limits limt→±∞ γ̃t (ea(t)) are equal to
γ̃±∞(ea(±∞)). This proves ii). i) is proved similarly.

Let us now denote by βββ t the matrix of β̃t in the frame B(t). We have

βββ t = βββ

where βββ ∈ MN (C) is a Hermitian matrix such that

βββγγγ a = −γγγ ∗aβββ, iβββγγγ 0 > 0.

This implies as above that limt→±∞ β̃t exist and

β̃t − lim
t→±∞ β̃t ∈ S−μ(R±;C∞b (V ; L(S(�), S(�)∗))). (5.4)

Again because of (5.2) the limits limt→±∞ β̃t are equal to β̃±∞, which proves iii).
Finally, see, e.g., [17, 2.5.6] we have:

∇̃S
ea

ψψψ A = ∂aψψψ
A + σ A

aCψψψC , (5.5)

where

∂a f = ea ·d f , σ A
aC = E A ·σa EC , σa = 1

4
�c

abγ̃ (ec)g
bd γ̃ (ed), �c

ab = ∇ea eb ·ec.

Using (3.5) and the properties of (e j (t))1≤ j≤d in Lemma 3.2, we obtain by a routine
computation that

�0
0b(t) = �c

00(t) = 0, �0
ab(t), �a

0b(t) ∈ S−1−μ(R;C∞b (V )),

�c
ab(t)− �c

ab(±∞) ∈ S−μ(R±;C∞b (V )) if a, b, c �= 0.
(5.6)
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If we reintroduce the index i and set V = Vi , then the seminorms in (5.6) are uniform
with respect to i ∈ N. Therefore, the limits limt→±∞ ∇̃S

e j (t)
exist and

∇̃S
e j (t)
− lim

t→±∞ ∇̃S
e j (t) ∈ S−μ(R±;�1(�; S(�))).

Using (5.5) we obtain also that limt→±∞ ∇̃S
e j (t)
= ∇̃S±∞(e j (±∞)), which proves v).

The proof of iv) is similar. ��

5.1.1 Identification by parallel transport

For f ∈ C∞(�s; S(�s)) we denote by T (s) f = ψ the solution of

{ ∇̃S
∂t

ψ = 0 in R×�,

ψ|�s = f ,
(5.7)

and set

T (t, s) f = T (s) f ��t ,

T : C∞(R;C∞(�, S(�)))→ C∞(M; S(M))

ψ(t) �→ (T ψ)(t) = |h̃t |− 1
4 |h̃0| 14 T (t, 0)ψ(t),

(5.8)

We denote by ν̃0 the Hilbertian scalar product

f ·ν̃0 f :=i
∫

�

f ·β̃0γ̃0(e0) f |h̃0| 12 dx, f ∈ C∞0 (�, S(�)).

Using (2.4) we obtain the following lemma, see [17, Lemma 6.1].

Lemma 5.2 One has

(1) T (s, t)γ̃t (e0)T (t, s) = γ̃s(e0), t, s ∈ I ,
(2) T (s, t)γ̃t (e j (t))T (t, s) = γ̃s(e j (s)), t, s ∈ I ,
(3) T (t, s)∗β̃tT (t, s) = β̃s , t, s ∈ I .

5.1.2 Reduction of the Dirac operator

Proposition 5.3 Let

D := T −1 D̃T .

Then
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(1) the map

T : (Solsc(D), ν̃0)
∼−→ (Solsc(D̃), ν̃0)

is unitary.
(2) We have

D = −γ̃0(e0)∂t + iγ̃0(e0)H(t),

where H(t) ∈ S0(R, �1(�, S(�))) has the following properties:

(2i) σpr(H(t))(x, k) = −γ̃0(e0)γ̃0(h̃t (x)−1k).
(2ii) there exist H±∞ ∈ �1(�; L(S(�))) elliptic, formally selfadjoint for ν0 such

that

H(t)− H±∞ ∈ S−μ(R±;�1(�; L(S(�)))).

H±∞ is selfadjoint with domain H1(�; S(�)) and 0 /∈ σ(H±∞).
(2iii) H(t) is formally selfadjoint for ν̃0 and selfadjoint with domain H1(�; S(�)).

Proof (1) is obvious since T (0, 0) = 1.We have T −1γ̃ (e0)T = γ̃0(e0) by Lemma 5.2
and

T ∂tT −1 = ∇̃S
e0 −

1

4
∂t |h̃t ||h̃t |−1. (5.9)

Ifwefix over some open setU = R×V , a local oriented and time oriented orthonormal
frame (ea)0≤a≤d as in Lemma 3.2, we have

T −1DT = −γ̃0(e0)∂t + iγ̃0(e0)H(t),
H(t) = T −1H(t)T + 1

4∂t |h̃t ||h̃t |−1, for
H(t):=iγ̃t (e0)γ̃t (e j (t))∇̃S

e j (t)
+ iγ̃t (e0)m̃,

(5.10)

where in the second line we sum only over 1 ≤ j ≤ d.
Let us now prove the properties of H(t) stated in (2). By Proposition 5.1 we obtain

that

H(t)− H±∞ ∈ S−μ(R±;�1(�; L(S(�)))), (5.11)

for

Hout/in = iγ̃∞(e0)(γ̃∞(e j (±∞))∇̃out/in
e j (±∞) + m̃out/in). (5.12)

Let us now consider the maps T (t, s). We have

∇̃S
e0ψ = ∂tψ + 1

4
�a
0bγγγ aγγγ

bψ = ∂tψ,

123



Hadamard property of the in and out states for Dirac… Page 35 of 46 63

since ∇e0ea = 0. It follows that the matrix of T (t, s) in the bases B(s) and B(t)
equals the identity matrix. Using then (5.1) we obtain that the limits T (±∞, 0) =
limt→±∞ T (t, 0) ∈ C∞b (�; L(S(�))) exist and that

T (t, 0)− T (±∞, 0) ∈ S−μ(R±;C∞b (�; L(S(�)))). (5.13)

Combining (5.11) and (5.13), we obtain that

Hout/in:=T (0,±∞)|h̃out/in| 14 |h̃0|− 1
4 H±∞|h̃0| 14 |h̃out/in|− 1

4 T (±∞, 0) (5.14)

belongs to �1(�; L(S(�))) and

H(t)− Hout/in ∈ S−μ(R±;�1(�; L(S(�)))). (5.15)

The principal symbol of H(t) is clearly equal to −γ̃0(e0)γ̃0(h̃t (x)−1k), which proves
(2i).

Let us now prove the remaining parts of (2ii). From (2.25) we obtain that H±∞
is the spatial part of the Dirac operator for the static metric g±∞. Using hypothesis
(H4) (and remembering that we removed the tildes), we obtain that 0 /∈ σ(H±∞). The
selfadjointness of Hout/in on H1(�; S(�)) follows by the usual ellipticity argument.

Finally, we know that if D̃ψ = 0 then

∫
�

ψ(t, ·)·β̃t γ̃t (e0)ψ(t, ·)|h̃t | 12 dx

is independent on t ; hence, if ψ̃ = T −1ψ we obtain using

T ∂tT −1 = ∇̃S
e0 −

1

4
∂t |ht ||ht |−1

that
∫

�

ψ̃(t, ·)·β̃0γ̃0(e0)ψ̃(t, ·)|h̃0| 12 dx

is independent on t . Since ∂t ψ̃ = iH(t)ψ̃ , this implies that H(t) = H∗(t) on
C∞0 (�; S(�)) for ν0. The fact that (the closure of) H(t) is then selfadjoint on
H1(�; S(�)) follows from the standard argument, using the ellipticity of H(t). ��

5.2 Some preparations

The space C∞0 (R×�; S(�)) is equipped with the Hilbertian scalar product

ψ ·ν̃ψ =
∫
R×�

ψ ·β̃0γ̃0(e0)ψdt |h̃0| 12 dx,
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while C∞0 (�; S(�)) is equipped with

f ·ν̃0 f =
∫

�

f ·β̃0γ̃0(e0) f |h̃0| 12 dx . (5.16)

Adjoints of operators will always be computed with respect to these scalar products.
Our reference Hilbert space is

H = L2(�; S(�)),

equal to the completion of C∞0 (�; S(�)) for ν̃0.
The following lemma is the analog of [17, Lemma 6.3].

Lemma 5.4 There exists R−∞ ∈ C∞0 (R;W−∞(�; S(�))) with R−∞(t) = R−∞(t)∗
and δ > 0 such that

σ(H(t)+ R−∞(t)) ∩ [−δ, δ] = ∅.

Proof we follow the proof in [17, Lemma 6.3]. By Proposition 5.3 (2), we know that
there exists δ > 0 such that σ(H(t)) ∩ [−δ, δ] = ∅ for |t | � 1, so the modification
R−∞(t) can be taken compactly supported in t . ��

5.2.1 Unitary group

Let us denote by U(t, s), s, t ∈ I the unitary evolution generated by H(t), ie the
solution of

⎧⎨
⎩

∂tU(t, s) = iH(t)U(t, s),
∂sU(t, s) = −iU(t, s)H(s),
U(s, s) = 1.

The properties of H(t) imply that U(t, s) is well-defined by a classical result of Kato,
see, e.g., [40].

Lemma 5.5 U(t, s) are uniformly bounded in B(Hm(�; S(�))) for t, s ∈ R, m ∈ R.

Proof Let us set

S(t):=(H2(t)+ 1)
1
2 , Sout/in:=(H2

out/in + 1)
1
2 .

By Proposition 4.3 we obtain that

S(t) ∈ S0(R;�1(�; S(�))),

S(t)− Sout/in ∈ S−μ(R±;�1(�; S(�))),
(5.17)

and σpr(S(t))(x, k) = (k ·h̃−1t (x)k)
1
2 . This implies that

C−1m ‖Sm(t)u‖0 ≤ ‖u‖m ≤ Cm‖Sm(t)u‖0, t ∈ R,
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where we denote by ‖ · ‖m the norm in Hm(�; S(�)).
For u ∈ Sm(s)C∞0 (�; S(�)) we set

f (t) = ‖U(s, t)Sm(t)U(t, s)S−m(s)u‖0,

which is finite since U(t, s) preserves C∞0 (�; S(�)). We have

| f ′(t)| ≤ ‖U(s, t)∂t Sm(t)U(t, s)S−m(s)u‖0
= ‖U(s, t)∂t Sm(t)S−m(t)U(t, s)U(s, t)Sm(t)U(t, s)S−m(s)u‖0
≤ ‖U(s, t)∂t Sm(t)S−m(t)U(t, s)‖B(H) f (t) ≤ Ct−1−μ f (t),

where we use (5.17) in the last inequality. By Gronwall’s inequality we obtain that
f (t) ≤ C f (s) for t, s ∈ R hence

‖Sm(t)U(t, s)S−m(s)u‖
= ‖U(s, t)Sm(t)U(t, s)S−m(s)u‖ ≤ C‖u‖, u ∈ Sm(s)C∞0 (�; S(�)),

which proves the lemma since Sm(s)C∞0 (�; S(�)) is dense in L2(�; S(�)). ��

5.2.2 Some preparations

We next introduce some classes of maps between pseudodifferential operators. These
classes are similar to the ones considered in [17, Subsect. 6.3], with the behavior for
large times taken into account.

We will use the short hand notation introduced in Sect. 4.2 and denote Sδ(R;�m

(�; L(S(�)))) simply by Sδ,m . We set S∞,∞ =⋃
δ,m∈R Sδ,m .

Definition 5.6 Let δδδ : R → R and p ∈ R. We denote by F−δδδ,−p the set of maps
F : S0,0 → S∞,∞ such that

F : S−μ,−1→ S−μ−δδδ(μ),−p, ∀μ > 0,

and:

R1 − R2 ∈ S−μ−ε,−1− j ⇒ F(R1)− F(R2) ∈ S−μ−δδδ(μ)−ε,−p− j , ∀ε > 0, j ∈ N.

An element of F−δδδ,−p will be denoted by F−δδδ,−p. The following proposition is the
analog of [15, Lemma A.1], [17, Prop. 6.6]. It is an abstract formulation of an ubiqui-
tous argument in pseudodifferential calculus, consisting in solving recursive equations
to determine successive terms in the symbolic expansion of a pseudodifferential oper-
ators.

Proposition 5.7 Let A ∈ S−μ1,−1, μ1 > 0 and F0,−2 ∈ F0,−2. Then there exists a
solution R ∈ S−μ1,−1, unique modulo S−μ1,−∞ of the equation:

R = A + F0,−2(R) mod S−μ1,−∞.
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Proof Let us denote F0,−2 simply by F . We set S0 = A, Sn = A+F(Sn−1) for n ≥ 1.
We have S1 − S0 = F(A) and Sn − Sn−1 = F(Sn−1) − F(Sn−2). Since F ∈ F0,−2
we obtain by induction that Sn − Sn−1 ∈ S−μ1,−(n+1). We take R ∈ S−μ1,−1 such
that R ∼ S0+∑∞

0 Sn − Sn−1 which solves the equation modulo S−μ1,−∞. If R1, R2
are two solutions, then R1 − F2 = F(F1) − F(R2) modulo S−μ1,−∞; hence, using
that F ∈ F0,−2 we obtain by induction on n that R1 − R2 ∈ S−μ1,−n for all n ∈ N

which proves uniqueness modulo S−μ1,−∞. ��
We now collect some useful properties of the sets F−δδδ,−p.

Lemma 5.8 (1) If A ∈ S−�,k and F−δδδ,−p ∈ F−δδδ,−p, then the maps

AF−δδδ,−p : R �→ AF−δδδ,−p(R),

F−δδδ,−p A : R �→ F−δδδ,−p(R)A

belong to F−δδδ−�,−p+k for k ≤ p.
(2) If F−δδδi ,−pi ∈ F−δδδi ,−pi , then the map

F−δ1δ1δ1,−p1 F−δδδ2,−p2 : R �→ F−δ1δ1δ1,−p1(R)F−δ2δ2δ2−p2(R)

belongs to F−δ1δ1δ1−δ2δ2δ2−μμμ,−p1−p2 , where μμμ is the map μ �→ μ.
(3) the map R → R p belongs to F−(p−1)μμμ,−p for p ∈ N

∗.
(4) the map R �→ eR belongs to F0,0.
(5) one has eR = 1+ R + F−μμμ,−2(R), where F−μμμ,−2 ∈ F−μμμ,−2.

Proof (1) and (2) are easy. We check that R �→ R belongs to F0,−1 and use then (2)
to obtain (3). To prove (4) we write eR = ∑

n≥0 1
n! R

n and obtain that eR ∈ S0,0 if
R ∈ S−μ,−1. We have

eR1 − eR2 =
∫ 1

0
eθ R1(R1 − R2)e

(1−θ)R2dθ

and obtain that eR1 − eR2 ∈ S−μ−ε,−1− j if R1− R2 ∈ S−μ−ε,−1− j , which completes
the proof of (4). To prove (5) we write

eR = 1+ R +
∫ 1

0
(1− θ)R2eθ Rdθ=:1+ R + F(R)

and obtain by (2), (3) and (4) that F ∈ Fμμμ,−2. ��

5.3 Construction of some projections

We now follow the constructions in [17, Subsect. 6.4], adapting the results to our
framework.

Proposition 5.9 There exist time-dependent projections

P±(t) ∈ S0(R;�0(�; L(S(�))))
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and time-dependent operators

R(t) ∈ S−1−μ(R;�−1(�; L(S(�))))

such that

(1) P±(t) = P±(t)∗, P+(t)+ P−(t) = 1;
(2) P±(t)− 1R±(Hout/in) ∈ S−μ(R±, �0(�; L(S(�))));
(3) R(t) = R∗(t);
(4) ∂t P±(t)+ [P±(t), iH̃(t)] ∈ S−1−μ(R;�−∞(�; L(S(�)))) for

H̃(t) = eiR(t)H(t)e−iR(t) + i−1∂te
iR(t)e−iR(t);

(5)

W F(U(·, 0)e−iR(0) P±(0)eiR(0))′ ⊂ (N± ∪ F)× T ∗�,

for F = {k = 0} ⊂ T ∗M.

Proof we follow the proof of [17, Prop.6.8], taking into account the time decay of the
various operators.

Step1. In Step 1 we replace H(t) by Ĥ(t) = H(t) + R−∞(t) as in Lemma 5.4.
Let Û(t, s) the unitary group with generator Ĥ(t). From Lemma 5.5 and Duhamel’s
formula, we obtain that U(t, s)− Û(t, s) ∈ C∞b (R2;W−∞(�; L(S(�)))) so we can
replace H(t) by Ĥ(t). Denoting Ĥ(t) again by H(t) we can assume without loss of
generality that [−δ, δ] ∩ σ(H(t)) = ∅ for t ∈ R.

By Proposition 4.3 the projections

P±(t) = 1R±(H(t))

are well defined, selfadjoint with

P±(t) ∈ S0(R;�0(�; L(S(�)))),

P±(t)− 1R±(Hout/in) ∈ S−μ(R±;�0(�; L(S(�)))),
(5.18)

so properties (1) and (2) are satisfied. We have also

σpr(P±)(t, x, k) = 1R±(σpr(H)(t, x, k)). (5.19)

Since σpr(H(t, x, k)) = −γ̃0γ̃ (h̃−1t (x)k), we obtain using the Clifford relations that:

σpr(P±)(t, x, k)σpr(H)(t, x, k) = ±ε(t, x, k)σpr(P±)(t, x, k),

for ε(t, x, k) = (k ·h̃−1t (x)k)
1
2 . By symbolic calculus this implies that
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P±(t)H(t) = ±ε(t, x, Dx )P±(t)+ R±0 (t), (5.20)

where R±0 (t) ∈ S0(R;�0(�; S(�))).
Step 2. In Step 2 we find R(t) such that (4) is satisfied. For ease of notation we

denote simply by A a time-dependent pseudodifferential operator A(t). By Lemma 5.8
we obtain easily that for H̃(t) defined in (4) we have:

H̃ = H+ [R, iH] + F−μμμ,−1(R). (5.21)

We will look for R of the form

R = T (S) = P+S P+ + P−S∗P−, S ∈ S0,−1. (5.22)

Note that if F−δδδ,−p ∈ F−δδδ,−p then the map S �→ F−δδδ,−p(T (S)) belongs also to
F−δδδ,−p (note that the map S �→ S∗ belongs to F0,−1).

Since P± are projections, we have

∂t P± + [P±, iH̃]
= P+(∂t P± + [P±, iH̃])P− + P−(∂t P± + [P±, iH̃])P+.

Since the second term in the rhs above is the adjoint of the first, it suffices to find S
such that

P+(∂t P+ + [P+, iH̃])P− ∈ S−1−μ,−∞. (5.23)

Using (5.21), we obtain since [P±,H] = 0:

P+
(
∂t P+ + [P+, iH̃]

)
P−

= P+
(
∂t P+ + P+HP+S − S P−HP− + F−μμμ,−1(S)

)
P−

We use now (5.20) denoting the scalar operator ε(t, x, Dx ) + m2 for m � 1 simply
by ε and obtain:

P+HP+S − S P−HP− = εS + Sε + R+0 S − S R−0= 2εS + [S, ε] + R+0 S − S R−0 .

The maps S �→ R+0 S, S �→ S R−0 belong to F0,−1 by Lemma 5.8, as the map S �→
[ε, S], since ε is scalar.

Therefore, Eq. (5.23) can be rewritten as

∂t P+ + 2εS + F0,−1(S) ∈ S−1−μ,−∞,

or equivalently as

S + (2ε)−1∂t P+ + −F0,−2(S) ∈ S−1−μ,−∞. (5.24)

123



Hadamard property of the in and out states for Dirac… Page 41 of 46 63

where F0,−2 : S �→ −(2ε)−1F0,−1(S) belongs to F0,−2. We apply Proposition 5.7
to solve (5.24). We note that −(2ε)−1∂t P+ ∈ S−1−μ,−1 and we find S ∈ S−1−μ,−1
such that

∂t P+ + 2εS + F0,−1(S) ∈ S−1−μ,−∞

and hence

∂t P+ + [P+, iH̃] = R−∞ ∈ S−1−μ,−∞.

We have hence proved (4). Finally, (5) is proved exactly as in [17, Prop. 6.8]. ��

5.4 The in/out vacua for D

In this subsection we construct the in/out vacua and prove their Hadamard property
for D, D̃ and finally for the original Dirac operator D.

We recall from 2.1.7 that U (t, s) is the Cauchy evolution for D associated to the
foliation (�t )t∈R. We denote by L2(�t ; S(�)) the completion of C∞0 (�t ; S(�)) for
the scalar product

f ·νt f = i
∫

�t

f ·βγ (n)|ht | 12 dx .

By the facts recalled in 2.3.3 U (t, s) : L2(�s; S(�))→ L2(�t ; S(�)) is unitary.
We denote by Ũ (t, s) the analogous Cauchy evolution for D̃. By (2.12) we have:

U (t, s) = c
1−n
2 Ũ (t, s)c

n−1
2 . (5.25)

From the definition (5.12) of H̃±∞ we obtain that the asymptotic Dirac operator
D̃out/in associated to the ultra-static metric g̃out/in equals

D̃out/in = −γ̃out/in(ẽ0)(∂t − iH̃out/in).

Recalling that Dout/in are the asymptotic Dirac operators associated to gout/in, we
have as in Sect. 2.4:

Dout/in = −c−1out/inγ±∞(e0)(∂t − iHout/in),

and

Hout/in = c
1−n
2

out/in H̃out/inc
n−1
2

out/in. (5.26)

We first consider the operator D in 5.1.2.

Proposition 5.10 Assume hypotheses (Hi), 1 ≤ i ≤ 4. Then:

123



63 Page 42 of 46 C. Gérard, T. Stoskopf

(1) the norm limits:

P±out/in = lim
t→±∞U(0, t)1R±(Hout/in)U(t, 0) exist.

(2) P±out/in are selfadjoint projections for ν̃0 with P+out/in + P−out/in = 1.
(3)

WF(U(·, 0)P±out/in)′ ⊂ (N± ∪ F)× T ∗�

for F = {k = 0} ⊂ T ∗M.

Proof Let P±(t), R(t) be the operators constructed in Proposition 5.9. Setting

P̃±(t):=e−iR(t) P±(t)eiR(t), Ũ(t, s):=eiR(t)U(t, s)e−iR(s),

we see that Ũ(t, s) is a strongly continuous unitary group with generator

H̃(t) = eiR(t)H(t)e−iR(t) + i−1∂te
iR(t)e−iR(t).

Since P±(t) − 1R±(Hout/in) and R(t) are O(t−μ) in norm, we have P̃±(t) −
1R±(Hout/in) ∈ O(t−μ) and hence

U(0, t)1R±(Hout/in)U(t, 0) = U(0, t)P̃±(t)U(t, 0)+ O(t−μ). (5.27)

Next

U(0, t)P̃±(t)U(t, 0) = e−iR(0)Ũ(0, t)eiR(t) P̃±(t)e−iR(t)Ũ(t, 0)eiR(0)

= e−iR(0)Ũ(0, t)P±(t)Ũ(t, 0)eiR(0),

and

∂t

(
Ũ(0, t)P±(t)Ũ(t, 0)

)
= Ũ(0, t)

(
∂t P±(t)+ [P±(t), iH̃(t)]

)
Ũ(t, 0) = Ũ(0, t)R−∞(t)Ũ(t, 0),

(5.28)

where R−∞(t) ∈ S−1−μ,−∞, by Proposition 5.9. Therefore, by (5.27), (5.28) the
limit

P±out/in = lim
t→±∞U(0, t)1R±(Hout/in)U(t, 0) exists

and

P±out/in = P̃±(0)±
∫ ±∞
0

Ũ(0, t)R−∞(t)Ũ(t, 0)dt = P̃±(0)+ R±∞,
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where R±∞ ∈ �−∞, using the uniform estimates in Lemma 5.5 . P±out/in are clearly

selfadjoint projections for ν̃0 with P
+
out/in(0)+ P−out/in(0) = 1.

From Proposition 5.9 (5) and the fact that P±out/in − P̃+(0) is a smoothing operator

we obtain that WF(U(·, 0)P±out/in)′ ⊂ (N± ∪ F)× T ∗�. ��

Next we consider the Dirac operator D̃.

Proposition 5.11 Assume hypotheses (Hi), 1 ≤ i ≤ 4. Then

(1) the norm limits

P̃±out/in = lim
t→±∞ Ũ (0, t)1R±(H̃±∞)Ũ (t, 0) exist.

(2) P̃±out/in are selfadjoint projections for the scalar product ν̃0 with P̃+out/in+ P̃+out/in =
1.

(3)

WF(Ũ (·, 0)P̃±out/in)
′ ⊂ (N± ∪ F)× T ∗�.

Proof We obtain easily from (5.8) that

U(t, s) = T (0, t)|h̃|−
1
4

0 |h̃|
1
4
t Ũ (t, s)|h̃|

1
4
0 |h̃|

− 1
4

s T (s, 0). (5.29)

This implies that

U(0, t)1R±(Hout/in)U(t, 0)

= Ũ (0, t)|h̃|
1
4
0 |h̃|

− 1
4

t T (t, 0)1R±(Hout/in)T (0, t)|h̃|−
1
4

0 |h̃|
1
4
t Ũ (t, 0).

By (5.13) T (0, t) − T (0,±∞) ∈ O(t−μ) in norm and |h|t − |h|out/in ∈ O(t−μ),
hence

U(0, t)1R±(Hout/in)U(t, 0)

= Ũ (0, t)|h̃|
1
4
0 |h̃|

− 1
4

out/inT (±∞, 0)1R±(Hout/in)T (0,±∞)|h̃|−
1
4

0 |h̃|
1
4
out/in

Ũ (t, 0)+ O(t−μ) = Ũ (0, t)1R±(H̃out/in)Ũ (t, 0)+ O(t−μ).

where in the last line we use (5.14) and the fact that T (0,±∞)|h̃|−
1
4

0 |h̃|
1
4
out/in is unitary

for the scalar products ν̃out/in and ν̃0.
Therefore, the norm limit in (1) exist and equal the projections P±out/in in Proposi-

tion 5.10. This also implies (2). (3) follows from (5.29) and the analogous statement
in Proposition 5.10. ��

Finally, we prove the main result of this paper.

Theorem 5.12 Assume hypotheses (Hi), 1 ≤ i ≤ 4. Then:
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(1) the norm limits

P±out/in = lim
t→±∞U (0, t)1R±(Hout/in)U (t, 0) exist.

(2) if

λ±out/in = iγ (n)P±out/in

λ±out/in are the Cauchy surface covariances of a pure Hadamard state for D ωout/in
called the out/in vacuum state.

Proof Let us denote by ct the restriction of the conformal factor c to �t . From (2.12)
we obtain that

U (t, s) = c
1−n
2

t Ũ (t, s)c
n−1
2

s , t, s ∈ R,

and hence

U (0, t)1R±(Hout/in)U (t, 0)

= c
1−n
2

0 Ũ (0, t)c
n−1
2

t 1R±(Hout/in)c
1−n
2

t Ũ (t, 0)c
n−1
2

0

= c
1−n
2

0 Ũ (0, t)c
n−1
2

out/in1R±(Hout/in)c
1−n
2

out/inŨ (t, 0)c
n−1
2

0 + O(t−μ)

= c
1−n
2

0 Ũ (0, t)1R±(H̃out/in)Ũ (t, 0)c
n−1
2

0 + O(t−μ)

since Hout/in = c
1−n
2

out/in H̃out/inc
n−1
2

out/in. By Proposition 5.11 we obtain that

P±out/in = lim
t→±∞U (0, t)1R±(Hout/in)U (t, 0) = c

1−n
2

0 P̃±out/inc
n−1
2

0 . (5.30)

By Proposition 2.5 we obtain that (c
n−1
2

0 )∗ν̃0c
n−1
2

0 = ν0. By Proposition 5.11 P±out/in
are hence selfadjoint projections for ν0 with P+out/in + P−out/in = 1. Therefore, λ±out/in
are the Cauchy surface covariances of pure Hadamard states ωout/in for D.

Finally, (5.30) and Proposition 5.11 (3) imply that WF(U (·, 0)P±out/in)′ ⊂ (N± ∪
F)×T ∗�. SinceF ∩N = ∅, we obtain by Proposition 2.4 that ωout/in are Hadamard
states. ��
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