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Abstract
We define a new divergence of von Neumann algebras using a variational expression
similar in nature to Kosaki’s formula for Umegaki’s relative entropy. Our divergence
satisfies several of the usual desirable properties, upper bounds the sandwiched Renyi
entropy and reduces to the fidelity in a limit. As an illustration, we use the formula in
quantum field theory to compute our divergence between the vacuum in a bipartite sys-
tem and an “orbifolded”—in the sense of a conditional expectation—system in terms
of the Jones index. We take the opportunity to point out an entropic certainty relation
associated with an inclusion of von Neumann factors related to the relative entropy.
This certainty relation has an equivalent formulation in terms of error correcting codes.

Keywords Quantum information · Algebraic quantum field theory · Operator
algebras · Quantum relative entropies · Sub factor theory · Entropic certainty
relations

Mathematics Subject Classification 81P45, 81T05, 47L90, 46L10, 46L37

1 Introduction

The relative entropy between two density matrices ωη, ωψ , defined as

S(ωψ |ωη) = Tr(ωψ lnωψ) − Tr(ωψ lnωη), (1)

is an asymptotic measure of their distinguishability. Classically, e−NS({pi }|{qi })
approaches for large N the probability for a sample of size N of letters, distributed
according to the true distribution {pi }, when calculated according to an incorrect guess
{qi }. In the setting of general von Neumann algebras A, density matrices should be
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replaced by algebraic states, i.e., positive, linear, normalized and ultra-weakly contin-
uous functionals ωη, ωψ : A → C. The correspondence to density matrices is given
by ωψ(a) = Tr(aωψ), a ∈ A in the case of matrix algebras A = Mn(C). It has
been shown how to generalize the relative entropy to general von Neumann algebras
by Araki [2,3]. Instead of lnωψ and lnωη, which have no obvious counterparts in a
general von Neumann algebra, he used relative modular operators.

By far the most fundamental property of S—from which in fact essentially all
others follow—is its monotonicity under a channel. A channel T : B → A between
von Neumann algebras is a completely positive, unital normal linear map. It induces
a corresponding action on states by pull-back, ωψ �→ ωψ ◦ T . [36] has shown for
general von Neumann algebras that

S(ωψ |ωη) ≥ S(ωψ ◦ T |ωη ◦ T ). (2)

In quantum information theory, T is related to data processing, so (2) is sometimes
called the data-processing inequality (DPI).

S plays an important role when characterizing the entanglement between sub-
systems. Over the years, several generalizations of S with different operational
meaning have therefore been given, see e.g., [19]. One such generalization is the
one-parameter family of “sandwiched relative Renyi divergences (entropies)” Ds, s ∈
[1/2, 1) ∪ (1,∞) proposed by [32,38], which generalize the classical alpha-Renyi
entropies and have several interesting properties. For example, like the relative entropy
S, they can be defined for general von Neumann algebras [4,6], have an operational
meaning [31], satisfy the DPI [5,6,15], and interpolate between S (s → 1) and the
fidelity F (s → 1/2) [6,32,38].

The purpose of this note is to point out a related variational expression,
�s(ωψ |ωη), s ∈ (1/2, 1), [Eq. (41)] inspired by a corresponding characterization of S
due to Kosaki [23]. �s reduces to a multiple of the fidelity in the classical case. Thus,
it cannot be seen as a generalization of the classical Renyi entropies, but it is shown to
provide an upper bound for the sandwiched relative Renyi entropies Ds, s ∈ (1/2, 1).
Furthermore, �s is shown to have several other desirable properties. For example, it
satisfies the DPI, and it is ordered with respect to the states that it depends on.

By construction, our divergence �s(ωψ |ωη) is defined for arbitrary von Neumann
algebras, thus in particular type III. As is well-known [9], the algebras of observables
in algebraic quantum field theory (QFT) [16] are of this type. In the second half of
this note, we will give an application of�s to QFT. We consider a QFT described by a
Haag–Kastler net [16] F = {F(A)} and a net of subfactors A = {A(A)} in the sense
of [28]. If An, Bn are disjoint regions separated by a corridor of size ∼ 1/n, we can
consider a conditional expectation “En = EAn ⊗ EBn” projecting F(An) ∨ F(Bn)

to A(An) ∨ A(Bn). The partial state of the vacuum with respect to the subsystem
F(An) ∨ F(Bn) is called ω�. We show [Theorem 1]

lim
n→∞ �s(ω�|ω� ◦ En) = ln[F : A], (3)

which yields a formula (60) for F (fidelity) as a limiting case. Here, [F : A] is the
Jones index [21,24] of the subnet [28], whose values are restricted to {4 cos2(π/n) :
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n = 3, 4, . . . }∪[4,∞]. An example is a subtheoryA ⊂ F of charge neutral operators
under a finite gauge group G, in which case [F : A] = |G|. Similar results could be
obtained in analogous settings in higher dimensions.

We also point out a dual result for the inclusion F ′ ⊂ A′ and the dual conditional
expectations E ′

n in the case of the fidelity. This last result is a consequence of an
“entropic (un)certainty relation”, given in Corollaries 1, 3, which generalize a result
by [30] to general von Neumann algebras. A noteworthy special case of Corollary 3 is
the following. Consider a finite index inclusionM ⊃ N of factors and E : M → N
the corresponding minimal conditional expectation with dual conditional expectation
E ′ : N ′ → M′. Then, we have

FM(ωψ |ωψ ◦ E) · FN ′(ω′
ψ |ω′

ψ ◦ E ′) ≥ 1√[M : N ] . (4)

Here, ωψ is the state onM induced by a vector |ψ〉 (“purification”) in a natural cone
of a standard representation of M and ω′

ψ the corresponding state on N ′ induced by
the same vector. F is the fidelity between two states. Such relations remind one of the
Heisenberg uncertainty principle. We plan to come back to this in the future.

Notations and conventions Calligraphic letters A,M, . . . denote von Neumann
algebras. Calligraphic lettersH ,K , . . . denote linear spaces. We use the physicist’s
“ket”-notation |ψ〉 for vectors in a Hilbert space. The scalar product is written as
〈ψ |ψ ′〉 and is anti-linear in the first entry. The norm of a vector is written simply as
‖|ψ〉‖ =: ‖ψ‖. Each vector |ψ〉 ∈ H gives rise to a positive definite linear functional
on the von Neumann algebra M acting on H via

ωψ(m) = 〈ψ |mψ〉, m ∈ M. (5)

The commutant of M is denoted as M′ and consists of those bounded operators
commuting with all elements of M.

2 von Neumann algebras and relative entropy

2.1 Relative modular theory and entropy

Let (M, J ,P�

M,H ) be a von Neumann algebra in standard form acting on a Hilbert

space H , with natural cone P	

M and modular conjugation J (for an explanation of
these terms, see [8,35] as general references). We will use relative modular operators

ψ,ζ associatedwith twovectors |ζ 〉 ∈ P�

M, |ψ〉 ∈ H . The nonnegative, self-adjoint
operator 
ψ,ζ is characterized by

J

1/2
ψ,ζ (a|ζ 〉 + |χ〉) = πM(ζ )a∗|ψ〉 , ∀ a ∈ M , |χ〉 ∈ (1 − πM′

(ζ ))H . (6)
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Here, πM′
(ψ) is the support projection of the vector |ψ〉, defined as the orthogonal

projection onto the closure of the subspace M|ψ〉 ⊂ H . The nonzero support of

ψ,ζ is πM(ψ)πM′

(ζ ), and complex powers such as 
z
ψ,ζ are understood via the

functional calculus on this support and are defined as 0 on 1−πM(ψ)πM′
(ζ ). 
1/2

ψ,ζ

depends on |ψ〉 only via the associated state functional (5).
According to [2,3], if the support projections satisfyπM(ψ) ≥ πM(ζ ), the relative

entropy may be defined by

S(ζ |ψ) = − lim
α→0+

〈ζ |
α
ψ,ζ ζ 〉 − 1

α
, (7)

; otherwise, it is by definition infinite. The relative entropymay be viewed as a function
of the functionals (5) ωψ,ωζ onM. So one can write instead also S(ωζ |ωψ) without
ambiguity. In the case of the matrix algebra M = Mn(C), where ωζ and ωψ are
identified with density matrices as ωψ(a) = Tr(aωψ), etc., the relative entropy is the
usual expression (1).

Kosaki [23] has given the following variational formula for two normalized state
functionals ωψ,ωζ on M:

S(ωζ |ωψ) = sup
n∈N

sup
x :(1/n,∞)→M{

ln n −
∫ ∞

1/n
[ωζ (x(t)

∗x(t)) + t−1ωψ(y(t)y(t)∗)]t−1dt

}
, (8)

where the second supremum is over all step functions x(t) valued inM with finite
range where y(t) = 1−x(t). (8) no longer makes explicit reference tomodular theory,
and the dependence on the state functionals (as opposed to vectors) is manifest. Some
further explanations and uses of Kosaki’s formula are discussed, e.g., in [33], ch. 5.

2.2 Conditional expectations, index, and relative entropy

Let M,N be two von Neumann algebras. A linear operator T : M → N is called a
channel if it is ultra-weakly continuous (“normal”), unital T (1) = 1, and completely
positive. The latter means that the induced mapping T ⊗ idn : M ⊗ Mn(C) →
N ⊗ Mn(C), maps positive elements to positive elements for all n ≥ 1.

If N ⊂ M is a von Neumann sub-algebra, then a quantum channel E : M → N
is called a conditional expectation if

E(n1mn2) = n1E(m)n2 (9)

for m ∈ M, ni ∈ N . The space of such conditional expectations is called C(M,N ).
A faithful normal operator valued weight is an unbounded and unnormalized positive
linear map N : M → N with the same bimodule property and with dense domain
M+ (= non-negative elements ofM) [17]. The space of such operator-valuedweights
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is denoted P(M,N ), and clearly C(M,N ) is a subset thereof. Both C(M,N ) and
P(M,N ) may be empty.

Let M,N be factors. If there exists E ∈ C(M,N ), then the best constant λ > 0
such that

E(m∗m) ≥ λ−1m∗m for all m ∈ M (10)

is called ind(E), the index of E . If there is any conditional expectation at all, then
there is one for which λ is minimal [18]. This λ = [M : N ] is the Jones–Kosaki index
of the inclusion [21,24,34].

Haagerup [17] has established a canonical correspondence N ∈ P(M,N ) ↔
N−1 ∈ P(N ′,M′) satisfying (N−1)−1 = N , (N1 ◦ N2)

−1 = N−1
2 ◦ N−1

1 . One can
connect this to the notion of a “spatial derivative” [10]. To this end, let M be a von
Neumann algebra acting onH , let |ζ 〉, |ψ〉 ∈ H , and let B(H ) be the von Neumann
algebra of all bounded operators onH . Applying (5) toM and the commutantM′, we
get state functionalsω′

ζ , respectively,ωψ onM′, respectively,M. Now, the functional
ωψ : M → C is a special case of a conditional expectation, so the dual conditional
expectation ω−1

ψ is in P(B(H ),M′). Thus, ω′
ζ ◦ ω−1

ψ is a weight on B(H ). Such a
weight defines a densely defined positive definite (sesquilinear) quadratic form onH
by

qψ,ζ (φ1, φ2) = ω′
ζ ◦ ω−1

ψ (|φ2〉〈φ1|), (11)

and the operator on H representing qψ,ζ is called the “spatial derivative,”

M(ω′

ζ /ωψ). It can be seen to only depend on the functionals ω′
ζ , respectively, ωψ

onM′, respectively,M. 
M(ω′
ζ /ωψ) equals the relative modular operator 
M;ζ,ψ

in case |ψ〉 ∈ PM. It follows that if |ζ 〉 is in the form domain of ln
M(ω′
ζ /ωψ),

then the relative entropymay also be written as S(ζ |ψ) = 〈ζ | ln
M(ω′
ζ /ωψ)ζ 〉.This

representation and the structures established by [10,17] have an immediate corollary
for a conditional expectation E : M → N . First, by [10], thm. 9, the spatial derivative
has the duality property


M(ω′
ζ /ωψ) = 
M′(ωψ/ω′

ζ )
−1. (12)

Furthermore, ω′
ψ ◦ (ωψ ◦ E)−1 = (ω′

ψ ◦ E−1) ◦ ω−1
ψ , so [24]


M(ω′
ψ/ωψ ◦ E) = 
N (ω′

ψ ◦ E−1/ωψ) = 
N ′(ωψ/ω′
ψ ◦ E−1)−1. (13)

Taking a log and the expectation value with respect to the vector |ψ〉 then gives:

SM(ωψ |ωψ ◦ E) + SN ′(ω′
ψ |ω′

ψ ◦ E−1) = 0. (14)

Note that E−1 is not normalized unless E = id. IfM is a factor such that ind(E) =
λ < ∞ is finite, then it can be shown from (10) that 1 is in the domain of E−1 and
λ1 = E−1(1). Therefore,
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E ′ = λ−1E−1 (15)

is a (normalized) conditional expectation E ′ ∈ C(N ′,M′) [24]. In fact, if E is min-
imal, then also E ′ is. Using the standard scaling properties of the relative entropy
thereby gives the following trivial corollary which generalizes [30] who have consid-
ered by an explicit method the special case of finite dimensional type I von Neumann
algebras:

Corollary 1 Let N ⊂ M be a an inclusion of von Neumann factors with finite index
[M : N ] < ∞, acting standardly on a Hilbert spaceH . Assume that E ∈ C(M,N )

is the minimal conditional expectation, E ′ ∈ C(N ′,M′) the dual minimal conditional
expectation. For |ψ〉 ∈ H , we have

SM(ωψ |ωψ ◦ E) + SN ′(ω′
ψ |ω′

ψ ◦ E ′) = ln[M : N ]. (16)

(Note that ω′
ψ in the second expression means the functional (5) on N ′, etc.)

Results of a similar flavor have also been given by [39]. Interesting physical appli-
cations of the above “certainty relation” (16) involving Wilson–‘t Hooft operators
in four-dimensional quantum Yang-Mills theory have recently been pointed out by
[12,30]. In such a situation, the algebras are expected to be of type III [9]. Then, the
minimal conditional expectation E and its dual E ′ can be described more explicitly
using Q-systems [27]. In this framework,M is generated byN together with a single
operator, v, [see “Appendix”, Eq. (77)] and N ′ is generated by M′ together with a
single operator, v′. The operators w = jN (v′) ∈ N , w′ = jM(v) ∈ M′ and the
“canonical” endomorphsms

γ = jN jM : M → N , γ ′ = jM jN : N ′ → M′ (17)

can be defined, where jN (n) = JN nJN and JN is the modular conjugation1 of N ,
etc. The expectations E, E ′ are then given by (here d = [M : N ]1/2)

E(m) = 1

d
w∗γ (m)w, E ′(n′) = 1

d
w′∗γ ′(n′)w′. (18)

Another property is that JMv′ = v′ JN , JMv = v JN .
The operator v′ is closely related to the idea of quantum error correcting codes as

described by [14]: For the sake of easier comparison, define

V := v′/
√
d, V ′ := v/

√
d, (19)

with the normalizations made such that V , V ′ are isometries. For any |ψ〉, |ζ 〉 ∈ H
we define states ωζ on N and ω′

ζ on N ′ by (5). Then, we have the implications

{
ω′

ζ |N ′ = ω′
ψ |N ′ �⇒ ω′

V ζ |M′ = ω′
Vψ |M′

ωζ |N = ωψ |N �⇒ ωV ζ |M = ωVψ |M,
(20)

1 With respect to a fixed natural cone P	
N .
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soM is “standardly c-reconstructible” fromN in the terminology [14]. In the context
of holography,N would be a bulk observable algebra,M a correspondingCFT algebra
and the subspace VH ⊂ H the “code subspace.” Dually, the operator V ′ is used in a
similar way to “standardly c-reconstruct” N ′ from M′, with similar relations. While
the existence and properties of the operator V are equivalent to the existence of some
conditional expectation E : M → N alone [14], thm. 7, the existence of the operator
V ′ for the dual code does not follow from these results but requires a finite index (and
minimal conditional expectation).

These facts can be used to give an “error correction version” of the certainty relation
expressed by Corollary 1. We simply observe the equalities

E(m) = 1

d
w∗γ (m)w = 1

d
jN (v′∗) jN jM(m) jN (v′) = 1

d
JN v′∗ JMmJMv′ JN = V ∗mV (21)

we get E ′(n′) = V ′∗n′V ′ for n′ ∈ N ′. This gives in view of Corollary 1:

Corollary 2 (Error correcting code version) Let M ⊃ N be an inclusion of type III
von Neumann factors with finite index and let |ψ〉 ∈ H . Let V be a code operator as
in (20) and V ′ the dual code operator. Then,

SM(ωψ |ωVψ) + SN ′(ω′
ψ |ω′

V ′ψ) = ln[M : N ]. (22)

2.3 Sandwiched Renyi divergence

A family of entropy functionals for von Neumann algebras extrapolating the relative
entropy are the “sandwiched Renyi divergences (entropies)” [32,38]. In the general
von Neumann algebra setting, they can be defined in terms of certain L p norms [5,6],
which were defined by [4] (see also [6,20]) relative to a fixed cyclic and separating
vector |ψ〉 ∈ H in the a natural cone of a standard representation of a von Neumann
algebra M.

More precisely, for 1 ≤ p ≤ 2, L p(M, ψ) is defined as the completion ofH with
respect to the following pseudo-norm2:

‖ζ‖p,ψ = inf{‖
(1/2)−(1/p)
φ,ψ ζ‖ : ‖φ‖ = 1, πM(φ) = πM(ζ )}. (23)

We deviate slightly from [4] by imposing πM(φ) = πM(ζ ) instead of πM(φ) ≥
πM(ζ ), but this makes no difference for the resulting formula in the case of finite-
dimensional von Neumann algebras, nor the results that we invoke below. It is well-
known that any state |ζ ′〉 ∈ H such that ω′

ζ ′ = ω′
ζ as state functionals on M′ is

related to |ζ 〉 ∈ H by |ζ ′〉 = u|ζ 〉, where u ∈ M, u∗u = πM(ζ ). Furthermore, it is
known [4], thm. 5 that ‖mζ‖p,ψ ≤ ‖m‖‖ζ‖p,ψ for any m ∈ M, and from this one
can easily see that ‖ζ‖p,ψ depends on |ζ 〉 ∈ H only via the induced functional ω′

ζ on
M′. Vice versa, to get an invariant for state functionals on M, one should therefore
consider the L p norms relative toM′ as in the following definition.

2 If |ψ〉 is such that |ζ 〉 is not in the domain of 

(1/2)−(1/p)
φ,ψ , we set ‖
(1/2)−(1/p)

φ,ψ ζ‖ = ∞.
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Definition 1 LetMbe avonNeumannalgebra in standard formactingonH, |ζ 〉 ∈ H .
The “sandwiched Renyi divergences” [32,38] Ds, s ∈ [1/2, 1) are defined by

Ds(ωζ |ωψ) = (s − 1)−1 ln ‖ζ‖2s2s,ψ,M′ (24)

with norm taken relative to M′.

The L p norms for p > 2 and corresponding sandwiched Renyi entropies for s > 1
may be defined by duality [4], thm. 1, but the precise definition is not needed for
the purposes of this paper. The generalization of the definition to non-faithful state
functionalsωψ whose representing vector |ψ〉 is not separating is given in [6], who also
prove key properties of Ds [5,15,32,38] in the general von Neumann setting. States
on the finite-dimensional type I factorA = Mn(C) correspond to density matrices via
ωψ(a) = Tr(aωψ). In that case, the definition gives

Ds(ωζ |ωψ) = (s − 1)−1 ln Tr(ω(1−s)/(2s)
ψ ωζ ω

(1−s)/(2s)
ψ )s . (25)

The sandwiched Renyi divergences extrapolate the relative entropy S which can be
recovered as the limit s → 1− [6], thm. 13. At the other end, for s → 1/2+, one
recovers the negative log squared fidelity. In fact, the L1 norm relative toM′ is related
to the fidelity [1,37] relative to M by

‖ζ‖1,ψ,M′ = sup{|〈ζ |a′ψ〉| : a′ ∈ M′, ‖a′‖ = 1} = FM(ωζ |ωψ), (26)

see [13], lem. 3 (1), which generalizes [4], lem. 5.3 whenψ is not necessarily faithful.
It has been shown that Ds ≤ S for s ≤ 1 by [6], prop. 4. Therefore, Corollary 1

implies:

Corollary 3 For a finite index inclusionN ⊂ M of von Neumann factors with minimal
conditional expectation E : M → N , we have

DM
s (ωψ |ωψ ◦ E) + DN ′

s (ω′
ψ |ω′

ψ ◦ E ′) ≤ ln[M : N ] (27)

for any s ∈ [1/2, 1) and any vector |ψ〉 ∈ H with induced state functionals ω′
ψ on

N ′ and ωψ onM.

A noteworthy special case arises for s = 1/2:

FM(ωψ |ωψ ◦ E) · FN ′(ω′
ψ |ω′

ψ ◦ E ′) ≥ 1√[M : N ] . (28)

There are also evident error correcting code formulations of this analogous toCorollary
2.
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3 Variational formulas

Here, we point out a variational expression related to the L p norms in the range
p ∈ (1, 2) similar to Kosaki’s formula [23] for the relative entropy. To simplify the
discussion, we assume that the fixed reference vector |ψ〉 ∈ P�

M in the definition
of the L p norm is cyclic and separating for the von Neumann algebra M in standard
form acting on H . Let 
′ ≡ 
′

ψ,φ be the relative modular operator defined using

M′ and the unit vector |φ〉 ∈ P�

M. Then, the support of 
′ is πM(φ). 
′1/2 is a
nonnegative self-adjoint operator whose domain we denote by D(φ) (it is equal the
closure in the graph norm of M′|φ〉 ⊕ (1 − πM(φ))H ).

We can apply [33], lem. 5.8, showing that, for t > 0, |ζ 〉 ∈ D(φ), we have

〈
′(
′ + t)−1ζ |ζ 〉 = inf{‖ξ‖2 + t−1‖
′1/2η‖2 : |ξ〉 + |η〉 = |ζ 〉, |ξ〉, |η〉 ∈ D(φ)}. (29)

Now, we note the well-known formula

λα = sin(πα)

π

∫ ∞

0

λ

t + λ
tα−1dt (30)

when λ > 0, α ∈ (0, 1), which is commonly used to trade the power 
′α for the
resolvent 
′(
′ + t)−1, for which we have the variational expression (29). Then,
arguing in the same way as in the proof of [33], prop. 5.10 gives

‖
′α/2ζ‖2 = sin(πα)

π
inf

ξ,η:R+→D(φ)

∫ ∞

0
[‖ξ(t)‖2 + t−1‖
′1/2η(t)‖2]tα−1dt, (31)

where |ζ 〉 ∈ D(φ) and where the infimum is taken over all step functions ξ, η :
[0,∞] → D(φ) with finite range such that |ξ(t)〉 = |ζ 〉 for sufficiently small t > 0,
such that |η(t)〉 = |ζ 〉 for sufficiently large t , and such that |ξ(t)〉 + |η(t)〉 = |ζ 〉. The
support of 
′ is πM(φ), thus we have ‖
′1/2η(t)‖ = ‖
′1/2πM(φ)η(t)‖. Taking
into account the definition of the L1 norm relative to M and the relation 
−1

φ,ψ =

′

ψ,φ , see e.g., [4], thm. C. 1, we get ‖
′1/2η(t)‖ ≥ ‖πM(φ)η(t)‖1,ψ,M. The last
expression is also equal to the fidelity FM′(ω′

πM(φ)η(t)
|ω′

ψ) relative to M′ by (26).

Taking furthermore into account the trivial fact that ‖πM(φ)ξ(t)‖ ≤ ‖ξ(t)‖ we get

‖
′α/2ζ‖2 ≥ sin(πα)

π
inf

ξ,η:R+→D(φ)

∫ ∞

0

[ω′
πM(φ)ξ(t)(1) + t−1FM′(ω′

πM(φ)η(t)|ω′
ψ)2]tα−1dt, (32)

where still |ζ 〉 ∈ D(φ) and the infimum is still taken over all step functions as described
above. We want to enlarge the domain of |ζ 〉 for which (32) is valid.

Lemma 1 (32) holds for |ζ 〉 in the domain of 
′α/2 provided that we take the infimum
over functions ξ, η that are nowvalued inH andhave analogous properties otherwise.
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Proof First, by applying an increasing sequence of spectral projections we define
|ζn〉 := E[0,n](
′)|ζ 〉 ∈ D(φ). Then, |ζn〉 → |ζ 〉, 
′α/2|ζn〉 → 
′α/2|ζ 〉 strongly,
and the above inequality (32) holds for |ζn〉.

We next consider a sufficiently large n such that ‖ζ − ζn‖ and ‖
′α/2ζ − 
′α/2ζn‖
are < ε. For this fixed n, we then consider step functions ξn, ηn : [0,∞] → D(φ)

with finite range such that |ξn(t)〉 = |ζn〉 for sufficiently small t > 0, such that
|ηn(t)〉 = |ζn〉 for sufficiently large t , such that |ξn(t)〉 + |ηn(t)〉 = |ζn〉, and such
that the infimum on the right side of (32), applied to |ζn〉, is nearly achieved by the
functions ξn, ηn up to a small tolerance, ε. We also define new functions ξ̃n, η̃n by

|η̃n(t)〉 =
{

|ηn(t)〉 for t < 1,

|ζ 〉 − |ξn(t)〉 for t ≥ 1,
|ξ̃n(t)〉 =

{
|ξn(t)〉 for t ≥ 1,

|ζ 〉 − |ηn(t)〉 for t < 1.
(33)

The new functions have analogous properties as the old ones with |ζn〉 replaced by |ζ 〉.
Furthermore, for t < 1, we have ‖η̃n(t) − ηn(t)‖ = 0, ‖ξ̃n(t) − ξn(t)‖ = ‖ζ − ζn‖,
whereas for t ≥ 1, we have ‖ξ̃n(t) − ξn(t)‖ = 0, ‖η̃n(t) − ηn(t)‖ = ‖ζ − ζn‖. We
now claim that

‖
′α/2ζ‖2 ≥ sin(πα)

π

∫ ∞
0

[ω′
πM(φ)ξ̃n(t)

(1) + t−1FM′ (ω′
πM(φ)η̃n (t)

|ω′
ψ)2]tα−1dt − cε, (34)

constant only depending on α, |ζ 〉 but not n.
By construction such an equation holds with c = 1 for |ζn〉 and the functions

ξn, ηn , and we want to deduce (34) from that. Also, by construction ‖
′α/2ζ‖2 differs
from ‖
′α/2ζn‖2 by cε. Then, if we split the integral in (34) into a contribution from
t ∈ [0, 1) and t ∈ [1,∞], we can see that the integral for the functions ξn, ηn is equal
to the integral for the functions ξ̃n, η̃n up to an error which is bounded in terms of the
sum of the integrals

∫ 1

0
|‖πM(φ)ξn(t)‖2 − ‖πM(φ)ξ̃n(t)‖2|tα−1dt,

∫ ∞

1
|FM′(ω′

πM(φ)ηn(t)
|ω′

ψ)2 − FM′(ω′
πM(φ)η̃n(t)

|ω′
ψ)2|tα−2dt,

(35)

times numerical coefficients depending only on α. The second integral is shown to be
of the order ‖ζ − ζn‖ < ε as follows. The fidelity is continuous under strong limits
(see e.g. [13], lem. 11) which in the case at hand gives

|FM′(ω′
πM(φ)ηn(t)

|ω′
ψ) − FM′(ω′

πM(φ)η̃n(t)
|ω′

ψ)| ≤ ‖η̃n(t) − ηn(t)‖, (36)

where we can use ‖η̃n(t)−ηn(t)‖ = ‖ζ −ζn‖ < ε. In the second integral, we actually
have the squares of the fidelities, so we use the elementary identity |a2 − ã2| ≤
|a − ã|2 + 2|a||a − ã|, where a and ã are the fidelities under the second integral
(35) associated with ηn and η̃n . For the term corresponding to 2|a||a − ã|, we then
need a bound on

∫ ∞
1 FM′(ω′

πM(φ)ηn(t)
|ω′

ψ)tα−2dt . Such a bound can be obtained
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immediately from (32), the Cauchy–Schwarz inequality, and the construction of the
functions ξn, ηn :

(∫ ∞

1
FM′(ω′

πM(φ)ηn(t)
|ω′

ψ)tα−2dt

)2

≤ c(‖
′α/2ζn‖2 + ε). (37)

Then, by construction ‖
′α/2ζn‖ ≤ ε +‖
′α/2ζ‖which in turn is uniformly bounded
in n. Also the first integral in (35) is shown to be of the order ‖ζ − ζn‖ < ε. Here, we
use first the reverse triangle inequality

|‖πM(φ)ξn(t)‖ − ‖πM(φ)ξ̃n(t)‖| ≤ ‖ξ̃n(t) − ξn(t)‖, (38)

where we can use ‖ξ̃n(t) − ξn(t)‖ = ‖ζ − ζn‖ < ε. In the first integral, we actually
have the squares of the norms, so we use the elementary identity |a2− ã2| ≤ |a− ã|2+
2|a||a − ã|, where a and ã are now the norms under the first integral (35) associated
with ξn and ξ̃n . For the term corresponding to 2|a||a − ã|, we then need a bound on∫ 1
0 ‖πM(φ)ξn(t)‖tα−2dt . Such a bound can be obtained immediately from (32), the
Cauchy–Schwarz inequality, and the construction of the functions ξn, ηn :

(∫ 1

0
‖πM(φ)ξn(t)‖tα−1dt

)2

≤ c(‖
′α/2ζn‖2 + ε). (39)

Again, ‖
′α/2ζn‖ is uniformly bounded in n. Thus, we see that the integrals (35) have
an upper bound of the form cε. Hence, our argument implies that (34) holds. Trivially,
the inequality (32) then also holds up to a tolerance of order cε if we take the infimum
over the set of all step functions ξ, η : [0,∞] → H with finite range such that
|ξ(t)〉 = |ζ 〉 for sufficiently small t > 0 such that |η(t)〉 = |ζ 〉 for sufficiently large
t , and such that |ξ(t)〉 + |η(t)〉 = |ζ 〉. Since ε was arbitrarily small, the statement
follows. ��

Suppose now that πM(φ) = πM(ζ ). The structure of the right side of (32) implies
range of the step functions may be restricted to πM(φ)H = πM(ζ )H . Suppose
we have step functions ξ, η : [0,∞] → πM(ζ )H such that the infimum in (32) is
attainedup to a small tolerance.Then,we canpick step functions x ′, y′ : [0,∞] → M′
such that x ′(t) + y′(t) = 1, x ′(t) = 1 for sufficiently small t > 0, y′(t) = 1 for
sufficiently large t > 0, and such that ‖x ′(t)ζ − ξ(t)‖, ‖y′(t)ζ − η(t)‖ is small
for all t > 0. Because the fidelity is continuous, see e.g., [13], lem. 11, we may
replace the infimum in (32) by the infimum over all functions |ξ(t)〉, |η(t)〉 of the
form x ′(t)|ζ 〉, y′(t)|ζ 〉, where x ′(t) + y′(t) = 1, x ′, y′ : R+ → M′ step functions
with finite range such that x ′(t) = 1 for sufficiently small t > 0 and y′(t) = 1 for
sufficiently large t > 0. Taking α = 2/p − 1 ∈ (0, 1), and defining p′, cp as in (42),
this yields

123
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‖
′(1/p)−(1/2)ζ‖2 ≥ cp inf
x ′,y′:R+→M′

∫ ∞

0
[ω′

ζ (x
′(t)∗x ′(t))

+t−1FM′(y′(t)ω′
ζ y

′(t)∗|ω′
ψ)2]t−2/p′

dt, (40)

for all |ζ 〉 in the domain of 
′(1/p)−(1/2) (which depends upon the unit vector |φ〉 ∈
P�

M) such that πM(φ) = πM(ζ ).

We now take into account the relation 
−1
φ,ψ = 
′

ψ,φ , see e.g., [4], thm. C. 1, on the
left side of (40). We note that the right side no longer depends on the choice of |φ〉,
whereas on the the left side, we can drop the condition that |φ〉 is in the natural cone,
because 
φ,ψ is unchanged if we replace |φ〉 by u′|φ〉, u′ ∈ M′, u′∗u′ = πM′

(φ)

and such a replacement preserves πM(φ) = πM(ζ ).
Then, weminimize the left side of (40) for fixed |ζ 〉 over unit vectors |φ〉 ∈ H such

that πM(φ) = πM(ζ ) and such that |ζ 〉 is in the domain of
(1/2)−(1/p)
φ,ψ , which gives

the L p norm (23) of |ζ 〉 relative to M. As a consequence, the following proposition
follows after reversing the roles of M and M′:

Proposition 1 Let M be a von Neumann algebra in standard form with cyclic and
separating vector |ψ〉 in the natural cone. For any 1 < p < 2, and |ζ 〉 ∈ H , we have
the variational formula

‖ζ‖2p,ψ,M′ ≥ cp inf
x :R+→M

∫ ∞
0

[ωζ (x(t)∗x(t)) + t−1FM(y(t)ωζ y(t)
∗|ωψ)2]t−2/p′

dt, (41)

for the L p-norm relative to M′ and |ψ〉. FM is the fidelity relative toM,

cp = − sin(2π/p)

π
> 0,

1

p
+ 1

p′ = 1, (42)

y(t) = 1 − x(t), x : R+ → M a step function with finite range such that x(t) = 1
for sufficiently small t > 0 and x(t) = 0 for sufficiently large t > 0, and we use the
notation (xωx∗)(a) = ω(x∗ax).

Remarks Both sides of the inequality (41) only depend on |ζ 〉 ∈ H via the functional
ωζ on M.

We will now start to investigate the variational expression in the proposition in its
own right. For easier reference, wemake the following definition where p corresponds
to 2s.

Definition 2 Let M be a von Neumann algebra in standard form acting on H, s ∈
(1/2, 1). The “generalized fidelity” is defined by

�s (ωζ |ωψ) = ln

{
c2s inf

x :R+→M

∫ ∞
0

[ωζ (x(t)∗x(t)) + t−1F(y(t)ωζ y(t)
∗|ωψ)2]t s−1

s
dt

t

} s
s−1

(43)

with the infimum and notations as defined in Proposition 1.
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Remarks (1) The normalizations of �s are chosen in such a way that �s ≥ Ds by
Proposition 1.

(2) The terminology “generalized fidelity” is due to the following observa-
tion. Consider M = Mn(C) and diagonal (normalized) density matrices ωζ =
diag(p1, . . . , pn), ωψ = diag(q1, . . . , qn). We use the abbreviation F = F(ωζ |ωψ)

= ∑
i
√
piqi for the fidelity. By considering the variational expression in the definition

of �s with diagonal x(t) = diag(x1(t), . . . , xn(t)), one can easily convince oneself
that the infimum can be reached by approximations of

xi (t) =
√

qi
pi

F

t + 1
(44)

by step functions. Inserting this into the variational formula one gets�s ≥ − s
1−s ln F2.

Corollary 6 shows that an inequality of this typewith aworse constant is true generally.
On the other hand, as given in Corollary 6, we always have the reverse inequality which
implies that �s = − s

1−s ln F2 in the present case. This becomes (minus log of) the
squared fidelity when s = 1/2.

Using this formula for�s in the commutative case, the inequality�s ≥ Ds (Propo-
sition 1) is seen to be equivalent to Hölder’s inequality applied to the fidelity F =∑

i
√
piqi . Indeed, taking the Hölder exponents to be p = 2s, p′ = (2s)/(2s − 1),

one has

∑
i

√
piqi =

∑
i

(p1/2i q(1−s)/(2s)
i )q(2s−1)/(2s)

i ≤
(∑

i

psi q
1−s
i

)1/(2s)

(45)

using also
∑

i qi = 1. Then, applying log to this inequality and using that Ds =
(s − 1)−1 ln

∑
i p

s
i q

1−s
i in the commutative case, we get − s

1−s ln F2 = �s ≥ Ds ,
i.e., Proposition 1 in the commutative case.

(3) The properties shown in the following indicate that �s has many of the desired
properties of a divergence. To the best of our knowledge, �s is a new generalization
of the negative log squared fidelity.
Wenow investigate someproperties of�s . First, consider |ζ1〉, |ζ2〉 such thatωζ1 ≤ ωζ2

in the sense of functionals on the von Neumann algebraM. It is well-known that such
a condition implies the existence of a′ ∈ M′ such that |ζ1〉 = a′|ζ2〉 and ‖a′‖ ≤ 1.
Then, (26) immediately gives:

FM(yωζ1 y
∗, ωψ) = sup{|〈yζ1|b′ψ〉| : b′ ∈ M′, ‖b′‖ = 1}

= sup{|〈ya′ζ2|b′ψ〉| : b′ ∈ M′, ‖b′‖ = 1}
= sup{|〈yζ2|a′∗b′ψ〉| : b′ ∈ M′, ‖b′‖ = 1}
≤ sup{|〈yζ2|c′ψ〉| : c′ ∈ M′, ‖c′‖ = 1}
= FM(yωζ2 y

∗, ωψ)

(46)

for any y ∈ M, since ‖a′∗b′‖ ≤ 1 so the sup in the fourth line is over a larger
set. But then the variational formula (41) gives without difficulty �s(ωζ1 |ωψ) ≥
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�s(ωζ2 |ωψ). Similarly, consider |ψ1〉, |ψ2〉 such that ωψ1 ≤ ωψ2 . By the same argu-
ment F(yωζ y∗, ωψ1) ≤ F(yωζ y∗, ωψ2), and the variational formula (41) thereby
gives the following corollary:

Corollary 4 For normal positive functionals on a von Neumann algebra ωζ1 ≤ ωζ2

and ωψ1 ≤ ωψ2 , we have also �s(ωζ1 |ωψ1) ≥ �s(ωζ2 |ωψ2) when 1 > s > 1/2.

As an application, consider an inclusion of von Neumann factors N ⊂ M
together with a conditional expectation E : M → N and unit vector |ζ 〉 such
that ind(E) = λ < ∞. Then by definition, ωζ ◦ E ≥ λ−1ωζ . The identity
�s(ωζ |λ−1ωψ) = �s(ωζ |ωψ) + ln λ [Corollary 6,3)] and the previous corollary
trivially give

�s(ωζ |ωζ ◦ E) ≤ ln λ (47)

because �s(ωψ |ωψ) = 0.
We can also prove the DPI for �s in the context of properly infinite von Neumann

algebras using only properties of the fidelity in the range 1/2 ≤ s ≤ 1.

Corollary 5 LetM,N be properly infinite von Neumann algebras and T : M → N a
channel. Then, for two normal state functionalsωζ , ωψ we have�s(ωζ ◦T |ωψ ◦T ) ≤
�s(ωζ |ωψ) for s ∈ (1/2, 1).

Proof By [25], thm. 2.10 (which assumes properly infinite von Neumann algebras), T
can bewritten in Stinespring form T (b) = v∗ρ(b)v, where v ∈ M, v∗v = 1, vv∗ = q
(q a projection) and ρ : N → M a homomorphism of von Neumann algebras. Then,
it is sufficient to prove the theorem separately for the case (i) T1(a) = v∗av and the
case (ii) T2(b) = ρ(b).

(i) Using (26) withM′ in place of M, we have for y ∈ M:

FM(yωvζ y
∗|ωvψ) = sup{|〈yvζ |x ′vψ〉| : ‖x ′‖ = 1, x ′ ∈ M′}

= sup{|〈yvζ |vx ′ψ〉| : ‖x ′‖ = 1, x ′ ∈ M′}
= sup{|〈v∗yvζ |x ′ψ〉| : ‖x ′‖ = 1, x ′ ∈ M′}
= FM((v∗yv)ωζ (v

∗yv)∗|ωψ).

(48)

Furthermore,

ωvζ (x
∗x) = ωζ (v

∗x∗xv) ≥ ωζ ((v
∗xv)∗v∗xv). (49)

Then, we have

cp inf
x :R+→M

∫ ∞
0

[ωvζ (x(t)∗x(t)) + t−1FM(y(t)ωvζ y(t)
∗|ωvψ)2]t−2/p′

dt

= cp inf
x :R+→M

∫ ∞
0

[ωvζ (x(t)∗x(t)) + t−1FM((v∗y(t)v)ωζ (v∗y(t)v)∗|ωψ)2]t−2/p′
dt

≥ cp inf
x :R+→M

∫ ∞
0

[ωζ (X(t)∗X(t)) + t−1FM(Y (t)ωζ Y (t)∗|ωψ)2]t−2/p′
dt, (50)
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where Y (t) = v∗y(t)v, X(t) = v∗x(t)v. Note that these are particular examples of
piecewise constant functions valued inMwith finite range such that X(t)+Y (t) = 1
and such that Y (t) = 0 for sufficiently small t and X(t) = 0 for sufficiently large t .
Thus, we can make the right side at most smaller by taking the infimum over all such
functions. This results in �s(ωvζ |ωvψ) ≤ �s(ωζ |ωψ) using the definition of �s (43)
(where 2s = p).

(ii) We have

cp inf
x :R+→ρ(N )

∫ ∞
0

[ωζ (x(t)∗x(t)) + t−1Fρ(N )(y(t)ωζ y(t)
∗|ωψ)2]t−2/p′

dt

≥ cp inf
X :R+→M

∫ ∞
0

[ωζ (X(t)∗X(t)) + t−1Fρ(N )(Y (t)ωζY (t)∗|ωψ)2]t−2/p′
dt

≥ cp inf
X :R+→M

∫ ∞
0

[ωζ (X(t)∗X(t)) + t−1FM(Y (t)ωζY (t)∗|ωψ)2]t−2/p′
dt, (51)

where in the first step we took the infimum over the larger set of piecewise constant
functions X valued in M with finite range such that 1 − X(t) = Y (t) = 0 for
sufficiently small t and X(t) = 0 for sufficiently large t . In the second step, we used
the monotonicity Fρ(N ) ≥ FM since ρ(N ) is a von Neumann subalgebra of M, by
(26). This yields �s(ωζ ◦ ρ|ωψ ◦ ρ) ≤ �s(ωζ |ωψ). ��

Applying the DPI to the channel A → A ⊕ · · · ⊕ A, a �→ a ⊕ · · · ⊕ a and the
states ρ = ⊕iλiωψi , σ = ⊕iλiωζi implies that �s is jointly convex by a standard
argument, see e.g., [32], proof of prop. 1,

∑
i

λi�s(ωζi |ωψi ) ≥ �s(
∑
i

λiωζi |
∑
j

λ jωψ j ) (52)

where the sum is finite and λi ≥ 0,
∑

λi = 1. Next, we obtain the following corollary:

Corollary 6 Let M be a von Neumann algebra and s ∈ (1/2, 1).

(1) We have for ‖ζ‖ = 1

�s(ωζ |ωψ) ≥ − ln F(ωζ |ωψ)2. (53)

(2) We have for ‖ψ‖ = 1

�s(ωζ |ωψ) ≤ − s

1 − s
ln F(ωζ |ωψ)2. (54)

(3) �s(ωζ |λωψ) = �s(ωζ |ωψ) − ln λ for λ > 0.
(4) We have for ‖ψ‖ = 1 = ‖ζ‖ that lims→(1/2)+ �s(ωζ |ωψ) = − ln F(ωζ |ωψ)2.
(5) �s(ωζ |ωψ) ≥ 0 for ‖ψ‖ = 1 = ‖ζ‖ with equality iff ωζ = ωψ .
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Proof For 1), we choose an approximation of

x(t) = F(ωζ |ωψ)2

t + F(ωζ |ωψ)2
1 (55)

by step functions. Then, we apply the variational definition of�s (43) and the integral
formula (30) upon which the result follows by a simple calculation using ‖ζ‖ = 1.

For 2), we first use the supremum characterization of the fidelity (26), by which
have F(yωζ y∗, ωψ)2 ≥ |〈ψ |yζ 〉|2 = ‖Pψ yζ‖2, where Pψ = |ψ〉〈ψ | is a projector
because ‖ψ‖ = 1. Then (p = 2s),

cp inf
x :R+→M

∫ ∞

0
[ωζ (x(t)

∗x(t)) + t−1F(y(t)ωζ y(t)
∗|ωψ)2]t−2/p′

dt

≥ cp inf
x :R+→M′

∫ ∞

0
[‖x(t)ζ‖2 + t−1‖Pψ y(t)ζ‖2]t−2/p′

dt

= cp

∫ ∞

0
〈ζ |Pψ(t + Pψ)−1ζ 〉t−2/p′

dt

= cp‖Pψζ‖2
∫ ∞

0
(t + 1)−1t−2/p′

dt = |〈ζ |ψ〉|2.

(56)

This remains true if we change |ζ 〉 → u′|ζ 〉 for any unitary u′ from M′, thus giving

cp inf
x :R+→M

∫ ∞

0
[ωζ (x(t)

∗x(t)) + t−1F(y(t)ωζ y(t)
∗|ωψ)2]t−2/p′

dt

≥ sup{|〈u′ζ |ψ〉|2 : u′ ∈ M′ unitary} = F(ωζ |ωψ)2,

(57)

using a well-known characterization [1] of the fidelity in the last step. The rest then
follows from the definition (43) of �s .

For (3), we use the homogeneity of the fidelity F(λy(t)ωψ y(t)∗|ωζ ) =√
λF(y(t)ωψ y(t)∗|ωζ ) and apply the change of variables t ′ = t/λ in the integral

(43).
Item (4) is a combination of (1) and (2).
Item (5) follows from the properties F(ωζ |ωψ) ≤ 1, F(ωζ |ωψ) = 1 iff ωζ = ωψ ,

and 1), 2). ��

4 Application to quantum field theory

Here, we consider an application of �s to quantum field theory inspired by [26].
For simplicity and concreteness, we consider chiral conformal quantum field theories
(CFTs) on a single lightray (real line) or equivalently the circle in the conformally
compactified picture. But the arguments are of a rather general nature and would
apply with some fairly obvious modifications to general quantum field theories in
higher dimensions under appropriate hypotheses.
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Weassume axioms that are standard in algebraic quantumfield theory [16]. Accord-
ing to this axiom scheme, fulfilled by many examples, a chiral CFT is an assignment
A : I �→ A(I ), wherein I ⊂ S1 is an open interval andA(I ) a von Neumann algebra
acting on a fixed Hilbert space H with the following properties:

1. (Isotony) If I1 ⊂ I2 then A(I1) ⊂ A(I2).
2. (Commutativity) If I1 ∩ I2 is empty, then [A(I1),A(I2)] = {0}.
3. (Möbius covariance) There is a strongly continuous unitary representation U on

H of the Möbius group G = ˜SL2(R)/Z2 which is consistent with the standard
action of this group on the circle by fractional linear transformations, in the sense
U (g)A(I )U (g)∗ = A(gI ) for all g ∈ G.

4. (Positive energy) The one-parameter subgroup of rotations has a positive generator
L0 under the representation U .

5. (Vacuum) There is a unique vector |�〉 ∈ H, called the vacuum, which is invariant
under all U (g), g ∈ G.

6. (Additivity) Let I and In be intervals such that I = ∪n In . Then,A(I ) = ∨nA(In)
(strong closure).

The special situation we would like to study here are two chiral CFTs A,F in the
above sense such thatA(I ) ⊂ F(I ) is an inclusion of von Neumann factors acting on
the same Hilbert space H for any open interval I , and transforming under the same
representation, U . By general arguments, these factors have to be of type III [9]. A
typical example iswhenA is theVirasoro net (operator algebras generated by the stress
energy tensor) and F is an extension of finite index as classified in [22]. For further
details on such a setting, see e.g., [27,28]. We will also assume that the Jones-Kosaki
index λ ≡ [F(I ) : A(I )] is finite (hence independent of I by [28]). By [27], lemma
13, this implies that for each I there is a conditional expectation EI : F(I ) → A(I ),
satisfying the Pimsner–Popa inequality (10). We assume that EI leaves the vacuum
vector invariant, ω� ◦ EI = ω� for all intervals I . Furthermore, these conditional
expectations are assumed to be consistent in the sense EI |F(J ) = EJ for J ⊂ I [28].
Consider two sets of intervals (identifying S1 with the real line via a stereographic
projection):

An = (a,−1/n), Bn = (1/n, b), (58)

wherein n is a natural number and a < 0, b > 0. We consider the von Neumann
algebra inclusionA(An)∨A(Bn) ⊂ F(An)∨F(Bn), and we let En be the conditional
expectation F(An) ∨ F(Bn) → A(An) ∨ A(Bn) such that

En(anbn) = EAn (an)EBn (bn) ∀an ∈ F(An), bn ∈ F(Bn). (59)

Thus, En only projects out degrees of freedom of the individual parts of the system
in (58) separately.3 In the limit as n → ∞ (denoted as limn in the following), these
systems touch each other. We can show the following theorem.

Theorem 1 We have limn �s(ω�|ω� ◦ En) = ln[F : A] for s ∈ [1/2, 1).
3 Somewhat formally En = EAn ⊗ EBn , which holds rigorously if the split property holds in the CFT.
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Corollary 7 We have

lim
n

F(ω�|ω� ◦ En) = [F : A]−1/2. (60)

Proof Obvious in view of Corollary 6, 4) and Theorem 1. ��

Proof of Theorem 1 The proof strategy is similar to that of a result by Longo and Xu
[26] who have considered the relative entropy S instead of the divergence �s . As their
proof, we make use of the variational definition of the divergence �s .

First assume that 1/2 < s < 1. We use the notation d2 = λ ≡ [F(I ) : A(I )] < ∞
which is independent of I [28]. Let |ψn〉 be a vector such that ωψn = ω� ◦ En , as a
functional on F(An) ∨ F(Bn). ��

Lemma 2 There exists a sequence { fn} ⊂ F(An)∨F(Bn) such that fn → 1 strongly
and

lim
n

ω�( fn) = 1, lim
n

ω�( f ∗
n fn) = 1, lim

n
ωψn ( f

∗
n fn) = λ−1. (61)

Proof The proof is given in [26], prop. 4.5. However we rephrase it somewhat in
preparation to the discussions in the next section. A finite index inclusion N ⊂ M
of properly infinite von Neumann factors is characterized uniquely by its associated
Q-system [7,29] (x, w, θ), wherein x, w ∈ N obey certain relations relative to the
canonical endomorphism θ of N , see appendix A.

Applying this structure to the inclusions A(An) ⊂ F(An) we get vAn ∈ F(An)

and similarly for Bn . These are fixed uniquely demanding that the corresponding
conditional expectations, see appendix A, be given by the |�〉 preserving conditional
expectation EAn etc. By translation-dilation covariance, this implies for example that
vAn → vA strongly as n → ∞. Another standard result in this setting, shown,
e.g., in [26], lemma 2.9, is that vAn can be “transported” to vBn in the sense that
there is a unitary uBn An ∈ A(a, b) ∩ Hom(θBn , θAn ), such that vBn = uBn AnvAn . By
additivity, we may find a sequence of unitaries an,k ∈ A(An), bn,k ∈ B(Bn) such that∑N (n)

k=1 b∗
n,kan,k − uBn An → 0 as n → ∞, in the strong sense. Then, let

VAn ,k = 1√
d
an,kvAn ∈ F(An), V ∗

Bn ,k = 1√
d

v∗
Bnb

∗
n,k ∈ F(Bn). (62)

Finally, let

fn =
N (n)∑
k=1

V ∗
Bn ,kVAn ,k . (63)

Then, it follows that fn → d−1v∗
BvB = 1 strongly by construction and the relations

of Q-systems, see appendix A. This already implies the first two of the claimed limits
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in (61). On the other hand,

ω� ◦ En( f
∗
n fn) =

∑
k,l

ω� ◦ En(V
∗
An ,kVBn ,kV

∗
Bn ,l VAn ,l)

=
∑
k,l

ω� ◦ En(V
∗
An ,kVAn ,l VBn ,kV

∗
Bn ,l)

=
∑
k,l

ω�(EAn (V
∗
An ,kVAn ,l)EBn (VBn ,kV

∗
Bn ,l))

=
∑
k,l

ω�(V ∗
An ,kVAn ,l EBn (VBn ,kV

∗
Bn ,l))

= d−3
∑
k,l

ω�(v∗
An
a∗
n,kan,lvAnbn,kb

∗
n,l)

= d−3
∑
k,l

ω�(v∗
An
a∗
n,kbn,kan,lb

∗
n,lvAn

) → d−2

(64)

using commutativity in the first line, the definition of En in the second line, EI |F(J ) =
EJ for J ⊂ I and ω� ◦ EI = ω� in the third line, the bimodule property of EBn
as well as EBn (vBnv

∗
Bn

) = d−1 by properties of the Q-system in the fourth line,
commutativity again in the fifth line, and

∑
a∗
n,kbn,kan,lb∗

n,l → 1 strongly as n → ∞
and v∗

An
vAn

= d · 1 in the last line (using properties of the Q-system). ��
Next, we define

xn(t) =

⎧⎪⎨
⎪⎩
1 − t

t+λ−1 fn if 1/k ≤ t ≤ k

1 if t > k

0 if t < 1/k.

(65)

Using the properties (61) of fn , we have for t ∈ (1/k, k):

lim
n

ω�(xn(t)
∗xn(t)) = λ−2

(t + λ−1)2

lim sup
n

F(yn(t)ω�yn(t)
∗|ωψn ) ≤ lim sup

n
‖yn(t)∗ψn‖ = λ−1t2

(t + λ−1)2
,

(66)

using in the second line theCauchy–Schwarz inequality in order to estimate the fidelity
characterized through (26). Therefore, for fixed k, we have

lim sup
n

∫ k

1/k

[
ω�(xn(t)

∗xn(t)) + t−1F(yn(t)ω�yn(t)
∗|ωψn )

2
]
t−(2s−1)/sdt

≤
∫ k

1/k

[
λ−2

(t + λ−1)2
+ λ−1t

(t + λ−1)2

]
t−(2s−1)/sdt

= c−1
2s λ(s−1)/s − s

1 − s
k(s−1)/s − s

2s − 1
k−(2s−1)/s
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+s
∞∑

m=1

(−1)m
{(

λ

k

)m 1

ms + (1 − s)
+

(
1

λk

)m+1 1

ms + (2s − 1)

}
, (67)

using the integral (30) and the definition of cp from prop. 1 in the last step. The last sum
is of order O(k−1) uniformly in s ∈ [1/2, 1]. On the other hand, using the definition
of xn(t) in the range t < 1/k, we have

lim sup
n

∫ 1/k

0

[
ω�(xn(t)

∗xn(t)) + t−1F(yn(t)ω�yn(t)
∗|ωψn )

2
]
t−(2s−1)/sdt

=
∫ 1/k

0
t−(2s−1)/sdt = s

1 − s
k(s−1)/s,

(68)

while using the definition of xn(t) in the range t > k, we have

lim sup
n

∫ ∞

k

[
ω�(xn(t)

∗xn(t)) + t−1F(yn(t)ω�yn(t)
∗|ωψn )

2
]
t−(2s−1)/sdt

=
∫ ∞

k
t−(2s−1)/s−1dt = s

2s − 1
k−(2s−1)/s .

(69)

Consequently, when s = p/2, the variational expression (41) is estimated by4

lim sup
n

c2s

∫ ∞

0

[
ω�(xn(t)

∗xn(t)) + t−1F(yn(t)ω�yn(t)
∗|ωψn )

2
]
t−2/(2s)′dt

≤ λ(s−1)/s + O(k−1)

(70)

for any k > 0 where O(k−1) is a term bounded in norm by Ck−1 uniformly in
s ∈ [1/2, 1]. Letting k → ∞ this term disappears, and then using the definition of �s

and of |ψn〉 gives

lim inf
n

�s(ω�|ω� ◦ En) ≥ ln λ. (71)

On the other hand, we have already seen before in (47) that �s(ω�|ω� ◦ En) ≤ ln λ.
The proof of the theorem is therefore complete for the case 1/2 < s < 1.

Now we turn to the limiting case s → (1/2)+. We go back to the proof and
investigate the limit as s → (1/2)+. By inspection it can be seen that in order to
obtain an expression in (70) not exceeding λ(s−1)/s + O(k−1)+ ε for some ε > 0, we
need n ≥ n0(k, ε), where n0 does not depend on s ∈ [1/2, 1]. Furthermore, we have
argued in the proof that O(k−1) is uniform in s ∈ [1/2, 1]. Thus, the limit s → 1/2+
may be taken and we learn that F(ω�|ωψn )

2 ≤ λ−1+O(k−1)+ε when n ≥ n0(k, ε).
Thus, lim supn F(ω�|ωψn )

2 ≤ λ−1 and the rest is as before.

4 Note that the variational expression holds by continuity also for strongly continuous families such as
xn(t).
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Remarks Cor. 1 for s = 1/2 gives the a dual formulation of this result when applied
to Mn = F(An) ∨ F(Bn),Nn = A(An) ∨ A(Bn) and E ′

n : (A(An) ∨ A(Bn))
′ →

(F(An) ∨F(Bn))
′, which is the dual conditional expectation. Indeed, if we combine

cor.s 1, 7 and 6, 4), we immediately find that

lim
n

F(ω′
�|ω′

� ◦ E ′
n) = 1. (72)

5 Conclusions

Weend this paper by commenting on the physical significance of the result in sec. 4. For
this, it is instructive to have in mind the example of a Haag–Kastler QFT [16],F , con-
taining charged fields. Thesemap the vacuum |�〉 to stateswith net (flavor) charge. The
subset of charge neutral operators isA. On the full Hilbert spaceH (including charged
states), the gauge group G acts by global unitaries which transform the charged fields
and leave the vacuum invariant. The conditional expectation EI : F(I ) → A(I ) is the
Haar-average over G and projects onto the charge neutral operators (“observables”)
in a given region I , which is left invariant because gauge transformations commute
with translations by the Coleman–Mandula theorem (see e.g., [16]). Assuming that G
is a finite group with |G| elements, the index is |G| = [F : A].

Given two spacelike related regions An and Bn separated by a finite corridor of size
∼ 1/n, the conditional expectation En defined by (59) is basically the tensor product
EAn ⊗ EBn . �s(ω�|ω� ◦ En) in a sense accounts for the correlations between An and
Bn that are visible using charge operators only in both subsystem. This interpretation
becomes more and more precise when the regions move together. The above intuitive
argument has been substantiated (in a somewhat heuristic way) in the very lucid paper
by [11], in the case of the relative entropy S—such that we should use Kosaki’s
variational formula for S (8) instead of the variational definition of �s (43). They first
argue using known properties of S in connection with conditional expectations that
the mutual information between An and Bn in the vacuum state satisfies

IF (An|Bn) − IA(An|Bn) = S(ω�|ω� ◦ En). (73)

When n → ∞, it is plausible that the mutual information on the left side is dominated
by correlations between charge carrying operators localized very near the edges where
An and Bn approach each other. Furthermore, although each term in IF (An|Bn) −
IA(An|Bn) is expected to diverge, the difference ought to be a finite number related
to the order of G. In fact, by investigating more closely the right side of the equation,
they argue that S(ω�|ω� ◦ En) converges to ln |G| when n → ∞.

Actually, the core of the argument by [11] has a similar flavor to that given in
the proof of Theorem 1, in the following sense. Going to our proof, a key step is
the construction of the “vertex operators” which have in a sense maximal correlation
across the separating corridor between An and Bn as stated in lem. 2. To simplify, let
us take half lines An, Bn separated by a corridor of width 2/n symmetrically around
the origin. Proceeding somewhat informally to simplify the discussion, we consider
instead the isometric vertex operators Vn = uCn BnvBn/

√
d where Cn = (1/n, 2/n)
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and uCn Bn is a unitary charge transporter from Bn to Cn . Then, Vn is localized in
(1/n, 2/n), and it creates an incoherent superposition of all irreducible charges in this
interval by the Q-system construction, see app. A. Letting J = JF be the modular
conjugation associated with the half-line (0,∞), we can say that V̄n = JVn J creates
the opposite charges in the opposite interval (−2/n,−1/n) because J is basically
the PCT operator exchanging An with Bn , and particle with anti-particle (Bisognano–
Wichmann theorem [16]).

Thus, the correlation function which we want to maximize similar to Lemma 2 is

1 ≥ 〈�|V̄nVn�〉 = 〈�|Vn
1/2V ∗
n �〉, (74)

where the inequality is simply the Cauchy–Schwarz inequality. The modular flow 
i t

corresponds to dilations by et (Bisognano–Wichmann theorem), and Vn|�〉 should be
approximately dilation invariant moving ever closer to the edge of Bn when n → ∞.
Thus, the limit of 〈�|V̄nVn�〉 should indeed be 1. Arguing just as in Lemma 2, one
can likewise see at least formally that 〈ψn|V̄nVnψn〉 should tend to λ−1.

Thus, in this sense, the quantity S(ω�|ω� ◦ En) is dominated in the limit n → ∞
by particle anti-particle pair correlations very close to the edges across the corridor in
accordance with the intuitive picture proposed by [11].
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AQ-systems, subfactors and OPE [7,28,29]

A Q-system is a way to encode an inclusion of properly infinite von Neumann factors
N ⊂ M possessing a minimal conditional expectation E : M → N such that the
index, denoted here by d2, is finite. An important point is that the data in the Q-system
only refer to the smaller factor, N .

Central to the construction is the notion of an endomorphism of N , which is
an ultra-weakly continuous ∗-homomorphism of N such that θ(1) = 1. Given
two endomorphisms ρ, θ , one says that a linear operator is an intertwiner, writ-
ten T ∈ Hom(ρ, θ), if Tρ(n) = θ(n)T for all n ∈ N . Two endomorphisms are
called equivalent if there is a unitary intertwiner and irreducible if there is no non-
trivial self-intertwiner. One writes θ ∼= ⊕iρi if there is a finite set of irreducible and
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mutually inequivalent endomorphisms ρi and isometries wi ∈ Hom(ρi , θ) such that
θ(n) = ∑

w∗
i ρi (n)wi for all n ∈ N and such that wiw

∗
j = δi j1.

Definition 3 A Q-system is a triple (θ, x, w) where: θ ∼= ⊕iρi is an endomorphism
of N , w ∈ Hom(θ, id) ∩ N and x ∈ Hom(θ2, θ) ∩ N such that

w∗x = θ(w∗)x = 1, x2 = θ(x)x, θ(x∗)x = xx∗ = x∗θ(x), (75)

as well as

w∗w = d · 1, x∗x = d · 1. (76)

Given a Q-system, one defines an extension M as follows. As a set, M consists
of all symbols of the form nv, where n ∈ N with the product, ∗-operation, and unit
defined by, respectively

n1vn2v = n1θ(n2)xv, (nv)∗ = w∗x∗θ(n∗)v, 1 = w∗v. (77)

Associativity and consistency with the ∗-operation follow from the defining relations
of a Q-system, which also give vn = θ(n)v. The conditional expectation is related
to the data by E(nv) = d−1nw and is used to induce the operator norm on M. The
bimodule property of E follows again from the defining relations of the Q-system,
which also give for instance E(vv∗) = d−11.

Conversely, given an inclusion of properly infinite factorsN ⊂ M, the data of the
Q-system and v ∈ M can be found by a canonical procedure and d2 = [M : N ].

Let ρi andwi ∈ Hom(ρi , θ) be the endomorphisms and intertwiners corresponding
to the decomposition θ ∼= ⊕iρi into irreducibles. Next, define

ψi = w∗
i v. (78)

The relations in Definition 3 imply that the following relations hold. Define:

cki, j = w∗
i θ(w∗

j )xwk, w0 = w, (79)

and let ρ0 = id be the trivial endomorphism of N . Then,

• (Operator product expansion): ψiψ j = ∑
k c

k
i, jψk .

• (∗-operation) ψ∗
k = c0

k̄,k
∗ψk̄ and c0j,k = δ j,k̄ Rk , where Rk ∈ Hom(ρ0, ρ̄kρk) is

the intertwiner characterizing the “conjugate sector.”
• (Unit) ψ0 = 1.

In the QFT context, one not only has one inclusion, but a net of inclusions
A(I ) ⊂ F(I ) [28]. Furthermore, in chiral CFT, A(I ) is often taken to be the algebra
generated by the smeared stress tensor inside I (“Virasoro-net”). From this, one should
be able to construct an operator product expansion in the usual sense in the physics
literature, although to establish the connection in full precision/generality remains an
open problem.
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The basic idea is to consider the “fields” ψi,I for each interval I . To obtain a
pointlike vertex operator, we should shrink I → {x}, while at the same time subtract
the vacuum expectation value 〈�|ψI ,i�〉1 and rescaling5 by |I |−hi to obtain a finite
limit, Vi (x). These “primary” fields obey an OPE with “coefficients” cki, j (x, y) that
are still operators in the Virasoro net. We should think of them as operator valued
functions cki, j (x, y) = cki, j (x, y, {Ln}).When formally expanded out as a power series
in the Virasoro generators {Ln}n∈Z, this ought to give the operator product expansion
with certain numerical coefficients containing on the right side the primary vertex
operators Vk(y) as well as their descendants φk,{n}(y) = [Ln1, [· · · Lnm , Vk(y)]],
where n1 < n2 < · · · < 0. This is the form of the operator product expansion usually
given in the physics literature. Representation theoretic considerations then formally
determine the scaling of the numerical OPE coefficients. Such partly heuristic claims
are at the basis of our discussion in Sect. 5.
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