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Abstract
We compute the Brown measure of x0 + iσt , where σt is a free semicircular Brownian
motion and x0 is a freely independent self-adjoint element that is not a multiple of the
identity. The Brown measure is supported in the closure of a certain bounded region
�t in the plane. In �t , the Brown measure is absolutely continuous with respect to
Lebesgue measure, with a density that is constant in the vertical direction. Our results
refine and rigorize results of Janik, Nowak, Papp, Wambach, and Zahed and of Jarosz
and Nowak in the physics literature. We also show that pushing forward the Brown
measure of x0 + iσt by a certain map Qt : �t → R gives the distribution of x0 + σt .

We also establish a similar result relating the Brown measure of x0 + iσt to the Brown
measure of x0 + ct , where ct is the free circular Brownian motion.
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1 Introduction

1.1 Sums of independent randommatrices

A fundamental problem in random matrix theory is to understand the eigenvalue
distribution of sums of independent random matrices. When the random matrices
are Hermitian, the subordination method, introduced by Voiculescu [36] and further
developed by Biane [3] and Voiculescu [37], gives a powerful method of analyzing
the problem in the setting of free probability. (See Sect. 5.2 for a brief discussion of
the subordination method.) For related results in the random matrix setting, see, for
example, works of Pastur and Vasilchuk [30] and of Kargin [26].

A natural next step would be to consider non-normal random matrices of the form
X + iY where X and Y are independent Hermitian random matrices. Although a gen-
eral framework has been developed for analyzing combinations of freely independent
elements in free probability (see works of Belinschi, Mai, and Speicher [6] and Belin-
schi, Śniady, and Speicher [7]), it does not appear to be easy to apply this framework
to get analytic results about the X + iY case.

The X + iY problem has been analyzed at a nonrigorous level in the physics
literature. A highly cited paper of Stephanov [32] uses the case in which X is Bernoulli
and Y is GUE to provide a model of QCD. In the case that Y is GUE, work of
Janik, Nowak, Papp, Wambach, and Zahed [23] identified the domain into which the
eigenvalues should cluster in the large-N limit. Then, work of Jarosz and Nowak [24,
25] analyzed the limiting eigenvalue distribution for general X and Y , with explicit
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computations of examples when Y is GUE and X has various distributions [24,Sect.
6.1].

In this paper, we compute the Brownmeasure of x0+iσt ,where σt is a semicircular
Brownian motion and x0 is an arbitrary self-adjoint element freely independent of σt .

This Brown measure is the natural candidate for the limiting eigenvalue distribution
of randommatrices of the form X + iY where X and Y are independent and Y is GUE.
We also relate the Brownmeasure of x0+ iσt to the distribution of x0+σt (without the
factor of i). Our computation of the Brownmeasure of x0+iσt refines and rigorizes the
results of [23] and [24, 25], using a different method, while the relationship between
x0 + iσt and x0 +σt is a new result. See Sect. 1.4 for further discussion of these works
and Sects. 5.4 and 9 for a detailed comparison of results.

Ourwork extends that of Ho and Zhong [22], which (among other results) computes
theBrownmeasure of x0+iσt in the case x0 = y0+σ̃t ,where σ̃t is another semicircular
Brownian motion, freely independent of both y0 and σt . In this case, x0 + iσt has the
form of y0 + c2t , where ct is a free circular Brownian motion.

Our results are based on the PDE method introduced in [12]. This method has
been used in subsequent works by Ho and Zhong [22], Demni and Hamdi [11], and
Hall and Ho [19] and is discussed from the physics point of view by Grela, Nowak,
and Tarnowski in [16]. See also the expository article [18] of the first author for an
introduction to the PDE method. Similar PDEs, in which the regularization parameter
in the construction of theBrownmeasure becomes a variable in the PDE, have appeared
in the physics literature in the work of Burda, Grela, Nowak, Tarnowski, and Warchoł
[9, 10].

Since this article was posted on the arXiv, three papers have appeared that extend
our results have appeared. The paper [20] of Ho examines in detail the case in which
x0 is the sum of a self-adjoint element and a freely independent semicircular element,
so that x0 + iσt becomes the sum of a self-adjoint element and a freely independent
elliptic element. The paper [21] extends the results of the present paper by allowing
x0 to be unbounded. Finally, the paper [39] of Zhong analyzes the Brown measure of
x0 + g, where g is a twisted elliptic element and x0 is freely independent of g but
otherwise arbitrary. In the case that x0 is self-adjoint and g is an imaginary multiple
of a semicircular element, Zhong’s results reduce to ours.

1.2 Statement of results

Let σt be a semicircular Brownian motion living in a tracial von Neumann algebra
(A, τ ) and let x0 be a self-adjoint element of A that is freely independent of every
σt , t > 0. (In particular, x0 is a bounded self-adjoint operator.) Throughout the paper,
we let μ be the distribution of x0, that is, the unique compactly supported probability
measure on R such that∫

R

xn dμ(x) = τ(xn0 ), for all n ∈ N. (1.1)

Our goal is then to compute the Brown measure of the element

x0 + iσt (1.2)
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inA. (See Sect. 2 for the definition of the Brown measure.) Throughout the paper, we
impose the following standing assumption about μ.

Assumption 1.1 The measure μ is not a δ-measure, that is, not supported at a single
point.

Of course, the case in which μ is a δ-measure is not hard to analyze—in that case,
x0 + iσt has the form a + iσt , for some constant a ∈ R, so that the Brown measure is
a semicircular distribution on a vertical segment through a. But this case is different;
in all other cases, the Brown measure is absolutely continuous with respect to the
Lebesgue measure on a two-dimensional region in the plane. Thus, our main results
do not hold as stated in the case that μ is a δ-measure.

The element (1.2) is the large-N limit of the following randommatrixmodel. LetY N

be an N ×N random variable distributed according to the Gaussian unitary ensemble.
Let XN be a sequence of self-adjoint randommatrices that are independent of Y N and
whose eigenvalue distributions converge almost surely to the law μ of x0. (The XN ’s
may, for example, be chosen to be deterministic diagonal matrices, which is the case
in all the simulations shown in this paper.) Then, the random matrices

XN + i
√
tY N (1.3)

will converge in ∗-distribution to x0 + iσt .
In this paper, we compute the Brown measure of x0 + iσt . This Brown measure is

the natural candidate for the limiting empirical eigenvalue distribution of the random
matrices in (1.3). Our main results are summarized briefly in the following theorem.

Theorem 1.2 For each t > 0, there exists a continuous function bt : R → [0,∞)

such that the following results hold. Let

�t = {a + ib ∈ C| |b| < bt (a)} .

Then, the Brownmeasure of x0+iσt is supported on the closure of�t and�t itself is a
set of full Brown measure. Inside�t , the Brown measure is absolutely continuous with
a density that is constant in the vertical directions. Specifically, the density wt (a+ ib)
is independent of b in �t and has the form:

wt (a + ib) = 1

2π t

(
dat0(a)

da
− 1

2

)
, a + ib ∈ �t ,

for a certain function at0.

See Figs. 1 and 2.
We now describe how to compute the functions bt and at0 in Theorem 1.2. Recall

that μ is the law of x0, as in (1.1). We then fix t > 0 and consider two equations:

∫
R

1

(a0 − x)2 + v2
dμ(x) = 1

t
(1.4)
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Fig. 1 The top of the figure shows the domain �t for the case μ = 1
3 δ−1 + 2

3 δ1 and t = 1.05, together
with a simulation of the corresponding random matrix model. The bottom of the figure shows the density
(in �t ) of the Brown measure as a function of a
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Fig. 2 The top of the figure shows the domain �t for the case in which μ has density 3x2 on [0, 1] and
t = 1/4, together with a simulation of the corresponding random matrix model. The bottom of the figure
shows the density (in �t ) of the Brown measure as a function of a

∫
R

x

(a0 − x)2 + v2
dμ(x) = a

t
, (1.5)

where we look for a solution with v > 0 and a0 ∈ R. We will show in Sect. 7.2 that
there can be at most one such pair (v, a0) for each a ∈ R. If, for a given a ∈ R, we
can find v > 0 and a0 ∈ R solving these equations, we set
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at0(a) = a0 (1.6)

and
bt (a) = 2v. (1.7)

If, on the other hand, no solution exists, we set bt (a) = 0 and leave at0(a) undefined.
(If bt (a) = 0, there are no points of the form a + ib in �t and so the density of the
Brown measure is undefined.)

The equations (1.4) and (1.5) can be solved explicitly for some simple choices of
μ, as shown in Sect. 10. For any reasonable choice of μ, the equations can be easily
solved numerically.

We now explain a connection between the Brown measure of x0 + iσt and two
other models. In addition to the semicircular Brownian motion σt , we consider also a
circular Brownian motion ct . This may be constructed as:

ct = σt/2 + i σ̃t/2,

where σ· and σ̃· are two freely independent semicircular Brownian motions. We now
describe a remarkable direct connection between the Brown measure of x0 + iσt and
the Brown measure of x0 + ct , and a similar direct connection between the Brown
measure of x0 + iσt and the law of x0 + σt . We remark that a fascinating indication
of a connection between the behavior of x0 + σt and the behavior of x0 + iσt were
given previously in the work of Janik, Nowak, Papp, Wambach, and Zahed, discussed
in Sect. 5.4. Note that since σt has the same law as σt/2 + σ̃t/2, we can describe the
three random variables in question as:

x0 + σt ≡ x0 + σt/2 + σ̃t/2

x0 + ct ≡ x0 + σt/2 + i σ̃t/2
x0 + iσt ≡ x0 + iσt/2 + i σ̃t/2,

where the notation A ≡ B means that A and B have the same ∗-distribution and
therefore the same Brown measure.

The Brown measure of x0 + ct was computed by the second author and Zhong in
[22]. They also established that the Brown measure of x0 + ct is related to the law of
x0 + σt . We then show that the Brown measure of x0 + iσt is related to the Brown
measure of x0+ct .By combining our this last result with what was shown in [22,Prop.
3.14], we obtain the following result.

Theorem 1.3 The Brown measure of x0 + ct is supported in the closure of a certain
domain �t identified in [22]. There is a homeomorphism Ut of �t onto �t with the
property that the push-forward ofBrown(x0+ct ) underUt is equal toBrown(x0+iσt ).
Furthermore, there is a continuous map Qt : �t → R such that the push-forward of
Brown(x0 + iσt ) under Qt is the law of x0 + σt , as computed by Biane.

The mapsUt and Qt are described in Sects. 7.2 and 8, respectively. The mapUt has
the property that vertical line segments in �t map linearly to vertical line segments in
�t , while the map Qt has the property that vertical line segments in �t map to single
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Fig. 3 A visualization of the mapUt : �t → �t . The map takes vertical segments in�t linearly to vertical
segments in �t . Shown for μ = 1

3 δ−1 + 2
3 δ1 and t = 1.05

–1.0 –0.5 0.5 1.0 1.5

–1.5

–1.0

–0.5

0.5

1.0

1.5

Qt

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

Fig. 4 A visualization of the map Qt : �t → R. The map takes vertical segments in �t to single points in
R. Shown for μ = 1

3 δ−1 + 2
3 δ1 and t = 1.05

points in R. (See Figs. 3 and 4.) The map Qt is computed by first applying the inverse
of the map Ut and then applying the map denoted as 	t in Point 3 of Theorem 1.1 in
[22].
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1.3 Method of proof

Our proofs are based on the PDE method developed in [12] and used also in [22] and
[11]. (See also [18] for a gentle introduction to the method.) For any operator A in a
tracial von Neumann algebra (A, τ ), the Brown measure of A, denoted Brown(A),

may be computed as follows. (See Sect. 2 for more details.) Let

S(λ, ε) = τ [log((A − λ)∗(A − λ) + ε)]

for ε > 0. Then, the limit

s(λ) := lim
ε→0+ S(λ, ε)

exists as a subharmonic function. The Brown measure is then defined as:

Brown(A) = 1

4π
�s,

where the Laplacian is computed in the distributional sense. The general theory then
guarantees that Brown(A) is a probability measure supported on the spectrum of A.

(The closed support of Brown(A) can be a proper subset of the spectrum of A.)
In our case, we take A = x0 + iσt , so that S also depends on t . Thus, we consider

the functions:

S(t, λ, ε) = τ [log((x0 + iσt − λ)∗(x0 + iσt − λ) + ε)] (1.8)

and

st (λ) = lim
ε→0+ S(t, λ, ε).

Then,

Brown(x0 + iσt ) = 1

4π
�st (λ),

where the Laplacian is taken with respect to λ with t fixed.
Our first main result (Theorem 3.1) is that the function S in (1.8) satisfies a first-

order nonlinear PDE of Hamilton–Jacobi type, given in Theorem 3.1. Our goal is then
to solve the PDE for S(t, λ, ε), evaluate the solution in the limit ε → 0, and then
take the Laplacian with respect to λ.We use two different approaches to this goal, one
approach outside a certain domain �t and a different approach inside �t , where the
Brown measure turns out to be zero outside �t and nonzero inside �t . See Sects. 6
and 7.
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1.4 Comparison to previous results

A different approach to the problemwas previously developed in the physics literature
by Jarosz and Nowak [24, 25]. Using linearization and subordination functions, they
propose an algorithm for computing the Brown measure of H1 + i H2, where H1
and H2 are arbitrary freely independent Hermitian elements. (See, specifically, Eqs.
(75)–(80) in [25].) Section 6 of [24] presents examples in which one of H1 and H2 is
semicircular and the other has various distributions.

Although the method of [24, 25] is not rigorous as written, it is possible that the
strategy used there could be made rigorous using the general framework developed
by Belinschi, Mai, and Speicher [6]. (See, specifically, the very general algorithm in
Sect. 4 of [6]. See also [7] for further rigorous developments in this direction.) We
emphasize, however, that it would require considerable effort to get analytic results
for the H1 + i H2 case from the general algorithm of [6]. In any case, we show in
Sect. 9 that our results are compatible with those obtained by the algorithm of Jarosz
and Nowak.

In addition to presenting a rigorous argument, we provide information about the
Brown measure of x0 + iσt that is not found in [24, 25]. First, we highlight the crucial
result that the density of theBrownmeasure, inside its support, is always constant in the
vertical direction. Although this result certainly follows from the algorithm of Jarosz
and Nowak (and is reflected in the examples in [24,Sect. 6]), it is not explicitly stated
in their work. Second, we give significantly more explicit formulas for the support of
the Brown measure and for its density when x0 is arbitrary. Third, we obtain (Sect. 8)
a direct relationship between the Brown measure of x0 + iσt and the distribution of
x0 + σt that is not found in [24] or [25].

Meanwhile, in Sect. 5, we also confirm a separate, nonrigorous argument of Janik,
Nowak, Papp, Wambach, and Zahed predicting the domain on which the Brown mea-
sure is supported.

Finally, as mentioned previously, Sect. 3 of the paper [22] of the second author
and Zhong computed the Brown measure of y0 + ct , where ct is the free circular
Brownian motion (large-N limit of the Ginibre ensemble). Now, ct can be constructed
as ct = σ̃t/2+iσt/2,where σ· and σ̃· are two freely independent semicircular Brownian
motions. Thus, the results of the present paper in the case where x0 is the sum of a
self-adjoint element y0 and a freely independent semicircular element fall under the
results of [22]. But actually, the connection between the present paper and [22] is
deeper than that. For any choice of x0, the region �t in which the Brown measure of
x0+ct is supported shows up in the computation of the Brown measure of x0+ iσt , as
the “domain in the λ0-plane” (Sect. 5.1). And then we show that the Brown measure
of x0 + iσt is the pushforward of the Brown measure of x0 + ct under a certain map
(Sect. 8). Thus, one of the notable aspects of the results of the present paper is the way
they illuminate the deep connections between x0 + ct and x0 + iσt .
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2 The Brownmeasure formalism

We present here general results about the Brown measure. For more information, the
reader is referred to the original paper [8] ofBrown and toChapter 11 of themonograph
of Mingo and Speicher [28].

Let (A, τ ) be a tracial von Neumann algebra, that is, a finite von Neumann
algebraA with a faithful, normal, tracial state τ : A → C. Thus, τ is a norm-1 linear
functional with the properties that τ(A∗A) > 0 for all nonzero elements ofA and that
τ(AB) = τ(BA) for all A, B ∈ A. For any A ∈ A, we define a function S by

S(λ, ε) = τ [log((A − λ)∗(A − λ) + ε)], λ ∈ C, ε > 0.

It is known that

s(λ) := lim
ε→0+ S(λ, ε)

exists as a subharmonic function on C. Then, the Brown measure of A is defined in
terms of the distributional Laplacian of s:

Brown(A) = 1

4π
�s.

The motivation for this definition comes from the case in whichA is the algebra of
all N × N matrices and τ is the normalized trace (1/N time ordinary trace). In this
case, if A has eigenvalues λ1, . . . , λN (counted with their algebraic multiplicities),
then the function s may be computed as:

s(λ) = 2

N

N∑
j=1

log
∣∣λ − λ j

∣∣ .

That is to say, s is 2/N time the logarithm of the absolute value of the characteristic
polynomial of A. Since 1

2π log |λ| is the Green’s function for the Laplacian on the
plane, we find that

Brown(A) = 1

N

N∑
j=1

δλ j .

Thus, the Brown measure of a matrix is just its empirical eigenvalue distribution.
If a sequence of random matrices AN converges in ∗-distribution to an element A

in a tracial von Neumann algebra, one generally expects that the empirical eigenvalue
distribution of AN will converge almost surely the Brown measure of A. But such a
result does not always hold and it is a hard technical problem to prove that it does
in specific examples. Works of Girko [14], Bai [1], and Tao and Vu [33] (among
others) on the circular law provide techniques for establish such convergence results,
while a somewhat different approach to such problems was developed by Guionnet,
Krishnapur, and Zeitouni [17].
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3 The differential equation for S

Let σt be a free semicircular Brownianmotion and let x0 be a Hermitian element freely
independent of each σt , t > 0. The main result of this section is the following.

Theorem 3.1 Let

S(t, λ, ε) = τ [log((x0 + iσt − λ)∗(x0 + iσt − λ) + ε)] λ ∈ C, ε > 0

and write λ as λ = a + ib with a, b ∈ R. Then, the function S satisfies the PDE

∂S

∂t
= 1

4

((
∂S

∂a

)2

−
(

∂S

∂b

)2
)

+ ε

(
∂S

∂ε

)2

(3.1)

subject to the initial condition

S(0, λ, ε) = τ [log((x0 − λ)∗(x0 − λ) + ε)].

We use the notation

xt := x0 + iσt
xt,λ := xt − λ.

Then, the free SDEs of xt,λ and x∗
t,λ are

dxt,λ = i dσt , dx∗
t,λ = −i dσt . (3.2)

The main tool of this section is the free Itô formula. The following theorem is a
simpler form of Theorem 4.1.2 of [5] which states the free Itô formula. The form of
the Itô formula used here is similar to what is in Lemma 2.5 and Lemma 4.3 of [27].
For a “functional” form of these free Itô formulas, see Sect. 4.3 of [29].

Theorem 3.2 Let (At )t≥0 be a filtration such that σt ∈ At for all t and σt − σs is free
withAs for all s ≤ t . Also let ft , gt be two free Itô processes satisfying the free SDEs

d ft =
n∑

k=1

akt dσt bkt + ct dt (3.3)

dgt =
n∑

k=1

ãkt dσt b̃kt + c̃t dt . (3.4)

for some continuous adapted processes {akt , bkt , ct , ãkt , b̃kt , c̃t }nk=1. Then, ft gt satisfies
the free SDE
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d( ft gt ) =
n∑

k=1

(akt dσt b
k
t gt+ ft ã

k
t dσt b̃

k
t )+

⎛
⎝ct gt + ft c̃t +

n∑
j,k=1

τ [bkt ã j
t ]akt b̃ j

t

⎞
⎠ dt .

(3.5)
That is, d( ft gt ) can be informally computed using the free Itô product rule:

d( ft gt ) = d ft gt + ft dgt + d ft dgt ,

where d ft dgt is computed using the rules

dσt θt dt = dt θt dσt = dt dθt dt = 0, (3.6)

dσt θt dσt = τ [θt ] dt (3.7)

for any continuous adapted process θt .
Furthermore, if a process ft satisfies an SDE as in (3.3), then τ [ ft ] satisfies

dτ [ ft ] = τ [ct ] dt .

This result can be expressed informally as saying d commutes with τ and that

τ [θt dσt ] = 0 (3.8)

for any continuous adapted process θt .

The theorem stated above is applicable to our current situation. Let A0 be the von
Neumann algebra generated by x0, and Bt be the von Neumann algebra generated
by {σr : r ≤ t}. Then, we apply Theorem 3.2 with At = A0 ∗ Bt , the reduced free
product of A0 and Bt .

We shall use the free Itô formula to compute a partial differential equation that S
satisfies. Our strategy is to first do a power series expansion of the logarithm and then
apply the free Itô formula to compute the partial derivative of the powers of x∗

t,λxt,λ
with respect to t . We start by computing the time derivatives of τ [(x∗

t,λxt,λ)
n].

Lemma 3.3 We have
∂

∂t
τ [(x∗

t,λxt,λ)] = 1. (3.9)

When n ≥ 2,

∂

∂t
τ [(x∗

t,λxt,λ)
n] = −n

2

n−1∑
m=1

τ [x∗
t,λ(x

∗
t,λxt,λ)

m−1]τ [x∗
t,λ(x

∗
t,λxt,λ)

n−m−1]

− n

2

n−1∑
m=1

τ [xt,λ(x∗
t,λxt,λ)

m−1]τ [xt,λ(x∗
t,λxt,λ)

n−m−1]

+ n
n∑

m=1

τ [(x∗
t,λxt,λ)

n−m]τ [(x∗
t,λxt,λ)

m−1]. (3.10)
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Proof For n = 1, we apply the free Itô formula to get

d(x∗
t,λxt,λ) = x∗

t,λ(i dσt ) + (−i dσt )xt,λ + dσt · dσt = i x∗
t,λ dσt − i dσt xt,λ + dt

which gives (3.9), after taking trace on both sides.
Now, we assume n ≥ 2. We apply Theorem 3.2 repeatedly to obtain results for

the product of several free Itô processes. When computing dτ [(x∗
t,λxt,λ)

n], we obtain
four types of terms, as follows:

(1) Terms involving only one differential, either of x∗
t,λ or of xt,λ.

(2) Terms involving two differentials of xt,λ.
(3) Terms involving two differentials of x∗

t,λ.
(4) Terms involving a differential of x∗

t,λ and a differential of xt,λ.

We now compute dτ [(x∗
t,λxt,λ)

n] bymoving the d inside the trace and then applying
Theorem 3.2. By (3.8), the terms in Point 1 will not contribute.

We then consider the terms in Point 2. There are exactly n factors of xt,λ in
(x∗

t,λxt,λ)
n . Since the terms in Point 2 involve exactly two dxt,λ’s, there are precisely(n

2

)
terms in Point 2. For the purpose of computing these terms, we label all of the xt,λ’s

by x (k)
t,λ for k = 1, . . . , n. We view choosing two xt,λ’s as first choosing an x (i)

t,λ, then

another x ( j)
t,λ . We then cyclically permute the factors until dx (i)

t,λ is at the beginning.
Using the free stochastic equation (3.2) of xt,λ, this term has the form:

τ [dx (i)
t,λ (x∗

t,λxt,λ)
mx∗

t,λ dx
( j)
t,λ (x∗

t,λxt,λ)
n−m−2x∗

t,λ]
= −τ [(x∗

t,λxt,λ)
mx∗

t,λ]τ [(x∗
t,λxt,λ)

n−m−2x∗
t,λ] dt

where m = j − i − 1mod n and we omit the labeling of all xt,λ’s except x
(i)
t,λ and x ( j)

t,λ .
If we then sum over all j 
= i, we obtain

−
n−2∑
m=0

τ [x∗
t,λ(x

∗
t,λxt,λ)

m]τ [x∗
t,λ(x

∗
t,λxt,λ)

n−m−2] dt .

Since this expression is independent of i, summing over i produces a factor of n in
front. But then we have counted every term exactly twice, since we can choose the i
first and then the j or vice versa. Thus, the sum of all the terms in Point 2 is

− n

2

n−2∑
m=0

τ [(x∗
t,λ(x

∗
t,λxt,λ)

m]τ [(x∗
t,λ(x

∗
t,λxt,λ)

n−m−2] dt . (3.11)

By a similar argument, the sum of all the terms in Point 3 is

− n

2

n−2∑
m=0

τ [xt,λ(x∗
t,λxt,λ)

m]τ [xt,λ(x∗
t,λxt,λ)

n−m−2] dt . (3.12)
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We now compute the terms in Point 4. We can cyclically permute the factors until
dx∗

t,λ is at the beginning. Thus, each of the terms in Point 4 can be written as:

τ [dx∗
t,λ(xt,λx

∗
t,λ)

m dxt,λ (x∗
t,λxt,λ)

n−m−1]
= τ [(x∗

t,λxt,λ)
m]τ [(x∗

t,λxt,λ)
n−m−1] dt, (3.13)

wherem = 0, . . . , n−1. Now, there are a total of n2 terms in Point 4, but from (3.13),
we can see that there are only n distinct terms, each of which occurs n times, so that
the sum of all terms from Point 4 is

n
n−1∑
m=0

τ [(x∗
t,λxt,λ)

m]τ [(x∗
t,λxt,λ)

n−m−1] dt . (3.14)

We now obtain (3.10) by adding (3.11), (3.12), and (3.14) and making a change of
index. ��

Proposition 3.4 The function S satisfies the equation:

∂S

∂t
= 1

2
τ [xt,λ(x∗

t,λxt,λ + ε)−1]2

+ 1

2
τ [x∗

t,λ(x
∗
t,λxt,λ + ε)−1]2 + ετ [(x∗

t,λxt,λ + ε)−1]2. (3.15)

Proof We first show that (3.15) holds for all ε > ‖x∗
t,λxt,λ‖. Let ε > ‖x∗

t,λxt,λ‖. We
write log(x + ε) as log ε + log(1 + x/ε) and then expand in powers of x/ε. We then
substitute x = x∗

t,λxt,λ, and then apply the trace term by term, giving

S(t, λ, ε) = log ε +
∞∑
n=1

(−1)n−1

nεn
τ [(x∗

t,λxt,λ)
n]. (3.16)

We nowwish to differentiate the right-hand side of (3.16) term by term in t . We will
see shortly that whenwe differentiate inside the sum, the resulting series still converges
for ε > ‖x∗

t,λxt,λ‖. Furthermore, since the map t �→ xt is continuous in the operator
norm topology, ‖xt‖ is a locally bounded function of t . Hence, the series of derivatives
converges locally uniformly in t . This, together with the pointwise convergence of the
original series, will show that term-by-term differentiation is valid.

If we differentiate inside the sum in (3.16), we obtain

∞∑
n=1

(−1)n−1

nεn

∂

∂t
τ [(x∗

t,λxt,λ)
n]. (3.17)

By Lemma 3.3, the above power series becomes
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1

2

∞∑
n=2

n−1∑
m=1

(−1)n

εn
τ [xt,λ(x∗

t,λxt,λ)
m−1]τ [xt,λ(x∗

t,λxt,λ)
n−m−1]

+ 1

2

∞∑
n=2

n−1∑
m=1

(−1)n

εn
τ [x∗

t,λ(x
∗
t,λxt,λ)

m−1]τ [x∗
t,λ(x

∗
t,λxt,λ)

n−m−1]

+
∞∑
n=1

n∑
m=1

(−1)n−1

εn
τ [(x∗

t,λxt,λ)
n−m]τ [(x∗

t,λxt,λ)
m−1]. (3.18)

Note that the constant term 1 is in the last term in (3.18). The first term in (3.18) may
be rewritten as:

1

2

1

ε2

∞∑
n=0

n∑
m=0

(−1)n

εn
τ [xt,λ(x∗

t,λxt,λ)
m]τ [xt,λ(x∗

t,λxt,λ)
n−m]

= 1

2

( ∞∑
k=0

(−1)k

εk+1 τ [xt,λ(x∗
t,λxt,λ)

k]
)( ∞∑

l=0

(−1)l

εl+1 τ [xt,λ(x∗
t,λxt,λ)

l ]
)

= 1

2
τ [xt,λ(x∗

t,λxt,λ + ε)−1]2.

The second term in (3.18) differs from the first term only by replacing the xt,λ by
x∗
t,λ in the two trace terms, and is therefore computed as:

1

2
τ [x∗

t,λ(x
∗
t,λxt,λ + ε)−1]2.

A similar computation expresses the last term in (3.18) as:

∞∑
n=1

n∑
m=1

(−1)n−1

εn
τ [(x∗

t,λxt,λ)
n−m]τ [(x∗

t,λxt,λ)
m−1] = ετ [(x∗

t,λxt,λ + ε)−1]2.

This shows that the series in (3.17) converges to the right-hand side of (3.15). It follows
that (3.15) holds for all ε > ‖x∗

t,λxt,λ‖.
Thus, for all ε > maxs≤t ‖x∗

s,λxs,λ‖, we have

S(t, λ, ε) = S(0, λ, ε) +
∫ t

0

{
1

2
τ [xs,λ(x∗

s,λxs,λ + ε)−1]2

+1

2
τ [x∗

s,λ(x
∗
s,λxs,λ + ε)−1]2 + ετ [(x∗

s,λxs,λ + ε)−1]2
}
ds. (3.19)

The right-hand side of (3.19) is analytic in ε for all ε > 0. We now claim that the
left-hand side of (3.19) is also analytic. At each ε > 0, we have the operator-valued
power series expansion
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log(x∗
t,λxt,λ + ε + h) = log(x∗

t,λxt,λ + ε) +
∞∑
n=1

(−1)n−1hn

n
(x∗

t,λxt,λ + ε)−n

for |h| < ‖(x∗
t,λxt,λ + ε)−1‖. Taking the trace gives

S(t, λ, ε + h) = log(x∗
t,λxt,λ + ε) +

∞∑
n=1

(−1)n−1hn

n
τ [(x∗

t,λxt,λ + ε)−n]

for |h| < ‖(x∗
t,λxt,λ + ε)−1‖. This shows S(t, λ, ·) is analytic on the positive real line.

Since both sides of (3.19) define an analytic function for ε > 0 and they agree for all
large ε, they are indeed equal for all ε > 0. Now, the conclusion of the proposition
follows from differentiating both sides of (3.19) with respect to t . ��

Lemma 3.5 The partial derivatives of S with respect to ε and λ are given by the
following formulas.

∂S

∂λ
= −τ [x∗

t,λ(x
∗
t,λxt,λ + ε)−1]

∂S

∂λ̄
= −τ [xt,λ(x∗

t,λxt,λ + ε)−1]
∂S

∂ε
= τ [(x∗

t,λxt,λ + ε)−1].

Proof By Lemma 1.1 in Brown’s paper [8], the derivative of the trace of a logarithm
is given by

d

du
τ [log( f (u))] = τ

[
f (u)−1 d f

du

]
. (3.20)

The lemma follows from applying this formula. ��

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 By Lemma 3.4,

∂S

∂t
= 1

2
τ [xt,λ(x∗

t,λxt,λ+ε)−1]2+ 1

2
τ [x∗

t,λ(x
∗
t,λxt,λ + ε)−1]2 + ετ [(x∗

t,λxt,λ + ε)−1]2.

Using Lemma 3.5, the above displayed equation can be written as:

∂S

∂t
= 1

2

(
∂S

∂λ

)2

+ 1

2

(
∂S

∂λ̄

)2

+ ε

(
∂S

∂ε

)2

.

Now, (3.1) follows from applying the definition of Cauchy–Riemann operators to the
above equation. The initial condition holds because xt = x0 when t = 0. ��
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4 The Hamilton–Jacobi analysis

4.1 The Hamilton–Jacobi method

We define a “Hamiltonian” function H : R6 → R by replacing the derivatives ∂S/∂a,

∂S/∂b, and ∂S/∂ε on the right-hand side of the PDE in Theorem 3.1 by “momentum”
variables pa, pb, and pε, and then reversing the overall sign. Thus, we define

H(a, b, ε, pa, pb, pε) = −1

4
(p2a − p2b) − εp2ε , (4.1)

where in this case, H happens to be independent of a and b. We then introduce
Hamilton’s equations for the Hamiltonian H , namely

du

dt
= ∂H

∂ pu
; dpu

dt
= −∂H

∂u
, (4.2)

where u ranges over the set {a, b, ε}. We will use the notation

λ(t) = a(t) + ib(t).

Notation 4.1 We use the notation

pa,0, pb,0, p0

for the initial values of pa, pb, and pε, respectively.

In the Hamilton–Jacobi analysis, the initial momenta are determined by the initial
positions λ0 and ε0 by means of the following formula:

pa,0 = ∂

∂a0
S(0, λ0, ε0); pb,0 = ∂

∂b0
S(0, λ0, ε0); p0 = ∂

∂ε0
S(0, λ0, ε0). (4.3)

Now, the formula for S(0, λ, ε) in Theorem 3.1 may be written more explicitly as:

S(0, λ, ε) =
∫
R

log(|x − λ|2 + ε) dμ(x),

where μ is the law of x0, as in (1.1). We thus obtain the following formula for the
initial momenta:

pa,0 =
∫
R

2(a0 − x)

(a0 − x)2 + b20 + ε0
dμ(x)

pb,0 =
∫
R

2b0
(a0 − x)2 + b20 + ε0

dμ(x)

p0 =
∫
R

1

(a0 − x)2 + b20 + ε0
dμ(x). (4.4)
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Provided we assume ε0 > 0, the integrals are convergent.

Proposition 4.2 Suppose we have a solution to the Hamiltonian system on a time
interval [0, T ] such that ε(t) > 0 for all t ∈ [0, T ]. Then, we have

S(t, λ(t), ε(t)) = S(0, λ0, ε0) + t H0, (4.5)

where

H0 = H(a0, b0, ε0, pa,0, pb,0, p0).

We also have
∂S

∂u
(t, λ(t), ε(t)) = pu(t) (4.6)

for all u ∈ {a, b, ε}.
We refer to (4.5) and (4.6) as the first and secondHamilton–Jacobi formulas, respec-

tively.

Proof The reader may consult Sect. 6.1 of [12] for a concise statement and derivation
of the general Hamilton–Jacobimethod. (See also the book of Evans [13].) The general
form of the first Hamilton–Jacobi formula, when applied to this case, reads as:

S(t, λ(t), ε(t)) = S(0, λ0, ε0) − t H0 +
∫ t

0

∑
u∈{a,b,ε}

pu
∂H

∂ pu
ds.

In our case, because the Hamiltonian is homogeneous of degree two in the momentum
variables,

∑
u∈{a,b,ε} pu ∂H

∂ pu
is equal to 2H . Since H is a constant of motion, the

general formula reduces to (4.5). Meanwhile, (4.6) is an immediate consequence of
the general form of the second Hamilton–Jacobi formula. ��

4.2 Solving the ODEs

We now solve the Hamiltonian system (4.2) with Hamiltonian given by (4.1). We start
by noting several helpful constants of motion.

Proposition 4.3 The quantities

H , pa, pb, εp2ε

are constants of motion, meaning that they are constant along any solution of Hamil-
ton’s equations (4.2).

Proof The Hamiltonian is always a constant of motion in any Hamiltonian system.
The quantities pa and pb are constants of motion because H is independent of a and
b. And finally, εp2ε is a constant of motion because it equals − 1

4 (p
2
a − p2b) − H . ��
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We now obtain solutions to (4.2), where at the moment, we allow arbitrary initial
momenta, not necessarily given by (4.3).

Proposition 4.4 Consider the Hamiltonian system (4.2) with Hamiltonian (4.1) and
initial conditions

(a0, b0, ε0, pa,0, pb,0, p0),

with p0 > 0. Then, the solution to the system exists up to time

t∗ = 1/p0.

Up until that time, we have

pa(t) = pa,0

a(t) = a0 − 1

2
pa,0t .

pb(t) = pb,0

b(t) = b0 + 1

2
pb,0t

pε(t) = p0
1 − p0t

ε(t) = ε0 (1 − p0t)
2 .

If ε0 > 0, then ε(t) remains positive for all t < t∗.

Proof We begin by noting that

ṗε = −∂H

∂ε
= p2ε .

We may solve this separable equation as:

−
(

1

pε(t)
− 1

p0

)
= t,

from which the claimed formula for pε(t) follows. We then note that

dε

dt
= ∂H

∂ pε

= −2εpε

= −2ε
p0

1 − p0t
.

This equation is also separable andmay easily be integrated to give the claimed formula
for ε(t).
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The formulas for pa and pb simply amount to saying that they are constants of
motion, and the formulas for a and b are then easily obtained. ��

We now specialize the initial conditions to the form occurring in the Hamilton–
Jacobi method, that is, where the initial momenta are given by (4.4). We note that the
formulas in (4.4) can be written as:

pb,0 = 2b0 p0 (4.7)

and
pa,0 = 2a0 p0 − 2p1, (4.8)

where

p1 =
∫
R

x

(a0 − x)2 + b20 + ε0
dμ(x). (4.9)

Proposition 4.5 Suppose a0, b0, and ε0 are chosen in such a way that p0 = 1/t, so
that the lifetime t∗ of the system equals t . Then, we have

lim
s→t−

a(s) = tp1

lim
s→t−

b(s) = 2b0

lim
s→t−

ε(s) = 0,

where p1 is as in (4.9).

Proof The result follows easily from the formulas in Proposition 4.4, after using the
relations (4.7) and (4.8) and setting p0 = 1/t . ��
Definition 4.6 Let t∗(λ0, ε0) denote the lifetime of the solution, namely

t∗(λ0, ε0) = 1

p0
=

(∫
R

dμ(x)

(a0 − x)2 + b20 + ε0

)−1

,

and let

T (λ0) := lim
ε0→0+ t∗(λ0, ε0) =

(∫
R

dμ(x)

(a0 − x)2 + b20

)−1

.

We note that if b0 = 0, then the integral in the definition of T (a0 + ib0) may be
infinite for certain values of a0. Thus, it is possible for T (a0 + ib0) to equal 0 when
b0 = 0.

Proposition 4.7 Let

λ(t; λ0, ε0)
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denote the solution to the system (4.2) with λ(0) = λ0 and ε(0) = ε0, and with initial
momenta given by (4.4). Suppose λ0 satisfies T (λ0) > t . Then,

lim
ε0→0+ λ(t; λ0, ε0) = λ0 − t

∫
R

1

λ0 − x
dμ(x),

provided that λ0 does not belong the closed support of μ.

Proof Using Proposition 4.4, we find that

λ(t; λ0, ε0) = a(t) + ib(t)

= λ0 − t

2
(pa,0 − i pb,0).

In the limit as ε0 tends to zero, we have (provided λ0 is not in supp(μ) ⊂ R)

pa,0 − i pb,0 =
∫
R

2(a0 − x)

(a0 − x)2 + b20
dμ(x) − i

∫
R

2b0
(a0 − x)2 + b20

dμ(x).

It is then easy to check that

pa,0 − i pb,0 = 2
∫
R

1

a0 + ib0 − x
dμ(x),

which gives the claimed formula. ��

5 The domains

5.1 The domain in the �0-plane

We now define the first of two domains we will be interested in. When we apply
the Hamilton–Jacobi method in Sect. 6, we will try to find solutions with ε(t) very
close to zero. Based on the formula for ε(t) in Proposition 4.4, it seems that we can
make ε(t) small by making ε0 small. The difficulty with this approach, however, is
that if we fix some λ0 and let ε0 tend to zero, the lifetime of the path may be smaller
than t . Thus, if the small-ε0 lifetime of the path—as computed by the function T in
Definition 4.6—is smaller than t, the simple approach of letting ε0 tend to zero will
not work. This observation motivates the following definition.

Definition 5.1 Let T be the function defined inDefinition 4.6.We then define a domain
�t ⊂ C by

�t = {λ0 ∈ C|T (λ0) < t} .
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Explicitly, a point λ0 = a0 + ib0 belongs to �t if and only if

∫
R

dμ(x)

(a0 − x)2 + b20
>

1

t
. (5.1)

This domain appeared originally in the work Biane [2], for reasons that we will
explain in Sect. 5.2. The domain �t also plays a crucial role in work of the second
author with Zhong [22]. In Sect. 5.3, we will consider another domain �t , whose
closure will be the support of the Brown measure of x0 + iσt . See Fig. 6 for plots of
�t and the corresponding domain �t .

We give now a more explicit description of the domain �t .

Proposition 5.2 For each t > 0, define a function vt : R → [0,∞) as follows. For
each a0 ∈ R, if ∫

R

1

(a0 − x)2
dμ(x) >

1

t
, (5.2)

let vt (a0) be the unique positive number such that

∫
R

1

(a0 − x)2 + vt (a0)2
dμ(x) = 1

t
. (5.3)

If, on the other hand, ∫
R

1

(a0 − x)2
dμ(x) ≤ 1

t
, (5.4)

set vt (a0) = 0.
Then, the function vt : R → [0,∞) is continuous and the domain �t may be

described as:
�t = {a0 + ib0 ∈ C| |b0| < vt (a0)} , (5.5)

so that
�t ∩ R = {a0 ∈ R| vt (a0) > 0} . (5.6)

See Fig. 5 for some plots of the function vt . ��
Proof We first note that for any fixed a0, the integral

∫
R

1

(a0 − x)2 + v2
dμ(x) (5.7)

is a strictly decreasing function of v ≥ 0 and that the integral tends to zero as v

tends to infinity. Thus, whenever condition (5.2) holds, it is easy to see that there is a
unique positive number vt (a0) for which (5.3) holds. Continuity of vt is established
in [2,Lemma 2].

Using the monotonicity of the integral in (5.7), it is now easy to see that the char-
acterization of the domain �t in (5.5) is equivalent to the characterization in (5.1).

��
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Fig. 5 The function vt (a) for the case in which μ = 1
3 δ−1 + 2

3 δ1

5.2 The result of Biane

We now explain how the domain �t arose in the work of Biane [2]. The results of
Biane will be needed to formulate one of our main results (Theorem 8.2).

For any operator A ∈ A, we let GA denote the Cauchy transform of A, also known
as the Stieltjes transform or holomorphic Green’s function, defined as:

GA(z) = τ [(z − A)−1] (5.8)

for all z ∈ C outside the spectrum of A. Then, GA is holomorphic on its domain.
If A is self-adjoint, we can recover the distribution of A from its Cauchy transform
by the Stieltjes inversion formula. Even if A is not self-adjoint, GA determines the
holomorphic moments of the Brown measure Brown(A) of A, that is, the integrals
of λn with respect to Brown(A). (We emphasize that these holomorphic moments do
not, in general, determine the Brown measure itself.)

Let x0 be a self-adjoint element of A, and let σt ∈ A be a semicircular Brownian
motion freely independent of x0. Define a function Ht by

Ht (λ0) = λ0 + tGx0(λ0). (5.9)

The significance of this function is from the following result of Biane [2], which shows
that the Cauchy transform of x0 + σt is related to the Cauchy transform of x0 by the
formula
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Gx0+σt (Ht (λ0)) = Gx0(λ0), (5.10)

for λ0 in an appropriate set, which we will specify shortly. Note that this result is for
the Cauchy transform of the self-adjoint operator x0 + σt , not for x0 + iσt .

We now explain the precise domain (taken to be in the upper half-plane for sim-
plicity) on which the identity (5.10) holds. Let

�t = {a0 + ib0| b0 > vt (a0)} , (5.11)

which is just the set of points in the upper half-plane outside the closure of �t . The
boundary of �t is then the graph of vt :

∂�t = {a0 + i vt (a0)| a0 ∈ R} .

Theorem 5.3 (Biane) First, the function Ht is an injective conformal map of �t onto
the upper half-plane. Second, Ht maps ∂�t homeomorphically onto the real line. Last,
the identity (5.10) holds for all λ0 in �t . Thus, we may write

Gx0+σt (λ) = Gx0(H
−1
t (λ))

for all λ in the upper half-plane, where the inverse function H−1
t is chosen to map into

�t .

See Lemma 4 and Proposition 2 in [2]. In the terminology ofVoiculescu [34, 35], we
may say that H−1

t is one of the subordination functions for the sum x0+σt ,meaning
that one can compute Gx0+σt from Gx0 by composing with H−1

t . Since x0 +σt is self-
adjoint, one can then compute the distribution of x0 + σt from its Cauchy transform.
We remark that Biane denotes the map H−1

t by Ft on p. 710 of [2].

5.3 The domain in the �-plane

Our strategy in applying the Hamilton–Jacobi method will be in two stages. In the
first stage, we attempt to make ε(t) close to zero by taking ε0 close to zero. For this
strategy to work, we must have λ0 outside the closure of the domain �t introduced in
Sect. 5.1. We will then solve the system of ODEs (4.2) in the limit as ε0 approaches
zero, using Proposition 4.7. Let us define a map Jt by

Jt (λ0) = λ0 − tGx0(λ0), (5.12)

which differs from the function Ht in Sect. 5.2 by a change of sign. (See Sect. 5.4 for a
different perspective on how this function arises.) With this notation, Proposition 4.7
says that if λ(0) = λ0 and ε0 approaches zero, then

λ(t) = Jt (λ0),

provided that λ0 is outside the closure of �t . Thus, the first stage of our analysis will
allow us to compute the Brown measure at points of the form Jt (λ0) with λ0 /∈ �t .
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We will find that the Brown measure is zero in a neighborhood of any such point. A
second stage of the analysis will then be required to compute the Brown measure at
points inside �t .

The discussion the previous paragraph motivates the following definition.

Definition 5.4 For each t > 0, define a domain �t in C by

�t = [Jt (�c
t )]c.

That is to say, the complement of �t is the image under Jt of the complement of �t .

See Fig. 6 for plots of the domains �t and �t .
We recall our standing assumption that μ is not a δ-measure and we remind the

reader that the set �t in (5.11) is the region above the graph of vt so that �t is the set
of points on or above the graph of vt .

Proposition 5.5 The following results hold.

(1) The map Jt is well-defined, continuous, and injective on �t .

(2) Define a function at : R → R by

at (a0) = Re [Jt (a0 + ivt (a0))]. (5.13)

Then, at any point a0 with vt (a0) > 0, the function at is differentiable and satisfies

0 <
dat
da0

< 2.

(3) The function at is continuous and strictly increasing and maps R onto R.
(4) The map Jt maps the graph of vt to the graph of a function, which we denote by

bt . The function bt satisfies

bt (at (a0)) = 2vt (a0) (5.14)

for all a0 ∈ R.

(5) The map Jt takes the region above the graph of vt onto the region above the graph
of bt .

(6) The set �t defined in Definition 5.4 may be computed as:

�t = {a + ib ∈ C| |b| < bt (a)} .

Since Jt (z) = 2z − Ht (z) and Ht (a0 + ivt (a0)) is real, we see that at (a0) =
2a0 − Ht (a0 + ivt (a0)). Lemma 5 of [2] and Theorem 3.14 of [22] show that 0 <

H ′
t (a0 + ivt (a0) ≤ 2, which means 0 ≤ a′

t (a0) < 2. Thus, Point (2) improves the
result to 0 < a′

t (a0) < 2.
The proof requires μ to have more than one point in its support in order to prove

a′
t (a0) 
= 0. When μ = δ0, it can be computed that Jt (z) = z − t

z and a0 + ivt (a0)
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Fig. 6 The regions �t and �t for μ = 1
3 δ−1 + 2

3 δ1

is the upper semicircle of radius
√
t . Therefore, Re [Jt (a0 + ivt (a0))] = 0 for all

a0 ∈ �t ∩ R, and its derivative is constantly 0 on �t ∩ R.
The proof is similar to the proof in [2] of similar results about the map Ht .

Proof Continuity of Jt on �t follows from [2,Lemma 3], which shows continuity of
Gx0 on �t . To show injectivity of Jt , suppose, toward a contradiction, that Jt (z1) =
Jt (z2), for some z1 
= z2 in �t . Then, using the definition (5.12) of Jt , we have

t(Gμ(z2) − Gμ(z1)) = z2 − z1.
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This shows

t
∫
R

z1 − z2
(z1 − x)(z2 − x)

dμ(x) = z2 − z1.

Since we are assuming that z1 and z2 are distinct, we can divide by z1 − z2 to obtain

∫
R

dμ(x)

(z1 − x)(z2 − x)
= −1

t
. (5.15)

Since z1, z2 ∈ �t , we have T (z1) ≤ 1/t and T (z2) ≤ 1/t . Thus, by the Cauchy–
Schwarz inequality,

∣∣∣∣
∫
R

dμ(x)

(z1 − x)(z2 − x)

∣∣∣∣
2

≤
∫
R

dμ(x)

|z1 − x |2
∫
R

dμ(x)

|z2 − x |2 ≤ 1

t2
.

By (5.15), we have equality in the above Cauchy–Schwarz inequality. Therefore, there
exists an α ∈ C such that the relation

1

z̄2 − x
= α

z1 − x
, (5.16)

or, equivalently,
(α − 1)x = αz̄2 − z1 (5.17)

holds for μ-almost every x . Since μ is assumed not to be a δ-measure, we must have
α = 1, or else x would equal the constant value (αz̄2 − z1)/(α − 1) for μ-almost
every x . With α = 1, we find that z1 = z̄2. But now if we substitute z1 = z̄2 into
(5.15), we obtain

∫
R

dμ(x)

|z1 − x |2 = −1

t

which is impossible. This shows z1 and z2 cannot be distinct and Point (1) is estab-
lished.

For Point (2), fix a0 with vt (a0) > 0. We compute that

G ′
x0(λ0) = −

∫
R

dμ(x)

(λ0 − x)2

so that ∣∣G ′
x0(a0 + ivt (a0))

∣∣ ≤
∫
R

dμ(x)

(a0 − x)2 + vt (a0)2
= 1

t
. (5.18)

We claim that this inequality must be strict. Otherwise, we would have equality in the
“putting the absolute value inside the integral” inequality. This would mean, by the
proof of Theorem 1.33 of [31], that
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1

(λ0 − x)2

would have the same phase for μ-almost every x . But since λ0 is in the upper half
plane, the phase of λ0 − x increases from 0 to π as x increases from −∞ to ∞. Thus,
the phase of 1/(λ0 − x)2 decreases from 2π to 0 as x increases from −∞ to ∞.
Therefore, 1/(λ0 − x)2 cannot have the same phase μ-almost every x unless μ is a
δ-measure.

Now,

d

da0
Gx0(a0 + ivt (a0)) = G ′

x0(a0 + ivt (a0))

(
1 + i

dvt (a0)

da0

)
.

Since (5.18) is a strict inequality,

∣∣∣∣ d

da0
Gx0(a0 + ivt (a0))

∣∣∣∣
2

<
1

t2

(
1 +

(
dvt (a0)

da0

)2
)

. (5.19)

Since

Im [Gx0(a0 + ivt (a0))] = −vt (a0)
∫
R

dμ(x)

(a0 − x)2 + vt (a0)2
= −vt (a0)

t
,

we have

(
d

da0
Im [Gx0(a0 + ivt (a0))]

)2

= 1

t2
dvt (a0)

a0

and (5.19) becomes

(
d

da0
Re [Gx0(a0 + ivt (a0))]

)2

<
1

t2
.

This shows, using the definition at (a0) = Re [Jt (a0 + ivt (a0))],

a′
t (a0) = 1 − t

d

da0
Re [Gx0(a0 + ivt (a0))] ∈ (0, 2),

as claimed.
We now turn to Point (3). To show that the function at (a0) is strictly increasing

with a0, we use two observations. First, by Point (2), at is increasing at any point a0
where vt (a0) > 0. Second, when vt (a0) = 0, we have

at (a0) = a0 − t
∫
R

1

a0 − x
dμ(x). (5.20)
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We claim that the right-hand side of (5.20) is an increasing function of a0. Suppose
that a0 < a1 and vt (a0) = vt (a1) = 0. We compute

at (a1) − at (a0) = (a1 − a0)

(
1 + t

∫
1

(a1 − x)(a0 − x)
dμ(x)

)
. (5.21)

By Cauchy–Schwarz inequality and (5.4),

∣∣∣∣
∫

1

(a1 − x)(a0 − x)
dμ(x)

∣∣∣∣
2

≤
∫

dμ(x)

(a1 − x)2

∫
dμ(x)

(a0 − x)2
≤ 1

t2
;

the Cauchy–Schwarz inequality is indeed strict by the reasoning leading to (5.16) and
(5.17). This proves that the right-hand side of (5.21) is positive andwe have established
our claim.

Consider any two points a0 and a1 with a0 < a1; we wish to show that at (a0) <

at (a1).
We consider four cases, corresponding to whether vt (a0) and vt (a1) are zero or

positive. If vt (a0) and vt (a1) are both zero, we use (5.20) and immediately conclude
that at (a0) < at (a1). If vt (a0) = 0 but vt (a1) > 0, then let α be the infimum of
the interval I around a1 on which vt is positive, so that vt (α) = 0 and a0 ≤ α.

Then, at (a0) ≤ at (α) by (5.20) and at (α) < at (a1) by the positivity of a′
t on I . The

remaining cases are similar; the case where both vt (a0) and vt (a1) are positive can
be subdivided into two cases depending on whether or not a0 and a1 are in the same
interval of positivity of vt .

Finally, we show that at maps R onto R. Since x0 is assumed to be bounded, the
law μ of x0 is compactly supported. It then follows easily from the condition (5.4)
for vt to be zero that vt (a0) = 0 whenever |a0| is large enough. Thus, for |a0| large,
the formula (5.20) applies, and we can easily see that lima0→−∞ at (a0) = −∞ and
lima0→+∞ at (a0) = +∞.

For Point (4), it follows easily from Point (3) and the definition (5.13) of at that Jt
maps the graph of vt to the graph of a function. When then note that (5.14) holds when
vt (a0) = 0—both sides are zero. To establish (5.14) when vt (a0) > 0, we compute
that

Im [Jt (a0 + ivt (a0))] = vt (a0) − tIm
∫
R

1

a0 + ivt (a0) − x
dμ(x)

= vt (a0) + tvt (a0)
∫
R

1

(a0 − x)2 + vt (a0)2
dμ(x)

= 2vt (a0),

by the defining property (5.3) of vt .
For Point (5), we note that the graph of vt , together with the point at infinity, forms a

Jordan curve in the Riemann sphere, with the region above the graph as the interior of
the disk—and similarlywith vt replaced by bt .Since Jt (λ0) tends to infinity asλ0 tends
to infinity, Jt defines a continuous map of the closed disk bounded by graph(vt )∪{∞}
to the closed disk bounded by graph(bt )∪{∞}, and this map is a homeomorphism on
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the boundary. By an elementary topological argument, Jt must map the closed disk
onto the closed disk.

Finally, for Point (6), we use the description of �t in Proposition 5.2 as the region
bounded by the graphs of vt and −vt . The complement of �t thus consists of the
region on or above the graph of vt or on or below the graph of −vt . By Point (5) and
the fact that Jt commutes the complex conjugation, Jt will map the complement of
�t to the region on or above the graph of bt or on or below the graph of −bt . Thus,
from Definition 5.4, �t will be the region bounded by the graphs of bt and −bt . ��

5.4 Themethod of Janik, Nowak, Papp,Wambach, and Zahed

We now discuss the work of Janik, Nowak, Papp, Wambach, and Zahed [23] which
gives a nonrigorous but illuminating method of computing the support of the Brown
measure of x0 + iσt . (See especially Section V of [23].) This method does not say
anything about the Brown measure besides what its support should be. Furthermore,
it is independent of the method used by Jarosz and Nowak in [24, 25] and discussed
in Sect. 9.

Recall the definition of the Cauchy transform of an operator A in (5.8). We note
that if λ is outside the spectrum of A, then we may safely put ε = 0 in the function

SA(λ, ε) := τ [log((A − λ)∗(A − λ) + ε)].
Using the formula (3.20) for the derivative of the trace of the logarithm, we can easily
compute that

∂

∂λ
SA(λ, 0) = τ [(λ − A)−1] = GA(λ).

But since GA(λ) depends holomorphically on λ, we find that

�λSA(λ, 0) = 4
∂

∂λ̄

∂

∂λ
SA(λ, 0)

= 4
∂

∂λ̄
GA(λ)

= 0,

so that the Brown measure is zero. This argument shows that the Brown measure is
zero outside the spectrum of A.

Now, in the case A = x0 + iσt , the authors of [23] attempt to determine the
maximum set on which the function

∂

∂λ
S(t, λ, 0)

remains holomorphic. We start with Biane’s subordination function identity (5.10),
which we rewrite as follows. Let σ be a fixed semicircular element, so that the law of
σt is the same as that of

√
tσ. Then set u = √

t, so that (5.10) reads as:
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τ [{λ + u2Gx0(λ) − (x0 + uσ)}−1] = Gx0(λ).

We then formally analytically continue to u = i
√
t, giving

τ [{λ − tGx0(λ) − (x0 + i
√
tσ)}−1] = Gx0(λ).

Thus,

Gx0+σt (λ + tGx0(λ)) = Gx0(λ) = Gx0+iσt (λ − tGx0(λ)).

In terms of the maps Ht and Jt defined in (5.9) and (5.12), respectively, we then have

Gx0+iσt (Jt (λ)) = Gx0+σt (Ht (λ))

or
Gx0+iσt (Jt (H

−1
t (λ))) = Gx0+σt (λ). (5.22)

We also note that from the definitions (5.9) and (5.12), we have Jt (λ) = 2λ − Ht (λ),

so that
Jt (H

−1
t (z)) = 2H−1

t (z) − z. (5.23)

Then, since the right-hand side of (5.22) is holomorphic on the whole upper half-
plane, the authors of [23] argue that the identity (5.22) actually holds on the whole
upper half-plane. If that claim actually holds, we will have the identity

Gx0+iσt (z) = Gx0+σt (Ht (J
−1
t (z))) (5.24)

for all z in the range of Jt ◦ H−1
t , namely for all z (in the upper half-plane) outside

the closure of �t . An exactly parallel argument then applies in the lower half-plane.
The authors thus wish to conclude that Gx0+iσt is defined and holomorphic on the
complement of �t , which would show that the Brown measure of x0 + iσt is zero
there.

We emphasize that the argument for (5.22) is rigorous for all sufficiently large
λ, simply because the quantity τ [(λ − A)−1] depends holomorphically on both the
complex number λ and the operator A. But just because the right-hand side of the
identity extends holomorphically to the upper half-plane does not by itself mean that
the identity continues to hold on the whole upper half-plane. Thus, the argument in
[23] is not entirely rigorous. Nevertheless, it certainly gives a natural explanation of
how the domain �t arises.

The identities (5.22) and (5.24) already indicate a close relationship between the
operators x0 + iσt and x0 +σt . In Sect. 8, we will find an even closer relationship: The
push-forward of the Brown measure of x0 + iσt under a certain map Qt : �t → R

is precisely the law of x0 + σt . The map Qt is constructed as follows: It is the unique
map of �t to R that agrees with Ht ◦ J−1

t on ∂�t and maps vertical segments in �t

to points in R.

123



19 Page 32 of 61 B. C. Hall, C.-W. Ho

6 Outside the domain

In this section, we show that the Brown measure of x0 + iσt is zero in the complement
of the closure of the domain �t in Definition 5.4. We outline our strategy in Sect. 6.1
and then give a rigorous argument in Sect. 6.2.

6.1 Outline

Our goal is to compute the Laplacian with respect to λ of the function

st (λ) = lim
ε→0+ S(t, λ, ε).

We use the Hamilton–Jacobi method of Proposition 4.2, which gives us a formula for
S(t, λ(t), ε(t)). Since (Proposition 4.4) ε(t) = ε0(1− p0t)2, we can attempt to make
ε(t) approach 0 by letting ε0 approach zero. This strategy, however, can only succeed
if the lifetime of the path remains at least t in the limit as ε0 → 0. Thus, we must take
λ0 for which T (λ0) ≥ t, where T is as in Definition 4.6. We therefore consider λ0 in
�

c
t , where �t is as in Definition 5.1.
If we formally put ε0 = 0, then ε(t) = 0, and, by Proposition 4.7, we have

λ(t) = Jt (λ0). (6.1)

Now, by Proposition 5.5, Jt maps �c
t injectively onto �c

t . Thus, for any λ ∈ �
c
t , we

may choose λ0 = J−1
t (λ). Then, if we formally apply the Hamilton–Jacobi formula

(4.5) with ε0 = 0, we get

S(t, λ, 0) =
∫
R

log(|J−1
t (λ) − x |2) dμ(x) − t

4
(p2a,0 − p2b,0),

where, with ε0 = 0, the initial momenta in (4.4) may be computed as:

pa,0 = 2
∫
R

(a0 − x)

(a0 − x)2 + b20
dμ(x) = 2Re

∫
R

1

λ0 − x
dμ(x)

pb,0 = 2
∫
R

b0
(a0 − x)2 + b20

dμ(x) = −2Im
∫
R

1

λ0 − x
dμ(x).

Thus,

S(t, λ, 0) =
∫
R

log(|J−1
t (λ) − x |2) dμ(x) − tRe [Gx0(J

−1
t (λ0))

2], (6.2)

where

Gx0(λ) = τ((λ − x0)
−1) =

∫
R

1

λ − x
dμ(x).
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The right-hand side of (6.2) is the composition of a harmonic function and a holo-
morphic function and is therefore harmonic. We thus wish to conclude that Brown
measure of x0 + iσt is zero outside �t .

The difficulty with the preceding argument is that the function S(t, λ, ε) is only
known ahead of time to be defined for ε > 0. Thus, the PDE in Theorem 3.1 is only
known to hold when ε > 0 and the Hamilton–Jacobi formula is only valid when ε(t)
remains positive. We are therefore not allowed to set ε0 = 0 in the Hamilton–Jacobi
formula (4.5). Now, if λ is outside the spectrum of x0 + iσt , then we can see that
S(t, λ, ε) continues to make sense for ε = 0 and even for ε slightly negative, and the
PDE and Hamilton–Jacobi formula presumably apply. But of course we do not know
that every point in �t is outside the spectrum of x0 + iσt ; if we did, an elementary
property of the Brown measure would already tell us that the Brown measure is zero
there.

If, instead, we let ε0 approach zero from above, we find that

lim
ε0→0+ S(t, λ(t), ε(t))=

∫
R

log(|J−1
t (λ) − x |2) dμ(x)− tRe [Gx0(J

−1
t (λ))2]. (6.3)

Now, as ε0 → 0+, we can see that λ(t) approaches λ and ε(t) approaches 0. But
there is still a difficulty, because the function st (λ) is defined as the limit of S(t, λ, ε)

as ε tends to zero with λ fixed. But on the left-hand side of (6.3), λ = λ(t) is not
fixed, because it depends on ε0. To overcome this difficulty, we will use the inverse
function theorem to show that, for each t > 0, the function S has an extension to a
neighborhood of (t, λ, 0) that is continuous in the λ- and ε-variables. Thus, the limit
of S along any path approaching (t, λ, 0) is the same as the limit with λ fixed and ε

tending to zero.

6.2 Rigorous treatment

In this section, we establish the following rigorous version of (6.2), which shows that
the support of the Brown measure of x0 + iσt is contained in �t . Recall that st (λ) is
the limit of S(t, λ, ε) as ε approaches zero from above with λ fixed.

Theorem 6.1 If λ is not in �t , we have

st (λ) =
∫
R

log(|J−1
t (λ) − x |2) dμ(x) − tRe [Gx0(J

−1
t (λ))2] (6.4)

and �st (λ) = 0.

The theorem will follow from the argument in Sect. 6.1, once the following regu-
larity result is established.

Proposition 6.2 Fix a time t > 0 and a point λ∗ ∈ �
c
t . Then, the function (λ, ε) �→

S(t, λ, ε) extends to a real analytic function defined in a neighborhood of (λ∗, 0)
inside C × R.

We will need the following preparatory result.
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Lemma 6.3 If λ0 is not in �t , there is a neighborhood of λ0 in �
c
t that does not

intersect supp(μ).

The result of this lemma does not hold if we replace �
c
t by �c

t . As a counter-
example, if μ = 3x2 dx on [0, 1], then using the criterion (5.6) for �t ∩ R, we find
that 0 ∈ �c

t for small enough t, but 0 ∈ supp(μ).

Proof It is clear that the statement of this lemma holds unless λ0 ∈ R since x0 is
self-adjoint.

Consider, then, a point λ0 ∈ �
c
t ∩R.Choose an interval (α, β) around λ0 contained

in �
c
t ∩R. We claim that μ((α, β)) must be zero. To see, note that since the points in

(α, β) are outside �t , we have (Definition 5.1)

∫
R

1

(a0 − x)2
dμ(x) ≤ 1

t

for all a0 ∈ (α, β). If we integrate the above integral with respect to the Lebesgue
measure in a0, we have

∫ β

α

∫
R

1

(a0 − x)2
dμ(x) da0 < ∞.

We may then reverse the order of integration and restrict the integral with respect to
μ to (α, β) to get ∫ β

α

∫ β

α

1

(a0 − x)2
da0 dμ(x) < ∞. (6.5)

But

∫ β

α

1

(a0 − x)2
da0 = ∞

for all x ∈ (α, β). Thus, the only way (6.5) can hold is if μ((α, β) = 0. ��
We now work toward the proof of Proposition 6.2. In light of the formulas for the

solution path in Proposition 4.4 , we consider the map Vt given by Vt (a0, b0, ε0) =
(at , bt , εt ), where

at (a0, b0, ε0) = a0 − t

2
pa,0

bt (a0, b0, ε0) = b0 + t

2
pb,0

εt (a0, b0, ε0) = ε0(1 − p0t)
2.

This map is initially defined for ε0 > 0, which guarantees that the integrals (4.4)
defining pa,0 and pb,0 are convergent, even if b0 = 0. But if λ0 is in �

c
t , Lemma 6.3

guarantees thatλ0 is outside the closed support ofμ, so that the integrals are convergent
when ε0 = 0 and even when ε0 is slightly negative. Thus, for any λ0 ∈ �

c
t , we can
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extend Vt to a neighborhood of (λ0, 0) using the same formula. We note that when
ε0 = 0, we have

at (a0, b0, 0) + ibt (a0, b0, 0) = Jt (a0 + ib0), (6.6)

as in (6.1).

Lemma 6.4 If λ0 is not in �t , the Jacobian matrix of Vt at (λ0, 0) is invertible.

Proof If we vary a0 or b0 with ε0 held equal to 0, then ε remains equal to zero, so that

∂εt

∂a0
(λ0, 0) = ∂εt

∂b0
(λ0, 0) = 0.

Meanwhile, from the formula for εt , we obtain

∂εt

∂ε0
(λ0, 0) = (1 − tp0)

2.

Thus, using (6.6), we find that the Jacobian matrix of V at (a0, b0, 0) has the form:

(
K ∗
0 (1 − tp0)2

)
,

where K is the 2 × 2 Jacobian matrix of the map Jt .
Since λ0 ∈ �

c
t , we have T (λ0) = 1/p0 > 1/t, so that 1 − tp0 > 0. Furthermore,

since Jt is injective on �
c
t , its complex derivative must be nonzero at λ0, so that K

is invertible. We can then see that the Jacobian matrix of Vt at (t, λ0, 0) has nonzero
determinant. ��

We are now ready for the proof of our regularity result.

Proof of Proposition 6.2 Define a function HJ by the right-hand side of the first
Hamilton–Jacobi formula (4.5), namely

HJ(a0, b0, ε0, t) = S(0, λ0, ε0) − t

[
1

4
(p2a,0 − p2b,0) − ε0 p

2
0

]
. (6.7)

Now take λ∗ ∈ �
c
t and let λ∗

0 = J−1
t (λ∗), so that λ∗

0 ∈ �
c
t . By Lemma 6.4 and the

inverse function theorem, Vt has an analytic inverse in a neighborhood U of (λ∗, 0).
By shrinking U if necessary, we can assume that the λ0-component of V−1(λ, ε) lies
in �

c
t for all (λ, ε) in U . We now claim that for each fixed t > 0, the map

(λ, ε) �→ HJ ◦ V−1
t (λ, ε) (6.8)

gives the desired analytic extension of S(t, ·, ·) to a neighborhood of (λ∗, 0).
We first note that HJ ◦ V−1

t is smooth, where we use Lemma 6.3 to guarantee that
the momenta in the definition of HJ are well defined. We then argue that for all (λ, ε)
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in U with ε > 0, the value of HJ ◦ V−1
t (λ, ε) agrees with S(t, λ, ε). To see this,

note first that if (λ, ε) ∈ U has ε > 0, then the ε0-component of V−1
t (λ, ε) must be

positive, as is clear from the formula for εt (a0, b0, ε0). Since, also, the λ0-component
of V−1

t (λ, ε) is in �
c
t , the small-ε0 lifetime of the path is at least t, so that when

ε0 > 0, the lifetime is greater than t . Thus, for (λ, ε) in U with ε > 0, the first
Hamilton–Jacobi formula (4.5) tells us that, indeed, S(t, λ, ε) = HJ(V−1

t (λ, ε)). ��
We now come to the proof of our main result.

Proof of Theorem 6.1 Once we know that (6.8) gives an analytic extension of S(t, ·, ·),
we conclude that the function st defined as:

st (λ) = lim
ε→0

S(t, λ, ε)

can be computed as:
st (λ) = HJ ◦ V−1

t (λ, 0). (6.9)

The point of this observation is that because HJ ◦ V−1
t is analytic (in particular,

continuous), we can compute st (λ) by taking the limit of HJ ◦ V−1
t (δ, ε) along any

path ending at (λ, 0), rather than having to fix λ and let ε tend to zero.
Fix a point λ in �

c
t and let λ0 = J−1

t (λ), so that T (λ0) ≥ t . Then, for any ε0 > 0,
the lifetime of the path with initial conditions (λ0, ε0) will be greater than t and the
first Hamilton–Jacobi formula (4.5) tells us that

S(t, λ(t), ε(t)) = S(0, λ0, ε0) − t

[
1

4
(p2a,0 − p2b,0) − ε0 p

2
0

]
.

As ε0 → 0, we find that λ(t) → Jt (λ0) = λ and ε(t) → 0. Thus, by (6.9) and the
continuity of HJ ◦ V−1

t , we have

st (λ) = S(0, λ0, 0) − t lim
ε0→0

[
1

4
(p2a,0 − p2b,0) − ε0 p

2
0

]
,

which gives the claimed expression (6.4).
Now, if λ is outside of�t , then J−1

t (λ) is outside of �̄t ,which means (Lemma 6.3)
that J−1

t (λ) is outside the support of the measure μ. It is then easy to see that st is a
composition of a harmonic function and a holomorphic function, which is harmonic.

��

7 Inside the domain

7.1 Outline

In Sect. 6, we computed the Brown measure in the complement of�t and found that it
is zero there. Our strategy was to apply the Hamilton–Jacobi formulas with λ0 in the
complement of �t and ε0 chosen to be very small, so that λ(t) is in the complement
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of �t and ε(t) is also very small. If, on the other hand, we take λ0 inside �t , then (by
definition) T (λ0) < t, meaning that the small-ε0 lifetime of the path is less than t .
Thus, for λ0 ∈ �t and ε0 small, the Hamilton–Jacobi formulas are not applicable at
time t .

In this section, then, we will use a different strategy. We recall from Proposition 4.4
that ε(t) = ε0(1− p0t)2. Thus, an alternative way to make ε(t) small is to take ε0 > 0
and arrange for p0 to be close to 1/t . Thus, for each point λ in �t , we will try to find
λ0 ∈ �t and ε0 > 0 so that p0 = 1/t and λ(t) = λ. (If p0 = 1/t , then the solution
to the system of ODEs blows up at time t, so that technically we are not allowed to
apply the Hamilton–Jacobi formulas at time t . But we will gloss over this point for
now and return to it in Sect. 7.1.3.)

Once we have understood how to choose λ0 and ε0 as functions of λ ∈ �t , we
will then apply the Hamilton–Jacobi method to compute the Brown measure inside
�t . Specifically, we will use the second Hamilton–Jacobi formula (4.6) to compute
the first derivatives of S(t, λ, 0) with respect to a and b. We then compute the second
derivatives to get the density of the Brown measure.

7.1.1 Mapping ontoÄt

We first describe how to choose λ0 and ε0 > 0 as functions of λ ∈ �t so that λ(t) = λ

and ε(t) = 0. If a0 + ib0 ∈ �t , then |b0| < vt (a0). Then, from the defining property
(5.3) of the function vt , we see that if we take

ε0 = εt0(a0) := vt (a0)
2 − b20, (7.1)

then ε0 is positive and plugging this value of ε0 into the formula (4.4) for p0 gives

p0 =
∫
R

1

(a0 − x)2 + vt (a0)2
dμ(x) = 1

t
,

as desired.
It remains to see how to choose λ0 so that (with ε0 given by (7.1)) we will have

λ(t) = λ. Since p0 = 1/t, Proposition 4.5 applies:

a(t) = t
∫
R

1

(a0 − x)2 + vt (a0)2
dμ(x) (7.2)

b(t) = 2b0. (7.3)

If we want λ(t) to equal λ = a + ib, then (7.3) immediately tells us that we should
choose b0 = b/2.Wewill show in Sect. 7.2 that (7.2) can be solved for a0 as a function
of a and t ; we use the notation at0(a) for the solution.

Summary 7.1 For all λ = a+ ib ∈ �t , the following procedure shows how to choose
λ0 = a0 + ib0 ∈ �t and ε0 > 0 so that, with these initial conditions, we will have
λ(t) = λ and ε(t) = 0. First, we use the condition
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∫
R

1

(a0 − x)2 + vt (a0)2
dμ(x) = 1

t

to determine vt as a function of a0. Second, use the condition

∫
R

x

(a0 − x)2 + vt (a0)2
dμ(x) = a

t

to determine a0 as a function at0 of a. Then, we take

b0 = b/2

ε0 = vt (a
t
0(a))2 − b20.

7.1.2 Computing the Brownmeasure

Using the choices for λ0 and ε0 in Summary 7.1, we then apply the second Hamilton–
Jacobi formula (4.6). Since λ(t) = λ and ε(t) = 0 and pb is a constant of motion,

∂S

∂b
(t, λ, 0) = pb(t) = pb,0.

But since, by (4.7), pb,0 = 2b0 p0, we obtain

∂S

∂b
(t, λ, 0) = 2b0 p0 = b

t
,

since we are assuming that p0 = 1/t .
Similarly,

∂S

∂a
(t, λ, 0) = pa(t)

= pa,0

= 2a0 p0 − 2p1.

= 2at0(a)

t
− 2a

t
,

where we have used (7.2) and the formula (4.8) for pa,0.

Conclusion 7.2 The preceding argument suggests that for λ = a+ ib ∈ �t ,we should
have

∂st
∂a

= 2

t
(at0(a) − a)

∂st
∂b

= b

t
.
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If this is correct, then the density of the Brown measure in �t is readily computed as:

1

4π

(
∂2S

∂a2
+ ∂2S

∂b2

)
(t, λ, 0) = 1

2π t

(
dat0(a)

da
− 1

2

)
,

as claimed in Theorem 1.2. In particular, the density of the Brownmeasure in�t would
be independent of b = Im λ.

7.1.3 Technical issues

The preceding argument is not rigorous, since the Hamilton–Jacobi formulas are only
known to hold as long as ε(s) remains positive for all 0 ≤ s ≤ t . That is to say, if
ε(t) = 0, then we are not allowed to use the formulas at time t . We can try to work
around this point by letting ε0 approach the value εt0(λ0) := vt (a0)2 − b20 in (7.1)
from above. Then, we have a situation similar to the one in (6.3), namely

lim
ε0→εt0(λ0)

+
∂S

∂a
(t, λ(t), ε(t)) = 2

t
(at0(a) − a) (7.4)

lim
ε0→εt0(λ0)

+
∂S

∂b
(t, λ(t), ε(t)) = b

t
, (7.5)

where

lim
ε0→εt0(λ0)

λ(t) = λ; lim
ε0→εt0(λ0)

ε(t) = 0.

But the Brown measure is computed by first evaluating the limit

st (λ) := lim
ε→0+ S(t, λ, ε),

where the limit is taken as ε → 0 with λ fixed, and then taking the distributional
Laplacian with respect to λ. Since λ(t) is not fixed in (7.4) and (7.5), it is not clear that
these limits are actually computing ∂st/∂a and ∂st/∂b. The main technical challenge
of this section is, therefore, to establish enough regularity of S near (t, λ, ε) to verify
that ∂st/∂a and ∂st/∂b are actually given by the right-hand sides of (7.4) and (7.5).

7.2 Surjectivity

In this section, we show that the procedure in Summary 7.1 actually gives a continuous
map of �t onto �t . Given any λ0 ∈ �t , choose ε0 = εt0(λ0) as in (7.1), so that

lim
s→t

ε(s) = 0.
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Then define

Ut (λ0) = lim
s→t

λ(s).

By Proposition 4.5, we have

Ut (a0 + ib0) = at (a0) + 2ib0

where

at (a0) = t
∫
R

1

(a0 − x)2 + vt (a0)2
dμ(x). (7.6)

Since we assume λ0 ∈ �t , we have vt (a0) > 0 and we therefore have an alternative
formula:

at (a0) = Re [Jt (a0 + ivt (a0))]. (7.7)

It is a straightforward computation to check that the right-hand sides of (7.6) and (7.7)
agree, using that the identity (5.3) holds when vt (a0) > 0.

The main result in this section is stated in the following theorem. We remind the
reader of the definition (5.12) of the map Jt .

Theorem 7.3 The following results hold.

(1) The map Ut extends continuously to �t . This extension is the unique continuous
map of �t into �t that (a) agrees with Jt on ∂�t and (b) maps each vertical
segment in �t linearly to a vertical segment in �t .

(2) The map Ut is a homeomorphism from �t onto �t .

Most of what we need to prove the theorem is already in Proposition 5.5.

Proof Proposition 5.5 showed that the right-hand side of (7.7) is continuous for all
a0 ∈ R. Using this formula for at , we see thatUt actually extends continuously to the
whole complex plane. It is then a simple computation to check that

Im Jt (a0 ± ivt (a0)) = ±2vt (a0).

This formula, together with (7.7), shows that Ut agrees with Jt for all points in ∂�t

having nonzero imaginary parts. Then points in ∂�t on the real axis are limits of points
in ∂�t with nonzero imaginary parts. Thus,Ut indeed agrees with Jt on ∂�t . AlsoUt

is linear on each vertical segment. Since �t is bounded by the graphs of vt and −vt ,

it is easy to see that Ut is the unique map with these two properties.
By Proposition 5.5, �t is bounded by the graphs bt and −bt , where the graph of

bt is the image of the graph of vt under Jt . From this result, it follows easily that Ut

is a homeomorphism. ��
We conclude this section by giving bounds on the real parts of points in�t , in terms

of the law μ of x0.
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Proposition 7.4 Let

M = sup supp(μ), m = inf supp(μ).

Then

m < inf(�t ∩ R) and sup(�t ∩ R) < M .

In particular, every point λ in �t has m < Re λ < M .

Proof Let ã0 = sup(�t ∩ R). Then, vt (ã0) = 0, which means (Proposition 5.2) that

∫
R

dμ(x)

(ã0 − x)2
≤ 1

t
.

Then

sup(�t ∩ R) = at (ã0) = t
∫
R

x dμ(x)

(ã0 − x)2
≤ M .

Because of our standing assumption that μ is not a δ-measure, this inequality is strict.
The inequality for inf(�t ∩ R) can be proved similarly. ��

7.3 Regularity

Define a function S̃ by

S̃(t, λ, z) = S(t, λ, z2)

for z > 0.

Proposition 7.5 Fix a time t > 0 and a point λ∗ ∈ �t . Then, the function (λ, z) �→
S̃(t, λ, z) extends to a real analytic function defined in a neighborhood of (λ∗, 0)
inside C × R.

Once the proposition is established, the function st (λ) := limε→0+ S(t, λ, ε) can be
computed as st (λ) = S̃(t, λ, 0). Since S̃(t, λ, z) is smooth in λ and z,we can compute
st (or any of its derivatives) at λ∗ by evaluating S̃(t, λ, z) (or any of its derivatives)
along any path where λ → λ∗ and z → 0. Thus, Proposition 7.5 will allow us to make
rigorous the argument leading to 7.2. Specifically, we will be able to conclude that the
left-hand sides of (7.4) and (7.5) are actually equal to ∂st/∂a and ∂st/∂b, respectively.

Remark 7.6 The function S itself does not have a smooth extension of the same sort
that S̃ does. Indeed, since

√
εpε is a constant of motion, the second Hamilton–Jacobi

formula (4.6) tells us that ∂S/∂ε must blow up like 1/
√

ε as we approach (t, λ∗, 0)
along a solution of the system (4.2). The same reasoning tells us that the extended S̃
does not satisfy S̃(t, λ, z) = S(t, λ, z2) for z < 0. Indeed, since

√
εpε is a constant of
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motion, ∂ S̃
∂z (t, λ, z) = 2

√
ε ∂S

∂ε
(t, λ, z2) has a nonzero limit as z → 0. Thus, S̃ cannot

have a smooth extension that is even in z.

To prove Proposition 7.5, we will use a strategy similar to the one in Section 6.2.
For each t > 0, we define a map

Wt (a0, b0, ε0) = (at , bt , zt )

by

at = a(t, a0, b0, ε0)

bt = b(t, a0, b0, ε0)

zt = √
ε(t, a0, b0, ε0)

where a, b, ε are defined as in Proposition 4.4. The last component zt can be expressed
explicitly as:

zt = √
ε0 (1 − tp0) .

The map Wt is initially defined only for

ε0 > εt0(λ0) := vt (a0)
2 − b20.

This condition guarantees that p0 < 1/t, so that the lifetime of the path is greater
than t . But for each t > 0 and λ0 ∈ �t , we can extend Wt to a neighborhood of
(a0, b0, εt0(λ0)), simply by using the same formulas. We note that if ε0 > εt0(λ0), then
p0 < 1/t so that zt > 0; and if ε0 < εt0(λ0) then p0 > 1/t so that zt < 0.

Lemma 7.7 For all t > 0 and λ0 = a0 + ib0 ∈ �t , the Jacobian of Wt at
(a0, b0, εt0(λ0)) is invertible, where εt0(λ0) = vt (a0)2 − b20.

Proof We introduce the notations

q0 =
∫
R

dμ(x)

((a0 − x)2 + vt (a0)2)2

q1 =
∫
R

(a0 − x) dμ(x)

((a0 − x)2 + vt (a0)2)2

q2 =
∫
R

(a0 − x)2 dμ(x)

((a0 − x)2 + vt (a0)2)2
.

Note that q0 > 0 and q2 > 0. When ε0 = εt0(λ0), we can write p0 in terms of q0 and
q2 as:

p0 = q2 + vt (a0)
2q0. (7.8)
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We now compute the Jacobian matrix ofWt at the point (λ0, εt0(λ0)),with λ0 ∈ �t .

Using the formulas (4.4) for pa,0 and pb,0, we can compute that

∂ pa,0
∂a0

= 2(−q2 + vt (a0)2q0)
∂ pa,0
∂b0

= −4b0q1
∂ pa,0
∂ε0

= −2q1
∂ p0
∂a0

= −2q1
∂ p0
∂b0

= −2b0q0
∂ p0
ε0

= −q0
.

The Jacobian of Wt at (a0, b0, εt0(λ0)) then has the following form:

DWt =
⎛
⎜⎝
t( 1t + q2 − vt (a0)2q0) 2tb0q1 tq1

−2tb0q1 t( 1t + p0 − 2b20q0) −tb0q0
2t

√
ε0q1 2t

√
ε0b0q0

1−tp0
2
√

ε0
+ t

√
ε0q0

⎞
⎟⎠ .

Since ε0 = εt0(λ0), we have 1/t = p0, and by (7.8), the (1, 1)-entry can be simplified
to 2tq2. The Jacobian matrix DWt then simplifies to

DWt = 2t

⎛
⎝ q2 b0q1

1
2q1−b0q1 (q2 + (vt (a0)2 − b20)q0) − 1
2b0q0√

ε0q1
√

ε0b0q0
1
2
√

ε0q0

⎞
⎠ .

We compute the determinant of DWt by first adding −2b0 times the third column
to the second column and then using a cofactor expansion along the second column.
The result is

det DWt = 4t3
√

ε0(q2 + vt (a0)
2q0)(q2q0 − q21 )

Now, by the Cauchy–Schwarz inequality,

q0q2 − q21 ≥ 0

and it cannot be an equality unless μ is a δ-measure. Therefore, we conclude that
det DWt is positive, establishing the proposition. ��

Proof of Proposition 7.5 The proof is extremely similar to the proof of Proposition 6.2;
the desired extension is given by the map

(λ, z) �→ HJ(W−1
t (λ, z)),

where HJ is the Hamilton–Jacobi function in (6.7). Take z > 0 and let (μ0, δ0) =
W−1

t (λ, z).Then, wemust have δ0 > εt0(μ0) or else zt (μ0, δ0) = z would be negative.
Thus, the lifetime of the path will be greater than t and the Hamilton–Jacobi formula
will apply. Thus, the Hamilton–Jacobi formula (4.5) shows that HJ(W−1

t (λ, z)) agrees
with S̃(t, λ, z) for z > 0. ��
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7.4 Computing the Brownmeasure

Using Proposition 7.5, we can show that the left-hand sides of (7.4) and (7.5) are
actually equal to ∂st/∂a and ∂st/∂b.

Corollary 7.8 For any λ = a + ib in �t , we have

∂st
∂a

= 2

t
(at0(a) − a),

∂st
∂b

= b

t
,

so that

�st (λ) = 2

t

(
dat0(a)

da
− 1

2

)
.

Proof Fix t > 0 and λ∗ ∈ �t . By Proposition 7.5, the function

st (λ) := lim
ε→0+ S(t, λ, ε)

may be computed, for λ in a neighborhood of λ∗, as

st (λ) = S̃(t, λ, 0).

Since S̃ is smooth, we can evaluate S̃ or any of its derivatives at (t, λ, 0) by taking
limits along any path we choose with t fixed. Thus, the left-hand sides of (7.4) and
(7.5) are actually equal to ∂st/∂a and ∂st/∂b. The formula for �st then follows by
taking second derivatives with respect to a and to b and simplifying. ��

We now establish our main result, a formula for the Brown measure of x0 + iσt .

Theorem 7.9 The open set�t is a set of full measure for the Brownmeasure of x0+iσt .
Inside �t , the Brown measure is absolutely continuous with a strictly positive density
wt given by

wt (λ) = 1

2π t

(
dat0(a)

da
− 1

2

)
, λ = a + ib. (7.9)

Sincewt (λ) is independent of b,we see thatwt is constant along the vertical segments
inside �t .

Proof Corollary 7.8 shows that in �t , the Brown measure of x0 + iσt has a density
given by (7.9). It then follows from Point (2) of Proposition 5.5 that

dat0(a)

da
>

1

2
,

showing that wt is positive in �t . It remains to show that �t is a set of full Brown
measure. Since the Brown measure is zero outside �t , we see that �t will have full
measure provided that the boundary of �t has measure zero. While it may be possible

123



The Brown measure of the sum of a self-adjoint... Page 45 of 61 19

–1.0 –0.5 0.5 1.0

–2

–1

1

2 λ

–1.0 –0.5 0.0 0.5 1.0
0

50

100

150

200 Re[λ]

Fig. 7 A random matrix approximation to the Brown measure of x0 + iσt when x0 is semicircular (left)
and the distribution of the real parts of the eigenvalues (right)

to prove this directly using the strategy in Sect. 7.4 of [12], we instead use the approach
used in [22].

In Theorem 8.2, wewill consider a probabilitymeasure ρt on�t .Wewill then show
that the push-forward of ρt under the mapUt : �t → �t agrees with Brown(x0+ iσt )
on �t . Since the preimage of �t under Ut is �t and ρt (�t ) = 1, we see that the
Brown(x0 + iσt ) assigns full measure to �t . ��

8 Two results about push-forwards of the Brownmeasure

In this section, we show how Brown(x0 + iσt ) is related to two other measure by
means of pushing forward under appropriate maps. To motivate one of our results,
let us consider the case that x0 = σ̃s , a semicircular element of variance s freely
independent of σt . It is known (see [4,Example 5.3] and Sect. 10.1) that in this case,
the Brown measure of σ̃s + iσt is uniformly distributed on an ellipse. It follows that
the distribution of Re λ with respect to Brown(σ̃s + iσt ) is semicircular—which is the
same (up to scaling by a constant) as the distribution of σ̃s + σt . (See Fig. 7.)

Point 2 of Theorem 8.2 generalizes the preceding result to the case of arbitrary x0,
in which the map λ �→ const .Re λ is replaced by a certain map Qt : �t → R. When
the distribution of x0 is semicircular, Qt (λ) is a multiple of the real part of λ, as in
(8.1).

Recall that ct denotes the circular Brownian motion. We will make use of the map
Ut : �t → �t described in Sect. 7.2, and another map Qt : �t → R which we now
define. Recall from Sects. 5.2 and 5.3 that the inverse of the map Jt takes ∂�t to ∂�t

and that the map Ht takes ∂�t to R, so that Ht ◦ J−1
t takes ∂�t to R.

Definition 8.1 Let Qt : �t → R be the unique map that agrees with Ht ◦ J−1
t on ∂�t

and maps vertical segments in �t to points in R.
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The map Qt is visualized in Fig. 4. In the case that x0 is semicircular with variance
s, one can easily use the computations in Sect. 10.1 to show that

Qt (a + ib) = s + t

s
a. (8.1)

In general, we may compute Qt more explicitly as follows. We first map a + ib to
the point a + ibt (a) on ∂�t . Next, we compute

J−1
t (a + ibt (a)) = at0(a) + ivt (a

t
0(a)).

Next, we use the identity H(J−1
t (z)) = 2J−1

t (z) − z in (5.23). Finally, we recall that
Ht ◦ J−1

t is real-valued on ∂�t . Thus,

Qt (a + ib) = Re {2J−1
t [a + ibt (a)] − (a + ibt (a))}

= 2at0(a) − a.

Theorem 8.2 The following results hold.

(1) The push-forward of the Brownmeasure of x0+ct under themapUt in Theorem7.3
is the Brown measure of x0 + iσt .

(2) The push-forward of the Brown measure of x0 + iσt under the map Qt is the law
of x0 + σt .

Proof By Theorem 3.9 in [22], the Brown measure ρt of x0 + ct can be written as:

dρt = 1

π t

(
1 − t

2

d

da0

∫
R

x dμ(x)

(a0 − x)2 + vt (a0)2

)
da0 db0

= 1

π t

(
1 − 1

2

dat
da0

)
da0 db0

for a0 + ib0 ∈ �t . Now, under the map Ut , we have a = at (a0) and b = 2b0. Thus,

dρt = 1

π t

(
1 − 1

2

dat
da0

)
dat0
da

da
db

2

= 1

2π t

(
dat0
da

− 1

2

)
da db

for a + ib ∈ �t . This last expression in the formula for the restriction of the Brown
measure to �t .

Since ρt is a probability measure on�t ,we find that the Brownmeasure of x0+ iσt
assigns mass 1 to �t , as noted in the proof of Theorem 7.9. Thus, there is no mass
of Brown(x0 + iσt ) anywhere else and the pushforward of ρt under Ut is precisely
Brown(x0 + iσt ).

To prove Point 2, we consider the unique map 	t : �t → R that agrees with Ht on
∂�t and is constant along vertical segments in �t . Then, Qt = 	t ◦ U−1

t . (Both Qt
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and Ht ◦ U−1
t agree with 	t ◦ J−1

t on ∂�t and are constant along vertical segments
inside�t .) By Point 1, the push-forward of the Brown measure of x0 + iσt underU

−1
t

is the Brown measure ρt of x0 + ct . By Theorem 3.13 of [22], the push-forward of the
Brown measure ρt by 	t of x0 + ct is the law of x0 + σt and Point 2 follows. ��

9 Themethod of Jarosz and Nowak

9.1 The formula for the Brownmeasure

We now describe a different approach to computing the Brown measure of x0 + iσt ,
developed by Jarosz and Nowak in the physics literature [24, 25]. As discussed in the
introduction, the method is not rigorous as written, but could conceivably be made
rigorous using the general framework developed by Belinschi, Mai, and Speicher in
[6]. (See also related results in [7].) We emphasize, however, that (so far as we know)
no explicit computation of the case of x0 + iσt has been made using the framework
in [6].

Jarosz and Nowak work with an operator of the form H1 + i H2, where H1 and
H2 are arbitrary freely independent elements. Then on p. 10118 of [25], they present
an algorithm by which the “nonholomorphic Green’s function” of H1 + i H2 may
be computed. In the notation of this paper, the nonholomorphic Green’s function is
the function ∂st/∂λ, so that the Brown measure may be computed by taking the
λ̄-derivative:

1

π

∂

∂λ̄

∂st
∂λ

= 1

4π
�λst (λ).

Examples are presented in Sect. 6.1 of [24] in which H2 is semicircular and H2 has
various different distributions. We now work out their algorithm in detail in the case
that H1 = x0 is an arbitrary self-adjoint element and H2 = σt .

Werefer to [24, 25] for the frameworkused in the algorithm, involving “quaternionic
Green’s functions.” We present only the final algorithm for computation, described
in Eqs. (75)–(79) of [25], and we specialize to the case H1 = x0 and H2 = σt . The
algorithm, adapted to our notation, is as follows.We fix a complex number λ = a+ib.
Then, we introduce three unknown quantities, complex numbers g and g′ and a real
number m. These are supposed to satisfy three equations:

Bx0(g) = a + m

g
(9.1)

Bσt (g
′) = b + 1 − m

g′ (9.2)

|g| = ∣∣g′∣∣ , (9.3)

where Bx0 and Bσt are the “Blue’s functions,” that is, the inverse functions of the
Cauchy transforms of x0 and σt , respectively.We are supposed to solve these equations
for g and g′ as functions of a and b. Once this is done, we have
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∂st
∂λ

(a, b) = Re g − iRe g′. (9.4)

Since ∂/∂λ = (∂/∂a − i ∂/∂b)/2, (9.4) may be written equivalently as:

∂st
∂a

(a, b) = 2Re g; (9.5)

∂st
∂b

= 2Re g′. (9.6)

That is to say, the real parts of g and g′ determine the derivatives of st with respect to
a and b, respectively.

Proposition 9.1 The Jarosz–Nowak method when applied to x0 + iσt gives the follow-
ing result. We try to solve the equation

g = Gx0(a + t ḡ)

for g as a function of a and t,with the solution denoted gt (a). Then, inside the support
of the Brown measure, its density ρt is a function of a and t only, namely

ρt (a) = 1

4π

(
1

t
+ 2

d

da
Re gt (a)

)
. (9.7)

Proof It is known that the Blue’s function of σt is given by Bσt (g
′) = 1/g′ + tg′. (This

statement is equivalent to saying that the R-transform of σt is given by R(z) = t z, as
in [38,Example 3.4.4].) Plugging this expression into (9.2) and simplifying, we obtain
a quadratic equation:

t(g′)2 − bg′ + m = 0,

whose roots are

g′ = b ± √
b2 − 4mt

2t
. (9.8)

Assuming (as Jarosz and Nowak implicitly do) that these roots are complex, we find
that

Re (g′) = b

2t
. (9.9)

Thus, without even using (9.1) or (9.3), we find by (9.6) that

∂st
∂b

= b

t
,

which agrees with what we found in Corollary 7.8.
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Meanwhile, assuming still that the roots in (9.8) are complex, we find that

∣∣g′∣∣2 = 1

4t2
(b2 + 4mt − b2)

= m

t
.

Then (9.3) says that |g|2 = ∣∣g′∣∣2 = m/t, so that m = t |g|2 . Thus, after replacing m
by t |g|2 , (9.1) becomes

Bx0(g) = a + t ḡ.

Since Bx0 is the inverse function to Gx0 , this equation may be rewritten as:

g = Gx0(a + t ḡ). (9.10)

We hope that this equation will implicitly determine the complex number g as a
function of a (and t). We therefore write g as gt (a).

We then substitute the expression for g in (9.5), giving

∂st
∂a

= 2Re gt (a).

The density ρt of the Brown measure is then computed as:

ρt (a, b) = 1

4π

(
∂2st
∂b2

+ ∂2st
∂a2

)

= 1

4π

(
1

t
+ 2

d

da
Re gt (a)

)
,

as claimed. ��
Proposition 9.2 In the Jarosz–Nowak method, the quantityRe gt (a)may be computed
as:

Re gt (a) = 1

t
(at0(a) − a),

where the function at0 is as in Summary 7.1. Thus, the formula (9.7) for the Brown
measure in the Jarosz–Nowak method agrees with what we found in Theorem 7.9.

Proof The imaginary part of the equation (9.10) for g says that

Im g = Im
∫
R

dμ(x)

a + t ḡ − x

= tIm g
∫
R

dμ(x)

(a + tRe g − x)2 + t2(Im g)2
.
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Thus, at least when Im g 
= 0, we get

∫
dμ(x)

(a + tRe g − x)2 + t2(Im g)2
= 1

t
. (9.11)

We may now apply the equation (5.3) that defines the function vt with a replaced by
a + tRe g, giving

tIm g = ±vt (a + tRe g). (9.12)

We now look at the real part of (9.10):

Re g = Re
∫
R

dμ(x)

a + t ḡ − x

= (a + tRe g)
∫
R

1

(a + tRe g − x)2 + t2(Im g)2
dμ(x)

−
∫
R

x

(a + tRe g − x)2 + t2(Im g)2
dμ(x).

Using (9.11) and (9.12) this equation simplifies to

a = t
∫
R

x

(a + tRe g − x)2 + vt (a + tRe g)2
dμ(x). (9.13)

Now, if we let
a0 = a + tRe g, (9.14)

then (9.13) is just the equation for a in terms of a0 that we found in our Hamilton–
Jacobi analysis (Proposition 4.5 ). Thus,

Re g = 1

t
(a0 − a),

as claimed. ��

9.2 The support of the Brownmeasure

We now examine the condition for the boundary of the support of the Brown measure,
as given in Eq. (80) of [25]:

(Re g)2 + (Re g′)2 = |g|2 . (9.15)

Proposition 9.3 The condition for a point a + ib to be on the boundary in the Jarosz–
Nowak method is that

b = 2vt (a
t
0(a)).

Such points are precisely the boundary points of our domain �t .
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Proof We cancel (Re g)2 from both sides of (9.15), leaving us with

(Re g′)2 = (Im g)2.

Now, we have found in (9.9) that Re g′ = b/(2t) and in (9.12) that Im g = ±vt (a +
tRe g)/t . But in (9.14), we have identified a + tRe g with at0(a). Thus, the condition
(9.15) for the boundary reads

b

2t
= ±vt (at0(a))

t
,

or b = 2vt (at0(a)), which is the condition for the boundary of �t (Point (4) of
Proposition 5.5). ��

10 Examples

In this section, we compute three examples, in which the law of x0 is semicircular,
Bernoulli, or uniform. Additional examples, computed by a different method, were
previously worked out by Jarosz and Nowak in [24,Sect. 6.1].

We also mention that we can take x0 to have the form x0 = y0 + σ̃s, where σ̃s is
another semicircular Brownian motion and y0, σ̃s, and σt are all freely independent.
Thus, our results allow one to determine the Brown measure for the sum of the elliptic
element σ̃s + iσt and the freely independent self-adjoint element y0. The details of
this analysis will appear elsewhere.

10.1 The elliptic law

In our first example, the law μ of x0 is a semicircular distribution with variance s.
Then, x0 + iσt has the form of an elliptic element σ̃s + iσt , where σ̃· and σ· are
two freely independent semicircular Brownian motions. The associated “elliptical
law,” in various forms, has been studied extensively going back to the work of Girko
[15]. The elliptical case was worked out by Jarosz and Nowak in [25,Sect. 3.6]. The
Brown measure of σ̃s + iσt was also computed by Biane and Lehner [4,Example
5.3] by a different method. We include this example as a simple demonstration of the
effectiveness of our method.

Theorem 10.1 The Brown measure of σ̃s + iσt is supported in the closure of the ellipse
centered at the origin with semi-axes 2s/

√
s + t and 2t/

√
s + t . The density of the

Brown measure is constant

1

4π

(
1

s
+ 1

t

)

in the domain.

We apply our result in this paper with x0 = σ̃s . In the next proposition we compute
�t .
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Proposition 10.2 We can parametrize the upper boundary curve of �t by

a0+ivt (a0) = (2s + t)q + i t
√
4(s + t) − q2

2(s + t)
, q ∈ [−2

√
s + t, 2

√
s + t]; (10.1)

therefore, �t is the ellipse centered at the origin with semi-axes 2s+t√
s+t

and t√
s+t

.

Proof Recall that �t denotes the region in the upper half plane above the graph of vt ,
so that �t is the region on or above the graph of vt . Recall also that Biane [2] has
shown that the function Ht in (5.9) maps �t injectively onto the closed upper half
plane.

In the case at hand, the Cauchy transform of σ̃s isG σ̃s (z) =
(
z − √

z2 − 4s
)

/(2s).

We can then compute the function Ht in (5.9) as:

Ht (z) = z + tGσs (z) = z + t

(
z − √

z2 − 4s

2s

)
, z ∈ �t .

The inverse map H−1
t is then easily computed as:

H−1
t (z) = (2s + t)z + t

√
z2 − 4(s + t)

2(s + t)
, Im z ≥ 0. (10.2)

The part of the graph of vt where vt > 0 comes from the values of H−1
t on the real

axis having nonzero imaginary part, that is, for real numbers q with |q| < 2
√
s + t .

Plugging these numbers into (10.2) gives the claimed form (10.1). ��
Proposition 10.3 The boundary curve of �t can be parametrized by

a + ibt (a) = sq + i t
√
4(s + t) − q2

s + t
, q ∈ [−2

√
s + t, 2

√
s + t].

Consequently, �t is an ellipse centered at the origin with semi-axes 2s√
s+t

and 2t√
s+t

.

Proof By Proposition 10.2, the upper boundary of�t can be parametrized by the curve
in (10.1). By Definition 5.4, we find the boundary curve of �t by applying the map Jt
in (5.12), which satisfies Jt (z) = 2z − Ht (z). Thus,

a + ibt (a) = Jt (a0 + ivt (a0))

= sq + i t
√
4(s + t) − q2

s + t
.

which traces an ellipse centered at the origin with semi-axes 2s
s+t and

2t√
s+t

. ��
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Proof of Theorem 10.1 The domain �t is computed in Proposition 10.3. By Proposi-
tion 10.3 ,

a = sq

s + t

at0(a) = (2s + t)q

2(s + t)
= (2s + t)

2s
a.

It follows that the density of the Brown measure is

1

2π t

(
dat0(a)

da
− 1

2

)
= 1

2π t

(
2s + t

2s
− 1

2

)

= 1

4π

(
1

s
+ 1

t

)
,

as claimed. ��

10.2 Bernoulli case

In our second example, the law μ of x0 is Bernoulli distributed, with mass α at 1 and
mass β = 1− α at −1, for 0 < α < 1. The case α = 1/2 was previously analyzed in
the paper of Stephanov [32] and also in Sect. V of [24] by different methods.

Denote by Q(a) the quartic polynomial

−4a4+4t(α−β)a3−(t2+4t−8)a2+2t(t−2)(α−β)a−(α−β)2t2+4t−4. (10.3)

Then, the domain �t and the density of the Brown measure in this example are com-
puted in the following proposition.

Proposition 10.4 Any λ ∈ �t satisfies |Re λ| < 1. The domain �t is given by

�t =
{
a + ib ∈ C

∣∣∣∣b2 <
Q(a)

(1 − a2)2

}

so that

�t ∩ R = {a ∈ R|Q(a) > 0}.

The density of the Brown measure in this Bernoulli case is given by

wt (λ) = 1

4π

(
−1

t
+ β

(a − 1)2
+ α

(a + 1)2

)
.

See Fig. 8.
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Fig. 8 The domain �t in the Bernoulli case with a simulation of the eigenvalues (top), plotted with the
density of the Brown measure (in �t ) as a function of a (bottom). Shown for α = 2/3 and t = 1

Proof Recall the functions at0(a) and bt (a) defined by the four equations (1.4)–(1.7).
We now compute these functions for the Bernoulli case. The equations (1.4) and (1.5)
take the following form in the Bernoulli case:

α

(a0 − 1)2 + v2
+ β

(a0 + 1)2 + v2
= 1

t
α

(a0 − 1)2 + v2
− β

(a0 + 1)2 + v2
= a

t
.

We then introduce the new variables

A = (a0 − 1)2 + v2

B = (a0 + 1)2 + v2

so that

α

A
+ β

B
= 1

t
α

A
− β

B
= a

t
.

Then, we can solve for A and B as:

A = 2αt

1 + a
, B = 2βt

1 − a
.
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We can recover a0 and v2 as

a0 = 1

4
(B − A) = t

2

a + β − α

1 − a2

and

v2 = A + B

2
− a20 − 1

= αt(1 − a) + βt(1 + a)

1 − a2
−

(
t

2

a + β − α

1 − a2

)2

− 1

= Q(a)

4(1 − a2)2

where Q is defined in (10.3). Recalling that bt (a) = 2v, we find that

at0(a) = t

2

a + β − α

1 − a2
(10.4)

and

bt (a)2 = Q(a)

(1 − a2)2
. (10.5)

Equation (10.5) gives the claimed form of the domain�t . The density of the Brown
measure is then computed from (10.4) using the formula in Theorem 7.9. ��

10.3 Uniform case

In our third and final example,μ is uniformly distributed on [−1, 1]. The case in which
μ is uniformly distributed on any interval can be reduced to this case as follows. First,
by shifting x0 by a constant, we can assume that the interval has the form [−A, A].
Once this is the case, we write

x0 + iσt = A (x0/A + iσt/A) ,

where the law of x0/A is uniform on [−1, 1] and σt/A has the same ∗-distribution as
σt/A2 . Thus, to compute the Brown measure in this case, we use the formulas below
with t replaced by t/A2 and then scale the entire Brown measure by a factor of A.

Whenμ is uniform on [−1, 1]—in particular, symmetric about 0—the Brownmea-
sure is symmetric about the imaginary axis. The key is again solving the equations
(1.4) and (1.5) that define the functions at0(a) and bt (a).

Proposition 10.5 Let vmax be the smallest positive real number v such that

1

v
= tan

(v

t

)
.
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Also let At
0(v) be given by

At
0(v) =

√
2v cot

(
2v

t

)
+ 1 − v2.

for |v| ≤ vmax. (When v = 0, we understand the above formula as At
0(0) = √

t + 1.)
Then, the following results hold.

(1) The domain �t has only one connected component, and is given by

�t = {±At (b/2) + iy| |y| < b, |b| ≤ 2vmax} (10.6)

where

At (v) = At
0(v) + t

4
log

(
1 − 4At

0(v)

(At
0(v) + 1)2 + v2

)
.

That is, ∂�t consists of the two curves

±At (b/2) + ib, |b| ≤ 2vmax.

In particular, the function bt defined in (5.14) is unimodal with a peak at 0.
(2) The domain �t satisfies

�t ∩ R =
{
a ∈ R

∣∣∣∣∣|a| <
√
t + 1 − t

2
log

(√
t + 1 + 1√
t + 1 − 1

)}
.

(3) The density of the Brown measure in �t is (as always) a function of a and t only,
and the graph of this function is traced out by the curve

(At (v),Wt (v)), |v| < vmax, (10.7)

where

Wt (v) = t2 + 4(t + 2)v2 − t(t + 4v2) cos (4v/t) − 4tv sin (4v/t)

4π t
(−t2 + 8v2 + t2 cos (4v/t)

) .

To the extent that we can compute the height bt of �t as a function of a, we can
then compute the density of the Brown measure as a function of a by replacing v

by bt (a)/2 in the above expression. That is, the density wt (λ) is given by

wt (λ) = Wt (bt (a)/2). (10.8)

See Fig. 9.
Before we prove Proposition 10.5, we need some computations about vt and �t

from the following proposition.
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0.4

Fig. 9 The domain �t in the uniform case with a simulation of the eigenvalues (top), plotted with the
density of the Brown measure (in �t ) as a function of a (bottom). Shown for t = 0.1

Proposition 10.6 The following results about vt and �t hold.

(1) The function vt is unimodal, with a peak at a0 = 0. The maximum vmax = vt (0)
is the smallest positive real number v such that

1

v
= tan

(v

t

)
.

In particular, vt (0) < π t
2 .

(2) The domain�t has only one connected component. Its boundary can be described
by the two curves

±At
0(v) + iv, |v| ≤ vmax

where

At
0(v) =

√
2v cot

(
2v

t

)
+ 1 − v2. (10.9)

(3) The domain �t satisfies

�t ∩ R = (−√
t + 1,

√
t + 1). (10.10)

Proof In the uniform case, (1.4) takes the form:

∫
R

dμ(x)

(a0 − x)2 + v2
=

arctan
(
1−a0

v

)
+ arctan

(
1+a0

v

)

2v
= 1

t
. (10.11)
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Using the addition law of inverse tangent,

arctan(A) + arctan(B) = arctan

(
A + B

1 − AB

)
,

we can easily solve for a20 as a function of v:

a20 = 2v cot

(
2v

t

)
+ 1 − v2. (10.12)

Restricted to a0 ≥ 0, (10.12) defines a0 = At
0 as a function of v as in (10.9).

The function vt (a0) cannot be represented as an elementary function of a0; we,
however, have proved in the preceding paragraph that vt restricted to a0 ≥ 0 in �t has
an inverse At

0. The function vt then must be strictly decreasing from 0 to sup(�t ∩R);
by symmetry, it is strictly increasing from inf(�t∩R) to 0. In particular, vt is unimodal
with globalmaximumata0 = 0. Puttinga0 = 0 in (10.11), themaximum vmax = vt (0)
is the smallest positive real number v such that

1

v
= tan

(v

t

)
.

Thus, vt (0) = vmax < π t
2 . This proves Point 1.

Since vt is unimodal, the domain �t has only one connected component. By Def-
inition 5.1, �t is symmetric about the real axis. In our case, �t is also symmetric
about the imaginary axis and the right-hand side of (10.9) defines an even function of
v. Thus, the boundary of �t can be described by the curves

∂�t = {(±At
0(v), v)| |v| ≤ vmax},

which is Point 2. Since a0(v)2 → t + 1 as v → 0, (10.10) holds, which proves Point
3. ��
Proof of Proposition 10.5 In the uniform case, the equation (1.5) takes the form:

a = t
∫
R

x

(a0 − x)2 + vt (a0)2
dμ(x)

= a0 + t

4
log

(
1 − 4a0

(a0 + 1)2 + vt (a0)2

)
.

For a ≥ 0 in �t , we can express a as a function a = At (v) of v = vt (a0) using (10.9)
as

At (v) = At
0(v) + t

4
log

(
1 − 4At

0(v)

(At
0(v) + 1)2 + v2

)
(10.13)

for 0 < v ≤ vmax.
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Using the definition of bt in (5.14), bt (a) = 2vt (at0(a)) = 2v. Thus, bt is unimodal
on �t ∩Rwith a peak at 0. The domain �t has only one connected component whose
boundary can be described by the two curves

±At (b/2) + ib, |b| ≤ 2vmax.

Thus, (10.6) follows. This proves Point 1.
Using (10.10), we can compute the limit as v → 0 in (10.13), from which the

claimed from of �t ∩ R follows, establishing Point 2.
Now, since both a0 and a are functions of v when a0 and a are nonnegative, we can

compute
dat0(a)

da
= d At

0(v)/dv

d At (v)/dv
. (10.14)

This result also holds for negative a because�t and�t are symmetric about the imag-
inary axis. The density of the Brown measure is then computed using Theorem 7.9.
Using (10.14), the density can be expressed in terms of v as:

1

2π t

(
dat0(a)

da
− 1

2

)
= t2 + 4(t + 2)v2 − t(t + 4v2) cos

( 4v
t

) − 4tv sin
( 4v

t

)
4π t

(−t2 + 8v2 + t2 cos
( 4v

t

)) ,

establishing (10.7). Since bt (a) = 2v, we obtain (10.8), completing the proof. ��
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