
Letters in Mathematical Physics (2021) 111:115
https://doi.org/10.1007/s11005-021-01458-2

Algebraic classicalW -algebras and Frobenius manifolds

Yassir Ibrahim Dinar1

Received: 24 February 2020 / Revised: 16 August 2021 / Accepted: 18 August 2021 /
Published online: 3 September 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
WeconsiderDrinfeld–Sokolov bihamiltonian structure associatedwith a distinguished
nilpotent elements of semisimple type and the space of common equilibrium points
defined by its leading term. On this space, we construct a local bihamiltonian structure
which forms an exact Poisson pencil, defines an algebraic classicalW -algebra, admits
a dispersionless limit, and its leading term defines an algebraic Frobenius manifold.
This leads to a uniform construction of algebraic Frobenius manifolds corresponding
to regular cuspidal conjugacy classes in irreducible Weyl groups.
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1 Introduction

Frobeniusmanifold is amarvelous geometric realization introduced byBorisDubrovin
for undetermined partial differential equations known as Witten–Dijkgraaf–Verlinde–
Verlinde (WDVV) equations which describe the module space of two-dimensional
topological field theory. Remarkably, Frobeniusmanifolds are also recognized inmany
other fields in mathematics like invariant theory, quantum cohomology, integrable
systems and singularity theory [24]. Briefly, a Frobenius manifold is a manifold with a
smooth structure of Frobenius algebra on the tangent space with certain compatibility
conditions. By Frobenius algebra, we mean a commutative associative algebra with
unity and an invariant nondegenerate symmetric bilinear form.

Let M be a Frobenius manifold. Then, we require the bilinear form (., .) to be
flat, and the unity vector field e is constant with respect to it. Let (t1, . . . , tr ) be flat
coordinates for (., .) where e = ∂tr . Then, the compatibility conditions imply that
there exists a function F(t1, . . . , tr ) such that

ηi j := (∂t i , ∂t j ) = ∂tr ∂t i ∂t jF(t) (1.1)

and the structure constants of the Frobenius algebra are given by

Ck
i j (t) :=

∑

p

ηkp∂t p∂t i ∂t jF(t) (1.2)

where the matrix ηi j is the inverse of the matrix ηi j . Associativity in Tt M implies that
F(t) satisfies WDVV equations [13]:

∑

k,p

∂t i ∂t j ∂tkF(t) ηkp ∂t p∂tq ∂t sF(t) =
∑

k,p

∂t s∂t j ∂tkF(t) ηkp ∂t p∂tq ∂t iF(t), (1.3)

for all i, j, q and s. In this article, we consider Frobenius manifolds where the quasi-
homogeneity condition for F(t) can take the form:

r∑

i=1

di t
i∂t iF(t) = (3 − d)F(t); dr = 1. (1.4)
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The vector field E = ∑n
i=1 di t

i∂ti is known as Euler vector field, and it defines the
degrees di and the charge d of M . A Frobenius manifold is called algebraic if F(t) is
an algebraic function, and it is called semisimple if Tt M is a semisimple algebra for
generic point t .

This work is related to a conjecture due to Dubrovin which states that semisim-
ple irreducible algebraic Frobenius manifolds with positive degrees correspond to
primitive (quasi-Coxeter) conjugacy classes of irreducible finite Coxeter groups [28].
A primitive conjugacy class in a Coxeter group is a conjugacy class which has no
representative in a proper Coxeter subgroup (see [5] for the classification). Coxeter
conjugacy class is an example of a primitive conjugacy class which exists in any Cox-
eter group. (It is formed by the product of simple reflections in the case of standard
reflection representation.) The conjecture arises from studying the algebraic solutions
to associated equations of isomonodromic deformation of an algebraic Frobeniusman-
ifold [28]. It leads to a primitive conjugacy class in a Coxeter group by considering
the classification of finite orbits of the braid group action on tuple of reflections [47].
A stage to verify the conjecture is to show the existence of these algebraic Frobenius
manifolds.

Under the conjecture, it is known that polynomial Frobenius manifolds correspond
toCoxeter conjugacy classes. Dubrovin constructed these polynomial Frobenius struc-
tures on orbit spaces of the standard reflection representations of Coxeter groups [23].
Their isomonodromic deformations lead to Coxeter conjugacy classes [28], and C.
Hertling [36] proved (as also conjectured by Dubrovin) that they exhaust the set of
all possible polynomial structures up to an equivalence. This classification and other
examples reveal a relation between orders and eigenvalues of the conjugacy classes,
and charges and degrees of algebraic Frobenius manifolds. More precisely, if the order
of a primitive conjugacy class is ηr + 1 and the eigenvalues are exp 2ηiπ i

ηr+1 , then the

charge of the corresponding Frobenius structure is ηr−1
ηr+1 and the degrees are ηi+1

ηr+1 . We
depend on this relation in constructing algebraic Frobenius structures.

One of the main methods to obtain examples of Frobenius manifolds exists within
the theory of flat pencils of metrics (equivalently, nondegenerate compatible Pois-
son brackets of hydrodynamics type). Besides, the leading terms of certain type of
local compatible Poisson brackets (a local bihamiltonian structure) which admit(s) a
dispersionless limit form a flat pencil of metric [25].

One of the main ideas to find algebraic Frobenius structures is to restrict ourselves
to irreducible Weyl groups, i.e., crystallographic Coxeter groups, and to consider the
associated simple Lie algebras. Then, under the notion of opposite Cartan subalgebra,
regular primitive conjugacy classes correspond to certain nilpotent orbits of semisim-
ple type. On the other hand, we can obtain compatible local Poisson brackets for any
nilpotent orbit using Drinfeld–Sokolov reduction. These Poisson brackets form an
exact Poisson pencil, and one of them is (or satisfies identities leading to) a classical
W -algebra. However, they admit a dispersionless limit only when the nilpotent orbit is
regular (which corresponds to Coxeter conjugacy class). In this article, we will work
with a larger type of conjugacy classes called cuspidal. A cuspidal conjugacy class has
no representative in a Coxeter subgroup of smaller rank. Regular cuspidal conjugacy
classes correspond to what is called distinguished nilpotent orbits of semisimple type
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[12,31]. In other words, we get certain Drinfeld–Sokolov bihamiltonian structures
associated with regular cuspidal conjugacy classes in irreducible Weyl groups.

Examples of Frobenius manifolds constructed using Drinfeld–Sokolov bihamilto-
nian structure can be traced back to the work of I. Krichever [39]. In our terminologies,
he treated the case of Coxeter conjugacy classes in Weyl groups of type Ar . (Here,
classicalW -algebras are known as second Gelfand-Dickey brackets.) In [15], we gave
a generalization to all Coxeter conjugacy classes in Weyl groups which, as expected,
lead to the polynomial Frobenius manifolds.

For regular primitive non-Coxeter conjugacy classes, we always get algebraic non-
polynomial Frobenius structures. Pavlyk obtained the first example which is related
to the Weyl group of type D4 [43]. In [14], we got another example working with
Weyl group of type F4. We added another 3 by giving a uniform construction related
to certain conjugacy classes in Weyl groups of type Er , r = 6, 7, 8 [18]. In all these
cases, we have to perform Dirac reduction for the Drinfeld–Sokolov bihamiltonian
structure to a subspace to get a bihamiltonian structure admitting a dispersionless limit.
In this article, we give a slightly better interpretation for this subspace which leads
to a uniform construction of algebraic Frobenius structures for all regular cuspidal
conjugacy classes. Precisely, we will prove the following theorem.

Theorem 1.1 Let g be a complex simple Lie algebra of rank r . Fix a regular cuspidal
conjugacy class [w] in the Weyl groupW(g) of g. Assume the order of representatives
in [w] is ηr + 1 and eigenvalues are εηi , i = 1, . . . , r , where ε is a primitive (ηr +
1)th root of unity. Let OL1 be the distinguished nilpotent orbit of semisimple type
associatedwith [w]under the notion of oppositeCartan subalgebra.Consider the finite
bihamiltonian structure formed by the leading term of Drinfeld-Sokolov bihamiltonian
structure associated with a representative L1 of OL1 . Then, its space of common
equilibrium points acquires an algebraic Frobenius manifold structure with charge
ηr−1
ηr+1 and degrees ηi+1

ηr+1 . This structure depends only on the conjugacy class.

We explain in some details the major steps to prove Theorem 1.1 which lead us to a
construction of algebraic classical W -algebras admitting a dispersionless limit. Let g
be a complex simple Lie algebra of rank r with the Lie bracket [·, ·]. Define the adjoint
representation ad : g → End(g) by adg1(g2) := [g1, g2]. For g ∈ g, let gg denote
the centralizer of g in g, i.e., gg := ker adg . Fix a distinguished nilpotent element
L1 of semisimple type. (More details are given in Sect. 3.) Then, using Jacobson–
Morozov theorem, we fix a nilpotent element f and a semisimple element h such that
A := {L1, h, f } ⊆ g is a sl2-triple with relations

[h, L1] = L1, [h, f ] = − f , [L1, f ] = 2h. (1.5)

We normalize the Killing form on g to get an invariant bilinear form 〈.|.〉 such that
〈L1| f 〉 = 1.

Let ηr denote the maximal eigenvalue of adh acting on g. By definition, we can
(and we will) fix an element K1 for L1 such that adhK1 = −ηr K1 and h′ := L1 + K1
is a regular semisimple element. Thus, h′ := ker adh′ is a Cartan subalgebra known as
opposite Cartan subalgebra. The adjoint group element w := exp 2π i

ηr+1adh acts on h′
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as a representative of regular cuspidal conjugacy class of order ηr +1 in the underline
Weyl group W(g) (see [31], and the appendix of [12]).

Let η1 ≤ . . . ≤ ηr be natural numbers such that εηi are eigenvalues of w where
ε is (ηr + 1)th root of unity. Let n = dim g f , then using representation theory of
sl2-subalgebras, there exist natural numbers ηr+1, . . . , ηn such that the eigenvalues
of adh on g f are −ηi , i = 1, . . . , n. We list all distinguished nilpotent elements of
semisimple type in simple Lie algebras and the numbers ηi in Table 1.

We fix Slodowy slice Q := L1 + g f as a transverse subspace to the orbit space
of L1 at L1. Let L(g f ) denote the space of smooth functions from the circle to g f .
The affine loop space Q := L1 + L(g f ) carries compatible local Poisson structures
(Drinfeld–Sokolov bihamiltonian structure formed by) BQ

2 and B
Q
1 , where B

Q
2 is a

classical W -algebra [33,34] and B
Q
1 is related to a 2-cocycle on g provided by K1.

They depend only on the adjoint orbit of L1, and they can be obtained equivalently by
using Drinfeld–Sokolov reduction, bihamiltonian reduction and Dirac reduction [19].
Note that performing any of these reductions, we need to fix a transverse subspace.
However, taking a different subspace than Q will lead to isomorphic bihamiltonian
structures. As it is already known by experts, we will prove in Proposition 5.4 that BQ

2

and B
Q
1 form an exact Poisson pencil.

We identify Slodowy slice Q with the subspace of constant loops of Q. We can
(and will) fix coordinates (z1, . . . , zn) for Q such that

Q = L1 +
∑

ziγi , γi ∈ g f , adhγi = −ηiγi , i = 1, . . . , n (1.6)

where γ1 = f and for q ∈ Q, z1 = 〈L1|q〉. Then, the leading terms of BQ
m , m = 1, 2,

can be written as follows:

{zi (x), z j (y)}[−1]
m = Fi j

m (z(x))δ(x − y),

{zi (x), z j (y)}[0]m = �
i j
m (z(x))δ′(x − y) +

∑

k

	
i j
k,m(z(x))zkxδ(x − y). (1.7)

Such a local Poisson bracket admits a dispersionless limit iff Fi j
m = 0. In general,

Fi j
2 (z) and Fi j

1 (z) define compatible Poisson structures BQ
2 and BQ

1 , respectively, on

Q.Moreover, BQ
2 can be identifiedwith the transverse Poisson structure of Lie-Poisson

structure on g [19]. We assign deg zi = ηi + 1. Then, after certain normalization, we
will prove the following theorem

Theorem 1.2 There exists a quasihomogeneous change of coordinates on Q in the
form:

ti =
⎧
⎨

⎩

z1, i=1,
zi + non linear terms, i=2, . . . , r,
zi , i=r+1, . . . , n.

(1.8)

such that
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1. deg t i = deg zi = ηi + 1
2. t1, . . . , tr form a complete set of Casimirs of BQ

1 and they are in involution with

respect to BQ
2 .

We will keep the notations (t1, . . . , tn) for the coordinates obtained in the last
theorem. (Except in Sect. 6, we can and will assume they are flat coordinates of the
resulted Frobenius structure.)

We are interested in the space of common equilibrium points N of the bihamiltonian
structure formed by BQ

2 and BQ
1 . Combining results from [3] and [20], we explain in

theorem 4.10 that the argument shift method leads to a completely integrable system
for BQ

2 and

N = {q ∈ Q : ker BQ
1 (q) = ker BQ

2 (q)}. (1.9)

Using Chevalley’s theorem, we fix homogeneous set of generators P1, . . . , Pr of the

ring of invariant polynomials of g under the adjoint group action. Let P
0
i denote the

restriction of Pi to Q. We can choose P1, . . . , Pr such that the following theorem is
valid. Here, we assume L1 is of type Zr (as) where Zr is the type of g.

Theorem 1.3 The space of common equilibrium points N is given by

N = {t : Fiβ
2 (t) = 0; i = 1, . . . , r , β = r + 1, . . . , n}, (1.10)

= {t : ∂tβ P
0
j (t) = 0; j = r − s + 1, . . . , r , β = r + 1, . . . , n}. (1.11)

Moreover, (t1, . . . , tr ) provide local coordinates around generic points of N . In addi-
tion, Dirac reduction of the Poisson pencil BQ

λ := BQ
2 + λBQ

1 to N is well defined
and leads to the trivial Poisson bracket.

Then,we construct compatible local Poisson brackets on the loop spaceN = L(N ).

Theorem 1.4 The Dirac reduction of the Poisson pencil BQ
λ := B

Q
2 + λBQ

1 to N is
well defined and leads to compatible local Poisson brackets {., .}Nα , α = 1, 2 which
admit a dispersionless limit and form an exact Poisson pencil. Moreover, {., .}N2 is an
algebraic classical W-algebra.

Let us emphasize that Theorem 1.4 implies that the leading terms of the local
Poisson brackets on N are Poisson brackets of hydrodynamic types, i.e.,

{tu(x), tv(y)}[0]α = �uv
α (t(x))δ′(x − y) + 	uv

αk (t(x))t
k
x δ(x − y), u, v = 1, . . . r , α = 1, 2.

(1.12)

where tk, k > r are solutions of the polynomial equations (1.10) defining N .
One of the important steps on the construction is to prove that the matrices �uv

α (t)
are nondegenerate. We will show that this condition follows from the fact that the
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restriction of the Killing form on g to the Cartan subalgebra h′ is nondegenerate (see
Proposition 5.6).

Then, we will prove the following.

Theorem 1.5 The two metrics �uv
1 and �uv

2 form a flat pencil of metrics on N which

is regular quasihomogeneous of degree d = ηr−1
ηr+1 .

In the end, using Theorem 2.8 due to Dubrovin, we get the proof of Theorem 1.1.
We organize the article as follows. In Sect. 2, we fix notations and terminologies

within the theory of local Poisson brackets, flat pencils of metrics and Frobenius
manifolds.We review the classification of distinguished nilpotent orbits of semisimple
type in simple Lie algebras in Sect. 3, and we will drive some algebraic properties
associated with them. In Sect. 4, we will study the space N of common equilibrium
points and prove Theorems 1.2 and 1.3. We review the Drinfeld–Sokolov reduction
in Sect. 5 and prove Theorem 1.4. In Sect. 6, we will prove Theorem 1.1 and we give
examples. The notations given in the introduction are in agreement with the flow of
the article.

2 Preliminaries

In this section, we recall relations between local bihamiltonian structures, flat pencils
of metrics and Frobenius manifolds. We also review the notion of Dirac reduction for
local Poisson brackets.

2.1 Contravariant metrics and local Poisson brackets

Let M be a smooth manifold of dimension n and fix local coordinates (u1, . . . , un) on
M . Here, and in what follows, summation with respect to repeated upper and lower
indices is assumed, i.e., we will adopt Einstein summation convention.

Definition 2.1 Asymmetric bilinear form (., .) on T ∗M is called a contravariantmetric
if it is invertible on an open dense subset M0 ⊆ M . We define the contravariant Levi–
Civita connection or Christoffel symbols 	

i j
k for a contravariant metric (., .) by

	
i j
k := −gis	 j

sk (2.1)

where 	
j
sk are the Christoffel symbols of the metric < ., . > defined on T M0 by the

inverse of the matrix �i j (u) = (dui , du j ). We say the metric (., .) is flat if < ., . > is
flat.

Let (., .) be a contravariant metric onM and set�i j (u) = (dui , du j ). Then, wewill
use �i j to refer to both the metric and the entries defined by the metric. In particular,
Lie derivative of (., .) along a vector field X will be writtenLX�i j , while X�i j means
the vector field X acting on the entry �i j .
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The loop space L(M) of M is the space of smooth functions from the circle to M .
A local Poisson bracket {., .} is a certain bracket on the space of local functional on
L(M) [29]. We can write {., .} as a finite summation of the form:

{ui (x), u j (y)} =
∞∑

k=−1

{ui (x), u j (y)}[k]

{ui (x), u j (y)}[k] =
k+1∑

l=0

Ai, j
k,l (u(x))δ(k−l+1)(x − y), (2.2)

where Ai, j
k,l (u(x)) are quasihomogeneous polynomials in ∂mx u

i (x) of degree l when

we assign degree ∂mx u
i (x) equals m, and δ(x − y) is the Dirac delta function defined

by

∫

S1
f (y)δ(x − y)dy = f (x). (2.3)

Definition 2.2 [34] A local Poisson bracket {., .} in the form (2.2) is called a classical
W -algebra if there exist local coordinates (z1, . . . , zn) such that

{z1(x), z1(y)} = cδ
′′′
(x − y) + 2z1(x)δ′(x − y) + z1xδ(x − y),

{z1(x), zi (y)} = (ηi + 1)zi (x)δ′(x − y) + ηi z
i
xδ(x − y), (2.4)

for nonzero constant c.

Let us fix a local Poisson bracket {., .} on L(M). The first terms can be written as
follows:

{ui (x), u j (y)}[−1] = Fi j (u(x))δ(x − y),

{ui (x), u j (y)}[0] = �i j (u(x))δ′(x − y) + 	
i j
k (u(x))ukxδ(x − y),

{ui (x), u j (x)}[k] = Si jk (u(x))δk+1(x − y) + . . . , k > 0. (2.5)

Note that M can be defined as the subspace of constant loops of L(M). Then, �i j (u),
Fi j (u), Si jk (u) and 	

i j
k (u) are smooth functions on M . Moreover, the matrix Fi j (u)

represents a finite-dimensional Poisson structure on M . This gives a bridge between
finite-dimensional and local Poisson structures.

Definition 2.3 We say a local Poisson bracket {., .} in the form (2.5) admits a dis-
persionless limit if Fi j (u) = 0 and {., .}[0] �= 0. In this case {., .}[0] defines a local
Poisson bracket on L(M) known as Poisson bracket of hydrodynamic type. We call it
nondegenerate if det�i j �= 0 on an open dense subset of M .

The following theorem, due to Dubrovin and Novikov, relates contravariant metrics
on a manifold M to theory of local Poisson brackets on L(M).
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Theorem 2.4 [27] In the notations of formulas (2.5), if {., .}[0] is a nondegenerate
Poisson brackets of hydrodynamic type, then the matrix�i j (u) defines a contravariant
flat metric on M and 	

i j
k (u) are its contravariant Christoffel symbols.

We recall the notion of Dirac reduction of a local Poisson bracket to loop spaces of
certain sub-manifolds. Let us fix a submanifold M ′ ⊂ M of dimension r . We assume
M ′ is defined by the equations uα = 0 for α = r + 1, . . . , n. We introduce three
types of indices: capital letters I , J , K , . . . = 1, . . . , n, small letters i, j, k, . . . =
1, . . . , r which parameterize the submanifold M ′ and Greek letters α, β, γ, δ, . . . =
r + 1, . . . , n.

Proposition 2.5 [19] In the notations of equations (2.5), assume the minor matrix Fαβ

is nondegenerate. Then, Dirac reduction is well defined on L(M ′), and it gives a local
Poisson bracket. If we write the leading terms of the reduced Poisson bracket in the
form:

{ui (x), u j (y)}[−1]
M ′ = F̃ i j (u)δ(x − y), (2.6)

{ui (x), u j (y)}[0]M ′ = �̃i j (u)δ′(x − y) + 	̃
i j
k u

k
xδ(x − y),

{ui (x), u j (x)}[k]M ′ = S̃i jk (u)δk+1(x − y) + . . . , k > 0. (2.7)

Then,

F̃ i j = Fi j − FiβFβαF
α j ,

�̃i j = �i j − �iβFβαF
α j + FiβFβα�αϕFϕγ F

γ j − FiβFβα�α j ,

	̃
i j
k u

k
x = (

	
i j
k − 	

iβ
k FβαF

α j + FiλFλα	
αβ
k FβϕF

ϕ j − FiβFβα	
α j
k

)
ukx

−(
�iβ − FiλFλα�αβ

)
∂x (FβϕF

ϕ j ), (2.8)

while other higher terms could be found by solving certain recursive equations.

Corollary 2.6 F̃ i j is the Dirac reduction of the finite-dimensional Poisson structure
F I J on M to M ′. If the entries Fiα = 0 on M ′, then the reduced Poisson bracket on
L(M ′) has the same leading terms, i.e.,

F̃ i j = Fi j , �̃i j = �i j , 	̃
i j
k = 	

i j
k , and S̃i jk = Si jk . (2.9)

2.2 From bihamiltonian structures to Frobenius manifolds

We use the notations given in Sect. 2.1 to bring a relations between local bihamiltonian
structures and Frobenius manifolds.

Definition 2.7 [25] Let �
i j
1 and �

i j
2 be two flat contravariant metrics on M with

Christoffel symbols 	
i j
2k and 	

i j
1k , respectively. Then, they form a flat pencil of metrics

if �
i j
λ := �

i j
2 + λ�

i j
1 defines a flat metric on T ∗M for generic λ and the Christof-

fel symbols of �
i j
λ satisfy 	

i j
λk = 	

i j
2k + λ	

i j
1k . Such flat pencil of metrics is called
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quasihomogeneous of degree d if there exists a function τ on M such that the vector
fields

E := ∇2τ, Ei = �
i j
2 ∂u j τ

e := ∇1τ, ei = �
i j
1 ∂u j τ (2.10)

satisfy the following properties

[e, E] = e, LE�
i j
2 = (d − 1)�i j

2 , Le�
i j
2 = �

i j
1 and Le�

i j
1 = 0. (2.11)

In addition, the quasihomogeneous flat pencil of metrics is called regular if the (1,1)-
tensor

R j
i = d − 1

2
δ
j
i + ∇1i E

j (2.12)

is nondegenerate on M .

The connection between the theory of Frobeniusmanifolds and flat pencil ofmetrics
is encoded in the following theorem due to Dubrovin.

Theorem 2.8 [25] A contravariant quasihomogeneous regular flat pencil of metrics
of degree d on a manifold M defines a Frobenius structure on M of charge d.

It is well known that from a Frobenius manifold we always have a flat pencil of
metrics but it does not necessarily satisfy the regularity condition (2.12) [25]. Locally,
in the coordinates defining equations (1.3) and (1.4), the flat pencil of metrics is found
by setting

�
i j
1 = ηi j ,

�
i j
2 = (d − 1 + di + d j )η

iαη jβ∂tα ∂tβF. (2.13)

This flat pencil of metric is quasihomogeneous of degree d with τ = t1. Furthermore,
we have

E =
∑

i

di t
i∂t i ; e = ∂tr . (2.14)

There is a source of flat pencil of metric within the theory of local bihamiltonian
structures.

Definition 2.9 Two local Poisson brackets {., .}1 and {., .}2 on L(M) form a bihamil-
tonian structure or they are compatible if the Poisson pencil {., .}λ := {., .}2 + λ{., .}1
is a Poisson bracket for generic constant λ. Compatible Poisson brackets {., .}1 and
{., .}2 form an exact Poisson pencil if there exists a vector field X such that

{., .}1 = LX {., .}2; LX {., .}1 = 0. (2.15)

In this case, we call X Liouville vector field.
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For recent developments about the theory of exact Poisson pencil see [32] and [41].
Let us fix compatible local Poisson brackets {., .}2 and {., .}1 on L(M) and write

their leading terms in the form:

{ui (x), u j (y)}[−1]
α = Fi j

α (u(x))δ(x − y), α = 1, 2

{ui (x), u j (y)}[0]α = �i j
α (u(x))δ′(x − y) + 	

i j
αk(u(x))ukxδ(x − y). (2.16)

Suppose that {., .}1 and {., .}2 admit a dispersionless limit. (We also say the bihamil-
tonian structure admits a dispersionless limit.) In addition, assume the corresponding
Poisson brackets of hydrodynamics type are nondegenerate as well as the dispersion-
less limit of {., .}λ for generic λ. Then, using Theorem 2.4, the matrices �

i j
1 and �

i j
2

define a flat pencil of metrics on M .

3 Nilpotent elements of semisimple type

In this section, we collect properties of the so-called distinguished nilpotent elements
of semisimple type in simple Lie algebras. Then, we derive important identities needed
to prove our main results.

3.1 Background

We fix a complex simple Lie algebra g of rank r . We refer to the type of g by Zr . For
g ∈ g, let Og denotes the orbit of g under the adjoint group action. The element g
is called nilpotent if adg is nilpotent in End(g) and it is called regular if dim gg = r .
Any simple Lie algebra contains regular nilpotent elements.

We fix a nilpotent element L1 in g. (Later, we will assume it is distinguished.) Let
A := {L1, h, f } ⊆ g be an associated sl2-triple satisfying the relations (1.5). It follows
from representation theory of sl2-algebra that the eigenvalues of adh are integers and
half integers. Consider Dynkin grading associated with L1

g =
⊕

i∈ 1
2Z

gi ; gi := {g ∈ g : adhg = ig}. (3.1)

We retrieve from [6] the following definitions concerning nilpotent orbits and their
classification. If L1 is regular, then OL1 is called regular nilpotent orbit, and it is
equal to the set of all regular nilpotent elements in g. The nilpotent orbit OL1 is
called distinguished, and hence also L1, ifOL1 has no representative in a proper Levi
subalgebra of g. It turns out that L1 is distinguished iff dim g0 = dim g1. Moreover, if
L1 is distinguished, then the eigenvalues of adh are all integers. The regular nilpotent
orbit in g is distinguished.

Distinguished nilpotent orbits, along with other nilpotent orbits, are classified by
using weighted Dynkin diagrams. In the case g is an exceptional Lie algebra, distin-
guished nilpotent orbits are listed in the form Zr (ai ) where i is the number of vertices
of weight 0 in the corresponding weighted Dynkin diagram. If there is another orbit of
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the same number i of 0’s, then the notation Zr (bi ) is used. For all simple Lie algebras,
the type of the regular nilpotent orbit is Zr (a0).

In case g is a classical Lie algebra, nilpotent orbits are also classified through
partitions of the dimension of the fundamental representation of g. In this article, by
B2m(am), we refer to the distinguished nilpotent orbit corresponding to the partition
[2m + 1, 2m − 1, 1] when the Lie algebra g is so4m+1 (type B2m). While, as usual in
the literature, D2m(am−1) denotes the distinguished nilpotent orbit corresponding to
the partition [2m + 1, 2m − 1] when g is so4m (type D2m).

From [31], we recall the following definition and properties. The nilpotent element
L1 is of semisimple type, and so its orbit, if there exists an element g of the minimal
eigenvalue of adh such that L1 + g is semisimple. In this case L1 + g is called a
cyclic element. If L1 is also distinguished then L1 + g will be regular. The list of
distinguished nilpotent elements of semisimple types is (idid, Lemma 5.1 and see the
appendix of [12]):

1. All regular nilpotent orbits in simple Lie algebras (those of type Zr (a0))
2. Subregular nilpotent orbits F4(a1), E6(a1), E7(a1) and E8(a1).
3. Nilpotent orbits of type B2m(am) and D2m(am−1).
4. Nilpotent orbits of type F4(a2), F4(a3), E6(a3), E7(a5), E8(a2),E8(a4), E8(a6)

and E8(a7).

From now on, we assume that L1 is a distinguished nilpotent element of semisimple
type and we refer to its type by Zr (as). Let ηr denote the maximal eigenvalue of adh .
Thus, we can (and will) fix an element K1 ∈ g−ηr such that the cyclic element
�1 := L1 + K1 is regular semisimple.

In what follows, we give a general setup associated with the cyclic element �1. It
was initiated by Kostant for the case of regular nilpotent elements [37] and obtained
for distinguished nilpotent elements of semisimple type in [12]. Let h′ := g�1 be the
Cartan subalgebra containing �1 which is known as the opposite Cartan subalgebra.
Then, the adjoint group element w defined by

w := exp
2π i

ηr + 1
adh (3.2)

acts on h′ as a representative of a regular cuspidal conjugacy class [w] in the Weyl
group W(g) of g of order ηr + 1. We recall that a conjugacy class [w′] ⊂ W(g) is
called cuspidal [35] (resp. primitive [5]) if det(w′− I ) �= 0 (resp. det(w′− I ) = detK,
K is the Cartan matrix ofW(g)). Also, [w′] is called regular if w′ has an eigenvector
not fixed by any non-identity element inW(g) (see [46] for the classification of regular
conjugacy classes).We emphasize that the results in this article depend on the nilpotent
orbit OL1 and not on the particular representative L1 of OL1 .

3.2 Normalization and identities

The element �1 is an eigenvector of w of eigenvalue ε = exp 2π i
ηr+1 . We define the

multiset E(L1) which consists of natural numbers ηi , i = 1, . . . , r such that εηi ’s is
an eigenvalue of the action of w on h′. We call E(L1) the exponents of the nilpotent
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element L1. When L1 is a regular nilpotent element, E(L1) equals the exponents E(g)
of the Lie algebra [37]. In Table 1, we list elements of E(L1) in the second column.We
calculated them by combining the results of [12,31] and [46]. Note that E(g) is listed
in Table 1 as E(L1) when L1 is of type Zr (a0). We denote throughout this article, the
elements of E(L1) by ηi and elements of E(g) by νi and we assume they are given in
a non-decreasing order, i.e.,

η1 ≤ η2 ≤ . . . ≤ ηr and ν1 ≤ ν2 ≤ . . . ≤ νr . (3.3)

The following lemma summarizes an important relation between E(g) and E(L1).

Lemma 3.1 For i = 1, . . . , r ,

ηi + ηr−i+1 = ηr + 1. (3.4)

Moreover, there exists a unique non-negative integer μi such that νi − μi (ηr + 1)
belongs to E(L1). Furthermore, the multiset formed by the numbers νi − μi (ηr + 1)
equals the multiset E(L1). In addition, the number of μ′

i s which are zero equals r − s.

Proof The proof is obtained by examining the multisets E(L1) and E(g) for each
nilpotent orbit listed in Table 1. ��
Example 3.2 In case L1 is of type E7(a5). Then, η7 = 5 and the values of u′

i s are
given in the following table The last row is just the elements of E(L1) (not in order).

i 1 2 3 4 5 6 7

νi 1 5 7 9 11 13 17
μi 0 0 1 1 1 2 2
νi − μi (η7 + 1) 1 5 1 3 5 1 5

We keep the notations μi , i = 1, . . . , r for the non-negative numbers introduced in
the last lemma. Many formulas below depend on these numbers. We list them in the
fourth column of Table 1 using conventional notation for repetitions. For example, we
write [02, 13, 22] instead of [0, 0, 1, 1, 1, 2, 2].

Let�1,�2, . . . , �r be a basis of h′ of eigenvectors ofw such thatw(�i ) = εηi �i .
Then, �i has the form:

�i = Li + Ki ; Li ∈ gηi , Ki ∈ gηi−(ηr+1), Li �= 0 �= Ki , i = 1, . . . , r . (3.5)

We normalized the invariant nondegenerate bilinear form 〈.|.〉 on g such that
〈L1| f 〉 = 1. Then, the following lemma is valid.
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Lemma 3.3 The matrix Ti j := 〈�i |� j 〉 is nondegenerate and antidiagonal with
respect to E(L1), i.e.,

Ti j = 0, if ηi + η j �= ηr + 1.

Moreover, the elements �i , i > 1 can be normalized such that

〈�i |� j 〉 = (ηr + 1)δi+ j,r+1. (3.6)

Proof The first part follows from the fact that the restriction of 〈.|.〉 to a Cartan sub-
algebra is nondegenerate. Therefore, for any element �i there exists an element � j

such that 〈�i |� j 〉 �= 0. But for the Weyl group element w defined in (3.2), we have
the equality

〈�i |� j 〉 = 〈w�i |w� j 〉 = exp
2(ηi + η j )π i

ηr + 1
〈�i |� j 〉

which forces ηi + η j = ηr + 1 in case 〈�i |� j 〉 �= 0. For the second part of the
lemma, recursively, we can define a change of basis with linear combination upon the
elements �i which have the same eigenvalue such that the matrix Ti j transform to the
anti-diagonal form: (ηr + 1)δi+ j,r+1.

��
We assume from now on that the basis �i of h′ is normalized and satisfies the

hypothesis of the previous lemma. Then, we get the following identities.

Corollary 3.4

〈Li |K j 〉 = η jδi+ j,r+1, i, j = 1, . . . , r . (3.7)

Proof Recall that

�i = Li + Ki ; Li ∈ gηi , Ki ∈ gηi−(ηr+1). (3.8)

Using the relation 0 = [�i ,� j ] = [Li , K j ] + [Ki , L j ] with the invariant bilinear
form yields

0 = 〈h|[Li , K j ] + [Ki , L j ]〉 = (ηi )〈Li |K j 〉 + (ηi − (ηr + 1))〈Ki |L j 〉. (3.9)

This equation with the normalization 〈�i |� j 〉 = 〈Li |K j 〉 + 〈Ki |L j 〉 = (ηr +
1)δi+ j,r+1 leads to the required identity. ��
Corollary 3.5

〈[K1, L j ]|ad f Li 〉 = ηiη jδi+ j,r+1, i, j = 1, . . . , r .
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Proof The identity [�1,� j ] = 0 leads to [L1, K j ] = −[K1, L j ]. Then,

〈[K1, L j ]|ad f Li 〉 = −〈[L1, K j ]|[ f , Li ]〉 = 〈K j |[L1, [ f , Li ]]〉 = 〈K j |[Li , [ f , L1]]〉
= −〈K j |[Li , h]〉 = ηi 〈K j |Li 〉 = ηiη jδi+ j,r+1. (3.10)

��
The commutators [�i ,� j ] = 0 imply that the set {L1, . . . , Lr } generates a com-

mutative subalgebra of gL1 . We consider the restriction of the adjoint representation to
the sl2-subalgebraA generated by {L1, h, f }. Then, the vectors Li aremaximalweight
vectors of irreducible A-submodules Vi of dimension 2ηi + 1. We set n = dim gL1 ,
and we fix the following decomposition of g into irreducible A-submodules

g =
n⊕

j=1

V j , dim V j = 2η j + 1, L j ∈ V j , adL1L j = 0, adh L j = η j L j .

(3.11)

Note that, for convenience, we extend the notation L j to cover all maximal eigenvec-
tors, i.e., L j ’s form a basis for gL1 . The numbers η1, . . . , ηn are given in Table 1 as
the collection of the numbers in the second and fourth columns. We refer to them as
the weights of the nilpotent element L1. We could not find them in the literature, and
we had to calculate them explicitly. See [21] for a procedure to find the weights of a
distinguished nilpotent element and the calculation for the nilpotent element of type
D2m(am−1). After calculating the weights, we observe the following:

Corollary 3.6 n = r + 2
∑

μi .

Let E(L1) denotes the multiset consisting of the numbers ηi , i = r + 1, . . . , n and
assume they are given in non-decreasing order, i.e.,

ηr+1 ≤ ηr+1 ≤ . . . ≤ ηn .

Then, from Table 1, we get

Corollary 3.7 ηr+i + ηn−i+1 = ηr for i = 1, . . . , n − r .

We use the fact that g f is the dual of gL1 under 〈.|.〉 [48] to fix a basis γi of g f such
that

〈γi |L j 〉 = δi j , i = 1, . . . , n. (3.12)

Then, adhγi = −ηiγi . Let us introduce the following basis for
⊕

i≤0 gi

γi , adL1γi , . . . ,
1

ηi !ad
ηi
L1

γi , i := 1, . . . , n, (3.13)
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and similarly a basis for
⊕

i≥0 gi

Li , ad f Li , . . . , ad
ηi
f Li , i := 1, . . . , n. (3.14)

Lemma 3.8

〈 1
I !ad

I
L1

γi |ad J
f L j 〉 = (−1)I

(
ηi

I

)
δi jδ

I J ; I = 0, 1, . . . , ηi ; J = 0, 1, . . . , η j .

(3.15)

Proof For I = J = 1, we get

〈adL1γi |ad f L j 〉 = −〈γi |adL1ad f L j 〉 = 〈γi |[L j , h]〉 = −ηiδi j . (3.16)

Hence, by induction for I > 1,

〈 1
I !ad

I
L1

γi |ad I
f L j 〉 = 〈 1

I !ad
I−1
L1

γi |[ad I−1
f L j , h]〉

= −η j − I + 1

I
〈 1

(I − 1)!ad
I−1
L1

γi |ad I−1
f L j 〉 = (−1)I

(
ηi

I

)
δi j .

(3.17)

Suppose I > J . Then,we can recursively equate the value 〈ad IL1
γi |ad J

f L j 〉 to constant
multiplication of the zero valued 〈ad I−J−1

L1
γi |ad f L j 〉. ��

Corollary 3.9 γr = K1.

Proof Recall that K1 ∈ g−ηr . It follows from the Dynkin grading that K1 ∈ g f .
Then, for j ≤ r , it follows from Corollary 3.4 that 〈K1|L j 〉 = δ jr . While for j > r ,
we get from Dynkin grading and the fact that η j < ηr that 〈K1|L j 〉 = 0. Thus, by
construction γr = K1. ��

4 The space of common equilibrium points

In this section, we fix Slodowy slice Q as a transverse subspace to the orbit space of L1.
We discuss the integrability of the transverse Poisson structure at L1 of Lie-Poisson
structure on gwhich leads to the definition of the space of common equilibrium points
N . Then, we will introduce special coordinates on Q and give alternative definitions
for N .
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4.1 Background

Let us define the gradient ∇H : g → g for a function H on g by

d

dt |t=0

H(g + tv) = 〈∇H(g)|v〉, ∀g, v ∈ g. (4.1)

We fix the following standard compatible Poisson structures on g which consists of
the frozen Lie-Poisson structure Bg

1 and the standard Lie-Poisson structure Bg
2 . We

denote their Poisson brackets by {., .}g1 and {., .}g2 , respectively. For any two functions
H and G on g, and v ∈ T ∗

g g
∼= g, we set

{H ,G}g1 (g) = 〈[∇G(g),∇H(g)]|K1〉; Bg
1 (v) = [K1, v],

{H ,G}g2 (g) = 〈[∇G(g),∇H(g)]|g〉; Bg
2 (v) = [g, v]. (4.2)

We use Bg
i , i = 1, 2 to refer to both the Poisson structures (tensors) and the corre-

sponding Poisson brackets. Then, the Hamiltonian vector field χH of a function H
under Bg

2 at a point g ∈ g is defined by

χH (g) := −ad∇H(g)g = [g,∇H(g)]. (4.3)

It is known that [1] the symplectic leaf through g ∈ g coincides with the adjoint orbit
Og and invariant polynomials under the adjoint group action are global Casimirs of
Bg
2 .
Using Chevalley’s theorem, we fix a complete system of homogeneous generators

P1, . . . , Pr of the ring of invariant polynomials under the adjoint group action. We
assume that degree Pi equals νi + 1. These generators give a complete set of global
Casimir functions of Bg

2 . In particular,

∇Pi (g) ∈ gg, ∀g ∈ g, i = 1, . . . , r . (4.4)

Moreover, the functions Pi (g + λK1) form a complete set of independent global
Casimirs of the Poisson pencil Bg

λ := Bg
2 + λBg

1 for any λ ∈ C [3].
Define Slodowy slice Q to be the affine space

Q := L1 + g f . (4.5)

Then, Q is a transverse subspace to the symplectic leaf OL1 of B
g
2 through L1. The

following proposition is a special version of Theorem 5.1 stated below.

Proposition 4.1 [19] The space Q inherits compatible Poisson structures BQ
1 , BQ

2

from Bg
1 , B

g
2 , respectively. Moreover, BQ

2 is the transverse Poisson structure at L1 of

Lie-Poisson structure Bg
2 . Furthermore, for any λ ∈ C, BQ

λ := BQ
2 + λBQ

1 can be
obtained from Bg

λ using Dirac reduction.
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Let P
0
i denotes the restriction of the invariant polynomial Pi to Q. Since BQ

λ can
be obtained by Dirac reduction, we have the following standard consequence.

Proposition 4.2 For λ ∈ C, P
0
1(q + λK1), . . . , P

0
r (q + λK1) form a complete set of

independent Casimirs of the Poisson pencil BQ
λ .

Following the argument shift method ([2,40]), we consider the family of functions

F := ∪λ∈C{P ′
λ : P ′

λ is a Casimir of BQ
λ }. (4.6)

This family commutes pairwise with respect to both Poisson brackets ([2], section

1.3). Let us consider the coefficient P
j
i of Taylor expansions

P
0
i (q + λK1) =

∑

j≥0

λ j P
j
i (q), q ∈ Q. (4.7)

Then, the functions P
j
i functionally generate F. Moreover, P

0
i are Casimirs of BQ

2 ,

the highest non-constant term P
�i
i are Casimirs of BQ

1 , and all functions P
j
i are in

involution with respect to both Poisson structures. In Proposition 4.8, we will show
that �i = μi .

The main propose for applying argument shift method is to show that F contains
enough number of functionally independent functions in order to get a completely
integrable system for BQ

2 . We explored this problem in [20] for arbitrary nilpotent
elements in g, and we proved the following theorem

Theorem 4.3 [20] Suppose L1 belongs to one of the following distinguished nilpotent
orbits of semisimple type: D2m(am−1), B2m(am), F4(a2), E6(a3), E8(a2) and E8(a4).

Then, the set of all functions P
j
i result from the expansion (4.7) are functionally

independent and form a polynomial completely integrable system under BQ
2 .

In what follows, a point q ∈ Q is generic if rank BQ
2 (q) = n − r . From [3] we get

the following theorem

Theorem 4.4 [3] The family F is complete (contains a completely integrable system)
if and only if, at a generic point q ∈ Q, rank BQ

λ (q) = rank BQ
ζ (q) for all λ, ζ ∈ C.

We are concerned about the space of common equilibrium points N of the family
F which is defined by

N := {q ∈ Q : BQ
λ (dP ′)(q) = 0, ∀P ′ ∈ F, λ ∈ C}. (4.8)

The following theorem gives an equivalent definition.

Theorem 4.5 [3] A point q ∈ Q is a common equilibrium point if and only if
ker BQ

λ (q) = ker BQ
ζ (q) for all generic λ, ζ ∈ C.

Equivalently, for q to be in N , it is sufficient to require that the kernel of just two
generic brackets at q coincides, i.e., ker BQ

λ (q) = ker BQ
ζ (q) with λ �= ζ [3].
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4.2 Special coordinates

Let us consider the adjoint quotient map

� : g → C
r , �(g) = (P1(g), . . . , Pr (g)). (4.9)

Kostant proved in [38] that the rank of � at g equals r if and only if g is a regular
element in g and it is known that the set of regular element is open and dense in g.
Later, Slodowy proved that the rank of� is r−1 at subregular nilpotent elements [45].
Finally, Richarson [42] obtained the ranks of � at distinguished nilpotent elements
except for the nilpotent elements of type E8(a2). Results in this section are built on
and inspired by the articles mentioned in this paragraph.

We fix a basis e0, e1, e2, . . . for g such that

1. The elements e0, e1, . . . , en+r are Kr , L1, L2, . . . , Ln, K1, K2, . . . , Kr−1, respec-
tively. Recall that �i = Li + Ki are normalized according to lemma 3.3.

2. 〈ei |�1〉 �= 0 if and only if i = 0 or i = r .

It is not hard to show that such a basis exists. Let us define on g the linear coordinates

zi (g) = 〈ei |g〉, i = 0, 1, 2, . . . . (4.10)

Then, by definition, ∇H = ∑
∂H
∂zi

ei for any function H on g. Note that the rank of
� at g equals the dimension of the vector space generated by ∇Pi (g). In particular,
since �1 is regular, the gradients ∇Pi (�1) are linearly independent and form a basis
for the opposite Cartan subalgebra h′. We use these remarks in the following lemma.

Lemma 4.6 The matrix with entries ∂Pi
∂z j

(�1), i, j = 1, . . . , r , is non-degenerate.
Moreover, Pi have the following form:

Pi = R1
i + R2

i + R3
i (4.11)

where

R1
i =

∑

a(ηr+1)=νi−ηr

θi,a(z
r )a+1(z0)νi−a,

R2
i =

νi−1∑

a=0

r−1∑

j=1

ci, j,a(z
r )a(z0)νi−a(z j + z j+n),

∂R3
i

∂zk
(�1) = 0,∀k. (4.12)

Here, ci, j,a and θi,a are complex numbers.

Proof Since ∇Pi (�1) ∈ g�1 = h′ and h′ has basis �i = Li + Ki , we get
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∇Pi (�1) =
r∑

j=1

Ci, j� j

=
r∑

j=1

Ci, j (L j + K j ) = Ci,r (e0 + er ) +
r−1∑

j=1

Ci, j (e j + en+ j ). (4.13)

Hence,

Ci, j =

⎧
⎪⎨

⎪⎩

∂Pi
∂z j

(�1) = ∂Pi
∂z j+n (�1), 0 < j < r ;

∂Pi
∂zr (�1) = ∂Pi

∂z0
(�1), j = r ;

(4.14)

and ∂Pi
∂z j

(�1) = 0 for other values of j . By definition of the coordinates and Corol-

lary 3.4, z j (�1) are all zero except zr (�1) = 1 and z0(�1) = ηr . For 0 < j < r ,
imposing the condition ∂Pi

∂z j
(�1) �= 0 and using the homogeneity of Pi , we find that

∂Pi
∂z j

must contain the polynomial

νi−1∑

a=0

ci, j,a(z
r )a(z0)νi−a−1, ci, j,a ∈ C. (4.15)

This gives the formula for R2
i . Note that

∂R2
i

∂zr (�1) = 0 since z j (�1) = 0 for j �= 0

and j �= r . Thus, for ∂Pi
∂zr (�1) to be nonzero, Pi must contain terms of the form

�i,a = (zr )a+1(z0)νi−a . But then a is constrained by the identity

∂�i,a

∂zr
(�1) = (a + 1)(ηr )

νi−a = ∂�i,a

∂z0
(�1) = (νi − a)(ηr )

νi−a−1. (4.16)

This leads to the formula for R1
i . The condition on R3

i is a direct consequence from our
analysis. Finally, the non-degeneracy condition follows from the fact that the vectors
∇Pi (�1) are a basis for h′. ��

For Slodowy slice Q, we observe that z0(q) = 〈Kr |L1〉 = ηr �= 0 for every q ∈ Q
and (z1, . . . , zn) define global coordinates on Q. The values of these coordinates
at �1 ∈ Q are zi = δir . We set degree zi equals ηi + 1 and recall the following
quasihomogeneity theorem due to Slodowy.

Theorem 4.7 ([45], section 2.5) The restriction P
0
i of Pi to Q is quasi-homogeneous

polynomial of degree νi + 1.

This theorem leads to the following refinement of the last lemma.
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Proposition 4.8 The restrictions P
0
i of the invariant polynomials Pi to Q in the coor-

dinates (z1, . . . , zn) take the form:

P
0
i (z

1, . . . , zn) =
∑

νi−η j=μi (ηr+1)

c̃i, j (z
r )μi z j + R

3
i (z), c̃i, j ∈ C, (4.17)

where R
3
i

∂zk
(�1) = 0 for k = 1, . . . , n. Moreover, the square matrix ∂P

0
i

∂z j
(�1), i, j =

1, . . . , r is nondegenerate.

Proof The restriction P
0
i of Pi to Q is obtained by setting z0 = ηr and zk = 0 for

k > n in the form (4.11). From the quasihomogeneity of P
0
i and lemma 4.6

P
0
i (z

1, . . . , zn) =
νi−1∑

a=0

∑

deg Pi−deg z j=a(ηr+1)

c̃i, j,a(z
r )az j + R

3
i (z), c̃i, j,a ∈ C

(4.18)

where R
3
i is the restriction of R3

i to Q. The expressions given in (4.12) imply that
∂R

3
i

∂zk
(�1) = 0, k = 1, . . . , n. Note that deg Pi − deg z j = νi − η j = a(ηr + 1).

Using the relation between the multisets E(g) and E(L1) observed in lemma 3.1, a
can only equal μi and the values of η j are uniquely determined and depends on i . On
other words the constants ci, j,a in (4.11) are nonzero only if a = μi . This gives the
form (4.17). For the nondegeneracy condition, note that the only possible value for
the index a in (4.11) is a = μi and so z0 appear only with the power νi − μi . This

implies that ∂Pi
∂z j

(�1) = ∂P
0
i

∂z j
(�1). Thus, the required matrix is nondegenerate. ��

Now we give a proof for Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2 Writing P
0
i in the form (4.7) and using the last proposition, we

get P
0
i (q +λK1) = P

0
i (z

1 +λδ1r , . . . , zn +λδnr ) and �i = μi . We observe that each

∂
μi
zr P

0
i is a constant multiple of P

μi
i . Hence, the functions ∂

μi
zr P

0
i are Casimirs of BQ

1

and are in involution with respect to BQ
2 . Furthermore, ∂μi

zr P
0
i has the form

∂
μi
zr P

0
i =

∑

ηi−η j=μi (ηr+1)

ci, j z
j + ∂

μi
zr R

3
i (z), ci, j ∈ C, (4.19)

where ∂z j ∂
μi
zr R

3
i equals 0 at the origin (z

k = 0,∀k). Thus,

∂z j ∂
μi
zr P

0
i (0) = 1

μi !
∂P

0
i

∂z j
(�1), i, j = 1, . . . , r . (4.20)

We conclude, using proposition 4.8, that thematrix ∂z j ∂
μi
zr P

0
i is nondegenerate. Hence,

∂
μi
zr P

0
i can replace the coordinates zi on Q for i = 1, . . . , r up to some permutation
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related to the repetition on E(L1). Moreover, using simple linear elimination, we can
get the required normalization t j = z j + (non linear terms) where t j is a Casimir of
BQ
1 . From Theorem 4.10, it follows that t1, . . . , tr form a complete set of Casimirs

for BQ
1 . The fact that t1 = z1 follows from identifying t1 with the Casimir function

〈Q|Q〉 and using 〈γ1|L1〉 = 1. ��
Wefix the notations (t1, . . . , tn) for the coordinates obtained inTheorem1.2. Recall

that Zr (as) denotes the type of L1.

Corollary 4.9 The functions P
0
1, . . . , P

0
r−s are quasihomogeneous polynomials on

t1, . . . , tr only.

Proof This follows from the fact thatμi = 0 for i = 1, . . . , r − s and the construction
of the coordinates (t1, . . . , tr ). ��

4.3 Integrability and alternative definitions

We combine the theorems stated in Sect. 4.1 to get the following useful result.

Theorem 4.10 The family F is complete for every distinguished nilpotent element of
semisimple type. In particular, rank BQ

1 = n − r and

N = {q ∈ Q : ker BQ
1 (q) = ker BQ

2 (q)}. (4.21)

Proof For regular, subregular and nilpotent elements stated in Theorem 4.3, the family
F is complete [20]. Suppose L1 belongs to the nilpotent orbit E7(a5), E8(a5), E8(a6),
E8(a7) or F4(a3). We will check that rank BQ

λ = n − r for every λ ∈ C and use

Theorem 4.4. It is not hard to show that rank BQ
λ = n − r for λ ∈ C [20]. We need

to show that rank BQ
1 = n − r . We verify the equality by direct computations using

proposition 5.8 given below. More precisely, we fixed arbitrary basis Li for g f and K1
such that L1 + K1 is regular semisimple. Then, we found that the rank of the matrix
〈Li |[K1, L j ]〉 equals n − r . The last statement follows from Theorem 4.5. ��

Let us use the special coordinates on Q and denote the entries of the matrix of the
reduced Poisson structures by

Fi j
α (t) := {t i , t j }Qα , α = 1, 2. (4.22)

Then, we prove Theorem 1.3 stated in the introduction.

Proof of Theorem 1.3 The first definition (1.10) of N follows directly from the struc-
ture of the matrices of the Poisson brackets under the coordinates (t1, . . . , tn). For the
second definition (1.11), we observe that dt1, . . . , dtr are a basis of ker BQ

1 , while

dP
0
1, . . . , dP

0
r are basis for ker B

Q
2 . However, by construction P

0
1, . . . , P

0
r−s are poly-

nomials in t1, . . . , tr only. Hence, the two kernels coincide exactly on the defined set.
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Now we consider the restriction of the adjoint quotient map

�Q(t1, t2, . . . , tn) = (P
0
1, . . . , P

0
r ). (4.23)

and let J�Q := ∂P
0
i

∂t j
denotes its Jacobianmatrix. Then, N is defined by the set of points

t where the lower-right s× (n−r)minor of J�Q is identically 0. From Corollary 4.9,
the upper-right (r − s) × (n − r) minor also vanishes by Corollary 4.9. Since regular
points of �Q are Zariski dense in Q, there exists open dense set N0 ⊆ N such that the

left r × r minor of J�Q is nondegenerate. In particular, P
0
1, . . . , P

0
r are independent

functions on N0. Hence, P
0
1, . . . , P

0
r are a part of local coordinates and dim N0 ≥ r .

However, the second definition (1.11) of N with Corollary 4.9 implies that dim N ≤ r .
Thus, dim N0 = r and (t1, . . . , tr ) acts as local coordinates around each point of N0.

Recall that BQ
λ , λ ∈ C, is of rank n − r . Since N0 consists of regular points, the

lower-right (n−r)×(n−r)minor Fαβ
λ of Fi j

λ is nondegenerate. Thus, Dirac reduction
is well defined on N0. However, applying Corollary 2.6, the reduced Poisson structure
is zero as t1, . . . , tr are in involution with respect to the pencil BQ

λ . ��

5 Algebraic classicalW-algebra

In this section, we summarize the construction of Drinfeld–Sokolov bihamiltonian
structure associated with the nilpotent element L1 and K1. Then, we will apply Dirac
reduction to get a local bihamiltonian structure admitting a dispersionless limit on the
loop space N := L(N ). This leads to an algebraic classical W -algebra on N .

5.1 Drinfeld–Sokolov reduction

We consider the loop algebra L(g) and we extend the bilinear form 〈.|.〉 on g to L(g)
by setting

(g1|g2) =
∫

S1
〈g1(x)|g2(x)〉dx; g1, g2 ∈ L(g). (5.1)

We use (.|.) to identifyL(g)withL(g)∗. We define the gradient δF(g) for a functional
F on L(g) to be the unique element in L(g) satisfying

d

dθ
F(g + θw) |θ=0=

(
δF(g)|w)

for all w ∈ L(g). (5.2)

Then, we introduce standard compatible local Poisson brackets {., .}1 and {., .}2 on
L(g) defined for any functionals I and F on L(g) by

{F , I}1(g(x)) :=
∫

S1
〈[δI(g(x)), K1]|δF(g(x))〉dx,
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{F , I}2(g(x)) :=
∫

S1
〈∂xδI(g(x)) + [δI(g(x)), g(x)]|δF(g(x))〉dx . (5.3)

We denote their Poisson structures by B1 and B2, respectively. We mention that B2
can be interpreted as the restriction to L(g) of Lie-Poisson structure on the untwisted
affine Kac–Moody algebra associated with g. In particular, if we expand these Poisson
brackets as in (2.16), the leading term {., .}[−1]

1 is the frozen Lie-Poisson structure Bg
1

and {., .}[−1]
2 defines the Lie-Poisson structure Bg

2 on g. Moreover, it is easy to show
that these Poisson structures form an exact Poisson pencil with Liouville vector field
∂zr in the coordinates defined by (4.10), i.e.,

{., .}1 = L∂zr {., .}2, L∂zr {., .}1 = 0. (5.4)

Let us define the affine loop space

Q := L1 + L(g f ). (5.5)

Then, Slodowy slice Q is identified with the subspace of constant loops of Q.

Theorem 5.1 [19] The space Q inherits compatible local Poisson structures BQ
2 and

B
Q
1 from B2 and B1, respectively. They can be obtained equivalently by using the

bihamiltonian reduction with Poisson tensor procedure, Dirac reduction and the gen-
eralizedDrinfeld–Sokolov reduction.Moreover, the leading terms of the bihamiltonian
structure on Q can be identified with the bihamiltonian structure BQ

2 and BQ
1 on Q.

Details on bihamiltonian reduction can be found in [7]. Drinfeld–Sokolov reduc-
tion is initiated and applied for regular nilpotent elements in [22]. Generalizations to
other nilpotent elements is obtained in [4,33] (see also [14]). The relation between
Drinfeld–Sokolov reduction and bihamiltonian reduction in the case of regular nilpo-
tent elements is treated in [8] and [44]. In [8], the Poisson tensor procedure is also
initiated (also called the method of transverse subspace in [41]). The relation between
Drinfeld–Sokolov reduction and Dirac reduction is also proved in [33]. See [11] and
references therein, for more recent development and tools used to study Drinfeld–
Sokolov reduction.

We let {., .}Q1 and {., .}Q2 denote the Poisson brackets defined by B
Q
1 and B

Q
2 ,

respectively.
In what follows, we review Drinfeld–Sokolov reduction. We identify L(g) with the

space of operators of the form ∂x + g, g ∈ L(g), andQwith the subspace of operators
of the form ∂x + q + L1, q ∈ L(g f ). Let B denote the subspace of operators of the
form:

L = ∂x + b + L1 where b ∈ L(b), b :=
⊕

i≤0

gi . (5.6)

There is a natural action of the adjoint group of L(n), n := ⊕
i<0 gi , on B defined by

(w,L) → (exp adw)L for all w ∈ L(n) and L ∈ B. (5.7)

123



Algebraic classical W -algebras and Frobenius manifolds Page 27 of 42 115

Moreover, for any operator L ∈ B there is a unique element w ∈ L(n) such that

Lc := ∂x + q + L1 = (exp adw)L (5.8)

where q ∈ L(g f ). Hence, q and w are differential polynomials in the coordinates of
b. The entries of q give a set of generators of the ring R of differential polynomials
invariant under the action (5.7) . More precisely, if we write

b =
n∑

i=1

ηi∑

I=0

biI (x)
1

I !ad
I
L1

γi , q =
n∑

i=1

zi (x)γi and w =
n∑

i=1

ηi∑

I=1

wi
I (x)

1

I !ad
I
L1

γi ,

(5.9)

then equation (5.8) reads

q − [w, L1] = b − wx + [w, b] +
∑

i>0

1

i + 1!ad
i
w(−wx + [w, b] + [w, L1]).

(5.10)

Using Dynkin grading and the fact that g f ⊕ [n, L1] = b, we get recursive equations
defining the coordinates of q as differential polynomials on the coordinates of b. More-
over, if we assign degree ∂kx b

i
J equals k+ηi − J+1, then zi (x) is a quasihomogeneous

polynomial of degree ηi + 1. The set of functionals R on Q are the functionals on B
with densities belonging to the ring R. It follows thatR is closed Poisson subalgebra
with respect to the Poisson brackets {., .}2 and {., .}1. Thus, the reduced Poisson pencil
{., .}Qλ := {., .}Q2 + λ{., .}Q1 can be obtained by apply the Leibniz rule

{zu(x), zv(y)}Qλ := ∂zu(x)

∂(biI )
(k)

∂kx

( ∂zv(y)

∂(b j
J )

(l)
∂ny

({biI (x), b j
J (y)}λ

))
(5.11)

where

{biI (x), b j
J (y)}λ = 1

�i
I

1

�
j
J

(
〈adJf L j |adIf Li 〉∂x + 〈b(x) + λK1|[adJf L j , ad

I
f Li ]〉

)
δ(x − y)

= 1

�i
I

1

�
j
J

(
〈adJf L j |adIf Li 〉∂x + 〈adIf Li |[b + λK1, ad

J
f L j ]〉

)
δ(x − y)

(5.12)

and �
j
J := (−1)J

(η j
J

)
. We will use these formulas in the next sections to analyze the

leading terms of BQ
2 and B

Q
1 .

We end this section by finding the linear terms of the generators of the invariant
ring R.
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Proposition 5.2 The linear terms of each zi (x) equal

ηi∑

I=0

(−1)I

I ! ∂ I
x b

i
I . (5.13)

In particular, zr (x) is the only generator of R depends on br0(x) and this dependence
is linear. Moreover, all zi (x) do not depend on derivatives of br0(x).

Proof The second part of the statement follows from the quasihomogeneity of the
generators zi (x) of R. To find linear terms of each zi , we introduce spectral parameter
ε and set L(ε) = ∂x + εb + L1. Let w(ε) and Lc(ε) be the corresponding operators.
Then, L(0) = ∂x + L1, w(0) = 0 and Lc(0) = L(0). Therefore, differentiating the
relation

Lc(ε) = L(ε) + [n(ε),L(ε)] + 1

2
[n(ε), [n(ε),L(ε)]] + . . . (5.14)

with respect to ε and evaluating at ε = 0 we get

q ′(0) = b + [w(0),L′(0)] + [w′(0), ∂x + L1]
= b + [w′(0), ∂x + L1]
= b − w′

x (0) + [w′(0), L1]. (5.15)

Note that [w′(0), L1] does not contribute to q ′(0). Then, the coordinate of γi gives

(zi )′(0) = bi0 − (w′
x (0))

i
0 (5.16)

where we write w′(0) = ∑n
i=1

∑
I>0(w

′(0))iI
1
I !ad

I
L1

γi . Then, the coefficients of
1
I !ad

I
L1

γi for I > 0 give the recursive relations

[(w′(0))iI−1, L1] − (w′
x (0))

i
I + biI = 0 (5.17)

which leads to

(w′(0))iI−1 = 1

I + 1
(−(w′

x (0))
i
I + biI ). (5.18)

For example,

(w′(0))iηi−1 = 1

ηi
(biηi ),

(w′(0))iηi−2 = 1

ηi − 1
(− 1

ηi
(∂xb

i
ηi

) + biηi−1). (5.19)

123



Algebraic classical W -algebras and Frobenius manifolds Page 29 of 42 115

These recursive relations lead to

(zi )′(0) =
ηi∑

I=0

(−1)I

I ! ∂ I
x b

i
I . (5.20)

��
Recall that the coordinates (t1, . . . , tn) of Q developed in Theorem 1.2 are quasi-

homogeneous polynomials in the coordinates (z1, . . . , zn). Thus, we get the following
corollary by construction.

Corollary 5.3 Proposition 5.2 is valid when we replace zi (x) by ti (x).

5.2 Further reduction

In this section, we reduce Drinfeld–Sokolov bihamiltonian structure toN and analyze
the leading term using the coordinates (t1, . . . , tn) obtained by Theorem 1.2.

Proposition 5.4 The reduced bihamiltonian structure on Q is exact with Liouville
vector field ∂tr . The Poisson bracket with t1 preserve the relations defining classical
W-algebra, i.e.,

{t1(x), t1(y)}Q2 = cδ
′′′
(x − y) + 2t1(x)δ′(x − y) + t1x δ(x − y),

{t1(x), t i (y)}Q2 = (ηi + 1)t i (x)δ′(x − y) + ηi t
i
xδ(x − y), i = 2, . . . , n. (5.21)

for some nonzero constant c.

Proof We take t1(z), . . . , tn(z) as generators for the invariant ring R. ByCorollary 5.3,
tr (x) is the only invariant which depends on br0(x). This implies that the invariant tr (x)

appears in the expression of {t i (x), t j (y)}Q2 only if, when using the Leibniz rule (5.11),

we encounter terms of {., .}2 depend explicitly on br0(x). Thus, {t i (x), t j (y)}Q2 is at
most linear on zr (x) and its derivatives. But the bihamiltonian structure on L(g) is
exact and {., .}1 is obtained from {., .}2 by the shift along br0. Hence, {t i (x), t j (y)}Q1 is

obtained by the shift of {t i (x), t j (y)}Q2 along tr (x), i.e., substituting tr (x) by tr (x)+ε

and evaluate d
dε

|ε=0. Therefore, {., .}Q1 does not depend on tr (x) or its derivatives.

From the work in [33], the reduced Poisson bracket {., .}Q2 is a classical W -algebra in
the coordinates (z1, . . . , zn), i.e., it satisfies the identities 2.4. Then, the argument for
identities (5.21) will be similar to the one given in the proof of proposition 6.2 below.

��
Then, Theorem 1.4 gives compatible local Poisson brackets {., .}Nα , α = 1, 2 on

the loop space N = L(N ) of the space of common equilibrium points N . The proof
is as follows.
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Proof of Theorem 1.4 From Theorem 1.3, the leading terms of {., .}Qk , k = 1, 2 have
the form:

{t i (x), t j (y)}[−1]
k = Fi j

k (t(x))δ(x − y), (5.22)

where Fiα
1 (t) = 0 and N is defined by Fiα

2 (t) = 0, 1 ≤ i ≤ r and r + 1 ≤
α ≤ n. Thus, {., .}Qλ satisfies the hypothesis of proposition 2.5 with the coordinates
(t1, . . . , tr ) on N . Using Corollary 2.6, the reduced local Poisson bracket {., .}Nλ on

N is obtained by setting {t i (x), t j (y)}Nλ equals {t i (x), t j (y)}Qλ and substitute the
variables t i , i > r by solutions of the polynomial equations Fiα

2 = 0 defining N . In
particular, {t i (x), t j (y)}Nλ is an algebraic local Poissonbracket and it is linear inλ. This
leads to compatible local Poisson brackets {., .}N2 and {., .}N1 on N where the former
still satisfies the identities (5.21) defining classical W -algebras. From Theorem 1.3
again, they both admit a dispersionless limit. Note that the defining equation Fiα

2 = 0
of N do not depends on tr . Thus, from proposition 5.4, the reduced Poisson brackets
form an exact Poisson pencil. ��

As in the introduction, we write the leading terms of {., .}Nα , α = 1, 2, in the form:

{tu(x), tv(y)}[0]α = �uv
α (t(x))δ′(x − y) + 	uv

αk(t(x))t
k
x δ(x − y), 1 ≤ u, v ≤ r .

(5.23)

In the remainder of this section, we want to prove that the determinate of the matrix
�uv

1 (t) is nonzero constant. For this end, we write

[K1, ad
J
f L j ] =

∑

t

�J t
j

1

T !ad
T
L1

γt ; T = ηt + η j − J − ηr ≥ 0 (5.24)

where T is constrained by the Dynkin grading of g. Then, the values of {., .}1 on the
coordinates of b are given by

{biI (x), b j
J (y)}1 = 1

�
j
J

δ I T δi t�J t
j δ(x − y). (5.25)

Thus, we get the following formula for the brackets

{biI (x), b j
J (y)}1 = �J i

j

�
j
J

δ(x − y), I = ηi + η j − J − ηr (5.26)

where �J t
j possibly equals 0. Expanding using the Leibniz rule, we get

{tu(x), tv(y)}Q1 =
∑

i, j

∑

l,h

�J i
j

�
j
J

∂tu(x)

∂(biI )
(l)

∂lx

( ∂tv(y)

∂(b j
J )(h)

∂hy δ(x − y)
)
, I = ηi + η j − J − ηr
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=
∑

i, j

∑

l,h,α,β

(−1)h
(
h

α

)(
l

β

)�J i
j

�
j
J

∂tu(x)

∂(biI )
(l)

( ∂tv(x)

∂(b j
J )(h)

)(α+β)
δ(h+l−α−β)(x − y).

(5.27)

Here we omitted the ranges of the indices since no confusion can arise. We observe
that the value of �uv is contained in the expression

Fuv
1 =

∑

i,J

∑

h,l

(−1)h(l + h)
�J i

j

�
j
J

∂tu(x)

∂(biI )
(l)

( ∂tv(x)

∂(b j
J )

(h)

)h+l−1
, I = ηi + η j − J − ηr

(5.28)

Lemma 5.5 The matrix �uv
1 (t) is lower antidiagonal with respect to E(L1), and the

antidiagonal entries are constants. In other words, �uv
1 (t) is constant if ηu + ηv =

ηr + 1 and equals zero if ηu + ηv < ηr + 1.

Proof Assume tu(x) and tv(x) are quasihomogeneous of degree ηu + 1 and ηv + 1,
respectively. Then, Fuv

1 is a quasihomogeneous polynomial of degree

ηu + 1 + ηv + 1 − (ηi − I + l + 1) − (η j − J + h + 1)

+h + l − 1 = ηu + ηv − ηr − 1

��
Recall that from the construction of the coordinates (t1, . . . , tr ) and the second part

of proposition 3.3, the entry �uv
1 in case u + v = r + 1 implies that ηu + ηv = ηr + 1

and 〈�u |�v〉 = ηr + 1

Proposition 5.6 The antidiagonal entries of �uv
1 with respect to the set E(L1) equal

ηr + 1 in case u + v = r + 1 and zero otherwise. In particular, �uv
1 is nondegenerate

and its determinant equals (ηr + 1)r .

Proof We need only to examine the entry �uv where tu and tv are quasihomogeneous
of degree ηu + 1 and ηr − ηu + 2, respectively. The expression (5.28) yields the
constrains

ηi + 1 − I ≤ ηu + 1 ⇒ J ≤ ηu + η j − ηr

η j + 1 − J ≤ ηr − ηu + 2 ⇒ η j + ηu − ηr − 1 ≤ J . (5.29)

Hence, J equals ηu + η j − ηr − 1 or ηu + η j − ηr . Consider J = ηu + η j − ηr − 1.

Then deg(b j
J )

(h) = η j − J + 1 + h = deg tv + h. This forces h = 0 and tv is linear

in b j
J . Therefore, from proposition 5.2, j = v and J = 0 which leads to ∂tv(x)

∂(b j
J )

(h)
= 1.

Also

deg(biI )
(l) = ηi − I + h + 1 = ηi − (ηi + η j − J − ηr ) + l + 1

= ηu + l = deg tu . (5.30)
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Thus, the only possible value for l is 1. Note that I = ηi − ηu + 1. Hence, deg tu =
deg(biI )

′ and tu is linear in (biI )
′. Then, i = u and I = 1 and from proposition 5.2,

∂tu(x)
∂(biI )

(l) = −1. Therefore, the case J = ηu + η j − ηr − 1, the expression (5.28)

contributes to �uv
1 with the value −�0u

v

�v
0

= −�0u
v since J = ηu + ηv − ηr − 1 = 0.

By definition,

− �0u
v = 1

ηu
〈ad f Lu |[K1, Lv]〉 = ηvδu+v,r+1. (5.31)

A similar analysis when J = ηu + η j − ηr leads to the value ηuδu+v,r+1. By the
normalization of �i , it follows that the value of �uv

1 equals ηu + ηv = ηr + 1
when u + v = r + 1 and zero otherwise. The determinant of the matrix �uv

1 follows
accordingly. ��
Corollary 5.7 The matrix �uv

2 (t) is nondegenerate on N .

Proof It follows from the exactness of the Poisson pencil, i.e., �uv
1 (t) = ∂tr

�uv
2 (t). ��
Recall the duality of the multiset E(L1) stated in Corollary 3.7. Then, the following

proposition is useful to find the rank of BQ
1 . Note that the proof depends only on the

linear part of the invariants t i (x).

Proposition 5.8 The matrix Fuv
1 (t), u, v = 1, . . . , n is a lower antidiagonal in the

sense that Fuv
1 (t) = 0 if ηu + ηv < ηr . In particular, if ηu + ηv = ηr then

Fuv
1 (t) = 〈Lu |[K1, Lv]〉, (5.32)

and if ηu + ηv = ηr + 1 then Fuv
1 (t) = 0

Proof Note that the value of the matrix Fuv
1 (t) is contained in the expression

∑

i,J

∑

h,l

(−1)h
�J i

j

�
j
J

∂tu(x)

∂(biI )
(l)

( ∂tv(x)

∂(b j
J )

(h)

)h+l
, I = ηi + η j − J − ηr . (5.33)

Then, the proof will be similar to the proof of lemma 5.5 and proposition 5.6. The
degree of this expression is ηu+ηv −ηr . Thus, the matrix will be lower antidiagonal as
claimed. Let us assumeηv+ηu = ηr . Then, the only possible value for J isηu+η j−ηr .
We also find h (resp. j , l and i) must equal 0 (resp. v, 0 and u). Therefore, J = 0 and
the expression (5.33) will be �0u

v = 〈Lu |[K1, Lv]〉. For the last statement, note that
Fuv
1 (t) is a polynomial [19] and there is no variable of degree 1. ��

6 Algebraic Frobenius manifold

In this section,we obtain the promised algebraic Frobenius structure and give examples
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6.1 General construction

We consider the flat pencil of metrics on N consists of �uv
1 (t) and �uv

2 (t) which is
afforded by Theorems 1.4, 2.4, Proposition 5.6 and Corollary 5.7. From the exactness
of Poisson pencil onN and defining equations ofW -algebra given in proposition 5.4,
we have

L∂tr �
uv
2 = �uv

1 , g1u2 (t) = (ηu + 1)t, 	
1 j
2k (t) = η jδ

j
k . (6.1)

Recall that we assign degree tu equals ηu + 1.

Proposition 6.1 Each entry �uv
2 (t) is quasihomogeneous of degree ηu + ηv , while

	uv
2k (t) is quasihomogeneous of degree ηu + ηv − (ηk + 1).

Proof First part follows from the proof of lemma 5.5. Analyzing the coefficient of
δ(x − y) is the expression (5.27) leads to the degree of 	uv

2k (t). ��
Proposition 6.2 There exist a quasihomogeneous polynomial change of coordinates
of the form

si = t i + non linear terms (6.2)

such that the matrix �uv
1 (s) = (ηr + 1)δu+v,r+1. Furthermore, in these coordinates

the metric �uv
2 (s) and its Christoffel symbols preserve the identities

�
1,v
2 (s) = (ηv + 1)sv, 	1v

2k (t) = ηvδ
v
k . (6.3)

Proof A local flat coordinates of the metric �uv
1 (s) exist at each point of N and can

be found by solving the system [23]

�uv
1 ∂tu∂tk s + 	uv

1k ∂tv s = 0, u, k = 1, . . . , r . (6.4)

First, we search for a quasihomogeneous change of coordinates in the form si =
si (t1, . . . , tr )with deg si = deg t i such that thematrix�uv

1 (s) is constant antidiagonal
with respect to the set E(L1). The proof of its existence can be obtained by following
the proof of a similar statement in ([23], Corollary 2.4). Note that we can write si in the
form (6.2) using eliminations. But then, after reordering, we can apply proposition 5.6
to get �uv

1 (s) = (ηr + 1)δu+v,r+1. For the second part of the statement, we need only
to show that

�
1,i
2 (s) = (ηi + 1)si , 	

1 j
2k (s) = η jδ

j
k . (6.5)

Let us introduce the Euler vector field

E ′ :=
∑

i

(ηi + 1)t i∂t i . (6.6)
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Then, the formula for change of coordinates gives

�
1 j
2 (s) = ∂ta s

1∂tb s
j �ab

2 (t) = E ′(s j ) = (η j + 1)s j . (6.7)

Here, the last equality comes from quasihomogeneity of the coordinates si . For	1 j
2k (t),

the change of coordinates has the following formula:

	
i j
2k(s)ds

k =
(
∂ta s

i∂tc∂tb s
j�ab

2 (t) + ∂ta s
i∂tb s

j	ab
c (t)

)
dsc. (6.8)

But then we get

	
1 j
2k ds

k =
(
E ′(∂tc s j ) + ∂tb s

j	1b
2c

)
dtc

=
(
(η j − ηc)∂tc s

j + ηc∂tc s
j
)
dtc = η j∂tc s

j dtc = η j ds
j . (6.9)

��
From proposition 6.2, we can assumewithout loss of generality that the coordinates

t i are the flat coordinates for�i j
1 . Then, we get a regular quasihomogeneous flat pencil

of metrics of degree ηr−1
ηr+1 formed by �

i j
1 and �

i j
2 on N as Theorem 1.5 states.

Proof of Theorem 1.5 In the notation of equations (2.10), we set τ := 1
ηr+1 t

1. Then,

E := �
i j
2 ∂t j τ ∂t i = 1

ηr + 1

∑

i

(ηi + 1)t i∂t i ,

e := �
i j
1 ∂t j τ ∂t i = ∂tr . (6.10)

The identities [e, E] = e, L∂tr �
uv
2 = �uv

1 and L∂tr �
uv
1 = 0 are fulfilled. We also

obtain from proposition 6.1 that

LE�i j = E(�
i j
2 ) − ηi + 1

ηr + 1
�

i j
2 − η j + 1

ηr + 1
�

i j
2 = −2

ηr + 1
�

i j
2 = (d − 1)�i j .(6.11)

We also have the regularity condition since the (1,1)-tensor R j
i has the entries

R j
i = d − 1

2
δ
j
i + ∇1i E

j = ηi

ηr + 1
δ
j
i . (6.12)

��
Now we can prove the main result, Theorem 1.1.

Proof of Theorem 1.1 It follows from Theorems 1.5 and 2.8 that N has a natural Frobe-
nius structure of charge ηr−1

ηr+1 . This Frobenius structure is algebraic since the potential
F is constructed using equations (2.13) and from Theorem 1.4 the matrix �uv

2 may
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contain variables tk, k > r which are solution of the polynomial equations (1.10)
defining N . The Euler vector field is given by the formula (6.10). By construction,
different choices of a representative L1 or transverse subspace other than Slodowy
slice will lead to the same Frobenius structure. ��

6.2 Examples

6.2.1 Regular nilpotent orbits

Suppose L1 is a regular nilpotent element in g. Then, the multisets E(L1) and E(g)
coincide. In this case,we get the standardDrinfeld–Sokolov reduction [22] onSlodowy
sliceQ and the local bihamiltonian structure admits a dispersionless limit. Hence, the
space of common equilibrium points N equals Q. The algebraic Frobenius manifold
is polynomial. It coincides [30] with the polynomial Frobenius manifold constructed
by Dubrovin on the orbit spaces of the underlined Weyl group [23]. The construction
using the methods of this article was also obtained in [15].

6.2.2 Subregular nilpotent orbits

A nilpotent elements is called subregular if dim g0 = r + 2. The set of all subregular
nilpotent elements form one nilpotent orbit which exists in any complex simple Lie
algebra. However, not all subregular nilpotent elements of simple Lie algebras are of
semisimple type, which was wrongly assumed in the article [18]. Only the subregular
nilpotent elements of type D4(a1), F4(a1), E6(a1), E7(a1) and E8(a1) are of semisim-
ple type. Hence, all statements in [18] are valid only when considering those cases.
Let L1 be a subregular nilpotent element of semisimple type. Then, Slodowy slice Q
is of dimension r + 2. In [18], the set of common equilibrium points N was defined
in terms of the invariant polynomials P1, . . . , Pr using the normalization of the trans-
verse Lie-Poisson bracket {., .}Q2 obtained in [9]. Moreover, the article [18] contains in
detail the construction of the potential of the algebraic Frobenius manifold associated
to D4(a1). So we are not keen to repeat writing this example here. We also constructed
the potential associated with E8(a1), but it results in a huge polynomial in 8 variables
(consist of 303 monomials) with vast numbers and by all means unpublishable [16].
A simpler formula for this potential appears in [17].

6.2.3 Nilpotent element of type F4(a2)

We use minimal representation of F4 which is given by square matrices of size 27. The
following computations can be verified using any computer algebra systems. Below
εi, j denote the standard basis of the set of square matrices of size 27. To simplify
the notation we use Ec1c2c3c4 to denote the root vector corresponding to the root
c1α1 + c2α2 + c3α3 + c4α4 while Fc1c2c3c4 for the root vector corresponding to the
negative root. We always set Fc1c2c3c4 equals the transpose of the matrix Ec1c2c3c4 .
Then, the simple root vectors are

E0001 := −ε4,5 + ε7,8 + ε9,11 + ε20,22 + ε21,6 + ε23,24,
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E0010 := −ε3,4 + ε8,10 + ε11,13 + ε18,20 + ε19,21 + ε24,25,

E0100 := −ε2,3 − ε4,7 + ε5,8 + ε6,24 + ε10,12 + ε13,15 + ε13,16 + ε15,18

+ε16,18 + ε17,19 + ε21,23 + ε25,26,

E1000 := −ε1,2 − ε7,9 − ε8,11 − ε10,13 + ε12,14 − ε12,15 − ε14,17

+ε15,17 + ε18,19 + ε20,21 + ε22,6 + ε26,27. (6.13)

We construct the remaining root vectors by setting

E0011 = [E0001, E0010] E0110 = [E0010, E0100] E1100 = [E0100, E1000]
E0111 = [E0011, E0100] E0210 = [E0100, E0110] E1110 = [E1000, E0110]
E0211 = [E0111, E0100] E1111 = [E1110, E0001] E1210 = [E1110, E0100]
E0221 = [E0211, E0010] E1211 = [E1111, E0100] E2210 = [E1210, E1000]
E1221 = [E0221, E1000] E2211 = [E1211, E1000] E1321 = [E1221, E0100]
E2221 = [E2211, E0010] E2321 = [E2221, E0100] E2421 = [E2321, E0100]
E2431 = [E2421, E0010] E2432 = [E2431, E0001]

We fix the following sl2-triple, where the nilpotent element L1 is of type F4(a2)

L1 = E0010 + E0011 + E0110 + E0111 + E0210 + E0211 + E1000 + E1100,

f = 3F0010 + 3F0011 + F0110 + F0111 + 5

4
F0210 + 5

4
F0211 + 6F1000 + 2F1100,

h = 5[E0001, F0001] + 10[E0010, F0010] + 7[E0100, F0100] + 4[E1000, F1000],
(6.14)

The following vectors form a complete set of maximum weight vectors of the irre-
ducible sl2-submodules. They are of eigenvalues 1,5,5,4,3,2,1, respectively, under
adh .

L2 = 20

13
E0010 − 28

13
E0011 − 76

13
E0110 − 28

13
E0111 + 38

13
E0210

+ 2

13
E0211 + 32

13
E1000 − 88

13
E1100,

L3 = 39

20
E2431, L4 = 39

20
E2431 + 9

4
E2432,

L5 = E2321 + E2421, L6 = 2E1221 + 6E1321 + E2210 − 5E2211,

L7 = −4E221 + E1110 − 5E1111 − E1210 + 5E1211,

L8 = 2

5
E0010 + 2E0011 − 6

5
E0110 − 14

5
E0111

−1

5
E0210 + E0211 − 4

5
E1100. (6.15)
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Then setting

K1 = F2432, K2 = 15

13
F2431 − F2432

K3 = 39

20
F0010 − 39

20
F0011 − 39

8
F0110 − 273

40
F111 + 39

10
F0211 − 39

10
F1100

K4 = 39

20
F0010 + 204

5
F0011 + 3F0110 − 51

5
F0111

+9

2
F0210 + 129

10
F0211 + 9

4
F1000 + 48

5
F1100 (6.16)

The vectors �i = Li + Ki are basis of the opposite Cartan subalgebra h′. The nor-
malized bilinear form is given by 〈g1|g2〉 = 1

216Tr(g1.g2). Then, one can check that
〈�i |� j 〉 = 6δi j . The basis γi ∈ g f such that 〈γi |L j 〉 = δi j are given by the formula

γ1 = f ,

γ2 = 1677

1120
F0010 − 1833

1120
F0011 − 923

1120
F0110 + 247

1120
F0111 + 403

2240
F0210

+ 247

2240
F0211 + 39

35
F1000 − 143

140
F1100,

γ3 = 15

13
F2431 − F2432, γ4 = F2432,

γ5 = 27

10
F2321 + 9

10
F2421, γ6 = 5

16
F1221 + 5

16
F1321 − 3

8
F2210 − 7

8
F2211,

γ7 = −15

28
F0221 − 27

28
F1110 − 9

4
F1111 + 9

28
F1210 + 3

4
F1211,

γ8 = −405

112
F0010 + 135

16
F0011 + 75

112
F0110 − 375

112
F0111

+ 45

224
F0210 + 15

32
F0211 − 15

14
F1100. (6.17)

We write elements of Slodowy slice in the form Q = L1 +∑8
i=1 ziγi . The restriction

PQ
i of the invariant polynomials Pi of degree νi + 1 is obtained from taking the trace

of the matrix Qνi+1. We can take PQ
1 = z1. The expression corresponding to the

invariant of maximal degree PQ
4 is omitted since it is very large. We give instead

∂z4 P
Q
4 .

PQ
2 = 744192z31 + 44928

7
z2z

2
1 − 518400

7
z8z

2
1

−866970

49
z22z1 + 923400

49
z28z1 − 5760z6z1

−1600560

49
z2z8z1 + 228002463

137200
z32 − 9871875

686
z38

+150984

49
z27 − 37986975

1372
z2z

2
8 + 165888

13
z3
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−3456z4 − 6786

7
z2z6

−45734949

2744
z22z8 + 78300

7
z6z8, (6.18)

PQ
3 = 40799232z41 + 958464z2z

3
1 − 11059200z8z

3
1 − 80016768

35
z22z

2
1

+24883200

7
z28z

2
1 − 860160z6z

2
1

−31000320

7
z2z8z

2
1 + 209079702

1225
z32z1 − 89910000

49
z38z1

+2287872

7
z27z1 − 134573400

49
z2z

2
8z1

+24772608

13
z3z1 − 516096z4z1 − 109824z2z6z1 − 84159972

49
z22z8z1

+1267200z6z8z1 + 9587156553

686000
z42

−29615625

343
z48 − 87267375

343
z2z

3
8 + 25920z26

−112320

49
z2z

2
7 − 29362905

343
z22z

2
8

+621000

7
z6z

2
8 + 207360z2z3 − 149760z2z4 + 534378

35
z22z6

+311040z5z7 + 537489459

6860
z32z8

+1296000

49
z27z8 − 3456000

13
z3z8 + 60840

7
z2z6z8, (6.19)

∂z4 P
Q
4 = −4505960448z31 − 18242205696

7
z2z

2
1

+1094860800

7
z8z

2
1 + 2043055872

245
z22z1

−410572800

7
z28z1 + 12165120z6z1 + 5782233600

49
z2z8z1

+20251269324

1225
z32 + 801900000

343
z38

+87588864

49
z27 − 1209265200

49
z2z

2
8

−76972032

13
z3 − 5308416z4

+41019264

7
z2z6 + 7000116552

343
z22z8 + 5702400z6z8. (6.20)

Our special coordinates (t1, . . . , t8) are given by

t1 = z1, t2 = − 1

149760
∂z4 P

Q
3 − 224

65
z1 = z2, ti = zi , i = 5, 6, 7, 8
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t3 = − 13

331776000
∂z4 P

Q
4 + 13

216000
PQ
3 = z3 + nonlinear terms,

t4 = − 1

6912000
∂z4 P

Q
4 − 29

432000
PQ
3 = z4 + nonlinear terms. (6.21)

Writing the restriction of the invariant polynomials in these coordinates, the space N
of common equilibrium points is defined as the zero set of the following polynomials:

∂t5 P
Q
3 = 311040t7,

∂t6 P
Q
3 = −1478412

35
t22 − 2779920t8

7
t2 + 1458000

7
t28 + 51840t6 − 622080t1t8,

∂t7 P
Q
3 = 311040t5 − 1866240

7
t1t7 − 9401184

49
t2t7 + 5598720

49
t7t8,

∂t8 P
Q
3 = 58844160t31 + 27248832t2t

2
1 − 4147200t8t

2
1 − 16116516

35
t22 t1 + 25758000

7
t28 t1

−622080t6t1 + 84240

7
t2t8t1 + 31300659

980
t32 − 66825000

49
t38 + 2799360

49
t27

−21718125

49
t2t

2
8 − 3456000

13
t3 − 2779920

7
t2t6

+38534535

49
t22 t8 + 2916000

7
t6t8. (6.22)

The local bihamiltonian structure is polynomial in t1, t2, t3, t4 and t8, where t8 is
a solution of a cubic equation. The potential of the Frobenius structure in the flat
coordinates (s1, s2, s3, s4) is

F = T 2

(
664832691s51

43750
+ 393797781s2s41

8750
+ 117925163577s22 s

3
1

2240000
+ 31524548679s32 s

2
1

1280000

−177147s3s21
1820

+1411599235293s42 s1
286720000

− 59049s2s3s1
1120

+ 8090133251733s52
22937600000

− 255879s22 s3
35840

)

+T

(
81990638748s61

546875
+ 157687224903s2s51

546875
+ 252845042697s22 s

4
1

875000

+5680343128707s32 s
3
1

28000000

−405324s3s31
2275

+ 41422089388329s42 s
2
1

448000000
− 150903

350
s2s3s

2
1 + 349410443449509s52 s1

17920000000

−2075463s22 s3s1
5600

+ 118472583689109s62
81920000000

+ 675s23
1183

− 5051241s32 s3
89600

)

+2446443495072s71
13671875

+ 8512750428624s2s61
13671875

+1593096854076s22 s
5
1

1953125
+ 87566456228121s32 s

4
1

175000000
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+391896144s3s41
284375

+ 1357381494479907s42 s
3
1

5600000000

−700488s2s3s31
21875

+ 21326967621723933s52 s
2
1

224000000000

−95335461s22 s3s
2
1

175000
+ 87348137456366631s62 s1

3584000000000
+ 16

169
s23 s1

+1

2
s24 s1 − 505028277s32 s3s1

1400000

+120333341133594693s72
57344000000000

− 7

13
s2s

2
3

−10700732367s42 s3
89600000

+ s2s3s4 (6.23)

where T is a solution of the following cubic equation

0 = T 3 − 15552

625
T s21 − 4563

2500
T s22 − 8424

625
T s1s2 − 213504

15625
s31 − 270231

62500
s32

−444132s1
15625

s22 − 516672s21
15625

s2 + 256

2925
s3. (6.24)

Then, the quasihomogeneity condition reads

1

3
∂s1F + 1

3
∂s2F + ∂s3F + ∂s4F = (3 − 2

3
)F. (6.25)

7 Conclusions and remarks

Consider a nilpotent element not of semisimple type and the associated Drinfeld–
Sokolov bihamiltonian structure. Then, the space of common equilibrium points is
still well defined and probably possesses a local bihamiltonian structure which admits
a dispersionless limit. However, examples show that its leading term does not define
a flat pencil of metrics.

It is known that for each conjugacy class in the Weyl group one can con-
struct Drinfeld–Sokolov hierarchy [10] and, under some restrictions, an accompanied
bihamiltonian structure [4]. This bihamiltonian structure agrees with the one used in
this article if the conjugacy class is regular [12].

In the case of a regular primitive conjugacy classes, we obtain a new local algebraic
bihamiltonian structure on the space of common equilibrium points. Since it defines
an exact Poisson pencil, its central invariants are constants [32]. It will be interesting to
calculate them and find if they are equal. In this case the bihamiltonian structure will be
related to the topological hierarchy associated with the algebraic Frobenius structure
[29]. This topological hierarchy seems to be a reduction of the Drinfeld–Sokolov
hierarchy (see [19] for details on Dirac reduction of Hamiltonian equations).

123



Algebraic classical W -algebras and Frobenius manifolds Page 41 of 42 115

In future work, we will analyze the bihamiltonian structure associated with
Drinfeld–Sokolov hierarchy for a primitive non-regular conjugacy class. Hoping, this
will lead to algebraic Frobenius structure not covered in this article.
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