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Abstract
We continue the program of constructing (pre)modular tensor categories from 3-
manifolds first initiated by Cho–Gang–Kim using M theory in physics and then
mathematically studied by Cui–Qiu–Wang. An important structure involved in the
construction is a collection of certain SL(2,C) characters on a given manifold, which
serve as the simple object types in the corresponding category. Chern–Simons invari-
ants and adjoint Reidemeister torsions also play a key role, and they are related to
topological twists and quantum dimensions, respectively, of simple objects. The mod-
ular S-matrix is computed from local operators and follows a trial-and-error procedure.
It is currently unknown how to produce data beyond the modular S- and T -matrices.
There are also a number of subtleties in the construction, which remain to be solved.
In this paper, we consider an infinite family of 3-manifolds, that is, torus bundles over
the circle. We show that the modular data produced by such manifolds are realized by
the Z2-equivariantization of certain pointed premodular categories. Here the equiv-
ariantization is performed for the Z2-action sending a simple (invertible) object to its
inverse, also called the particle–hole symmetry. It is our hope that this extensive class
of examples will shed light on how to improve the program to recover the full data of
a premodular category.

Keywords Chern–Simons invariants · Equivariantization · Premodular category ·
Reidemeister torsions · SOL geometry

Mathematics Subject Classification 18M20 · 57K16 · 58J28

1 Introduction

Quantum topology emerged from the discovery of the Jones polynomial [14] and
the formulation of topological quantum field theory (TQFT) [2, 24] in the 1980s.
Since then, rapid progress of the subject has revealed deep connections between the
algebraic/quantumworld of tensor categories and the topological/classical world of 3-
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manifolds.One bridge connecting these twoworlds is given byTQFTs.More precisely,
quantum invariants of 3-manifolds and (2+1)-dimensional TQFTs can be constructed
from modular tensor categories, a special class of tensor categories. Two fundamental
families in (2+1)-dimensions are the Reshetikhin–Turaev [18] and Turaev–Viro [22]
TQFTs, both of which are based on certain tensor categories. Both families serve
as vast generalizations of the Jones polynomial to knots in arbitrary 3-manifolds.
Quantum invariants inducedbyTQFTsprovide insights to understand3-manifolds. For
example, they can distinguish some homotopically equivalent but non-homeomorphic
manifolds.

Recently, motivated by M-theory in physics, the authors in [8] proposed another
relation between tensor categories and 3-manifolds roughly in the converse direction.
Explicitly, they outlined a program to construct modular tensor categories from certain
classes of closed oriented 3-manifolds. A central structure to study is an SL(2,C) flat
connection, which corresponds to a conjugacy class ofmorphisms from the fundamen-
tal group to SL(2,C). The manifolds are required to have finitely many non-Abelian
SL(2,C) flat connections, and each must be gauge equivalent to an SL(2,R) or SU(2)
flat connection. Classical invariants such as the Chern–Simons invariant and twisted
Reidemeister torsion also play a key role in the construction.

In [9], the authors mathematically explored the program in greater detail. They
systemically studied two infinite families of 3-manifolds, namely Seifert fibered spaces
with three singular fibers and torus bundles over the circle whose monodromy matrix
has odd trace. It was shown that the first family realize modular tensor categories
was related to the Temperley–Lieb–Jones category [20], and the second family was
related to the quantum group category of type B. Based on their computations, the
authors revealed several subtleties in the original proposal and made a number of
insightful improvements. For instance, a simple object in the constructed category
should correspond to a non-Abelian SL(2,C) character from the fundamental group,
rather than a conjugacy class of SL(2,C) representations. Moreover, the characters
are not necessarily conjugate to a SL(2,R) or SU(2) character; rather, they just need
to have real Chern–Simons invariants. Also, the category to be constructed may not
always bemodular, butwill be a pre-modular category in general, and conjecturally it is
non-degenerate if and only if the first cohomology of the manifold withZ2 coefficients
is trivial.

The efforts in [8, 9] suggest a far-reaching connection between 3-manifolds and
(pre)modular tensor categories. However, this program is still at its infancy, and there
remain many questions to be resolved. First and foremost, the program currently only
provides an algorithm to compute the modular S- and T -matrices. Other data such as
the F-symbols and R-symbols, which specify the associators and braidings, respec-
tively [23], are still missing. Secondly, even for the modular data, the computation for
the S-matrix essentially follows a trial-and-error procedure. A definite algorithm to
achieve that is in demand. Thirdly, there are also a number of subtleties in choosing
the correct set of characters as simple objects, determining the proper unit object, etc.
Before these problems can be settled, more case studies are of great value in offering
insights from various perspectives, which is the motivation for the current paper. We
hope the insights obtained will lead to an intrinsic understanding of how and why this
program works.
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In this paper, we continue the work of [9] to apply the program to torus bundles
over the circle with SOL geometry [19]. The examples of Seifert fibered spaces in
[9] covered six of the eight geometries, the ones left being the hyperbolic and SOL.
Since the program concerns closed manifolds whose Chern–Simons invariants are
all real, hyperbolic manifolds are thus excluded. By definition, a torus bundle over
the circle is the quotient of T 2 × [0, 1] by identifying T 2 × {0} and T 2 × {1} via
a self-diffeomorphism of T 2, where T 2 denotes the torus. Since the mapping class
group of T 2 is SL(2,Z), a torus bundle over the circle is uniquely determined by
the isotopy class of the gluing diffeomorphism, called the monodromy matrix, which
is an element in SL(2,Z). Torus bundles whose monodromy is Anosov have SOL
geometry. Equivalently, a torus bundle has SOL geometry if and only if its monodromy
matrix A satisfies |Tr(A)| > 2 [19]. In [9], only special cases of Tr(A) being odd were
considered, and the resulting modular data are related to the quantum group categories
of type B. It was conjectured that other cases correspond to this type of categories as
well. However, we prove in the current paper that this is incorrect.

To state our main result, some more notations are required. For a finite Abelian
group G and a quadratic form q : G → C, denote by C(G, q) the pointed premodular
category whose isomorphism classes of simple objects are G and whose topological
twist is given by q. There is a Z2-action on C(G, q) defined by sending each simple
object to its dual (or its inverse viewed as a group element). ThisZ2-action is also called
the particle–hole symmetry ofC(G, q).Denote byC(G, q)Z2 theZ2-equivariantization
of C(G, q) with respect to the particle–hole symmetry. See Sect. 3 for more details.
The main result is as follows.

Theorem (also see Theorem 1) For each torus bundle over the circle MA with mon-
odromy matrix A, N := |Tr(A) + 2|, there is an associated finite Abelian group GA

isomorphic to Zr × ZN/r for some integer r ≥ 1 (Lemma 1) and a quadratic form

qA(x) := exp( 2π i q̃(x)
N ), q̃ : G → ZN (Lemma 3) such that the modular data realized

by MA coincide with those of C(GA, qA)Z2 .

When r = 1, GA is a cyclic group and the particle–hole equivariantization of
C(GA, qA) is the adjoint subcategory of the metaplectic SO(N )2. When N is addi-
tionally odd, we recover the result in [9]. The appearance of equivariantization seems
to be a salient feature of torus bundles. We leave it as a future direction to explore a
possible topological interpretation of equivariantization.

We note that although the (pre-)modular categories constructed in [9] and the cur-
rent paper are not new in anymeaningful sense, it prompts the question of what classes
of 3-manifolds correspond to what classes of premodular categories. Given our lim-
ited knowledge of the program, it is difficult to construct any new categories for the
moment. Our current case studies thus serve the purpose of obtaining more insight
to develop the program. Eventually, the hope is to have a better understanding of the
interplay between 3-manifolds and tensor categories and to produce more interesting
pre-modular categories from topology.

The rest of the paper is organized as follows: In Sect. 2, we review some basic facts
about premodular categories and recall the program of constructing (pre)modular
categories from 3-manifolds. Section 3 is devoted to computing the modular data
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of the equivariantization of a pointed premodular category under the particle–hole
symmetry. In Sect. 4, we state and prove themain theorem concerning the construction
of premodular categories from torus bundles.

2 Preliminaries

2.1 Premodular categories

Here we recall some basic notation and results involving premodular categories. A
more detailed treatment is given by standard reference material [4, 11]. Unless other-
wise specified, we will always be working over the base field of complex numbers.

Let C be a fusion category. We denote the set of isomorphism classes of simple
objects of C by Irr(C) = {X0 = 1, . . . , Xn−1}.

We have the fusion rules given by

Xi ⊗ X j ∼=
∑

k

Nk
i, j Xk,

where Nk
i, j = dimHom(Xi ⊗ X j , Xk) are called the fusion coefficients. For any

Xi ∈ Irr(C), the fusion matrix Ni is given by (Ni )k, j = Nk
i, j . The largest positive

eigenvalue of Ni is called the Frobenius–Perron dimension (or FP-dimension) of Vi
and is denoted by FPdim(Vi ) (cf. [12]). A simple object V ∈ Irr(C) is called invertible
if FPdim(V ) = 1.

A premodular category is a braided fusion category equipped with a ribbon struc-
ture. A ribbon structure on a braided monoidal category C is a family of natural
isomorphisms θV : V → V satisfying

θV⊗W = (θV ⊗ θW ) ◦ cW ,V ◦ cV ,W

θV ∗ = θ∗
V

for all V ,W ∈ C, where c is the braiding.
Let C be a premodular category. The (unnormalized) S-matrix of C has entries

Si, j := trX∗
i ⊗X j

(
cX j ,X∗

i
◦ cX∗

i ,X j

)
, Xi , X j ∈ Irr(C).

A premodular category is said to be modular if its S-matrix is nondegenerate. The
numbers di = Si,0 are called the quantum dimensions of the simple objects Xi ∈
Irr(C). The sum D2 = ∑n−1

i=0 d2i is called the global dimension of C.
As the ribbon isomorphism θXi is an element of End(Xi ) for any Xi ∈ Irr(C), we

can write θXi as a scalar θi times the identity map on Xi . We call θi the twist of the
simple object Xi . The T -matrix for a premodular C is defined to be the diagonal matrix
with entries

Ti, j = θiδi, j ,

123



From torus bundles to particle–hole equivariantization Page 5 of 19 15

where θi is the twist of Xi ∈ Irr(C). Note the fusion coefficients and entries of S and
T satisfy the following balancing equation

θiθ j Si j =
∑

k

Nk
i∗ j dkθk, (2.1)

where i∗ is the dual of i .
Given a fusion category C, let Cpt denote the full fusion subcategory generated

by the invertible objects in C. A fusion category C is said to be pointed if C = Cpt.
Every pointed fusion category is equivalent to Vecω

G , which is the category of finite-
dimensional vector spaces graded by a finite group G with the associativity given by
the 3-cocycle ω ∈ Z3(G,C×).

Let G be a finite Abelian group, q : G → C
× be a quadratic form,1 and χ :

G → C
× be a character such that χ2 = 1. As shown in [10], there exists a pointed

premodular category C(G, q, χ) with the following properties:

– the simple objects of C(G, q, χ) are parametrized by G, and the monoidal product
is given by the group product;

– Sgh = b(g, h)χ(g)χ(h), where b is the bicharacter b(g, h) := q(gh)
q(g)q(h)

; and
– Tg = q(g)χ(g).

Moreover, every pointed premodular category is equivalent to some C(G, q, χ). When
χ is trivial, we simply denote it as C(G, q).

2.2 Equivariantization

For a group Γ , let Γ be the tensor category whose objects are elements of Γ and
morphisms are identities. The tensor product is given by the multiplication of Γ .
Let C be a fusion category with an action of Γ on C given by the tensor functor
T : Γ → Aut⊗(C); g 	→ Tg . For any g, h ∈ Γ let νg,h be the isomorphism
Tg ◦ Th 
 Tgh that defines the tensor structure on the functor T . A Γ -equivariant

object is a pair (X , u), where X ∈ C and u =
{
ug : Tg(X)

∼→ X | g ∈ Γ
}
, such that

ugh ◦νg,h = ug ◦Tg (uh) for all g, h ∈ Γ . Themorphisms between equivariant objects
are morphisms in C commuting with ug for all g ∈ Γ . More explicitly, a morphism
between equivariant objects (X , u) → (Y , v) consists of a morphism f : X → Y
such that f ◦ ug = vg ◦ Tg( f ). The category of Γ -equivariant objects of C, which
is denoted by CΓ , is called the Γ -equivariantization of C [5, 10, 17]. CΓ is a fusion
category with the tensor product given by (X , u)⊗ (Y , w) := (X ⊗Y , u ⊗w), where
(u ⊗ w)g := (ug ⊗ wg) ◦ (μ

g
X ,Y )−1 and μ

g
X ,Y : Tg(X) ⊗ Tg(Y ) → Tg(X ⊗ Y ) is the

tensorator for T .

1 Recall that a quadratic form on an Abelian group G taking values in B is a map q : G → B such that (i)

q(g−1) = q(g) for all g ∈ G, and (ii) the symmetric function b(g, h) := q(gh)
q(g)q(h)

is bimultiplicative, i.e.,
b(gh, k) = b(g, k)b(h, k) for all g, h, k ∈ G.
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2.3 A program to construct premodular categories from threemanifolds

We first recall two key ingredients, the Chern–Simons invariant and the Reidemeister
torsion, that are used in the construction.

2.3.1 Chern–Simons invariant

Let X be a closed oriented 3-manifold and ρ : π1(X) −→ SL(2,C) be a group
morphism. Denote by Aρ the corresponding Lie algebra sl(2,C)-valued 1-form on X .
The Chern–Simons (CS) invariant of ρ is defined as

CS(ρ) = 1

8π2

∫

X
Tr

(
d Aρ ∧ Aρ + 2

3
Aρ ∧ Aρ ∧ Aρ

)
mod 1. (2.2)

It is a basic property that CS(ρ) only depends on the character induced by ρ. We
will use this fact below implicitly. It is in general very difficult to compute the CS
invariant directly using the integral definition. Various techniques are developed in
the literature for the calculations. See, for instance, [3, 15]. Usually, the procedure
involves cutting the manifold into simpler pieces, computing the CS invariant for each
piece, and inferring the CS invariant of the target manifold from that of the pieces.

2.3.2 Adjoint Reidemeister torsion

We first recall some basics about the Reidemeister torsion (R-torsion). For more
details, please refer to, e.g., [16, 21].

Let

C∗ = (0 −→ Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0 −→ 0)

be a chain complex of finite-dimensional vector spaces over the field C. Choose a
basis ci of Ci and a basis hi of the i th homology group Hi (C∗). The torsion of C∗
with respect to these choices of bases is defined as follows. For each i , let bi be a set
of vectors in Ci such that ∂i (bi ) is a basis of Im(∂i ) and let h̃i denote a lift of hi in
Ker(∂i ). Then, the set of vectors b̃i := ∂i+1(bi+1) � h̃i � bi is a basis of Ci . Let Di

be the transition matrix from ci to b̃i . To be specific, each column of Di corresponds
to a vector in b̃i being expressed as a linear combination of vectors in ci . Define the
torsion

τ(C∗, c∗, h∗) :=
∣∣∣∣∣

n∏

i=0

det(Di )
(−1)i+1

∣∣∣∣∣

We remark that the torsion does not depend on the choice of bi and the lifting of hi .
Also, we define the torsion as the absolute value of the usual torsion in the literature,
and thus, we do not need to deal with sign ambiguities.
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Let X be a finite CW-complex and (V , ρ) be a homomorphism ρ : π1(X)

−→ SL(V ) for some vector space V . Then V turns into a left Z[π1(X)]-module via
ρ. The universal cover X̃ has a natural CW structure from X , and its chain complex
C∗(X̃) is a free left Z[π1(X)]-module via the action of π1(X) as covering transforma-
tions. View C∗(X̃) as a right Z[π1(X)]-module by σ.g := g−1.σ for σ ∈ C∗(X̃) and
g ∈ π1(X). We define the twisted chain complex C∗(X; ρ) := C∗(X̃) ⊗Z[π1(X)] V .
Let {eiα}α be the set of i-cells of X ordered in an arbitrary way. Choose a lifting ẽiα
of eiα in X̃ . It follows that Ci (X̃) is generated by {ẽiα}α as a free Z[π1(X)]-module
(left or right). Choose a basis {vγ }γ of V . Then, ci (ρ) := {ẽiα ⊗ vγ } is a C-basis of
Ci (X; ρ).

Definition 1 Let ρ : π1(X) −→ SL(V ) be a representation.

1. We call ρ acyclic if C∗(X; ρ) is acyclic. Assume ρ is acyclic. The torsion of X
twisted by ρ is defined to be,

τ(X; ρ) := τ

(
C∗(X; ρ), c∗(ρ)

)
.

2. Let Adj : SL(V ) → SL(sl(V )) be the adjoint representation of SL(V ) on its Lie
algebra sl(V ). We call ρ adjoint acyclic if Adj ◦ ρ is acyclic. Assume ρ is adjoint
acyclic. Define the adjoint Reidemeister torsion of ρ to be,

Tor(ρ) := Tor(X; ρ) := τ(X;Adj ◦ ρ).

We remark that τ(X; ρ) is independent of the choices made for the liftings ẽiα of eiα and
for the basis {vγ } of V . In this paper, we will only deal with the adjoint Reidemeister
torsion ρ. In the sequel, we simply call it the torsion of ρ if there is no potential
confusion.

2.3.3 Constructing modular data from 3-manifolds

In this subsection,we briefly review the construction ofmodular data from3-manifolds
explained in [8, 9]. We refer the readers to [9] for more detailed discussions.

Definition 2 Let X be a closed oriented 3-manifold, and letχ be an SL(2,C)-character
of X .

– χ is non-Abelian if at least one representation ρ : π1(X) → SL(2,C) with
character χ is non-Abelian, i.e., ρ has non-Abelian image in SL(2,C).

– A non-Abelian character χ is adjoint-acyclic if all non-Abelian representations
ρ : π1(X) → SL(2,C) with character χ are adjoint-acyclic and have the same
adjoint Reidemeister torsion.

– A candidate label set L(X) is a finite set of adjoint-acyclic non-Abelian SL(2,C)

characters of X with a pre-chosen character χ0 such that CS(χ) − CS(χ0) is a
rational number for any χ ∈ L(X).
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We remark that for the torus bundles M over the circle to be considered in Sect. 4,
there are only finitelymany non-Abelian characters and all of them are adjoint-acyclic.
We always choose L(M) to be the set of all non-Abelian characters.

The potential premodular category corresponding to X has L(X) as the set of
isomorphism classes of simple objects. Each character in L(X) is a simple object
type, and the pre-chosen one χ0 is the tensor unit.

The CS and torsion invariants are both well defined for characters in L(X) (the
latter being by definition since the label set consists of adjoint-acyclic characters).
They are related to the twists and quantum dimensions. Specifically, denote by θα the
twist, and by dα the quantum dimension, of χα ∈ L(X). Also denote by D2 the total
dimension squared of the potential premodular category. Then

θα = e−2π i(CS(χα)−CS(χ0)), (2.3)

D2 = 2Tor(χ0), (2.4)

d2α = D2

2Tor(χα)
. (2.5)

Apparently, for the above structures to be realized by a genuine premodular cate-
gory, there must be some constraints on the label set. See [9] for the definition of an
admissible label set. Below, we will always assume L(X) is admissible.

To define the S-matrix, we first need to introduce the notion of loop operators.

Definition 3 A primitive loop operator of X is a pair (a, R), where a is a conjugacy
class of the fundamental group π1(X) of X and R a finite-dimensional irreducible
representation of SL(2,C).

Given an SL(2,C)-representation ρ of π1(X) and a primitive loop operator (a, R),
the weight of the loop operator (a, R) with respect to ρ is Wρ(a, R) := TrR(ρ(a)).
It can be shown that Wρ(a, R) only depends on the character of ρ for a fixed choice
of a primitive loop operator (a, R). Hence, for an SL(2,C)-character χ , we define
Wχ (a, R) to be Wρ(a, R) for any ρ representing χ .

It is assumed that each simple object type χα corresponds to a finite collection of
primitive loop operators

χα 	→ {(aκ
α, Rκ

α)}κ , (2.6)

where κ indexes the different primitive loop operators corresponding to χα . For a
choice of ε = ±1, we define the W -symbols

Wβ(α) :=
∏

κ

Wε χβ (aκ
α, Rκ

α), χα, χβ ∈ L(X). (2.7)

That is, Wβ(α) is the product of the weight of (aκ
α, Rκ

α) with respect to the character
εχβ . Here the product is taken over all primitive loop operators corresponding to χα ,
and εχβ is the character obtained by multiplying the sign ε to χβ . The W -symbols
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and the unnormalized S-matrix are related by:

Wβ(α) = Sαβ

S0β
or Sαβ = Wβ(α)W0(β), (2.8)

where 0 denotes the tensor unit χ0. In particular, the quantum dimension is given by
the equation

dα = W0(α) (2.9)

Unfortunately, we do not yet know how to algorithmically define the correspon-
dence between simple objects and loop operators, as well as the choice of ε. Both
currently involve a trial-and-error procedure. We try to guess a form of the correspon-
dence and check whether the resulting S-matrix is consistent with other data such as
the twists and the quantum dimensions obtained in Eqs. 2.3 and 2.5. In particular,
using loop operators we can compute the quantum dimension of simple objects (from
the first row of the S-matrix). On the other hand, Eq. 2.5 gives the absolute value
of quantum dimension in terms of adjoint Reidemeister torsion. These two ways of
computing quantum dimension place some constraints on loop operators. In practice,
those constraints are sufficient to obtain loop operators.

3 Equivariantization of particle–hole symmetry

Let C(G, q) denote the premodular category associated with a finite Abelian group
G and a quadratic form q : G → C as defined in [10]. In this section, we consider
the Z2-equivariantization C(G, q)Z2 of this premodular category, where the action
Z2 → Aut⊗(C(G, q)) corresponds to the involution g 	→ −g in G. Commonly
referred to as the “particle–hole symmetry,” this action previously appeared in the
classification of metaplectic modular categories [1, 6, 7] and equivariantization of
Tambara–Yamagami categories [13]. It is clear that this action preserves the braiding
as well since any quadratic form is invariant under inversion of its argument, and for
any braided pointed fusion category C(G, q) the braiding is given by the bilinear form
associated to q.

Proposition 1 As a fusion category, C(G, q)Z2 has the following simple objects:

Invertible objects: X+
b , X

−
b , for each b ∈ G such that b = −b.

Two-dimensional objects: Y{a,−a} for each a ∈ G such that a 
= −a.

For simplicity, we denote Ya := Y{a,−a}, and hence Ya = Y−a.

The fusion rules of C(G, q)Z2 are given by

X ε
b ⊗ X ε′

b′ ∼= X εε′
b+b′ ,

X ε
b ⊗ Ya ∼= Ya+b,

Ya ⊗ Ya′ ∼=
{
X+
0 ⊕ X−

0 ⊕ Y2a, if a = ±a′,
Ya+a′ ⊕ Ya−a′ , if a 
= ±a′, where ε, ε′ = ±1.
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Table 1 Simple objects for C(Zr ×ZN/r , q)Z2 . In the first column, we use ‘e’ to denote ‘even’ and ‘o’ for
‘odd’

(r , N
r ) X±

(a,b)

∣∣ Irr
(C(

Zr

× ZN/r , q
)Z2
pt

)∣∣
Y(a,b) Number of Y(a,b)

(o, o) (a, b) ∈ 〈(0, 0)〉 2 a = 1, . . . , r−1
2 ,

b = 1, . . . , N/r−1
2

N−1
2

(o, e) (a, b) ∈ 〈(0, N
2r )〉 4 a = 1, . . . , r−1

2 ,

b = 1, . . . , N
2r − 1

N
2 − 1

(e, o) (a, b) ∈ 〈( r2 , 0)〉 4 a = 1, . . . , r
2 − 1,

b = 1, . . . , N/r−1
2

N
2 − 1

(e, e) (a, b) ∈ 〈( r2 , 0), (0, N
2r )〉 8 a = 1, . . . , r

2 − 1,

b = 1, . . . , N
2r − 1

N
2 − 2

Proof In the notation of Sect. 3, we can pick the following representatives for each
isomorphism class of simple objects: X±

g is given by
(
g, u±)

, where u±
ε : g → g

is given by u±
ε = (±1)εidg for every ε ∈ Z2. Similarly, for all g 
= −g, there is a

Z2-equivariant object Yg given by (g ⊕ −g, u), where u0 : g ⊕ −g → g ⊕ −g is
given by

(
idg 0
0 id−g

)
,

while u1 : −g ⊕ g → g ⊕ −g is given by

(
0 idg

id−g 0

)
.

To see that these objects are simple, one can easily check that their endomorphism
rings are one-dimensional. For example, if f : Yg → Yg is a Z2-equivariant mor-
phism, then f = x idg ⊕ y id−g and f ◦ u1 = u1 ◦ T1( f ) = u1 ◦ (x id−g ⊕ y idg)
= y idg ⊕ x id−g . This implies x = y.

These simple objects are clearly pairwise non-isomorphic (except Ya = Y−a as
mentioned in the statement of the theorem), and the fusion rules follow from a simple
calculation. To see that they form a complete set of representatives, one can compare
the sum of the squares of their Frobenius–Perron dimensions with the categorical
dimension of C(G, q)Z2 , which must be twice that of C(G, q) by [11,Prop. 7.21.15].

��

Table 1 goes into more detail in the special case G = Zr × ZN/r .
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3.1 S- and T- matrices in a special case

We now specialize to the case that the minimal number of generators for G is at most
2. Fixing a surjective homomorphism Z × Z → G, we further assume the existence
of a well-defined quadratic form q̃ : G → ZN given by

q̃(x1, x2) = c1x
2
1 + c2x1x2 + c3x

2
2 (3.1)

for some c1, c2, c3 ∈ Z and independent of the choice of representative (x1, x2) ∈
Z×Z. We denote the associated bilinear form by λ, where λ : G ×G 	→ ZN defined
by λ(x, y) = q̃(x + y) − q̃(x) − q̃(y), where x = (x1, x2), y = (y1, y2) ∈ G. Thus
λ can be expressed explicitly as

λ(x, y) = 2c1x1y1 + c2(x1y2 + x2y1) + 2c3x2y2. (3.2)

In this case, we consider the pointed premodular category C(G, q) where q is
a quadratic form q : G → U (1) defined by q = exp 2π i q̃

N . Let F : C(G, q)Z2

→ C(G, q) be the forgetful functor. We can equip the fusion category C(G, q)Z2

defined in the previous section with a premodular structure as follows. We define
the braiding cX ,Y in C(G, q)Z2 by cX ,Y = cF(X),F(Y ). Similarly, we define θX for
X ∈ C(G, q)Z2 by θX = θF(X).

Combining the twists with the fusion rules described in Proposition 1, we compute
the corresponding S-matrix using the balancing equation 2.1:

– SX±
(a,b),X

±
(a′,b′)

= exp

(
2π i

N
λ(a, b, a′, b′)

)
;

– SX±
(a,b),Y(a′,b′) = 2 exp

(
2π i

N
λ(a, b, a′, b′)

)
;

– SY(a,b),Y(a′,b′) = 4 cos

(
2π

N
λ

(
a, b, a′, b′)

)
.

4 Premodular categories from SOL geometry

In this section,we consider a class of 3-manifoldswith SOLgeometry. LetM be a torus

bundle over the circle S1 with the monodromy map A =
(
a b
c d

)
∈ SL(2,Z). That is,

M is obtained from the product of the torus T 2 with the interval [0, 1] by identifying
the top and the bottom tori via a self-diffeomorphism A. It is known that M has
the SOL geometry if and only if |a + d| > 2 which is to be assumed below. We first
provide the character variety of M and then show that the modular data produced from
M are realized by the Z2 equivariantization of some pointed premodular categories.
Throughout this section, set N = |a + d + 2| > 0.
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4.1 Character variety of torus bundles

Let M be a torus bundle as above. Its fundamental group has the presentation

π1(M) = 〈x, y, h | xa yc = h−1xh, xb yd = h−1yh, xyx−1y−1 = 1〉, (4.1)

where x and y are the meridian and longitude of the torus, respectively, and h cor-
responds to a loop around the S1 component. This presentation of π1(M) can be
deduced directly from the standard CW-complex structure on M. We consider non-
Abelian characters of representations ρ : π1(M) → SL(2,C). According to [9], a
representation realizing each character is described as follows.

The irreducible representations are given by:

x 	→
(
e
2π ik
N 0

0 e− 2π ik
N

)
, y 	→

(
e
2π il
N 0

0 e− 2π il
N

)
, h 	→

(
0 1

−1 0

)
, (4.2)

where Im(e
2π ik
N ) ≥ 0 and either e

2π ik
N 
= ±1 or e

2π il
N 
= ±1 and the following equations

hold,

(a + 1) k + c l = μN

b k + (d + 1) l = νN
(4.3)

for some integers μ and ν. Since the coefficient matrix for Eq. 4.3 is nonsingular (its
determinant is ±N ), each irreducible representation is determined by the pair (μ, ν)

and hence denoted Y (μ, ν).
The reducible representations are of the form

x 	→ (−1)εx
(
1 1
0 1

)
, y 	→ (−1)εy

(
1 u
0 1

)
, h 	→

(
v 0
0 v−1

)
, (4.4)

where εx , εy ∈ {0, 1}, u 
= 0 and

(v + v−1)2 = a + d + 2, u = v−2 − a

c
. (4.5)

Let P be the quadruple that records the parity of the entries (a, d; b, c) and we use
‘e’ to denote for ‘even’ and ‘o’ for ‘odd’. For instance, P = (e, e; o, e) means b is
odd and the rest are even. We then have the following possible values for εx and εy in
each case:

– εx = 0, εy = 0, with no restrictions on P;
– εx = 1, εy = 1, only if P = (e, e; o, o) or P = (o, o; e, e);
– εx = 0, εy = 1, only if P = (o, o; o, e) or P = (o, o; e, e);
– εx = 1, εy = 0, only if P = (o, o; e, o) or P = (o, o; e, e).
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We can also refer to pairs (εx , εy) in (μ, ν)-coordinates using Eq. 4.3 and defining
k = εx (N/2) and l = εy(N/2). From Eq. 4.5, we see that for each fixed εx and εy ,
there are four inequivalent representations but only two characters, which we denote
by X±(μ, ν).

The torsions and Chern–Simons invariants are explicitly computed in [9]. In par-
ticular, we have

Tor(ρ) =
⎧
⎨

⎩

|a + d + 2|
4

, ρ is irreducible

|a + d + 2|, ρ is reducible
(4.6)

and

CS(ρ) =

⎧
⎪⎨

⎪⎩

kν − lμ

N
ρ is irreducible

(a + d + 2)εxεy + bεx + cεy
4

ρ is reducible.
(4.7)

4.2 Solution space

We consider solutions (k, l) of Eq. 4.3 inZN ×ZN . Note that, for now we do not place
any additional restrictions on the solutions. We denote this solution space by G.

Lemma 1 G is a subgroup of ZN × ZN isomorphic to Zr × Z N
r
, where r = gcd

(a + 1, c, b, d + 1).

Proof Let f : Z × Z → ZN × ZN be the group homomorphism given by

f

(
μ

ν

)
=

(
d + 1 −c
−b a + 1

)(
μ

ν

)

The solution space G is the image of f and a subgroup of ZN × ZN .

Define the chain complex Z × Z
g−→ Z × Z

f−→ ZN × ZN where

g =
(
a + 1 c
b d + 1

)
. Then, Im( f ) ∼= Z×Z/ ker( f ) and ker( f ) = Im(g). By consid-

ering the Smith normal form of g, we obtain an isomorphism G ∼= Zr × ZN/r where
r = gcd(a + 1, c, b, d + 1). ��
We can use G to characterize non-Abelian characters of M by the following lemma.

Lemma 2 The irreducible characters Y (μ, ν) of M are in one-to-one correspondence
with subsets {g,−g} ⊂ G where 2g 
= 0. In addition, the pairs X±(μ, ν) of reducible
non-Abelian characters are in one-to-one correspondence with elements g ∈ G such
that 2g = 0.

Proof Suppose that (μ, ν) ∈ G corresponds to a representation ρ as in Eq. 4.2, which
is not necessarily non-Abelian. We first show that ρ is non-Abelian if and only if

123



15 Page 14 of 19 S. X. Cui et al.

2(μ, ν) 
= 0. According to the previous subsection, ρ is non-Abelian if and only if
ρ(x), ρ(y) do not both take values in {I ,−I }, which is equivalent to the statement
that ρ(x2), ρ(y2) are not both I . Since 2(μ, ν) corresponds to the representation
(x 	→ ρ(x2), y 	→ ρ(y2), h 	→ ρ(h)), the claim follows from the fact that the
representation (x 	→ I , y 	→ I , h 	→ ρ(h)) corresponds to 0 ∈ G.

Suppose that (μ1, ν1), (μ2, ν2) ∈ G correspond to the same irreducible character.
Let (k1, l1) and (k2, l2) be the corresponding solutions to Eq. 4.3, and ρ1 and ρ2 be
the corresponding representations as defined in Eq. 4.2. Then either ρ1(x) = ρ2(x)
and ρ1(y) = ρ2(y), or ρ1(x) = ρ2(x−1) and ρ1(y) = ρ2(y−1), which implies that
(μ1, ν1) = ±(μ2, ν2). This proves the first part of the lemma.

For the second part, let ρ denote a reducible non-Abelian representation, and let
εx , εy ∈ {0, 1} be the corresponding sign exponents as defined in Eq. 4.4. By consid-
ering the diagonal entries of ρ(x) and ρ(y), such a representation ρ exists if and only
if the following equations are satisfied.

(a + 1)εx
N

2
+ cεy

N

2
= μN

bεx
N

2
+ (d + 1)εy

N

2
= νN

The solutions of above equations are in one-to-one correspondence with elements inG
of order 1 or 2. Fixing (εx , εy), the corresponding characters occur in pairs X±(μ, ν).
This proves the second part of the lemma. ��

We now define a map q̂ : Z × Z → ZN by q̂(μ, ν) = cν2 + (a − d)μν − bμ2.

Lemma 3 The map q̂ induces a quadratic form q̃ : G → ZN .

Proof Since ker( f ) = Im(g) =
{(

a + 1 c
b d + 1

) (
i
j

)
i, j ∈ Z

}
, it suffices to show

that q̂(μ + a + 1, ν + b) = q̂(μ, ν) and q̂(μ + c, ν + d + 1) = q̂(μ, ν) for general
μ and ν. We have

q̂(μ + a + 1, ν + b) − q̂(μ, ν) = c(ν + b)2 + (a − d)(μ + a + 1)(ν + b)

− b(μ + a + 1)2 − q̂(μ, ν)

= −b(d − a + 2a + 2)μ + (2bc + (a − d)(a + 1))ν

− b(−bc + (d − a)(a + 1) + (a + 1)2)

= (−2 + 2ad − ad + a2 + a − d)ν

− b(1 − ad + ad − a2 + d − a + a2 + 2a + 1)

= (−2 + a(−a − 2) + a2 + a + 2 + a)ν

= 0,

and

q̂(μ + c, ν + d + 1) − q̂(μ, ν) = c(ν + (d + 1))2 + (a − d)(μ + c)(ν + d + 1)
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− b(μ + c)2 − q̂(μ, ν)

= c(2(d + 1) + (a − d))ν + ((a − d)(d + 1) − 2bc)μ

+ c((d + 1)2 + (a − d)(d + 1) − bc)

= (−d2 − d + a − ad + 2)μ + c(d + 1 + ad + a − bc)

= 0

Thus, q̂ induces a well-defined map q̃ : G → ZN . It is routine to check that this map
is a quadratic form. ��

4.3 S- and T-matrices from torus bundles

We define the loop operators for non-Abelian characters by

X±(μ, ν) 	→ (xm yn,Sym0)

Y (μ, ν) 	→ (xm yn,Sym1)

where m = −bμ + (a − 1)ν, n = (−d + 1)μ + cν, and Sym j denotes the unique
( j + 1)-dimensional irreducible representation of SL(2,C). We choose X+(0, 0) to
correspond to themonoidal unit object. Each character can be represented by infinitely
many representatives (μ, ν) ∈ Z×Z, but as the following lemma shows, the S-matrix
is independent of this choice.

Lemma 4 Let Sl be the S-matrix constructed from loop operators as above, then

SlX±(μ1,ν1),X±(μ2,ν2)
= 1

SlX±(μ1,ν1),Y (μ2,ν2)
= 2

SlY (μ1,ν1),Y (μ2,ν2)
= 4 cos

(
2π

N
λ (μ1, ν1, μ2, ν2)

)

where λ(μ1, ν1, μ2, ν2) = q̃(μ1+μ2, ν1+ν2)− q̃(μ1, ν1)− q̃(μ2, ν2) is the bilinear
form associated with the quadratic form q̃ : G → ZN defined in Lemma 3.

Proof From Eq. 2.7, we have the following W -symbols

WX±(μ1,ν1)(X
±(μ2, ν2)) = WY (μ1,ν1)(X

±(μ2, ν2)) = 1

WX±(μ1,ν1)(Y (μ2, ν2)) = Tr(X±(μ1, ν1)(x
m2 yn2))

WY (μ1,ν1)(Y (μ2, ν2)) = Tr(Y (μ1, ν1)(x
m2 yn2))

Thus,

SlX±(μ1,ν1),X±(μ2,ν2)
= WX±(μ2,ν2)(X

±(μ1, ν1))WX+(0,0)(X
±(μ2, ν2)) = 1

SlX±(μ1,ν1),Y (μ2,ν2)
= WY (μ2,ν2)(X

±(μ1, ν1))WX+(0,0)(Y (μ2, ν2)) = 2

SlY (μ1,ν1),Y (μ2,ν2)
= WY (μ2,ν2)(Y (μ1, ν1))WX+(0,0)(Y (μ2, ν2)) = 2Tr(Y (μ2, ν2)(x

m1 yn1 ))
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and

Tr(Y (μ2, ν2)(x
m1 yn1 )) = 2 cos

(
2π

k2m1 + l2n1
N

)

= 2 cos

(
2π

N

(
m1 n1

) (
k2
l2

))

= 2 cos

(
2π

N

(
μ1 ν1

) ( −b −d + 1
a − 1 c

) (
d + 1 −c
−b a + 1

)(
μ2
ν2

))

= 2 cos

(
2π

N

(
μ1 ν1

) ( −2b a − d
a − d 2c

)(
μ2
ν2

))

= 2 cos

(
2π

N
λ(μ1, ν1, μ2, ν2)

)
.

��
Defining q : G → U (1) by q(x) = e

2π i q̃(x)
N , we have the premodular category

C(G, q) and its Z2-equivariantization C(G, q)Z2 as described in Sect. 3. Our main
theorem is the following.

Theorem 1 The S- and T -matrices constructed from torus bundles with Sol geometry
coincide with those of the Z2-equivariantization C(G, q)Z2 .

Proof From Eqs. 4.3 and 4.7, we have CS(ρ) = −cν+(d−a)μν+bμ2

N = − q̃(μ,ν)
N . Thus,

the T -matrix of C(G, q)Z2 as defined in Sect. 3.1 coincides with the one constructed
directly from the torus bundle as defined in Eq. 2.3.

Let Se denote the S-matrix from the Z2-equivariantization C(G, q)Z2 as defined
in Sect. 3.1, and let Sl denote the S-matrix from the local operator construction as
defined in Lemma 4. We first consider the following entry:

SeX±(μ1,ν1),X±(μ2,ν2)
= q(X(μ1 + μ2, ν1 + ν2))

q(X(μ1, ν1))q(X(μ2, ν2))

When X(μ1, ν1) = X(μ2, ν2), according to the group structure of G we have
X(μ1 + μ2, ν1 + ν2) = X(0, 0). Thus, SeX±(μ1,ν1),X±(μ2,ν2)

= 1. Similarly, if
X(μi , νi ) = X(0, 0) for either i , then clearly SeX±(μ1,ν1),X±(μ2,ν2)

= 1.
When X(μ1, ν1) 
= X(μ2, ν2) and (μi , νi ) 
= (0, 0) for all i , then the char-

acters X(μ1 + μ2, ν1 + ν2), X(μ1, ν1), and X(μ2, ν2) are all distinct. Using the
notation of Sect. 4.1, these characters must correspond to the cases (εx , εy) ∈
{(1, 0), (0, 1), (1, 1)}. As mentioned in that section, this can only occur if the par-
ities of (a, d; b, c) are (o, o; e, e). Using the fact that ad − bc = 1, one obtains that
N = a+d+2 = 0 (mod 4). Thus, Eq. 4.7 reduces to CS(X(μ, ν)) = (bεx +cεy)/4.
By inspection, onefinds that applyingq(μ, ν) = exp(−2π iCS(X(μ, ν))) to the (μ, ν)

corresponding to (εx , εy) ∈ {(1, 0), (0, 1), (1, 1)} yields either the multiset −1,−1, 1
or 1, 1, 1. Thus, SeX±(μ1,ν1),X±(μ2,ν2)

= 1.
Next we consider

SeX±(μ1,ν1),Y (μ2,ν2)
= 2

q(Y (μ1 + μ2, ν1 + ν2))

q(X(μ1, ν1))q(Y (μ2, ν2))
.
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Without loss of generality, we only need to consider two cases: (μ1, ν1) correspond-
ing to (k1 = N

2 , l1 = 0) where the parity of (a, d; b, c) is (o, o; e, o), and (μ1, ν1)

corresponding to (k1 = N
2 , l1 = N

2 ) for (o, o; e, e) and (e, e; o, o).
When k1 = N

2 and l1 = 0,

SeX±(μ1,ν1),Y (μ2,ν2)
= 2 exp

(
2π i

(k2 + N
2 )(ν2 + b

2 ) − l2(μ2 + a+1
2 ) − k2ν2 + l2μ2 − Nb

4

N

)

= 2 exp

(
2π i

Nν2 + k2b − l2(a + 1)

2N

)

= 2 exp

(
2π i

Nν2 + ν2N − l2(d + 1) − l2(a + 1)

2N

)

= 2 exp

(
2π i

−l2(a + d + 2)

2N

)

= 2 exp

(
2π i

−l2
2

)

Since l2 = −bμ2 + (a + 1)ν2 and b, a + 1 are both even, l2 is even. Thus,
SeX±(μ1,ν1),Y (μ2,ν2)

= 2.

When k1 = N
2 and l1 = N

2 ,

SeX±(μ1,ν1),Y (μ2,ν2)
= 2 exp

(
2π i

N
((k2 + N

2
)(ν2 + b + d + 1

2
) − (l2 + N

2
)(μ2 + a + c + 1

2
)

−k2ν2 + l2μ2 − N (a + c + b + d + 2)

4
)

)

= 2 exp

(
π i

N
(N (ν2 − μ2) + k2(b + d + 1) − l2(a + c + 1))

)

= 2 exp

(
π i

N
(N (ν2 − μ2) + Nν2 − (d + 1)l2

+ k2(d + 1) − Nμ2 + k2(a + 1) − l2(a + 1))
)

= 2 exp

(
π i

N
(k2 − l2)(a + d + 2)

)

= 2 exp (π i(k2 − l2))

Since k2 − l2 = (b + d + 1)μ2 − (a + c + 1)ν2 and b + d + 1, a + c + 1 are both
even, k2 − l2 is even. Thus, SeX±(μ1,ν1),Y (μ2,ν2)

= 2.
Lastly, it follows from their definitions inLemma4andSect. 3.1 that SeY (μ1,ν1),Y (μ2,ν2)

= SlY (μ1,ν1),Y (μ2,ν2)
. ��
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