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Abstract
TheNappi–Wittenmodel is aWess–Zumino–Wittenmodel inwhich the target space is
the nonreductiveHeisenberg group H4.We consider the representation theory underly-
ing this conformal field theory. Specifically, we study the category of weight modules,
with finite-dimensional weight spaces, over the associated affine vertex operator alge-
bra H4. In particular, we classify the irreducible H4-modules in this category and
compute their characters. We moreover observe that this category is nonsemisimple,
suggesting that the Nappi–Witten model is a logarithmic conformal field theory.
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1 Introduction

Wess–Zumino–Witten models are examples of nonlinear sigma models that describe
(noncritical) strings propagating on Lie groups or supergroups [1]. The enhanced
symmetry afforded by Lie-theoretic target spaces makes them attractive studies, and
consequently, the models based on reductive Lie groups are now very well under-
stood. In particular, Wess–Zumino–Witten models with reductive Lie groups have
chiral symmetry algebras that may be identified as affine vertex operator algebras at
nonnegative integer levels. This identification not only algebraically formalises the
conformal symmetry of these models, it also means that the representation theory of
the corresponding affineKac–Moody algebras [2] is available to organise the spectrum.

In contrast, the Wess–Zumino–Witten models with nonreductive Lie groups are
relatively poorly understood. It has been known for quite some time [3,4] that the
theory is conformal if the corresponding Lie algebra admits a nondegenerate invari-
ant symmetric bilinear form. However, the representation theory of the corresponding
affine vertex operator algebras has remained largely unexplored, probably because
the representation theory of nonreductive Lie algebras is already considerably more
challenging than the reductive case. In this paper, we revisit one of the simplest nonre-
ductive examples: the Nappi–Wittenmodel [5] corresponding to the Heisenberg group
H4.

The Nappi–Witten model was originally introduced to describe strings propagating
in a monochromatic plane-wave background, a seemingly simple generalisation of
the flat backgrounds familiar from abelian group target spaces, and has since been
intensively studied. For example, this model lends itself to the study of the propagation
and scattering of strings in the presence of gravitational waves [6,7]. Moreover, its rich
collection of abelian and diagonal cosets have been related to many other interesting
backgrounds [8,9]. Boundary aspects (D-branes) have likewise been explored in detail,
see [10–12], for example.

In a sense, the representation theory of the Nappi–Witten vertex operator algebra
H4 has been discussed many times in the literature. In particular, a spectrum has been
proposed from which 3- and 4-point correlation functions have been calculated, see
[7], for example. However, this proposal largely follows the paradigm of noncompact
conformal field theory introduced in [13] for the SL2(R)Wess–Zumino–Wittenmodel:
start with the unitary representations of the Nappi–Witten Lie algebra h4 and induce
to get representations of its affinisation h4. It therefore identifies the generic features
of the spectrum, but may miss the finer structure needed for a complete understanding.

Our primary motivation here is that an alternative paradigm has recently arisen
through the study of Wess–Zumino–Witten models on Lie supergroups [14–16],
fractional-level Wess–Zumino–Witten models [17–20] and related theories such as
the bosonic ghost system [18,21–23]. As conformal field theories, these share similar
features to the known noncompact models such as continuous spectra and conformal
dimensions that are unbounded from below. More interestingly, the fine structure of
the spectra of these theories shows that they are logarithmic, meaning that the spec-
trum receives contributions from reducible but indecomposable representations with
a nondiagonalisable action of the Hamiltonian [24]. Moreover, these logarithmic rep-
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resentations are necessary for the standard consistency checks of closure under fusion
[17,25] and modular invariance [21,26].

It would therefore be very interesting to study the fine structure of the spectrum
of the Nappi–Witten model. In this respect, we note that [7], see also [8], find strong
evidence for logarithmic singularities in the 4-point correlators, usually regarded as a
sure sign of logarithmic representations. However, they argue that the Nappi–Witten
model is not logarithmic and that these singularities arise somehow because of the
continuous nature of the spectrum. On the other hand, there are related coset models
that are known to be logarithmic [27,28].

A first step towards understanding the fine structure of the Nappi–Witten model
was taken in [29], where the highest-weight modules of the affinisation h4 of h4 were
studied. The results included a precise determination of when a Verma h4-module is
irreducible and a partial characterisation of the submodule structure when it is not.
They also conjectured similar results for certain generalised Verma modules, here
referred to as relaxed Verma modules following [30,31]. Our main aim in this paper
is to complete these results. We reprove (in a simpler fashion) their classification
result and moreover completely determine the substructures of all Verma modules.
We also prove their conjectures for relaxed Verma modules. Consequently, we deduce
character formulae for all irreducible weight representations, with finite-dimensional
weight spaces, over the Nappi–Witten vertex operator algebra H4. We also prove that
H4 admits many indecomposable but reducible representations, though those that we
construct are not themselves logarithmic.

Two obvious questions, whichwe leave for futurework, are to ascertain themodular
transformations of the irreducible characters and to determine the fusion rules. Both are
necessary checks on the consistency on any proposed spectrum. To check modularity,
we expect to apply the standard module formalism of [19,32], though there are some
obvious technical considerations to overcome. Computing fusion rules is expected to
bemuchmore difficult, but here there are already some helpful partial results on tensor
products of h4-modules [33,34]. One main aim here would be to determine, given a
proposed spectrum, if logarithmic representations are generated as fusion products of
the already known nonlogarithmic representations.

This paper is organised as follows. We introduce our notation and conventions for
the Heisenberg Lie algebra h4 in Section 2. We also discuss its automorphisms and
classify its irreducible weight representations. The latter result is very well known,
see [34], for example, but we outline the easy proof for completeness and because
it is convenient for constructing certain, less well-known, families of reducible but
indecomposable h4-representations. This is followed, in Section 3, with a summary of
our notation and conventions for the affinisation h4 and the associated universal affine
vertex operator algebra H4. Here, we also discuss automorphisms including those of
“spectral flow” type.

Section 4 is devoted to a thorough study of the highest-weight modules of H4. In
particular, we give an elementary proof of the fact that H4 is a simple vertex operator
algebra and we rigorously identify the maximal submodule of an arbitrary Verma h4-
module (Theorem 5). We give a combinatorial proof of the latter result in Appendix
A. The generalisation to relaxed highest-weight modules is the subject of Section 5.
Here, we adapt the methodology developed in [35] to study relaxed highest-weight
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modules over the admissible-level affine vertex operator (super)algebras associated
with sl2 and osp(1|2). Ourmain result, Theorem 6, classifies all the irreducible relaxed
highest-weight modules of H4. We also describe the structure of certain reducible but
indecomposable H4-modules in Theorem 9.

Our last task is to compute the characters of the irreducible relaxed highest-weight
H4-modules. In Section 6, we give the characters of the Verma and relaxed Verma
modules, which are straightforward to derive, and those of the irreducible highest-
weight modules, which follow from Theorem 5. Section 7 is devoted to the much
more subtle computation of the characters of the irreducible relaxed highest-weight
modules. This again uses the methodology developed in [35] and moreover proves the
main conjecture of [29]. We conclude with a short discussion concerning directions
for future work.

We remark that the methodology of [35] is but one of many recent approaches
being developed to explore the theory of relaxed highest-weight modules for affine
vertex operator algebras (and their associated W-algebras), see [36–44], for example.
As mentioned above, the main novelty of analysing these modules over H4 is, in
our opinion, that this example derives from a nonreductive Lie algebra.1 It would be
extremely interesting to see how these other approaches can also accommodate such
nonreductive cases.

2 The Lie algebra h4 and its representations

TheLie algebrah4 is the four-dimensional complexLie algebrawith basis {E, F, I , J }
whose nonzero Lie brackets are, modulo antisymmetry, as follows:

[E, F] = I , [J , E] = E, [J , F] = −F . (2.1)

As I spans the centre, but the centre has no complementary ideal, h4 is not reductive.
On the other hand, the Killing form is easily checked to be nonzero, so h4 is not
solvable. Nevertheless, it admits a two-parameter family of nondegenerate invariant
symmetric bilinear forms, given by

κ (E, F) = κ (I , J ) = a, κ (J , J ) = b, a ∈ C \ {0}, b ∈ C, (2.2)

with all other entries 0. For reasons that will shortly become clear, we may take a = 1
and b = 0 in what follows.

This Lie algebra also possesses a natural triangular decomposition:

h4 = h
+
4 ⊕ h

0
4 ⊕ h

−
4 ; h

+
4 = span{E}, h

0
4 = span{I , J }, h

−
4 = span{F}. (2.3)

A highest-weight vector is then a simultaneous eigenvector of I and J which is anni-
hilated by E , and a lowest-weight vector is the same except that the annihilation is by

1 In a sense, H4 is the bosonic analogue of the well-studied gl(1|1) vertex operator superalgebra [14,15,45–
47]. We find it interesting that the latter has a far more accessible representation theory than the former.
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F . The span of a given highest-weight vector is then naturally a (h
+
4 ⊕ h

0
4)-module

and inducing to a h4-module defines the corresponding Verma module. If the I - and
J -eigenvalues of the highest-weight vector are i and j , respectively, then we shall

denote the induced (highest-weight) Verma module by V
+
i, j .

Let |i, j〉 denote the highest-weight vector of V+
i, j . Then, a basis for V

+
i, j is given

by the Fn |i, j〉, where n ∈ Z≥0. If V
+
i, j has a nonzero proper submodule, then one of

the Fn |i, j〉 (with n > 0) must be a singular vector. But, [E, F] = I is central, hence

EFn |i, j〉 = nFn−1 I |i, j〉 = inFn−1 |i, j〉 (2.4)

and we conclude that such singular vectors only exist if i = 0. Moreover, if i = 0,

then all of the Fn |i, j〉 with n > 0 are singular. It follows that the Verma module V
+
i, j

of h4 is irreducible if and only if i �= 0 and that the maximal submodule of V
+
0, j is

isomorphic to V
+
0, j−1. The Verma module V

+
i, j is then irreducible if i �= 0 and, for

i = 0, we instead have the short exact sequence

0 −→ V
+
0, j−1 −→ V

+
0, j −→ L0, j −→ 0. (2.5)

Note that the L0, j are all one-dimensional and are therefore irreducible. We therefore
have a complete classification of irreducible highest-weight modules for h4.We record
the following consequence of this classification that will be used later.

Lemma 1 If V is a finite-dimensional weight h4-module, then I acts trivially on V .

Proof The composition factors of V are obviously finite-dimensional, and hence, each
is isomorphic to one of theL0, j . It follows that I acts as zero on each factor. However,
V is weight, so I acts as zero on V as well.

Alternatively, I acts as a constant multiple of the identity on each composition factor,
by Schur’s lemma. But, taking the trace of I = [E, F] over this finite-dimensional
space shows that this multiple must be 0.

One can similarly analyse lowest-weight VermamodulesV
−
i, j . However, their struc-

ture follows immediately from the existence of an automorphism c of h4 defined by

c(E) = −F, c(I ) = −I , c(J ) = −J , c(F) = −E . (2.6)

We call the c the conjugation automorphism and note that it squares to the identity. This
lifts to an invertible endofunctor on the category of weight modules for h4 as follows.
Given such a module W, let c∗(W) denote the image of W under an arbitrary vector
space isomorphism c∗. We equip c∗(W) with an h4-module structure by defining

A · c∗(m) = c∗(c−1(A)m), A ∈ h4, m ∈ W. (2.7)

In other words, c(A)c∗(m) = c∗(Am). In what follows, we shall, for brevity, drop the
star that distinguishes the automorphism from the associated category autoequivalence.
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As c defines an invertible functor, conjugation preservesmodule structure. In partic-
ular, it maps irreducibles to irreducibles. For example, the conjugate of the irreducible

highest-weight module V
+
i, j , i �= 0, is the irreducible lowest-weight module V

−
−i,− j

of lowest-weight (−i,− j) and the conjugate of the one-dimensional module L0, j is
L0,− j (which is simultaneously highest- and lowest-weight). Moreover, invertibility
means that these modules exhaust the irreducible lowest-weight h4-modules, up to
isomorphism.

There are other nontrivial automorphisms of h4. In particular, we have two one-
parameter families that we shall refer to as the rescale automorphisms rα , α ∈ C\ {0},
and the shift automorphisms sβ , β ∈ C, defined by

rα(E) = α−1E, rα(I ) = α−2 I , rα(J ) = J , rα(F) = α−1F,

sβ(E) = E, sβ(I ) = I , sβ(J ) = J − β I , sβ(F) = F .
(2.8)

Along with conjugation, these automorphisms satisfy

rαrα′ = rαα′ , sβsβ ′ = sβ+β ′ , rαc = crα, sβc = csβ, rαsβ = sα−2β rα. (2.9)

Note that the rescale and shift automorphisms do not preserve the choice of non-
degenerate invariant bilinear form (unlike conjugation). Instead, rα has the effect of
replacing the parameter a in (2.2) by α−2a and sβ similarly replaces b by b − 2βa.
As a �= 0, these automorphisms effectively allow us to tune a and b to any values we
desire. This shows that there was no loss of generality in choosing a = 1 and b = 0,
as we did above.

As with conjugation, the rescale and shift automorphisms lift to invertible, and thus
structure-preserving, endofunctors on the category of weight modules. Since these
automorphismspreserve the triangular decomposition (2.3) (againunlike conjugation),
the corresponding endofunctors preserve being highest-weight or lowest-weight. An
easy calculation with highest-weight vectors now shows that

rα(V
+
i, j ) = V

+
α2i, j , sβ(V

+
i, j ) = V

+
i, j+βi , rα(L0, j ) = L0, j , sβ(L0, j ) = L0, j+βi . (2.10)

In particular, this explains why the structure of theVermamodules of h4 is independent
of the eigenvalue of J and only depends on whether the eigenvalue of I is zero or not.

To complete the classification of irreducible weight modules for h4, we consider
modules without highest- or lowest-weight vectors.2 For this, it is convenient to intro-

duce a central element of quadratic degree in the universal enveloping algebraU
(
h4

)
:

Q = FE + I J . (2.11)

It follows that the eigenvalues of Q on L0, j and V
+
i, j are 0 and i j , respectively. This

quadratic Casimir can, of course, be modified by adding an arbitrary polynomial in I
without affecting its central nature.

2 Our definition of weight module will always require that the dimension of the weight spaces is finite.
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The reason for introducing Q is that any weight space of an irreducible weight

module for h4 defines an irreducible module for the centraliser of h
0
4 in U

(
h4

)
and

this centraliser is easily seen to be just the polynomial algebra C[I , J , Q]. Because
the centraliser C[I , J , Q] is abelian, the weight spaces of any irreducible weight
module of h4 are one-dimensional. Moreover, given an irreducibleC[I , J , Q]-module
C |i, j; h〉, where |i, j; h〉 is labelled by its I -, J - and Q-eigenvalues (in that order), we

can induce to a U
(
h4

)
-moduleRi, j;h and a basis for the latter is given by |i, j; h〉 and

the En |i, j; h〉 and Fn |i, j; h〉 with n ∈ Z>0. TheRi, j;h are said to be dense because
their weight supports are maximal among those of all indecomposable h4-modules.

If Ri, j;h is reducible, then either one of the En |i, j; h〉 is a lowest-weight vector
or one of the Fn |i, j; h〉 is a highest-weight vector. But, if n is a positive integer for
which En |i, j; h〉 is a lowest-weight vector, then

0 = FEn |i, j; h〉 = (Q − I J )En−1 |i, j; h〉 = (h − i( j + n − 1))En−1 |i, j; h〉 .

(2.12)

Thus, h = i( j + m) for some m ∈ Z≥0. Similarly, if n is a positive integer for which
Fn |i, j; h〉 is a highest-weight vector, then h = i( j + m) for some m ∈ Z<0. A
necessary and sufficient condition for reducibility is thus that h = i( j +m) for some
m ∈ Z.

Note that if the h4-moduleRi, j;h is irreducible, then we haveRi, j;h ∼= Ri, j+n;h , for
any n ∈ Z. We shall therefore denote the irreducible dense modules byRi,[ j];h , where
[ j] ∈ C/Z. It will be convenient for what follows to pick a basis {∣∣i, j ′; h〉 : j ′ ∈ [ j]}
of weight vectors of Ri,[ j];h . Here, i , j ′ and h are the eigenvalues of I , J and Q,
respectively.

We have thus arrived at the following classification of irreducible weight modules.

Proposition 2 The irreducible weight modules of h4 are classified, up to isomorphism,
by the following list of mutually inequivalent modules:

• The L0, j with j ∈ C. These are one-dimensional and have both a highest- and
lowest-weight vector.

• The V
+
i, j with i ∈ C\{0} and j ∈ C. These are infinite-dimensional and have a

highest-weight vector but no lowest-weight vector.

• The V
−
i, j with i ∈ C\{0} and j ∈ C. These are infinite-dimensional and have a

lowest-weight vector but no highest-weight vector.
• TheRi,[ j];h with i, h ∈ C, [ j] ∈ C/Z and h /∈ i[ j]. These are infinite-dimensional
and have neither a lowest-weight vector nor a highest-weight vector.

It is also easy to analyse the reducible densemodulesRi, j;h that arisewhen h ∈ i[ j].
As above, for m, n ∈ Z>0, we know that Em |i, j; h〉 is a lowest-weight vector if
h = i( j + m − 1) and Fn |i, j; h〉 is a highest-weight vector if h = i( j − n). It
follows that Ri, j;h has both a highest-weight and a lowest-weight vector if and only
if h = i = 0, in which case it has infinitely many (every positive m and n works).
R0, j;0 thus has infinitely many composition factors L0, j+�, one for each � ∈ Z.
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The indecomposable structure of R0, j;0 may be characterised through either of the
following nonsplit short exact sequences:

0 −→ V
+
0, j−1 −→ R0, j;0 −→ V

−
0, j −→ 0,

0 −→ V
+
0, j−1 ⊕ V

−
0, j+1 −→ R0, j;0 −→ L0, j −→ 0,

0 −→ V
−
0, j+1 −→ R0, j;0 −→ V

+
0, j −→ 0. (2.13)

On the other hand, R0, j;h = R0,[ j];h is always irreducible for h �= 0, in accordance
with Proposition 2.

When i �= 0 and h ∈ i[ j], Ri, j;h has either a unique highest-weight vector or a
unique lowest-weight vector, corresponding to takingm = h

i − j + 1 or n = − h
i + j ,

respectively. We shall denote these reducible but indecomposable dense h4-modules

by R
+
i;h and R

−
i;h , respectively, because their J0-eigenvalues [ j] = [h/i] are uniquely

determined by h and i . They are characterised by the following nonsplit short exact
sequences, valid for i �= 0:

0 −→ V
+
i,h/i −→ R

+
i;h −→ V

−
i,h/i+1 −→ 0,

0 −→ V
−
i,h/i+1 −→ R

−
i;h −→ V

+
i,h/i −→ 0. (2.14)

There are of course many other reducible but indecomposable dense h4-modules,
particularly when i = 0.

It is easy to identify the result of conjugating, rescaling and shifting the dense
irreducibles Ri,[ j];h , h /∈ i[ j]:

c(Ri,[ j];h) ∼= R−i,[− j];h+i , rα(Ri,[ j];h) ∼= Rα2i,[ j];α2h,

sβ(Ri,[ j];h) ∼= Ri,[ j+βi];h+βi2 . (2.15)

The corresponding results for the reducible versions R
±
i;h , i �= 0, and R0, j;0, j ∈ C,

are

c(R
±
i;h) ∼= R

∓
−i;h+i , rα(R

±
i;h) ∼= R

±
α2i;α2h, sβ(R

±
i;h) ∼= R

±
i;h+βi2 ,

c(R0, j;0) ∼= R0,− j;0, rα(R0, j;0) ∼= R0, j;0, sβ(R0, j;0) ∼= R0, j;0.
(2.16)

3 The affine algebra h4 and the vertex algebra H4

Because h4 has a nondegenerate invariant symmetric bilinear form (2.2), it has a well-
defined affinisation

h4 = h4 ⊗ C[t, t−1] ⊕ CK . (3.1)

123



Representations of the Nappi–Witten vertex operator algebra Page 9 of 30 131

Writing An for A ⊗ tn , where A ∈ h4 and n ∈ Z, the Lie brackets are given by

[Am, Bn] = [A, B]m+n + mκ (A, B) δm+n,0K ,

[Am, K ] = 0, A, B ∈ h4, m, n ∈ Z. (3.2)

It follows that I0 is also central in h4. We also have a generalised triangular decom-
position given by

h4 = h+
4 ⊕ h0

4 ⊕ h−
4 ;

h+
4 = span{An : A ∈ h4, n ∈ Z>0}, h0

4 = span{A0, K : A ∈ h4}, h−
4 = span{An : A ∈ h4, n ∈ Z<0}.

(3.3)

From this, we obtain a parabolic Verma module for h4 by taking the one-dimensional
representation L0,0 of h4, extending it to an h+

4 ⊕ h04-module by letting the An with
n > 0 act as 0 and K act as multiplication by k ∈ C, and then inducing to a h4-module.
The constant k is called the level.

This parabolic Verma module carries the structure of a vertex algebra given by
the standard affine state-field correspondence [48]. The generating fields then have
decomposition and operator product expansions given by

A(z) =
∑

n∈Z
Anz

−n−1, A(z)B(w) ∼ κ (A, B) k 1

(z − w)2
+ [A, B](w)

z − w
, A, B ∈ h4, (3.4)

where 1 denotes the identity field. If k �= 0, then this can be extended to a vertex
operator algebra H4 through a variant of the Sugawara construction [3]:

T (z) = : E(z)F(z) :
k

+ : I (z)J (z) :
k

− ∂ I (z)

2k
− : I (z)I (z) :

2k2
. (3.5)

This is the unique conformal structure that makes the A(z), A ∈ h4, into Virasoro
primaries of conformal weight 1. With T (z) = ∑

n∈Z Lnz−n−2, we obtain Virasoro
modes in (a completion of) the universal enveloping algebra U (h4) / 〈K − k 1〉. The
central charge is c = 4, and the conformal weight of a highest-weight or lowest-weight
vector with I0- and J0-eigenvalues i and j is

�+
i, j = i

k

(
j + 1

2
− i

2k

)
or �−

i, j = i

k

(
j − 1

2
− i

2k

)
, (3.6)

respectively. More generally, the conformal weight of a relaxed highest-weight vector
(this being a weight vector annihilated by h+

4 ) with I0- and J0-eigenvalues i and j is

�i;h = h

k
+ i

k

(
1

2
− i

2k

)
, (3.7)

where h is the eigenvalue of Q0 = F0E0 + I0 J0 on the relaxed highest-weight vector.
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The conjugation automorphism c of h4 lifts to an automorphism of h4 (and thence
to H4) as follows:

c(En) = Fn, c(In) = −In, c(Jn) = −Jn, c(Fn) = En, c(K ) = K .

(3.8)

The rescale automorphisms rα , α ∈ C \ {0}, and the shift automorphisms sβ , β ∈ C,
similarly lift:

rα(En) = α−1En , rα(In) = α−2 In , rα(Jn) = Jn , rα(Fn) = α−1Fn , rα(K ) = K ,

sβ(En) = En , sβ(In) = In , sβ(Jn) = Jn − β In , sβ(Fn) = Fn , sβ(K ) = K .

(3.9)

As in Section 2, sβ allows us to tune the parameter b in the bilinear form (2.2) to 0.
Assuming that k �= 0 (so that H4 is a vertex operator algebra), rα lets us tune a to k−1.
Because the bilinear form and the level only appear multiplied together in the defining
operator product expansions (3.2), b = 0 implies that ak is the only other independent
parameter. We will therefore (without loss of generality) assume that a = k = 1 in
what follows.

Aside from these lifts of h4-automorphisms, there are genuinely new h4-
automorphisms. For example, the central element gives us an opportunity to define
new shift automorphisms s′β , β ∈ C:

s′β(En) = En, s′β(In) = In, s′β(Jn) = Jn − βδn,0K , s′β(Fn) = Fn, s′β(K ) = K .

(3.10)

Finally, we have the spectral flow automorphisms σ�, � ∈ Z, given by

σ�(En) = En−�, σ �(In) = In − �δn,0K , σ �(Jn) = Jn , σ �(Fn) = Fn+�, σ �(K ) = K .

(3.11)

Unlike conjugation, these new automorphisms do not define automorphisms of the
vertex operator algebra H4 because they do not preserve the Virasoro zero mode:

c(L0) = L0, s′β(L0) = L0 − β I0, σ �(L0) = L0 − �J0. (3.12)

However, they do define automorphisms of the underlying vertex algebra and so induce
invertible endofunctors on the category of weight modules for H4 as in (2.7).3

3 We define a weight module for h4 and H4 to be a module that decomposes as a direct sum of its weight
spaces, where a weight space is defined to be the intersection, assumed to be finite-dimensional, of a
simultaneous eigenspace of I0, J0 and K with a generalised eigenspace of L0.
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4 Highest-weight H4-modules

We may construct a weight h4-module by inducing a weight h4-module, equipped
with a trivial action of h+

4 and letting K act as the identity. Because H4 is universal,
all these induced h4-modules are also H4-modules.

In particular, inducing the Verma h4-module V
+
i, j results in the (level-1) Verma h4-

module V+
i, j , with respect to the standard Borel subalgebra h

+
4 ⊕ span{E0, I0, J0, K }.

Similarly, inducing V
−
i, j gives the Verma module V−

i, j corresponding to the conjugate

Borel subalgebra h+
4 ⊕span{F0, I0, J0, K }.We shall denote the irreducible quotient of

V±
i, j by L

±
i, j . The (generating) highest-weight vector of V

+
i, j and L

+
i, j will be denoted,

allowing for a certain abuse of notation, by |i, j〉.
The following simple result puts strong constraints on the structure of these highest-

weight h4-modules. It follows immediately from the formula (3.6) for the conformal
weight of a highest-weight vector.

Lemma 3 LetH be a highest-weight h4-module generated by a highest-weight vector
of I0-eigenvalue i and J0-eigenvalue j . Then, any given singular vector of H has
J0-eigenvalue j + m and L0-eigenvalue �+

i, j + im, for some m ∈ Z. Clearly, i and
m must have the same sign (when nonzero).

One simple consequence is that the conformal weight of any singular vector of V+
0, j is

�+
0, j = 0. As the same is true for the highest-weight module V+

0, j

/
V+
0, j−1, it follows

that this quotient is irreducible, identifying it as L+
0, j . This irreducible is therefore

isomorphic to the module L0, j induced from L0, j . The same argument applied to
V−
0, j now establishes that L+

0, j
∼= L0, j ∼= L−

0, j . As L0,0 is the vacuum module of the
vertex operator algebra H4, this proves the following assertion.

Proposition 4 The universal vertex operator algebra H4 is simple.

Another simple consequence of Lemma 3 is that the Verma module V+
i, j is irre-

ducible if i is irrational. Moreover, if 0 < i < 1, then the constraint on the J0-and
L0-eigenvalues means that the only possible singular vectors are multiples of the gen-
erating highest-weight vector. V+

i, j is thus irreducible for 0 < i < 1. However, V+
1, j

is reducible as taking m = 1 in Lemma 3 corresponds to the singular vector obtained
by acting with E−1 on the highest-weight vector. In fact, acting with Em−1 results in a
singular vector for all m ∈ Z≥0.

While this is easy to check directly, another useful way to understand this is to note
that V+

0, j and V
+
1, j are related by the action of the conjugation, shift and spectral flow

functors introduced at the end of Section 3. In particular, straightforward computation
gives

c(L0, j ) ∼= L0,− j , s′β(L0, j ) ∼= L0, j+β, σ±1(L0, j ) ∼= L±
±1, j ( j ∈ C),

c(L±
i, j )

∼= L∓
−i,− j , s′β(L±

i, j )
∼= L±

i, j+β
, σ∓1(L±

i, j )
∼= L∓

i∓1, j (i �= 0, j ∈ C),

c(V±
i, j )

∼= V∓
−i,− j , s′β(V±

i, j )
∼= V±

i, j+β
, σ∓1(V±

i, j )
∼= V∓

i∓1, j (i, j ∈ C),

(4.1)
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where β ∈ C and we recall that L±
0, j is isomorphic to L0, j . Note that applying

the spectral flow functor σ� for other (nonzero) values of � results in modules with
conformal weights that are unbounded below. We emphasise that these modules are
nevertheless still weight H4-modules.

It also follows from (4.1) that the structure of V+
i, j is independent of j and is

essentially the same as that of

σc(V+
i, j )

∼= V+
1−i,− j . (4.2)

To understand Verma module structures, it therefore suffices to restrict to i ≥ 1
2 . As

we have noted, Verma modules with 1
2 ≤ i ≤ 1 are easily analysed. The case i > 1

requires more work.

Theorem 5 (i) For i /∈ Z, V+
i, j is irreducible.

(ii) For i ∈ Z, V+
i, j has a singular vector χ , unique up to scalar multiples, with J0-

eigenvalue j + 1 or j − 1, according as to whether i > 0 or i ≤ 0, respectively,
and L0-eigenvalue �+

i, j + |i |.
(iii) The maximal submodule of V+

i, j is generated by χ .

The (somewhat lengthy) proof of this theorem is deferred to Appendix A.
The first assertion of Theorem 5 was proven in [29, Thm. 3.3] using a combinato-

rial argument split into many cases. Our proof is likewise combinatorial but shorter,
avoiding the need for cases. [29, Thm. 3.3] also gives necessary conditions for the
existence of the singular vector that we call χ above. Our proof demonstrates that a
proper subset of these conditions are sufficient and moreover establish uniqueness.
The third assertion of Theorem 5 seems to be new.

5 Relaxed highest-weight H4-modules

We now turn our attention to the relaxed highest-weight modules of h4 andH4.We first
define a relaxed highest-weight vector to be a weight vector for h4 that is annihilated
by h+

4 . A relaxed highest-weight h4-module is then one that is generated by a single
relaxed highest-weight vector. Every highest-weight h4-module is, of course, a relaxed
highest-weight module, but there are manymore. For example, the h4-moduleRi,[ j];h ,
with i �= 0 and h /∈ i[ j], induced from the irreducible h4-module Ri,[ j];h , is not
highest-weight with respect to any Borel subalgebra. However, it is a relaxed highest-
weight h4-module. Note that the minimal conformal weight of Ri,[ j];h is �i;h , by
(3.7). Vectors of this minimal conformal weight will be referred to as ground states
and will be denoted by

∣∣i, j ′;�i;h
〉
, where i and j ′ are the I0- and J0-eigenvalues,

respectively.
Denote by Ni,[ j];h the sum of all the submodules of Ri,[ j];h that have zero inter-

section with the space of ground states. The quotient

Ei,[ j];h = Ri,[ j];h
/
Ni,[ j];h (5.1)
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is then irreducible because Ni,[ j];h coincides with the maximal submodule Mi,[ j];h
of Ri,[ j];h . This follows from the fact that Ri,[ j];h is induced from an irreducible h4-
module. Note that as relaxed highest-weight modules are generated by a single weight
vector, they have unique maximal submodules.

In case i = 0 and h �= 0, inducing the irreducible R0,[ j];h results in a relaxed
highest-weight h4-module that we denote by R0,[ j];h . These induced modules all turn
out to be irreducible, a fact that we prove in Appendix B. This completes the list of
irreducible relaxed highest-weight modules.

Theorem 6 Every irreducible relaxed highest-weight H4-module is isomorphic to one,
and only one, of the following modules:

• L0, j , with j ∈ C.
• L±

i, j , with i ∈ C \ {0} and j ∈ C.
• Ei,[ j];h, with i ∈ C \ {0}, [ j] ∈ C/Z, h ∈ C and h/i /∈ [ j].
• R0,[ j];h, with [ j] ∈ C/Z and h ∈ C \ {0}.

It is straightforward to compute the effect of applying the conjugation and shift
functors to each of the Ei,[ j];h and R0,[ j];h . The results are

c(Ei,[ j];h) ∼= E−i,[− j];h+i , c(R0,[ j];h) ∼= R0,[− j];h,
s′β(Ei,[ j];h) ∼= Ei,[ j+β];h+βi , s′β(R0,[ j];h) ∼= R0,[ j+β];h .

(5.2)

On the other hand, applying the spectral flow functor σ�, with � �= 0, to Ei,[ j];h or
R0,[ j];h results in an irreducible weight H4-module with conformal weights that are
unbounded below.

We may also induce reducible h4-modules, noting that the result will again be
reducible. For example, the inductionR0, j;0 ofR0, j;0 is reducible. In this case, the fact
that the conformal weight of a relaxed highest-weight vector of R0, j;0 is 0 shows that
every nonzero submodule of R0, j;0 intersects the space of ground states nontrivially.
In other words, N0, j;0 = 0 for all j ∈ C. However, the maximal submodule M0, j;0
is nonzero—actually it is isomorphic to V+

0, j−1 ⊕V−
0, j+1, by (2.13) and the exactness

of induction.
Consider next the relaxed highest-weight modules R±

i;h that are induced from the

reducible dense h4-modules R
±
i;h . Here, we assume that i �= 0 and recall that the

J0-eigenvalues lie in [h/i]. Denote by N±
i;h the sum of all submodules of R±

i;h that
have zero intersection with the space of ground states and define

E±
i;h = R±

i;h
/
N±

i;h . (5.3)

These quotients are reducible because the maximal submodule M±
i;h obviously has

nonzero intersection with the space of ground states. However, they are indecom-
posable and we shall show that they have precisely two composition factors, one
highest-weight and one lowest-weight.
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First, we again identify the conjugates and shifts of these reducible H4-modules:

c(E±
i;h) ∼= E∓

−i;h+i , c(R±
i;h) ∼= R∓

−i;h+i , c(R0, j;0) ∼= R0,− j;0,
s′β(E±

i;h) ∼= E±
i;h+βi , s′β(R±

i;h) ∼= R±
i;h+βi , s′β(R0, j;0) ∼= R0, j+β;0.

(5.4)

Aswith the irreducible relaxed highest-weightmodules, nontrivial spectral flow results
in H4-modules whose conformal weights are unbounded below.

Next, note that induction being exact means that (2.14) gives nonsplit exact
sequences

0 −→ V+
i,h/i −→ R+

i;h −→ V−
i,h/i+1 −→ 0,

0 −→ V−
i,h/i+1 −→ R−

i;h −→ V+
i,h/i −→ 0,

(5.5)

for i �= 0. To deduce analogous sequences for the E±
i;h , we need some preparatory

lemmas.

Lemma 7 If i �= 0 and h ∈ C, then:

(i) The unique irreducible quotient of E+
i;h is isomorphic to L−

i,h/i+1.

(ii) E+
i;h has an irreducible submodule isomorphic to L+

i,h/i .

Proof As V−
i,h/i+1 is a quotient ofR

+
i;h , by (5.5), so isL

−
i,h/i+1. Since relaxed highest-

weight modules have unique maximal submodules, it follows that L−
i,h/i+1 is the

unique simple quotient of R+
i;h . To establish this for E+

i;h , note that M+
i;h/N

+
i;h is a

submodule of E+
i;h and that

E+
i;h

M+
i;h/N

+
i;h

∼= R+
i;h/N

+
i;h

M+
i;h/N

+
i;h

∼= R+
i;h

M+
i;h

∼= L−
i,h/i+1. (5.6)

We also know that V+
i,h/i is a submodule of R+

i;h , by (5.5). Since the maximal

submoduleM of V+
i,h/i has zero intersection with its space of ground states, this space

being isomorphic to the irreducible h4-module V
+
i,h/i , we have M = V+

i,h/i ∩ N+
i;h .

Thus,

L+
i,h/i

∼=
V+
i,h/i

M
= V+

i,h/i

V+
i,h/i ∩ N+

i;h
∼=

V+
i,h/i + N+

i;h
N+

i;h
↪−→ R+

i;h
N+

i;h
∼= E+

i;h . (5.7)

Given a weight h4-module W, we shall denote by W(i, j;�) its weight space of
I0-eigenvalue i , J0-eigenvalue j and L0-eigenvalue �.

Lemma 8 Given i �= 0 and h ∈ C, we have

N+
i;h(i,

h
i + m;�i;h + n) = M+

i;h(i,
h
i + m;�i;h + n), (5.8)
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for all m > n ≥ 0.

Proof We haveN+
i;h ⊆ M+

i;h , by definition, so assume that v ∈ M+
i;h(i,

h
i +m;�i;h +

n) for some m > n ≥ 0. Because each ground state
∣∣i, j;�i;h

〉
with j > h/i

generates R+
i;h , the submoduleWv generated by v must not contain any ground states

with j > h/i . Assume that Wv contains a ground state with j ≤ h/i . By applying
Poincaré–Birkhoff–Witt basis elements (with mode indices increasing to the right),
this implies that

∣∣i, h
i + m − n;�i;h

〉
is also an element of Wv . Since m − n > 0,

this is a contradiction and soWv must have zero intersection with the space of ground
states. Hence, v ∈ N+

i;h .

Combing these lemmas, we obtain the following analogues of (5.5) for the E±
i;h .

Theorem 9 If i �= 0 and h ∈ C, then we have the following nonsplit short exact
sequences:

0 −→ L+
i,h/i −→ E+

i;h −→ L−
i,h/i+1 −→ 0,

0 −→ L−
i,h/i+1 −→ E−

i;h −→ L+
i,h/i −→ 0.

(5.9)

Proof From the proof of Lemma 7, we have L+
i,h/i ↪→ E+

i;h and L+
i,h/i

∼=
V+
i,h/i

/
(V+

i,h/i ∩ N+
i;h). It follows that

E+
i;h

L+
i,h/i

∼= E+
i;h

/
V+
i,h/i

V+
i,h/i ∩ N+

i;h
∼= R+

i;h
N+

i;h

/
V+
i,h/i + N+

i;h
N+

i;h
∼= R+

i;h
V+
i,h/i + N+

i;h
. (5.10)

From Lemma 7, we know that L−
i,h/i+1 is the unique irreducible quotient of R

+
i;h , and

thus, the first short exact sequence will be proved if we can show that V+
i,h/i +N+

i;h =
M+

i;h .
It is clear thatV+

i,h/i+N+
i;h ⊆ M+

i;h , so assume that v ∈ M+
i;h .Without loss of gener-

ality, wemay assume that v is a weight vector so suppose that v ∈ M+
i;h(i, j;�+

i, j +n)

for some j ∈ [h/i] and some n ≥ 0. By Lemma 8, there exists r ∈ Z≥0 such that
Er
0 maps v into N+

i;h . Furthermore, by the Poincaré–Birkhoff–Witt theorem, there

exists s ∈ Z≥0 such that Fs
0 maps v into V+

i,h/i . Since each weight space is finite-

dimensional, it follows that the image of v in M+
i;h

/
(V+

i,h/i + N+
i;h) generates a

finite-dimensional h4-module. However, by Lemma 1, I0 must act as zero on this
finite-dimensional h4-module. Since i �= 0, this is only possible if the image of v is
0. Hence, V+

i,h/i + N+
i;h = M+

i;h as required.
To get the second short exact sequence, we apply conjugation to the first. Note that

both are necessarily nonsplit because the corresponding short exact sequences (2.14)
of h4-modules are.

Comparing the short exact sequences (5.5) and (5.9) when i /∈ Z, Theorem 5 yields
the following assertion.

Corollary 10 For all i /∈ Z, we have E±
i;h ∼= R±

i;h.
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6 Characters I

We define the character of an H4-module W by

ch[W] (y, z;q) = trW yI0zJ0qL0−c/24 =
∑

i, j,�∈C
dimW(i, j; �) yi z jq�−1/6. (6.1)

Even though the eigenvalue of I0 is fixed on a given indecomposable weight module,
the freedom afforded by introducing y is expected to be essential to determine modular
transformations (which we leave for future work). As we shall see, the characters (6.1)
are most usefully interpreted as formal power series in z with coefficients that are
holomorphic functions of q in the punctured disc 0 < |q| < 1 multiplied by yi .

First, note that the effect of the conjugation, shift and spectral flow functors on the
character (6.1) is easily determined from (3.8), (3.10) and (3.11).

Lemma 11 We have the following character identities:

ch[c(W)] (y, z; q) = ch[W]
(
y−1, z−1; q

)
,

ch[s′β(W)] (y, z; q) = zβ ch[W] (yqβ, z; q) ,

ch[σ�(W)] (y, z; q) = y� ch[W]
(
y, zq�; q

)
,

(6.2)

The characters of the Verma modules, along with their parabolic and relaxed versions,
are also easily computed.

Proposition 12 We have the following character formulae:

ch[L0, j ] (y, z; q) = yi z jq−1/6
∏∞

n=1(1 − z−1qn)(1 − qn)2(1 − zqn)
= yi z j+1/2(1 − z−1)√−1η(q)ϑ1 (z; q) ,

ch[V±
i, j ] (y, z; q) = yi z jq�±

i, j−1/6

∏∞
n=1(1 − z∓1qn−1)(1 − qn)2(1 − z±1qn)

= yi z j±1/2q�±
i, j

√−1η(q)ϑ1
(
z±1; q) ,

ch[Ri, j;h] (y, z; q) = yi z jq�i;h−1/6
∏∞

n=1(1 − qn)4
δ(z) = yi z jq�i;h

η(q)4
δ(z). (6.3)

Here,
1

1 − x
stands for

∑∞
m=0

xm and δ(x) stands for
∑∞

m=−∞ xm.

These formulae hold irrespective of whether the module is irreducible or not. In par-
ticular, this gives the characters of the L±

i, j with i /∈ Z (and i = 0), by Theorem 5(i),

and the E±
i;h with i /∈ Z, by Corollary 10.

The characters of the remainingL±
i, j now follow as consequences of Theorem 5(ii)

and (iii), while those of the remaining E±
i;h follow from Theorem 9 and Corollary 10.

Corollary 13 We also have the following character formulae, valid for i ∈ Z \ {0}:

ch[L±
i, j ]

(
y, z; q) = (1 − zsgn i q|i |) ch[V±

i, j ]
(
y, z; q) , ch[E±

i;h ] (y, z; q) = (1 − q|i |) ch[R±
i;h ] (y, z; q) . (6.4)
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We recall that for i �= 0,R±
i;h shares the same character asR±

i,h/i;h , given in Proposition
12. These formulae therefore exhaust the characters of all the relaxed highest-weight
H4-modules introduced in Section 5 except for the irreducibles Ei,[ j];h with i �= 0 and
h/i /∈ [ j]. Our last task is thus to compute these remaining characters.

7 Characters II

Given a pair (i, j) ∈ C
2, we define the string function of an h4-module W to be the

coefficient of yiz j in the character (6.1):

si, j [W] (q) =
∑
�∈C

dimW(i, j;�)q�−1/6. (7.1)

This is evidently a power series in q that converges in the punctured disc 0 < |q| < 1.
Following [35], we shall call an h4-module stringy if its nonzero string functions all
coincide. Examples of stringy modules include the relaxed Verma modulesRi, j;h and
the relaxed highest-weight modules E±

i;h , i ∈ Z \ {0}, whose nonzero string functions
are determined by Proposition 12 and Corollary 13 to be

si, j ′ [Ri, j;h] (q) = q�i;h

η(q)4
and si, j ′ [E±

i;h] (q) = q�i;h (1 − q |i |)
η(q)4

, (7.2)

for j ′ ∈ [ j] and j ′ ∈ [h/i], respectively.
The aim of this section is to prove that the irreducible relaxed highest-weight h4-

modules Ei,[ j];h , with i �= 0 and h/i /∈ [ j], are stringy and to determine their string
functions. In this way, we shall prove a character formula for these modules. To
establish stringiness, we use the method of [35], the key tools being coherent families
of relaxed highest-weight h4-modules and a generalisation of the Shapovalov form
on these families. The main results of this section are summarised in the following
theorem.

Theorem 14 Take i �= 0 and h/i /∈ [ j]. Then:
(i) Ei,[ j];h is stringy.
(ii) The nonzero string function of Ei,[ j];h is given by the limiting string function

lim
n→∞ si,h/i+n[L−

i,h/i+1] (q) , (7.3)

where the limit is understood in the sense of power series in q (so taken coefficient-
wise).

(iii) For i /∈ Z,Ei,[ j];h coincides withRi,[ j];h, so its character was given in Proposition
12. For i ∈ Z \ {0}, we instead have

ch[Ei,[ j];h] (y, z; q) = yiz jq�i;h (1 − q|i |)
η(q)4

δ(z). (7.4)
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(iv) For i ∈ Z \ {0}, we have the following nonsplit short exact sequence:

0 −→ Ri,[ j];h+|i | −→ Ri,[ j];h −→ Ei,[ j];h −→ 0. (7.5)

We will prove this theorem in a series of steps. We begin with the first assertion,
understanding that i �= 0 will be assumed for the rest of this section.

Lemma 15 The irreducible h4-module Ei,[ j];h is stringy.

Proof This follows as in [35, Thm. 4.7], so we only sketch the argument. From the fact
that E0 and F0 act injectively onRi,[ j];h , we see that they also act injectively onRi,[ j];h
and so also on its maximal submodule Mi,[ j];h . This implies that the coefficients of
the string functions si, j ′ {Mi,[ j];h}must increase (weakly) under both j ′ �→ j ′ +1 and
j ′ �→ j ′ − 1. These string functions are therefore independent of j ′ ∈ [ j], and hence,
Mi,[ j];h is stringy. As Ri,[ j];h is also stringy, the lemma follows.

To calculate the unique nonzero string function of Ei,[ j];h , we shall show that it
coincides with the unique nonzero string function of the reducible h4-module E+

i;h .
Recalling that the former has h/i /∈ [ j], while the latter has J0-eigenvalues in [h/i],
the idea is: this can be shown by bringing these modules together in a family so that the
Ei,[ j];h may be directly compared with E+

i;h . To facilitate this comparison, we define

Ei,[h/i];h = E+
i;h and Ri,[h/i];h = R+

i;h . (7.6)

With this convenient notation, we introduce two classes of coherent families of relaxed
highest-weight h4-modules labelled by i ∈ C \ {0} and h ∈ C:

Ci;h =
⊕

[ j]∈C/Z

Ei,[ j];h and Di;h =
⊕

[ j]∈C/Z

Ri,[ j];h . (7.7)

Coherent families were originally introduced for semisimple Lie algebras in [49],
where they were used to complete the classification of weight modules with finite-
dimensional weight spaces. However, the idea is quite general.

We shall define an analogue of the Shapovalov form on Di;h , noting that this
descends in an obvious fashion to Ci;h by (5.1) and (5.3). We do this by defining such
a form on each Ri,[ j];h , and this requires choosing a cyclic generator. We shall do
this by assuming that j is chosen so that

∣∣i, j;�i;h
〉
is cyclic—this requires taking

j > h/i , if h/i ∈ [ j], and otherwise places no constraint on j . A Shapovalov form
〈·, ·〉 j is therefore defined on Ri,[ j];h by

〈∣∣i, j;�i;h
〉
,
∣∣i, j;�i;h

〉〉
j = 1

and
〈
U

∣∣i, j;�i;h
〉
, V

∣∣i, j;�i;h
〉〉
j =

〈∣∣i, j;�i;h
〉
,U†V

∣∣i, j;�i;h
〉〉
j
, for all U , V ∈ U (h4) . (7.8)

Here, the adjoint of U (h4) is given by the negative of the conjugation automorphism:

E†
n = F−n, F†

n = E−n, I †n = I−n, J †n = J−n, K † = K . (7.9)
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We note that the kernel of the Shapovalov form 〈·, ·〉 j is independent of the choice of
j and is exactly the maximal submodule Mi,[ j];h .
Extend this to a Shapovalov form 〈·, ·〉i;h on the coherent familyDi;h by taking the

direct sum

〈·, ·〉i;h =
⊕

[ j]∈C/Z

〈·, ·〉 j . (7.10)

This is equivalent to demanding that distinct eigenspaces of J0 be orthogonal (which
is of course consistent with J0 being self-adjoint).

Choose a Poincaré–Birkhoff–Witt ordering of U (h−
4 ⊕ CF0), recalling the tri-

angular decomposition (3.3), so that mode indices increase to the right. For each
n ∈ Z≥0, define Pn to be the set of ordered Poincaré–Birkhoff–Witt monomials of
U (h−

4 ⊕ CF0) for which the ad(J0)- and ad(L0)-eigenvalues are both −n. Since F0
acts injectively onRi,[ j];h , a basis of the weight spaceRi,[ j];h(i, j ′;�i;h +n) is given
by the U

∣∣i, j ′ + n;�i;h
〉
, with U ∈ Pn . Note that |Pn| is clearly finite.

For each j ∈ C, we now define the Shapovalov matrix for the weight spaces of
Di;h . For Di;h(i, j;�i;h + n), it is the |Pn| × |Pn| matrix

A j;n =
(〈
U

∣∣i, j + n;�i;h
〉
, V

∣∣i, j + n;�i;h
〉〉
i;h

)
U ,V∈Pn

. (7.11)

The kernel of this matrix is then the weight space Mi,[ j];h(i, j,�i;h + n).

Lemma 16 For each n ∈ Z≥0, the rank of the Shapovalov matrix A j;n is independent
of j ∈ C when the real part of j is sufficiently large.

Proof Let n ∈ Z≥0, i ∈ C\{0} and h ∈ C. Then, for all j ∈ C, A j;n is a complex
matrix and we let Bj,n denote its reduced row echelon form over C. Now, treat j as
a formal indeterminate and write An( j) for the Shapovalov matrix in this case. The
entries of An( j) are thus complex polynomials in j , so we may row-reduce over the
field C( j) of rational functions in j to obtain the reduced row echelon form Bn( j).

Now, evaluating Bn( j) at a given j ∈ C will result in Bj,n for all but finitely many
values of j , because row reduction gives only finitely many opportunities to divide by
zero. Similarly, each nonzero entry of Bn( j) will evaluate to a nonzero number for all
but finitely many values of j ∈ C. As these matrices have finite size, it follows that
the number of nonzero rows of Bj,n must be the same as the number of nonzero rows
of Bn( j) for all but finitely many values of j ∈ C. The rank of Bj,n is therefore equal
to the rank of Bn( j) for all but finitely many j ∈ C and so the former is independent
of j when the real part of j is sufficiently large.

Proposition 17 For all i ∈ C\{0}, [ j] ∈ C/Z and h ∈ C, the limiting string function
limn→∞ si, j+n[Ei,[ j];h] (q) exists and is independent of [ j].
Proof For fixed n ∈ Z≥0, we know from Lemma 16 that dimMi,[ j];h(i, j,�i;h + n)

is independent of [ j] ∈ C/Z when the real part of j is sufficiently large. On
the other hand, h/i /∈ [ j] gives Mi,[ j];h = Ni,[ j];h , while h/i ∈ [ j] gives
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Mi,[ j];h(i, j,�i;h +n) = Ni,[ j];h(i, j,�i;h +n)when the real part of j is sufficiently
large (Lemma 8). It follows that dimNi,[ j];h(i, j,�i;h + n) is also independent of
[ j] ∈ C/Z when the real part of j is sufficiently large. Since this is true for all n, the
limit limn→∞ si, j+n[Ei,[ j];h] (q) exists and is independent of [ j] ∈ C/Z.

We are now ready to prove the rest of Theorem 14.

Proof of Theorem 14 As part (i) was proven in Lemma 15, we start with part (ii). This
follows by noting that for [ j] = [h/i], Theorem 9 gives

lim
n→∞ si,h/i+n[Ei,[h/i];h] (q) = lim

n→∞ si,h/i+n[E+
i;h] (q)

= lim
n→∞

[
si,h/i+n[L−

i,h/i+1] (q) + si,h/i+n[L+
i,h/i ] (q)

]

= lim
n→∞ si,h/i+n[L−

i,h/i+1] (q) , (7.12)

because the limiting string function of the highest-weight module L+
i,h/i is clearly

zero. Proposition 17 then gives

lim
n→∞ si, j+n[Ei,[ j];h] (q) = lim

n→∞ si,h/i+n[L−
i,h/i+1] (q) for all [ j] ∈ C/Z, (7.13)

as desired.
Part (iii) follows from part (i) and the coincidence of the string functions of Ei,[ j];h

and E+
i;h , the latter being given explicitly in Corollary 13. It follows immediately that

chMi,[ j];h = chRi,[ j];h − ch Ei,[ j];h = chRi,[ j];h+|i |. (7.14)

The weight vectors of Mi,[ j];h of conformal weight �i;h + |i | are therefore relaxed
highest-weight vectors. Since E0 and F0 act injectively onMi,[ j];h , while the universal
enveloping algebra U (h4) has no zero-divisors, it follows thatMi,[ j];h ∼= Ri,[ j];h+|i |,
proving part (iv).

We remark that the relaxed highest-weight vectors discussed in the proof of part
(iv) of Theorem 14 were found in [29, Thm. 3.4]. Here, we have proven that these
vectors generate the maximal submodule Mi,[ j];h of Ri,[ j];h , for i ∈ Z \ {0}.

8 Discussion

Wehave completed the first step towards a complete analysis of theNappi–Witten con-
formal field theory, namely the classification of the irreducible relaxed highest-weight
modules over the vertex operator algebra H4. We have also computed the characters of
all these modules and determined the structure of many reducible but indecomposable
H4-modules. A next step would be to compute the modular transformation properties
of these characters, following the guidelines set out by the standard module formalism
[19,32]. In this framework, we expect the standardH4-modules to be the spectral flows
of the relaxed Verma modules Ri, j;h , with i, j, h ∈ R.
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One technical issue is immediately apparent: the characters of the standard mod-
ules, given in Proposition 12, involve a continuous range of conformal dimensions
parametrised linearly by h ∈ R. This is somewhat unusual as one is accustomed to
establishing modular S-transforms using quadratic parametrisations. A similar issue,
however, arises in studies of universal Virasoro and N = 1 superconformal vertex
operator (super)algebra representations, where it was solved by using an alternative
parametrisation suggested by the standard free field realisation [50,51]. Unfortunately,
the usual “Wakimoto-like” free field realisation of H4 [6] develops a singularity when
realising modules with i = 0, for example, the vacuum module. In particular, the
irreducibles R0, j;h , h �= 0, do not seem to be realisable at all. Nevertheless, one
can calculate S-transformation formulae for the standard module characters. Unfor-
tunately, the i = 0 singularities result in inconsistent Verlinde computations for the
(Grothendieck) fusion coefficients. We hope to return to this tantalising puzzle in the
future.

Another direction to pursue is the construction of logarithmic H4-modules, these
being reducible but indecomposable representations on which L0 acts nondiagonalis-
ably. We expect that the simplest examples may be constructed by gluing together the
reducible but indecomposable H4-modules that we have already analysed. In partic-
ular, we expect that this may be accomplished with appropriate spectral flows of the
relaxed highest-weight modules E±

i;h of Theorem 9, in analogy with the known relaxed
gluings for affine vertex operator algebras [25,52,53]. This might also be possible by
instead gluing appropriate quotients of the reducible Verma modules V±

i, j . Either way,
it would be extremely interesting to investigate whether such logarithmic modules
arise naturally as fusion products of the irreducibles classified here. We also hope to
discuss this in the future.
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APPENDIX A. A proof of Theorem 5

In this appendix, we prove Theorem 5 and illustrate it with a simple example. For
convenience, we break the rather lengthy proof into a series of steps. Let |i, j〉 denote
the (generating) highest-weight vector of V+

i, j , and let χ be a singular vector of V+
i, j ,

so χ = U |i, j〉 for some U ∈ U (h4). From Lemma 3, there exists m ∈ Z such that
J0χ = ( j + m)χ and L0χ = (�+

i, j + im)χ . We may (and will) assume that i ≥ 1
2 ,

by (4.2), and hence that m ∈ Z>0 (m = 0 just returns χ = |i, j〉).
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Step 1.

V+
i, j is irreducible if i /∈ Z.
U is thus a linear combination of Poincaré–Birkhoff–Witt-ordered monomials in

the E−n , I−n , J−n and F−n+1 with n ≥ 1. Consider first the condition 0 = Inχ =
[In,U ] |i, j〉, which holds for all n ≥ 1. As In commutes with every mode except
J−n , the effect of acting with In on χ is to replace J k−n by nk J k−1−n in each monomial
ofU . For k = 0, the monomial is replaced by 0. However, making these replacements
on monomials with k > 0 results in a linear combination of linearly independent
monomials. Setting Inχ = 0 therefore requires that the coefficient of every k > 0
monomial is zero. In other words, we may assume that no J -modes appear in U .

Next, assume that some monomial ofU contains a mode F−n and take n ≥ 0 max-
imal such that F−n does appear. (The corresponding monomial comes with nonzero
coefficient.) Consider Enχ = 0, n ≥ 0. Then, En commutes with every mode
of U except the F−n+m , 0 ≤ m ≤ n, because there are no J -modes. However,
[En, F−n+m] = Im + nδm,0 commutes with every mode ofU , again because there are
no J -modes, and will annihilate |i, j〉 ifm > 0. En will thus annihilate any monomial
of U |i, j〉 that does not have an F−n . Acting with En therefore amounts to replacing
Fk−n by (n + i)kFk−1−n . As before, this only gives 0 if k = 0 (because n + i ≥ 1

2 ) and
for k > 0, linear independence of the resulting monomials implies that the coefficient
of every monomial with an F−n is 0. This contradicts the maximality of n, and hence,
no F-modes may appear in U .

We now try to repeat the previous argument for Fnχ = 0, n ≥ 1. So assume that
some monomial of U contains an E−n and let n ≥ 1 be maximal such that E−n

does appear. The result of the above argument this time is that Fn replaces Ek−n by
(n−i)kEk−1−n throughout. This is nonzero for all k > 0, and hence, no E-modes appear
in U , unless n = i . If i ∈ Z>0, then this fixes the maximal index n such that E−n

appears. However, if i /∈ Z>0, then n = i is impossible and so only I -modes may
appear. But, considering Jnχ = 0, n ≥ 1, rules these out as well. (Alternatively, a
singular vector with only I -modes cannot have the eigenvalues required by Lemma 3.)
It follows that there is no such singular vector χ , and hence, V+

i, j is irreducible, when
i /∈ Z>0. As (4.2) extends this conclusion to all i /∈ Z, this proves the first assertion
of Theorem 5.

Step 2.

If V+
i, j has a singular vector corresponding to a given m ∈ Z>0, then it is unique up to

scalar multiples.
For this,wemay assume that i ∈ Z>0. The arguments above prove that nomonomial

of U contains a J−n with n ≥ 1, an F−n with n ≥ 0, or an E−n with n > i . We are
therefore left with I -modes and the E−n for 1 ≤ n ≤ i . As the J0-eigenvalue of χ

is j + m, there must be precisely m E-modes in each monomial of U . Moreover,
[L0,U ] = im fixes the sum of the indices of the modes in each monomial.

Let Pn denote the set of partitions of n. We write λ = [λ1, λ2, . . .] with λ1 ≥ λ2 ≥
· · · and shall refer to the λk as the parts of λ. We shall also employ the alternative
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notation λ = [λk11 , λ
k2
2 , . . .] to indicate that the part λ1 has multiplicity k1, and so on.

A subpartition of λ ∈ Pn is then a partition μ obtained from λ by removing some of
its parts. We denote by λ \ μ the partition obtained by removing the parts μk of μ

from those of λ (respecting multiplicities). We shall moreover employ the simplified
notation λ \ λk ≡ λ \ [λk] when removing a single part.

Let P(i,m; λ) be the set of subpartitions μ of λ having precisely m parts, none of
which exceeds i . Then, we may write χ in the form

χ =
∑

λ∈Pim

∑
μ∈P(i,m;λ)

c(λ, μ)I−(λ\μ)E−μ |i, j〉 , (A.1)

where the c(λ, μ) are unknown coefficients and A−λ is shorthand for A−λ1 · · · A−λ�
,

with A = E, I , J , F and λ a partition of precisely � parts. It will be convenient for
what follows to set c(λ, μ) = 0 if μ /∈ P(i,m; λ).

Consider now Jnχ = 0, for n ≥ 1. The result of applying Jn to (A.1) is a sum over
λ and μ in terms of the form

nmultn(λ \ μ)c(λ, μ)I−(λ\μ\n)E−μ |i, j〉
and c(λ, μ)I−(λ\μ)E−(μ−kn) |i, j〉 (k = 1, . . . ,m, μk > n), (A.2)

corresponding to commuting Jn with an I−n and an E−μi , respectively. Here, multn(ν)

denotes the number of parts of ν equal to n and μ −k n denotes the partition obtained
fromμby subtractingn fromμk and reorderingparts if necessary.Linear independence
of monomials then gives a constraint for each λ ∈ Pim and μ ∈ P(i,m; λ):

nmultn(λ \ μ)c(λ, μ) +
m∑

k=1

c (λ ∪ (μk + n) \ μk \ n, μ +k n) = 0. (A.3)

Here, we denote by λ∪n the partition obtained from λ by including n as an additional
part and μ +k n is the partition obtained from λ to adding n to λk and reordering. We
also understand that a constant of the of the form c(λ′ \ n, μ′) is understood to be 0 if
n is not a part of λ′.

If λ �= μ, then there exists n ≥ 1 such that multn(λ \ μ) �= 0. We may therefore
solve (A.3) for c(λ, μ) in terms of constants c(λ′, μ′), where the number of parts of λ′
is one less than that of λ. It follows that the c(λ, μ) are completely determined by the
c(λ′, μ′) in which λ′ has the minimal possible number of parts. This obviously occurs
when λ′ = μ′. However, as μ′ must have m parts and none of its parts may exceed i ,
but their total must be im, this forces every part to be i . In other words, every c(λ, μ)

is determined by the value of c([im], [im]). This proves that for each m ∈ Z>0, there
is at most one singular vector χ , up to scalar multiples.

Step 3.

V+
i, j has a singular vector for each m ∈ Z>0.
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To show that these singular vectors actually exist, it suffices to show existence for
m = 1. Indeed, if existence holds for m = 1, then the corresponding singular vector
would generate a submodule of V+

i, j isomorphic to V+
i, j+1, since U (h4) has no zero-

divisors. As the structure of Verma modules is independent of j , V+
i, j+1 also has an

m = 1 singular vector that generates a submodule isomorphic to V+
i, j+2. In V+

i, j , this
singular vector corresponds to m = 2. This obviously generalises to all m ∈ Z>0.

Form = 1, the constraint equations (A.3) simplify a little. Writing C(λ\λk, λk) =
c(λ, λk), μ = [λk] and n = λ�, they become

λ� multλ�
(λ \ λk)C(λ \ λk, λk) + C(λ \ λk \ λ�, λk + λ�) = 0. (A.4)

Aswe have seen, these relations show, by recursively removing parts, thatC(λ\λk , λk)

is proportional to C(∅, i), where ∅ denotes the unique partition of 0, with nonzero
proportionality constant.

We first demonstrate that the proportionality constants do not depend on the order
in which one removes parts. If they did, then this would force C(∅, i) = 0 and the
singular vector χ would not exist. Removing λ� and then λ�′ from λ, we have

C(λ \ λk, λk) = C(λ \ λk \ λ� \ λ�′ , λk + λ� + λ�′)

λ�λ�′ multλ�
(λ \ λk)multλ�′ (λ \ λk \ λ�)

, (A.5)

which is symmetric under � ↔ �′ if

multλ�
(λ \ λk)multλ�′ (λ \ λk \ λ�) = multλ�′ (λ \ λk)multλ�

(λ \ λk \ λ�′). (A.6)

If λ� = λ�′ , then (A.6) obviously holds. But, λ� �= λ�′ implies that multλ�
(λ \ λk) =

multλ�
(λ \ λk \ λ�′) and multλ�′ (λ \ λk \ λ�) = multλ�′ (λ \ λk), and hence, (A.6) also

holds in this case. We conclude that C(∅, i) is a free parameter in the solutions of
(A.4).

To finish the proof of existence of an m = 1 singular vector, we show that a
(nonzero) solution of (A.4) corresponds to a χ that is annihilated by h+

4 . As (A.4)
was deduced from Jnχ = 0, n ≥ 1, and h+

4 is generated by E0, F1 and these Jn , we
only have to check that the solution of (A.4) we have obtained gives a χ = U |i, j〉
satisfying E0χ = F1χ = 0. Since U contains only I - and E-modes, the former is
trivially satisfied.

We therefore consider−F1χ = 0 (adding the minus sign for convenience).Writing
the m = 1 version of (A.1) in the form

χ =
∑
λ∈Pi

i∑
λk=1

C(λ \ λk, λk)I−(λ\λk )E−λk |i, j〉 , (A.7)

we see that acting with −F1 amounts to replacing each E−λk by I−(λk−1), if λk > 1,
and by (i − 1), if λk = 1. The constraint equations derived from linear independence
are therefore

123



Representations of the Nappi–Witten vertex operator algebra Page 25 of 30 131

(i − 1)C(λ \ 1, 1) +
i−1∑
λ�=1

C(λ \ λ� \ 1, λ� + 1) = 0. (A.8)

Now, substitute λk = 1 into (A.4) to obtain

λ� multλ�
(λ \ 1)C(λ \ 1, 1) + C(λ \ λ� \ 1, λ� + 1) = 0. (A.9)

Summing over λ� from 1 to i − 1 then gives (A.8), demonstrating that the constraints
derived from−F1χ = 0 already follow from those derived from Jnχ = 0. This proves
that there is indeed a unique singular vector χ corresponding to m = 1. Again, (4.2)
extends this conclusion from i ∈ Z>0 to all i ∈ Z and so we have established the
second assertion of Theorem 5.

Before tackling the third and last assertion, we detail the existence of singular
vectors in the case i = 4 to illustrate the arguments used above. In this case, the
singular vector generating the maximal submodule of V+

4, j has the form χ = U |i, j〉
with

U = C(∅, 4)E−4 + C([1], 3)I−1E−3 + C([2], 2)I−2E−2 + C([1, 1], 2)I 2−1E−2

+ C([3], 1)I−3E−1 + C([2, 1], 1)I−2 I−1E−1 + C([1, 1, 1], 1)I 3−1E−1.

(A.10)

It is clear that E0χ = 0. From J3χ = 0, we obtain

C(∅, 4) + 3C([3], 1) = 0, (A.11a)

while J2χ = 0 gives

C(∅, 4) + 2C([2], 2) = 0 and C([1], 3) + 2C([2, 1], 1) = 0 (A.11b)

and J1χ = 0 yields instead

C(∅, 4) + C([1], 3) = 0, C([1], 3) + 2C([1, 1], 2) = 0,

C([2], 2) + C([2, 1], 1) = 0 and C([1, 1], 2) + 3C([1, 1, 1], 1) = 0.

(A.11c)

On the other hand, F1χ = 0 instead results in

C(∅, 4) + 3C([3], 1) = 0, C([1], 3) + C([2], 2) + 3C([2, 1], 1) = 0

and C([1, 1], 2) + 3C([1, 1, 1], 1) = 0. (A.12)

Note that there is only one part to remove from [3], hence the first equation of (A.12)
matches (A.11a). Similarly, there is only one way to remove a part from [1, 1, 1], and
hence, the third equation of (A.12) matches the fourth equation of (A.11c). Finally,
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there are two ways to remove a part from [2, 1], and hence, the second equation of
(A.12) is the sum of the second equation of (A.11b) and the third equation of (A.11c).
For completeness, the singular vector χ = U |i, j〉 is explicitly determined (when
C(∅, 4) = 1) by taking

U = E−4 − I−1E−3 − 1

2
I−2E−2 + 1

2
I 2−1E−2 − 1

3
I−3E−1 + 1

2
I−2 I−1E−1 − 1

6
I 3−1E−1.

(A.13)

Every singular vector of V+
4, j therefore has the form Um |i, j〉, for m ∈ Z≥0.

As an aside, it is actually quite easy to solve the constraints (A.4) in general.Writing
λ \ λk = [μk1

1 , μ
k2
2 , . . .], we find that

C(λ \ λk, λk) = (−1)k1+k2+···

k1!k2! · · · μ
k1
1 μ

k2
2 · · ·C(∅, i). (A.14)

Substituting into (A.7) then gives a closed-form formula for χ when i ∈ Z>0. (4.2)
may then be used to obtain a similar formula for i ∈ Z≤0. It is easy to verify that
(A.14) reproduces (A.13) when i = 4 (and C(∅, 4) = 1).

It remains to prove the final assertion of Theorem 5, namely that the maximal
submodule of V+

i, j is generated by the singular vector χ corresponding to m = 1. Let

M denote the submodule of V+
i, j generated by χ .

Step 4.

The highest-weight module V+
i, j/M has no singular vectors, except multiples of the

image |i, j〉 of the highest-weight vector |i, j〉 of V+
i, j , and hence, it is irreducible.

So, suppose that ψ is a singular vector of V+
i, j/M . Without loss of generality,

we may choose a representative ψ ∈ V+
i, j of ψ that is a weight vector. ψ is then a

subsingular vector of V+
i, j satisfying ψ /∈ M and we have ψ = U |i, j〉, for some

U ∈ U (h4). Since ψ has J0-eigenvalue j +m and L0-eigenvalue �+
i, j + im for some

m ∈ Z≥0, by Lemma 3, the same is true for ψ .
The argument now generalises that used above to analyse the existence of χ . We

start by assuming thatU has a J -mode and let n ≥ 1 bemaximal such that J−n appears.
Choosing an appropriate Poincaré–Birkhoff–Witt-ordering, there exists k > 0 such
that we may write U = J k−nV + W , where V is a linear combination of monomials
with no J−n-modes and W is a linear combination of monomials with fewer than k
J−n-modes. Applying I kn , we have I knψ = 0 and I knψ = I knU |i, j〉 = nkk!V |i, j〉,
from which we conclude that V |i, j〉 ∈ M and so J k−nV |i, j〉 ∈ M . In other words,
W |i, j〉 is another representative of ψ in which all monomials have fewer than k
J−n-modes. Iterating this argument shows that one can choose the representative ψ

so that it contains no J -modes.
Repeating this argument with J−n replaced by F−n , n ≥ 0, and In replaced by En ,

we see as before (because n + i �= 0) that ψ may be chosen so that it also contains no
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F-modes. With J−n replaced by E−n , n > i , and In replaced by Fi , we similarly learn
(from n− i �= 0) that ψ may be refined to eliminate any E−n modes with n > i . If we
can likewise eliminate any E−i -modes, then continuing this argument will rule out all
E-modes. But, the J0-eigenvalue of ψ is then only consistent with m = 0. Thus, U is
constant and ψ is proportional to |i, j〉, as desired.

To eliminate E−i -modes, suppose that there is one and let k ≥ 1 be the maximal
power with which E−i appears. Then, we may write U = V Ek

−i + W , where V
is a linear combination of monomials with no E−i and W is a linear combination
of monomials with fewer than k E−i -modes. We next recall that the singular vector
corresponding to m = k has the form χk = Uk |i, j〉 with Uk = Ek

−i + W ′, where
W ′ is a linear combination of monomials in the E−n-modes, with 1 ≤ n ≤ i and with
fewer than k E−i -modes, and the I -modes. Since χk ∈ M , Vχk ∈ M and so

ψ = ψ − Vχk = (W − VW ′) |i, j〉, (A.15)

that is we can replace the representative ψ = U |i, j〉 by U ′ |i, j〉, noting that U ′ =
W − VW ′ is a linear combination of monomials each of which has fewer than k E−i -
modes. Iterating this construction therefore allows us to find a representative with no
E−i -modes at all. As noted above, this proves that V+

i, j/M is irreducible for i ∈ Z>0.
Because (4.2) easily extends this conclusion to all i ∈ Z, the proof of Theorem 5 is
complete.

APPENDIX B. An irreducibility proof

This appendix is devoted to proving that the relaxed highest-weight H4-modules
R0,[ j];h are irreducible, for all [ j] ∈ C/Z and h �= 0. The proof is similar in spirit to
that of the irreducibility of theL0, j , itself a corollary of Lemma 3, but is slightly more
involved. We note that �0;h = h is the conformal weight of the generating relaxed
highest-weight vectors

∣∣0, j ′; h〉 ∈ R0,[ j];h , j ′ ∈ [ j].
Suppose that R0,[ j];h is reducible. Then, there is a relaxed highest-weight vector

v ∈ R0,[ j];h of conformal weight strictly greater than h. Since L0 acts on relaxed
highest-weight vectors as Q0 = F0E0 + I0 J0 and I0 acts as 0, it follows that v is an
eigenvector of F0E0 with eigenvalue greater than h. However, we shall show that the
only eigenvalue of F0E0 on R0,[ j];h is h, a contradiction.

Write v as a linear combination of Poincaré–Birkhoff–Witt-ordered monomials of
the form

F−λE−μ J−ν I−ρ

∣∣0, j ′; h〉
, (B.1)

where j ′ ∈ [ j] andλ,μ, ν andρ are partitions. (Weuse the samenotational conventions
here as in Appendix A, see (A.1) and the surrounding text.) Acting with F0E0 on such
a monomial returns h times the monomial plus a number of commutator terms. These
fall into two classes for which we observe the following simple facts:

• Commuting either F0 with an E-mode or E0 with an F-mode increases the number
of I -modes by 1. These I -modes commute with every negative mode, so the num-
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ber of I -modes strictly increases when the result is written as a linear combination
of monomials (B.1).

• Commuting either F0 or E0 with a J -mode decreases the number of J -modes by 1.
The result may require further commutation to represent it as a linear combination
of monomials (B.1). However, this will never increase the number of J -modes
because J is not in [h4, h4]. The number of J -modes thus strictly decreases in the
each summand of the result, when written as a linear combination of monomials
(B.1).

Noting that any leftover F0 or E0 modes may be commuted to the right and thus
change j ′, this completely accounts for the action of F0E0 on the monomials (B.1).

Order these monomials so that the number of J -modes weakly increases and, when
the number of J -modes is the same, so that the number of I -modes weakly decreases.
Then, the matrix representing F0E0 in the weight space of R0,[ j];h containing v is
upper-triangular, with h as every diagonal entry. This is the desired contradiction, and
hence, the proof is complete.
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