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Abstract
We prove that every metric graph which is a tree has an orthonormal sequence of
generic Laplace-eigenfunctions, that are eigenfunctions corresponding to eigenvalues
of multiplicity one and which have full support. This implies that the number of nodal
domains νn of the n-th eigenfunction of theLaplacianwith standard conditions satisfies
νn/n → 1 along a subsequence and has previously only been known in special cases
such as mutually rationally dependent or rationally independent side lengths. It shows
in particular that the Pleijel nodal domain asymptotics from two- or higher dimensional
domains cannot occur on these graphs: Despite their more complicated topology,
they still behave as in the one-dimensional case. We prove an analogous result on
general metric graphs under the condition that they have at least one Dirichlet vertex.
Furthermore, we generalize our results to Delta vertex conditions and to edgewise
constant potentials. The main technical contribution is a new expression for a secular
function in which modifications to the graph, to vertex conditions, and to the potential
are particularly easy to understand.

Keyword Quantum graphs

1 Introduction

Metric graphs or quantum graphs are metric spaces constituted of intervals which are
glued together at their endpoints according to the structure a combinatorial graph. They
can be understood as one possible generalization of intervals, and one can see them as
objects between one- and higher-dimensional domains. One can define a self-adjoint
Laplace operator (or Laplacian), which operates edgewise as the second derivative
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on those square summable functions that satisfy prescribed vertex conditions. In this
note, we focus on standard, Dirichlet and δ-coupling conditions. The Laplacian can
have some surprising features such as eigenfunctions vanishing on some edges – a
violation of the unique continuation principle and ametric-graph specific phenomenon
which never happens in connected domains in any dimension, see also [21] for more
insights into this phenomenon such as a classification of the minimal supports of these
eigenfunctions.

One motivation for this article arises from the question whether the lim sup νn/n,
where νn denotes the number of so-called nodal domains of the n-th eigenfunction,
always behaves as in the one-dimensional case, that is lim sup νn/n = 1. In other
words, we ask whether the topological complexity of metric graphs alone is indeed
unable to warp the nodal domain asymptotics in such a way that they differ from the
one-dimensional case and exhibit higher dimensional features. This has been proved
only under technical assumptions so far. Our first result, Theorem 1 proves that this
is indeed universally true on tree graphs with standard conditions at all vertices, thus
partly settling a conjecture asked in [14]. Theorem 2 generalizes this to all connected
graphs with at least one Dirichlet vertex. Theorems 3 and 4 show that these results are
robust when standard conditions are replaced by δ-coupling conditions and when an
edgewise constant potential is added to the Laplacian. Indeed, Theorems 1 to 4 prove
something stronger, namely the existence of an infinite sequence of so-called generic
eigenvalues. These are simple eigenvalues such that the corresponding normalized
eigenfunctions are nonzero on all non-Dirichlet vertices. The term generic arises from
the fact that for any given combinatorial graph the set of edge lengths that lead to
an infinite sequence of generic eigenvalues of the corresponding metric graph is a
residual set – with the notable exception of the cycle graph [12], see also Example 6
below. Therefore, in the class of metric graphs we consider in this note, we show that
generic eigenvalues are even a universal phenomenon. There are no exceptions.

Our technical novelty is a new expression for a secular function, that is an analytic
function the positive zeros of which are in one-to-one correspondence with the spec-
trum of the Laplacian. Our secular function differs from usual expressions which are
constructed as det(Id−U (ω)) for a unitary matrix U . The latter function boasts the
advantage that one can incorporate all possible self-adjoint boundary conditions in
the theory and that it is known that the order of its (positive) zeros coincides with the
multiplicity of the eigenvalue. Our secular function has the advantage that it is a priori
real-valued and that we can explicitly understand the effects of some graph operations
on it. Some topological properties of the graph are also directly observable from the
formalism, see Proposition 9.

We introduce notation andmain results in Sect. 2. The secular function is introduced
in Sect. 3 where also Theorem 1 is proved. Sections 4, 5.1, and 5.2 contain the proofs
of Theorems 2, 3, and 4.

2 Preliminaries andmain results

Let G be a compact and connected metric graph, that is a finite, connected combi-
natorial graph G with edge set E = EG and vertex set V = VG where each edge e is
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identified with an interval [0, �e] of finite length �e ∈ (0,∞). For a rigorous definition
of metric graphs as metric measure spaces see also [17]. We write G = (G, �) where
� = (�e)e∈E ∈ R

|E| denotes the vector of edge lengths. The initial and terminal vertex
of e is the vertex v ∈ V incident to e which is identified with 0 or �e, respectively.
This suggests the notation e = vw for an edge e connecting the initial vertex v with
the terminal vertex w which we will use when appropriate. The degree of a vertex v
is the number of edges v belongs to.

We are interested in spectral properties of the Laplacian −� = −�G on G that

acts edgewise as the negative second derivative − d2

dx2e
and whose domain is the space

of functions f that are edgewise in the Sobolev space H2(0, �e) and satisfy for each
vertex v ∈ V one of the following vertex conditions:

• Standard or Kirchhoff-Neumann conditions: f is continuous in v and satisfies the
Kirchhoff condition

∑

e∈Ev
∂e f (v) = 0 (1)

where Ev denotes the set of edges incident to v and ∂e f (v) is the outward derivative
of f on e at v;

• Dirichlet conditions: f takes the value 0 in v.

We denote by VN the set of vertices in Vwith standard conditions and by VD = V\VN

the set of vertices with Dirichlet vertex conditions. It is well-known that −� is a
non-negative self-adjoint operator with purely discrete spectrum. In Theorem 3 we
will also consider

• δ-coupling conditions: f is continuous in v and satisfies the relation

∑

e∈Ev
∂eψ(v) = αvψ(v) (2)

for real coupling constants (αv)v∈V.

Since adding a dummy vertex with standard conditions on an edge does not change
the spectral properties of the operators considered in this article, we assume that the
underlying combinatorial graph G does not contain any loops, meaning that the initial
and terminal vertex of any edge in EG do not coincide. Indeed, this can be achieved
by adding such a vertex on every such loop. Furthermore, we assume that all vertices
with Dirichlet conditions are of degree one. Indeed, if a Dirichlet vertex was of higher
degree k > 1, then we could replace it by k distinct Dirichlet vertices of degree one
without affecting the spectrum of the Laplacian. We also emphasize that the assumed
connectedness of G refers to connectedness after all Dirichlet vertices have been split
and turned into vertices of degree one as just described.

Our starting point is Conjecture 4.3 in [14] which states that for every compact
connected metric graph there exists an orthonormal base (ψn)n∈N of Laplace-
eigenfunctions with monotonous eigenvalues such that such that for a subsequence
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(nk)k∈N, all ψkn have full support, i.e. none of these eigenfunctions vanishes identi-
cally on any edge of G. Together with Proposition 3.4 in [14], this would imply for
this choice of eigenfunctions

lim sup
n→∞

νn

n
= 1 (3)

where νn denotes the number of nodal domains ofψn , that is the number of connected
components in which ψn is nonzero.

For domains, one already knows the bound νn ≤ n [10] and the identity (3) holds
on bounded intervals since Sturm’s Oscillation Theorem [20] yields νn = n in this
case. The validity of the conjecture (3) would thus show that Pleijel’s Theorem is a
truly higher-dimensional effect and cannot be reproduced on metric graphs which,
despite having a topologically more complex structure than intervals, are locally still
one-dimensional metric spaces.

Analouges of Sturm’s Oscilation Theorem are known for metric graphs: it was
shown in [2,19] that νn = n holds if and only if G is a tree, i.e. a graph without cycles.
For metric graphs with higher Betti number β – the number of independent cycles in
G –, it was shown in [13] (upper bound) and [5] (lower bound) that n − β ≤ νn ≤ n
holds for so-called generic eigenfunctions ψn , namely eigenfunctions that correspond
to eigenvalues of multiplicity one and are nonzero in every vertex of G. In particular,
they must have full support. We also refer to [3] for further reading on the topic of
nodal counts on metric graphs. It is known that for a graph G (without loops), the set
of vectors of side lengths (�e)e∈E which lead to the genericity of all eigenfunctions is
of the second Baire category [7], i.e. “generic eigenfunctions are generic", and (3) is
generically true.

It is however not known if (3) holds for anymetric graph. In fact, there is a remark-
able dichotomy of special cases in which the conjecture is known to be true: on the
one hand, these are graphs with pairwise rationally dependent side lengths, cf. [14,
Theorem 4.2]. The crucial idea is to use their resonance and to construct a fully sup-
ported eigenfunction by putting cosine waves on all edges. This allows for an easy
construction of fully supported eigenfunctions, but in general (when the graph has
loops, i.e. if it is not a tree), these eigenfunctions will be degenerate, since eigenfunc-
tions to the same eigenvalue can also be constructed by arranging sine waves on loops.
As we shall see, this degeneracity of eigenvalues prevents the application of certain
techniques. Furthermore, this construction strongly relies on the rational dependence
which will break down under arbitrarily small perturbations.

On the other hand, empirically, rationally independent side lengths will generate
chaos and favour the emergence of generic eigenfunctions: for graphs with rationally
independent edge lengths, it is was shown in [1, Proposition A.1] that there exists an
infinite sequence of generic eigenfunctions and, thus, the conjecture also holds in that
case.

This dichotomy of methods—resonance in the case of rationally dependent and
chaos for rationally independent side lengths—does not seem amenable to a unifica-
tion.
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Our first result surmounts this at least on trees and shows that every metric tree
graph has a sequence of generic eigenfunctions.

Theorem 1 Let G be a connected and compact metric tree with standard conditions at
all vertices of G. Then there exist an infinite sequence of generic eigenvalues, that is a
strictly increasing sequence of eigenvalues (λk)k∈N of multiplicity one and a sequence
of corresponding eigenfunctions (ψk)k∈N of −�, so that each ψk does not vanish at
the vertices of G.

The proof of Theorem 1 relies on the secular function approach given in Sect. 3.
A close look at the proof indicates the modifications necessary to also treat metric
graphs (not only trees!) with at least one Dirichlet vertex and leads to our next result.
We comment in Remark 10 on the challenges to generalize Theorem 1 to general
graphs without Dirichlet vertices.

Theorem 2 Let G be a connected and compact metric graph with at least one Dirichlet
vertex. Then there exist an increasing sequence of generic eigenvalues, that is a strictly
increasing sequence (λk)k∈N of multiplicity one and a sequence of corresponding
eigenfunctions (ψk)k∈N of −�, so that each ψk is nonzero in all vertices of G except
in the Dirichlet vertices.

The proof of Theorem 2 is given in Sect. 4. Using a perturbation argument, we
can obtain some more consequences and generalizations. The first one are δ-coupling
conditions:

Theorem 3 The statements of Theorems 1 and 2 remain valid if any number of standard
conditions are replaced by δ-coupling conditions as in (2).

Then,we can alsomodify the operator by adding a piecewise constant potential, that
is we choose real parameters (qe)e∈E and consider the operator H that acts edgewise
as negative second derivative plus potential − d2

dx2e
ψ + qeψ .

Theorem 4 The statements of Theorems 1, 2, and 3 remain valid if we add any real-
valued, edgewise constant potential to the Laplacian.

Note that step-function potentials that take distinct values on a finite number of
connected components of the metric graph are incorporated within Theorem 4 after
adding additional standard vertices at all points where the potential switches values.
The proof of Theorem 3 is in Sect. 5.1 and the proof of Theorem 4 in Sect. 5.2.

3 A secular function for pedestrians and its application to trees

In this section, we reformulate the eigenvalue problem for−� in terms of a frequency-
dependent finite dimensional matrix Aω which has non-trivial kernel if and only if ω2

is an eigenvalue of−�. The function ω �→ det Aω is a secular function, that is a holo-
morphic function the non-negative zeros of which are in one-to-one correspondence
with σ(−�).
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Secular functions are a common tool in the spectral theory ofmetric graphs. They are
usually constructed as a determinant of a matrix on a complex 2|E|-dimensional vector
space using a scattering approach at the vertices [15]. This leads to an a priori complex-
valued secular function, even though it can be made real-valued by a multiplication
with a phase, see [6, Remark 2.10], and allows to incorporate all possible choices of
self-adjoint vertex conditions in one theory [4].

Our approach seems to be a bitmore hands-on.We assume continuity at the vertices,
which is not required for all self-adjoint vertex conditions, but which is certainly the
case for standard, Dirichlet and δ-coupling conditions. Our matrices are purely real-
valued which would a priori require a real 4|E|-dimensional vector space (recall that
this is the real dimension of a complex 2|E|-dimensional vector space), but thanks to
continuity of the eigenfunctions, this reduces to |V| + 2|E| dimensions.

More precisely, to define the secular function, we use the following reductions: At
fixed eigenvalue λ = ω2, ω ≥ 0, an eigenfunction ψ is uniquely determined by

• its |V| many values at vertices {ψ(v)}v∈V,
• its 2|E| many outward derivatives at the end points of edges {∂eψ(v)}v∈V,e∈Ev .

On any edge e = vw, an eigenfunction is a linear combination of sin and cos waves
with frequencyω. This implies forω > 0 the following consistency condition between
function values and derivatives at the endpoints

(
ψ(w)

∂eψ(w)

)
=
(

cos(�eω) − sin(�eω)
ω−ω sin(�eω) − cos(�eω)

)(
ψ(v)

∂eψ(v)

)

which can be rewritten as
(

ψ(w)
∂eψ(w)

ω

)
=
(

cos(�eω) − sin(�eω)

− sin(�eω) − cos(�eω)

)(
ψ(v)
∂eψ(v)

ω

)
, (4)

or equivalently

(
1 − cos(�eω) sin(�eω) 0
0 sin(�eω) cos(�eω) 1

)
⎛

⎜⎜⎝

ψ(w)

ψ(v)
∂eψ(v)

ω
∂eψ(w)

ω

⎞

⎟⎟⎠ = 0. (5)

Identity (5) holds on every edge e ∈ E which leads to 2|E| equations with (|V| + 2|E|)
variables. We combine them with the |V| many vertex conditions (as of now we focus
on standard or Dirchlet conditions and discuss δ-coupling conditions in Sect. 5.1) into
a ω-dependent (|V| + 2|E|) × (|V| + 2|E|)-square matrix

Aω(G,VD) =

⎛

⎜⎜⎜⎜⎜⎜⎝

. . . 0 . . .

0 1 0
. . .

. . . 1 . . . 1 . . .

. . . 0 . . .

. . .

1 − cos(�eω)

sin(�eω)

. . .

sin(�eω)

cos(�eω) 1
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
. (6)

123



On fully supported eigenfunctions... Page 7 of 23 153

Fig. 1 The cycle graph f

e

v w

The top |V| rows of the matrix represent the vertex conditions, the bottom 2|E| rows the
consistency conditions (5) across edges. When appropriate, we omit the dependence
on the graph G and the Dirichlet vertex set VD and simply write Aω. We will also write
Aω(G) if VD = ∅ is empty, and Aω(G, v) = Aω(G,VD) if VD = {v} is a one-element
set.

Now, to every eigenfunction ψ of −� with eigenvalue λ = ω2 > 0, corresponds a
uniquely determined vector x = x(ψ) ∈ ker Aω ⊂ R

|V|+2|E| given by

x =
( {x(v)}v∈V

{x(v, e)}v∈V,e∈Ev

)
=
( {ψ(v)}v∈V

{ ∂eψ(v)
ω

}v∈V,e∈Ev

)
. (7)

Conversely, every nonzero vector x ∈ ker Aω uniquely determines linear combina-
tions of sin and cos waves with frequency ω on every edge e which satisfy boundary
conditions at all vertices. Therefore, x uniquely determines an eigenfunctionψ of−�

to the eigenvalue ω2. In other words, we have proved:

Lemma 5 For ω > 0 and λ = ω2 the mapping

Eig(−�,λ) → ker(Aω), ψ �→ x(ψ)

is a well-defined isomorphism of vector spaces. In particular, λ is an eigenvalue of
−� if and only if det Aω = 0.

Example 6 We illustrate our construction of Aω and the corresponding secular function
det Aω via a simple example; the cycle graph G parametrised via two edges e, f of
respective lengths �e and �f that connect two vertices v,w (see Fig. 1).

Then the matrix Aω is given by

v w ∂ew/ω ∂ev/ω ∂fw/ω ∂fv/ω⎛

⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎠

v 0 0 0 1 0 1
w 0 0 1 0 1 0

∂ew/ω 1 − cos(�eω) sin(�eω) 0 0 0
∂ev/ω 0 sin(�eω) cos(�eω) 1 0 0
∂fw/ω 1 − cos(�fω) 0 0 sin(�fω) 0
∂fv/ω 0 sin(�fω) 0 0 cos(�fω) 1

. (8)

Its determinant is det Aω = −4 sin( L2 ω)2 where L = �e + �f is the total length of
G. We observe that the positive zeroes of det Aω are ω = 2πk

L for k ∈ N, and their
squares are the non-trivial eigenvalues of the negative Laplacian on G.
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Also note that in this case, every non-trivial eigenvalue has multiplicity two. This
illustrates why the statement on generic eigenvalues in Theorem 1 cannot be gener-
alized to arbitrary metric graphs without Dirichlet vertices. However, the article [12]
also suggests that the cycle is the only generically adversial example.

The next lemma shows that this secular function ω �→ det Aω is well-defined:

Lemma 7 The above defined secular function ω �→ det Aω does not change when

(a) the orientation of an edge is inverted,
(b) an edge is subdivided into two edges by a vertex of degree 2 with standard condi-

tions on the new vertex.

Proof For simplicity, we only consider vertices with standard conditions since Dirich-
let conditions lead to very similar calculations. We frequently use the fact that
simultaneous permutations of lines and columns as well as adding multiples of a
row or column to another one will not affect the determinant. Denoting the edge by
e = vw, (a) is shown by demonstrating that the following two determinants are equal:

det

v w ∂ew/ω ∂ev/ω other
⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

v 0 0 0 1 ∗
w 0 0 1 0 ∗

∂ew/ω 1 − cos(�eω) sin(�eω) 0 0
∂ev/ω 0 sin(�eω) cos(�eω) 1 0
other ∗ ∗ 0 0 ∗

(9)

and

det

v w ∂ew/ω ∂ev/ω other
⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

v 0 0 0 1 ∗
w 0 0 1 0 ∗

∂ew/ω sin(�eω) 0 1 cos(�eω) 0
∂ev/ω − cos(�eω) 1 0 sin(�eω) 0
other ∗ ∗ 0 0 ∗

(10)

Since the matrix in (9) results from the one in (10) by multiplication from the left with
the matrix

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1
sin(�eω) − cos(�eω)

cos(�eω) sin(�eω)

. . .

1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

which itself has determinant 1, (a) follows.
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For (b), let us denote the original edge ẽ = uw which is subdivided in two edges
e = uv and f = vw by inserting a new vertex v on ẽ. We describe a sequence of steps
which reduce the secular function of the extended graph to the one of the original one.
After simultaneous permutations of lines and columns, the matrix corresponding to
the graph with extra vertex will be

u v w ∂eu/ω ∂ev/ω ∂fv/ω ∂fw/ω other
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

u 0 0 0 1 0 0 0 ∗
v 0 0 0 0 1 1 0 0
w 0 0 0 0 0 0 1 ∗

∂eu/ω sin(�eω) 0 0 cos(�eω) 1 0 0 0
∂ev/ω − cos(�eω) 1 0 sin(�eω) 0 0 0 0
∂fv/ω 0 sin(�fω) 0 0 0 cos(�fω) 1 0
∂fw/ω 0 − cos(�fω) 1 0 0 sin(�fω) 0 0
other ∗ 0 ∗ 0 0 0 0 ∗

. (11)

We now perform the following sequence of manipulations, all of which leave the
determinant of (11) invariant:

• subtract the ∂fv/ω column from the ∂ev/ω column,
• develop along the v row (which now has only one nonzero entry),
• in the resulting minor subtract sin(�fω) times the ∂ev/ω row from the ∂fv/ω row
and add it cos(�fω) times to the ∂fw/ω row,

• develop along the v column (which has only one nonzero entry),
• in the resulting minor add cos(�eω) times the ∂eu/ω row to the ∂fv/ω row and
sin(�eω) times ∂eu/ω to the ∂eu/ω row,

• develop along the ∂ev/ω column (which has only one nonzero entry and yields a
prefactor −1),

• swap the ∂eu/ω column and the ∂fw/ω column (compensating the prefactor −1).

This simplifies the determinant of (11) to

det

u w ∂fw/ω ∂eu/ω other
⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

u 0 0 1 0 ∗
w 0 0 0 1 ∗

∂ev/ω sin(�ẽω) 0 1 cos(�ẽω) 0
∂fw/ω − cos(�ẽω) 1 0 sin(�ẽω) 0
other ∗ ∗ 0 0 ∗

where we used that due to �ẽ = �e + �f we have

cos(�ẽω) = cos(�eω) cos(�fω) − sin(�eω) sin(�fω), and

sin(�ẽω) = sin(�eω) cos(�fω) + cos(�eω) sin(�fω).

After relabeling, this determinant corresponds to the structure of the original graph. ��
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Nevertheless, there is a common problem with secular matrices: the isomorphism
between Eig(−�,λ) and ker(Aω) in Lemma 5 does not persist at ω = 0, i.e. for the
matrix

A0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0
. . . 1 . . . 1 . . .

1 . . . 1 . . . 1
. . .

1 −1
0
. . .

0
1 1

. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Indeed, bearing in mind that limω→0 sin(�eω)/ω = �e, the eigenspace corresponding
to the eigenvalue λ = 0 would correspond to the kernel of the different matrix

⎛

⎜⎜⎜⎜⎜⎜⎝

0
. . . 1 . . . 1 . . .

1 . . . 1 . . . 1
. . .

1 −1
0
. . .

�e
1 1

. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
. (12)

The matrix in (12) describes edgewise linear, that is harmonic functions on the graph
and has one-dimensional kernel whereas the kernel of A0 will in general have higher
dimension, see Proposition 9 below. Fortunately, if the graph is a tree, the matrix A0
retains useful properties which are reminiscent of the ground state of the Laplacian:

Lemma 8 If G is a metric tree with standard conditions at all vertices (i.e VD = ∅),
then the matrix A0 has one-dimensional kernel and

ker A0 = Span{x0}, where x0 := 1√|V|

⎛

⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0
. . .

0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Proof Clearly x0 ∈ ker A0. Furthermore, it follows from the structure of A0 that any
solution to A0x = 0 has the same entry in all of its |V| first coordinates. It remains to
see that all elements in the Ker A0 vanish on the last 2|E| entries. This is due to the
tree structure: The lower left submatrix of A0 implies that entries corresponding to
derivatives at both end points of an edge must be identical while the standard condi-
tions, encoded in the top right submatrix of A0, imply that all entries corresponding to
outgoing derivatives at all leaves must vanish. Inductively, one can now remove leaves
from the graph and eventually find that all of the last 2|E| entries of x ∈ ker A0 vanish.

��
More generally, the matrix A0 contains information on the topological structure of

the underlying graph:
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Proposition 9 We have on connected graphs

dim ker A0 = β(G) + 1

if VD = ∅ and

dim ker A0 = #VD + β(G) − 1

if #VD ≥ 1 where β(G) = #E − #V + 1 ≥ 0 is the first Betti number of the graph.

Proof We only prove the first statement, since the second one can be shown using
similar arguments. We first observe that ker A0(G) may be decomposed as

ker A0(G) = V (G) ⊕ W (G)

where

V (G) = Span

⎛

⎝
1
. . .

1

⎞

⎠ ⊂ R
|V |

and W (G) ⊂ R
2|E| is the space of vectors {x(v, e)}v∈V,e∈Ev satisfying

x(v, e) = −x(w, e)

for all edges e ∈ E connecting two vertices v and w and

∑

e∈Ev
x(v, e) = 0

for all vertices v ∈ V. We thus have to show that dimW (G) = β(G). To do so we
proceed by induction over β. For β = 0 the statement follows from Lemma 8. For
β > 0, we may cut G through some appropriately chosen vertex v in G, so that v is
split into two vertices v1 and v2 resulting in a new connected graph G̃ with first Betti
number β(G̃) = β(G) − 1, or equivalently

β(G) = β(G̃) + 1. (13)

Moreover, by definition of W (G), we have

W (G̃) =
⎧
⎨

⎩{x(v, e)}v∈V,e∈Ev ∈ W (G)
∣∣ ∑

e∈Ev1
x(e, v) = 0

⎫
⎬

⎭ ,

from which we infer that W (G̃) has codimension 1 in W (G).

dimW (G) = dimW (G̃) + 1. (14)
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Thus, the stated equality dimW (G) = β(G) follows by induction over β(G) using
(13) and (14). ��
Remark 10 Proposition 9 can be seen as an illustration for the reason why we cannot
go beyond trees if there are standard conditions at all vertices. Below, we will strongly
rely on the fact that on trees, det Aω has a zero of first order at ω = 0. If G is not a tree,
then it has nonzero Betti number, whence A0 will have a higher dimensional kernel
and ω �→ det Aω will have a zero of higher order at ω = 0. Therefore, the case of
non-tree graphs with only standard conditions remains open.

Now comes a subtle point: In general, if Aω has k-dimensional kernel, then the
secular function ω �→ det Aω must have a zero of at least k-th order at ω. We have
not been able to prove that the order of the zero is equal to the dimension of the
kernel, even though this seems very plausible. This is actually one disadvantage of our
approach compared to more classical forms of the secular function where it is known
that the order of positive zeros coincide with the dimension of the eigenspace [4]. On
metric trees, the matrix A0 does have one-dimensional kernel, but we would like to
use that det Aω has a zero of order one at ω = 0. This is why we need the following
proposition:

Proposition 11 If G is a metric tree

∂

∂ω |ω=0

[
det Aω(G)

] = −
∑

e∈E
�e.

In particular, the map ω �→ det Aω(G) has a zero of order one at ω = 0.

The proof of Proposition 11 relies on the following two lemmas. We believe that
Lemma 12 is interesting in its own right and a strength of our secular function since
it establishes a connection between a secular function and certain graph surgeries.
Recall that Aω(G, v) denotes the secular function of themetric graphG with aDirichlet
condition at the vertex v and standard conditions elsewhere.

Lemma 12 Let G be a compact metric graph and G+ be the graph obtained by attach-
ing a new edge e = vw between a vertex v of G with standard conditions and a new
vertex w.

(i) If we impose standard conditions at w, then

det Aω(G+, VD) = − sin(�eω) det Aω(G, VD ∪ {v}) + cos(�eω) det Aω(G, VD). (15)

(ii) If we impose Dirichlet conditions at w, then

det Aω(G+, VD ∪ {w}) = sin(�eω) det Aω(G, VD) + cos(�eω) det Aω(G, VD ∪ {v}).
(16)

(iii) If we impose Dirichlet vertex conditions at v and G \ {v} is disconnected

det Aω(G, v) =
n∏

i=1

det Aω(Gi , v) (17)
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where G1, . . . ,Gn denote the components of G \ {v} with a copy of the vertex v
added again to each component.

Proof Simultaneous permutations of rows and columns do not change the determinant,
so we may assume that the first four rows and columns of the matrix correspond to
(w, v, ∂ev/ω, ∂ew/ω). We calculate

det Aω(G+,VD) = det

w v ∂ev/ω ∂ew/ω other
⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

w 0 0 0 1 0
v 0 0 1 0 ∗

∂ev/ω 1 − cos(�eω) sin(�eω) 0 0
∂ew/ω 0 sin(�eω) cos(�eω) 1 0
other 0 ∗ 0 0 ∗

= det

v ∂ev/ω other
( )v 0 1 ∗

∂ew/ω sin(�eω) cos(�eω) 0
other ∗ 0 ∗

= − sin(�eω) det

(
1 ∗
0 ∗

)

︸ ︷︷ ︸
=det Aω(G,V∪{v})

+ cos(�eω) det Aω(G,VD)

where we developed the determinant along the w row in the first step and along the
∂ew/ω row in the second step. This shows (15). For (16), we calculate

det Aω(G+,V ∪ {w}) = det

w v ∂ev/ω ∂ew/ω other
⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠

w 1 0 0 0 0
v 0 0 1 0 ∗

∂ev/ω 1 − cos(�eω) sin(�eω) 0 0
∂ew/ω 0 sin(�eω) cos(�eω) 1 0
other 0 ∗ 0 0 ∗

= det

v ∂e/ωw other
( )v 0 1 ∗

∂ew/ω − cos(�eω) sin(�eω) 0
other ∗ 0 ∗

= cos(�eω) det

(
1 ∗
0 ∗

)

︸ ︷︷ ︸
=det Aω(G,V∪{v})

+ sin(�eω) det Aω(G,VD).
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Finally, (17) follows by similar manipulations using again that simultaneous per-
mutations of rows and columns do not affect the determinant

det

v other( )
v 1 0

other ∗ ∗

= det

v other( )
v 1 0

other 0 ∗

= det

v1 v2 . . . vn other
⎛

⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎠

v1 1 0 0
v2 1 0
... 1 . . . 0
vn 1 0

other 0 0 0 0 ∗

= det

⎛

⎝
Aω(G1, v) 0 0

0 . . . 0
0 0 Aω(Gn, v)

⎞

⎠ =
n∏

i=1

det Aω(Gi , v).

��
Lemma 13 Let G be a tree with Dirichlet boundary conditions at exactly one leaf v
(that is a vertex of degree one) and standard conditions elsewhere. Then

det A0(G, v) = 1. (18)

Proof We proceed by induction over |E|.
If |E| = 1, then there are exactly two leaves and

det Aω = det

⎛

⎜⎜⎝

1 0 0 0
0 0 1 0
1 − cos(ω�e) sin(ω�e) 0
0 sin(ω�e) cos(ω�e) 1

⎞

⎟⎟⎠ = cos(ω�e).

For the induction step, let us add to a tree G a new edge vw with Dirichlet boundary
conditions at the leaf v and call the new tree G+. Then, by (16)

det A0(G+, v) = sin(0) det A0(G) + cos(0)
∏

i

det A0(Gi ,w)

︸ ︷︷ ︸
=1

= 1.

��
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We are now ready for the proof of Proposition 11.

Proof of Proposition 11 We proceed by induction over |E|.
If |E| = 1, then

det Aω =

⎛

⎜⎜⎝

0 0 0 1
0 0 1 0
1 − cos(ω�e) sin(ω�e) 0
0 sin(ω�e) cos(ω�e) 1

⎞

⎟⎟⎠ = − sin(ω�e)

which has derivative

∂

∂ω
det Aω |ω=0= −�e cos(ω�e) |ω=0= −�e.

For the induction step, we call G+ the tree obtained by adding another edge ẽ = vw
with standard conditions at v and w to the graph G and find by (15) and (18)

∂

∂ω

[
det Aω(G+)

]
ω=0 = ∂

∂ω

[− sin(�ẽω) det Aω(G, v) + cos(�ẽω) det Aω(G)]ω=0

= −�ẽ det A0(G, v)︸ ︷︷ ︸
=1

+ ∂

∂ω
[det Aω(G)]ω=0

= −�ẽ −
∑

e∈EG
�e = −

∑

e∈EG+
�e.

��
From now on, the tree G is fixed and we use the analytical properties of the secular

function to proveTheorem1.Denote by ‖·‖F the Frobenius normonR|V|+2|E |×|V|+2|E |,
that is

‖M‖2F =
∑

i, j

|Mi, j |2,

and let |·| denote the Euclidean norm on R
|V|+2|E|. Note that on finite dimensional

spaces, all norms are equivalent whence convergence in Frobenius norm is equivalent
to convergence in any other norm on R|V|+2|E |×|V|+2|E |. The main tool in the proof of
Theorem 1 is the following

Lemma 14 There exists a sequence (ωn)n∈N with det Aωn = 0 for all n ∈ N, such that
ωn → ∞ and Aωn → A0 as n → ∞.

Proof It suffices to show that for all C > 0 and all 0 < ε < 1 there exists some
ω̂ ≥ C , so that det Aω̂ = 0 and ‖Aω̂ − A0‖F ≤ Mε, where M > 0 is some constant
that does not depend on ε or C . From this the desired sequence may be constructed
recursively.
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We consider the functions F, h : R → R, F(ω) := det Aω and

h(ω) := F(ω)2 + (F ′(ω) − F ′(0))2 + ‖Aω − A0‖2F
for ω ∈ R. They are clearly analytic and by Lemma 18, there exists δ > 0 such that,
if

max
{|F(ω)|, |F ′(ω) − F ′(0)|} ≤ δ, (19)

then F must have a zero in an ε-neighbourhood of ω. Moreover, the function h is a
nonnegative trigonometric polynomial and thus almost periodic with h(0) = 0, see
for instance [8] for a reference. Thus, there exist some ω0 ≥ C + ε with

h(ω0) ≤ min
{
δ2, ε2

}
. (20)

In particular, ω0 satisfies (19), which in turn yields that there is some ω̂ ∈ [ω0 −
ε, ω0 + ε] with F(ω̂) = det Aω̂ = 0. Using |ω̂ − ω0| ≤ ε and (20) we estimate

‖Aω̂ − A0‖2F ≤ 2(‖Aω̂ − Aω0‖2F + ‖Aω0 − A0‖2F )

= 2

⎛

⎝
∑

i, j

∣∣∣
∫ ω0

ω̂

∂

∂t
ai j (t)dt

∣∣∣
2 + ε2

⎞

⎠

≤ 2

(
(|E| + 2|V|)2 max

i, j
sup
ω∈R

∣∣∣
∂

∂ω
ai j (ω)

∣∣∣
2 + 1

)
ε2 =: M2ε2. ��

Proof of Theorem 1 Take the sequence (ωn)n∈N from Lemma 14. Since det Aωn = 0
holds for all n ∈ N, there exists a sequence (xn)n∈N with xn ∈ ker Aωn and |xn| = 1
for all n ∈ N. By compactness, wemay assume—after passing to a subsequence—that
(xn)n∈N converges to some x∞ with |x∞| = 1. Note that, by choice of (ωn)n∈N, the
sequence (Aωn )n∈N converges to A0. We obtain

A0x∞ = lim
n→∞ Aωn xn = 0.

Thus, x∞ is a normalized element of the (one-dimensional) kernel of A0, and Lemma
8 yields

x∞ = ± 1√|V |

⎛

⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0
. . .

0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Therefore, for sufficiently large n ∈ N, the first |V| entries of xn must differ from
0. This, in turn, means that for sufficiently large n the eigenfunction ψn of � that
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corresponds to xn in the sense of Lemma 5 does not vanish in any of the vertices of G
and is thus supported on the whole graph G. This completes the proof. ��

4 Metric graphs with at least one Dirichlet vertex

In this section, we prove Theorem 2 for graphs with at least one Dirichlet vertex. The
proof relies on the fact that the eigenfunction corresponding to the lowest eigenvalue
ω2
0 > 0 of−�G does not vanish on G \VD if G \VD is connected (see [16]). Moreover

it uses the following

Proposition 15 If VD is nonempty and G \ VD is connected, then

∂

∂ω
det Aω(G, VD) |ω=ω0 �= 0.

In particular, the map ω �→ det Aω(G, vD) has a zero of order one at ω = ω0.

Proof Let v be a Dirichlet vertex, of degree one and connected to a vertex w with
standard conditions via an edge e. In this proof, we consider the dependence of the
ground state eigenvalue on the length of the edge e. For this purpose let Gs denote
the metric graph with the same combinatorial structure as G but where the edge e has
been modified to have length s > 0. With this notation G�e = G.
It is well-known that locally around �e there is a differentiable map s �→ ω(s) with
ω(�e) = ω0, and det Aω(Gs,VD) = 0 if and only if ω = ω(s). Moreover, it follows
from aHadamard-type formula that saidmap is strictly decreasing in s, see for instance
[6, Sect. 3.1.] or [11] for reference, that is ∂

∂sω(s) > 0 in a neighbourhod of s = �e.
Now, let F(ω, s) := det Aω(Gs,VD). Locally around s = �e, we calculate

0 = d

ds
(F(ω(s), s)) = ∂

∂s
ω(s)

(
∂

∂ω
F

)
(ω(s), s) +

(
∂

∂s
F

)
(ω(s), s)

whence in particular

∂

∂ω
det Aω(G,VD) |ω=ω0= −

∂
∂s det Aω0(Gs, VD)

∂
∂sω(s) |s=�e

.

Thus it sufficices to see that the partial derivative of det Aω0(Gs, VD) in the s-direction
is non-vanishing. Lemma 12 (ii) yields

det Aω(Gs,VD) = cos(sω) det Aω(G−, (VD \ {v}) ∪ w)

+ sin(sω) det Aω(G−,VD \ {v})
= cos(sω)X(ω) + sin(sω)Y (ω)

where G− stands for the graph with the edge e removed. This expression is 0 at ω0
by assumption, but we know that X(ω0) �= 0, since the ground state (the first positive
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zero) of the smaller graph G− must be strictly above the ground state of the larger
graph G. Now,

∂

∂s
det Aω(Gs,VD) = ω [− sin(sω)X(ω) + cos(sω)Y (ω).]

So, if this derivative were zero at s = �e and ω = ω0, we would obtain

(
X(ω0)

Y (ω0)

)
∈ ker

(
cos(�eω) sin(�eω)

− sin(�eω) cos(�eω)

)
=
{(

0
0

)}

contrary to X(ω0) �= 0. ��
The rest of the proof of Theorem 2 is analogous to the proof of Theorem 1 with

the differences that Proposition 15 replaces Proposition 11, and that the eigenfunction
corresponding to ω2

0 is merely nonzero on all standard vertices. But since every edge
contains at least one standard vertex, non-vanishing on all standard vertices implies
that the corresponding eigenfunction must have full support.

5 Metric graphs with ı-couplings and edgewise constant potentials

In this section we prove Theorems 3 and 4. Throughout this section we assume that
G is a tree or that G has at least one Dirichlet vertex. If G is a tree, we put ω0 := 0,
if there is at least one Dirichlet vertex, let ω0 > 0 be the frequency corresponding to
the ground state of −�G . As in the previous sections let Aω for ω ∈ R denote the
matrix defined in (6). The main tool in the proofs of Theorems 3 and 4 is the following
perturbation lemma that generalizes Lemma 14.

Proposition 16 Let a > 0 and, for each ω ≥ a, let Pω ∈ R
|V|+2|E|×|V|+2|E| be a matrix

such that the map ω �→ Pω is bounded and infinitely differentiable on [a,∞) in every
entry such that all of its derivatives are bounded on [a,∞). Then, for the perturbed
matrices

Bω := Aω + ω−1Pω, ω ≥ a,

there exists an increasing sequence (ωn)n∈N in [a,∞) with ωn → ∞, so that
det Bωn = 0 for all n ∈ N and Bωn → Aω0 as n → ∞.

Proof It suffices to show that for all C > 0 and all 0 < ε < 1 there exists ω̂ ≥ C with
det Bω̂ = 0 and ‖Bω̂ − Aω0‖F ≤ Mε, where M > 0 does not depend on ε or C .
Consider the functions F(ω) = det Aω, and G(ω) = det Bω. By Proposition 11 or 15,
respectively, we have F(ω0) = 0 and F ′(ω0) �= 0. By assumption there exists a
bounded and smooth function R : [C,∞) → R with uniformly bounded derivatives,
so that

G(ω) = F(ω) + ω−1R(ω), ω ≥ C .
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In particular, maxx∈[1,∞)|G ′′| < ∞. By boundedness of R and R′, we may assume
that C > 0 is large enough so that

|G( j)(ω) − F ( j)(ω)| ≤ δ

2
for j ∈ {0, 1} and for all ω ≥ C, (21)

and, by boundedness of Pω

‖Bω − Aω‖F ≤ ε, ω ≥ C . (22)

Now, let h : R → R be given by

h(ω) := F(ω) + (F ′(ω) − F ′(ω0))
2 + ‖Aω − A0‖2F

for ω ∈ R. This is a nonnegative trigonometric polynomial (thus almost periodic)
with h(ω0) = 0, where δ > 0 is the ε− and G-dependent parameter from Lemma 18.
Therefore, there exists ω1 ∈ [C + ε,∞) with

h(ω1) ≤ max

(
δ2

4
, ε2

)
. (23)

Using (21) and (23) we obtain |G(ω1)| ≤ δ, and |G ′(ω1) − F ′(ω0)| ≤ δ.
Lemma 18 then yields the existence of ω̂ ∈ [ω1 − ε, ω1 + ε] ⊂ [C,∞) with

G(ω̂) = det Bω̂ = 0. Moreover, using (22), (23) and |ω1 − ω̂| ≤ ε we obtain

‖Bω̂ − Aω0‖2F ≤ 3(‖Bω̂ − Bω1‖2F + ‖Bω1 − Aω1‖2F + ‖Aω1 − Aω0‖2F )

≤ 3

(
(|E| + 2|V|)2 max

i, j
sup

ω∈[1,∞)

∣∣∣
∂

∂ω
bi j (ω)

∣∣∣
2 + 2

)
ε2 =: M2ε2.

��

5.1 Metric graphs with ı-couplings

In this section, we indicate the modifications necessary to prove Theorem 3. Using
the notation in (7), the δ-coupling condition (2) at v ∈ V is equivalent to

−αv
x(v)
ω

+
∑

e∈Ev
x(v, e) = 0,
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leading to the perturbed matrix

Bω :=

⎛

⎜⎜⎜⎜⎜⎜⎝

. . . 0 . . .

0 −αvω
−1 0

. . .

. . . 0 . . .

. . . 1 . . . 1 . . .

. . . 0 . . .

1 − cos(�eω)

sin(�eω)

. . .

sin(�eω)

cos(�eω) 1
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
= Aω + ω−1P

for ω > 0 where Aω corresponds to Laplacian where all δ-couplings have been
replaced by standard conditions and P is an ω-independent matrix. Thus, Lemma 16
may be applied to the matrix Bω. From here Theorem 3 can be proved following the
arguments of the proof of Theorem 1, or Theorem 2, respectively.

5.2 Edgewise constant potential

We now indicate the modifications needed when an edgewise constant potential q =
(qe)e∈E ∈ R

|E| is added to the Laplacian, that is if one has the equation

− ψ ′′ + qeψ = λψ on every edge e ∈ E. (24)

As we are primarily interested in the construction of a sequence of non-vanishing
eigenfunctions, it is sufficient to consider large eigenvalues. More precisely, we con-
sider positive eigenvalues λ with

λ > max{qe | e ∈ E}

with corresponding eigenfrequency ω = √
λ. Eigenfunctions will be a linear com-

bination of sin and cos waves with local frequency ωe = √
λ − qe = √

ω2 − qe on
every edge e. Thus, the only change to the construction of the secular function in
Sect. 3 is that sin(�eω) and cos(�eω) need to be replaced by sin(�e

√
ω2 − qe) and

cos(�e
√

ω2 − qe), respectively. We obtain the new matrix

Bω :=

⎛

⎜⎜⎜⎜⎜⎜⎝

. . . 0 . . .

0 −αvω
−1 0

. . .

. . . 0 . . .

. . . 1 . . . 1 . . .

. . . 0 . . .

1 − cos(�e
√

ω2 − qe)
sin(�e

√
ω2 − qe)

. . .

sin(�e
√

ω2 − qe)
cos(�e

√
ω2 − qe) 1

. . .

⎞

⎟⎟⎟⎟⎟⎟⎠

operating on

x =
( {x(v)}v∈V

{x(v, e)}v∈V,e∈Ev

)
=
( {ψ(v)}v∈V{ ∂eψ(v)√

ω2−qe

}
v∈V,e∈Ev

)
. (25)
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Lemma 17 For all j ∈ {0, 1, . . . } there are a j ,C j > 0 such that for all ω ∈ [a j ,∞),
we have

∣∣∣∣
∂ j

∂ω j

(
sin(�e

√
ω2 − qe) − sin(�eω)

)∣∣∣∣ ≤ C j

ω
, and

∣∣∣∣
∂ j

∂ω j

(
cos(�e

√
ω2 − qe) − cos(�eω)

)∣∣∣∣ ≤ C j

ω
.

Proof We only show the first identity for j = 0. The proof of the identity with cosine
terms is completely analogous and the cases of higher derivatives follow inductively
from similar calculations. Setting a0 := max

√|qe| and C0 := max |qe|
�e

, we estimate
for ω ≥ a0

| sin(�e
√

ω2 − qe) − sin(�eω)| = 1

�e

∣∣∣∣∣

∫ √
ω2−qe

ω

cos(�ex)dx

∣∣∣∣∣ ≤ 1

�e
|
√

ω2 − qe − ω|

= |qe|
�e(

√
ω2 − qe + ω)

≤ |qe|(�eω)−1 ≤ C0

ω
. ��

This allows again to express the matrix Bω corresponding to the operator with
potential in a form

Bω = Aω + ω−1Pω

for sufficiently large ω where again Aω is the matrix corresponding to the free Lapla-
cian and with all δ-couplings replaced by standard conditions. Lemma 17 shows that
the perturbation Pω indeed satisfies the conditions of Lemma 16 and we can repeat
the arguments used in the proof of Theorems 1 or 2 to prove Theorem 4.
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Appendix A lemma on Taylor series

In the proofs above we use the following simple lemma:

Lemma 18 Let a ∈ R and let η : R → R be twice continuously differentiable with
supx≥a |η′′(x)| ≤ C < ∞ and let α �= 0. Then, for every ε > 0 there is δ > 0 such
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that if for x ∈ [a + ε,∞), we have

max
{|η(x0)|, |η′(x0) − α|} ≤ δ

then η has a zero in an ε-neighbourhood of x0.

Proof Taylor’s Theorem yields for x ∈ [x − ε, x + ε]

η(x) = η(x0) + (x − x0)η
′(x0) + (x − x0)2

2
η′′(ξ)

for some ξ ∈ [x − ε, x + ε]. Choosing δ ≤ ε2, we can write η(x) = α(x − x0)+ ζ(x)
where

|ζ(x)| ≤ δ + ε2
‖η′′‖∞

2
≤ (1 + C)ε2.

Possibly shrinking ε, and assuming without loss of generality α > 0, we find

η(x0 − ε) ≤ −αε + (1 + C)ε2 < 0, and η(x0 + ε) ≥ αε − (1 + C)ε2 > 0.

Thus, η changes sign in [x0 − ε, x0 + ε] and has a zero there. ��
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