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Abstract

We consider Drinfeld—Sokolov bihamiltonian structure associated with a distinguished
nilpotent elements of semisimple type and the space of common equilibrium points
defined by its leading term. On this space, we construct a local bihamiltonian structure
which forms an exact Poisson pencil, defines an algebraic classical W-algebra, admits
a dispersionless limit, and its leading term defines an algebraic Frobenius manifold.
This leads to a uniform construction of algebraic Frobenius manifolds corresponding
to regular cuspidal conjugacy classes in irreducible Weyl groups.
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1 Introduction

Frobenius manifold is a marvelous geometric realization introduced by Boris Dubrovin
for undetermined partial differential equations known as Witten—-Dijkgraaf—Verlinde—
Verlinde (WDVYV) equations which describe the module space of two-dimensional
topological field theory. Remarkably, Frobenius manifolds are also recognized in many
other fields in mathematics like invariant theory, quantum cohomology, integrable
systems and singularity theory [24]. Briefly, a Frobenius manifold is a manifold with a
smooth structure of Frobenius algebra on the tangent space with certain compatibility
conditions. By Frobenius algebra, we mean a commutative associative algebra with
unity and an invariant nondegenerate symmetric bilinear form.

Let M be a Frobenius manifold. Then, we require the bilinear form (., .) to be
flat, and the unity vector field e is constant with respect to it. Let (tl, ..., 1") be flat
coordinates for (.,.) where e = 9d,-. Then, the compatibility conditions imply that
there exists a function IF(tl, ..., t") such that

Nij = (0;i, 0,7) = 0yr 0,i 9,; F () (1.1)
and the structure constants of the Frobenius algebra are given by

ClL)y =Y 000, 0, F () (1.2)
p

where the matrix '/ is the inverse of the matrix nij. Associativity in 7; M implies that
F(z) satisfies WDVV equations [13]:

Z 8,10, 0 TF(1) 1P 8,000 05 F (1) = Z 3ys0, 04 F (1) n*P 890,48, F (1), (1.3)
k,p k.p

for all i, j, g and s. In this article, we consider Frobenius manifolds where the quasi-
homogeneity condition for F(¢) can take the form:
r .
> dit' 9, F(t) = 3= d)F(t); dy = 1. (1.4)
i=1
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The vector field E = Y_"_, d;t'9,, is known as Euler vector field, and it defines the
degrees d; and the charge d of M. A Frobenius manifold is called algebraic if F(z) is
an algebraic function, and it is called semisimple if 7; M is a semisimple algebra for
generic point ¢.

This work is related to a conjecture due to Dubrovin which states that semisim-
ple irreducible algebraic Frobenius manifolds with positive degrees correspond to
primitive (quasi-Coxeter) conjugacy classes of irreducible finite Coxeter groups [28].
A primitive conjugacy class in a Coxeter group is a conjugacy class which has no
representative in a proper Coxeter subgroup (see [5] for the classification). Coxeter
conjugacy class is an example of a primitive conjugacy class which exists in any Cox-
eter group. (It is formed by the product of simple reflections in the case of standard
reflection representation.) The conjecture arises from studying the algebraic solutions
to associated equations of isomonodromic deformation of an algebraic Frobenius man-
ifold [28]. It leads to a primitive conjugacy class in a Coxeter group by considering
the classification of finite orbits of the braid group action on tuple of reflections [47].
A stage to verify the conjecture is to show the existence of these algebraic Frobenius
manifolds.

Under the conjecture, it is known that polynomial Frobenius manifolds correspond
to Coxeter conjugacy classes. Dubrovin constructed these polynomial Frobenius struc-
tures on orbit spaces of the standard reflection representations of Coxeter groups [23].
Their isomonodromic deformations lead to Coxeter conjugacy classes [28], and C.
Hertling [36] proved (as also conjectured by Dubrovin) that they exhaust the set of
all possible polynomial structures up to an equivalence. This classification and other
examples reveal a relation between orders and eigenvalues of the conjugacy classes,
and charges and degrees of algebraic Frobenius manifolds. More precisely, if the order

of a primitive conjugacy class is 7, + 1 and the elgenvalues are exp ”fll, then the

charge of the corresponding Frobenius structure is 2=~ P L and the degrees are '7’ . We
depend on this relation in constructing algebraic Frobenius structures.

One of the main methods to obtain examples of Frobenius manifolds exists within
the theory of flat pencils of metrics (equivalently, nondegenerate compatible Pois-
son brackets of hydrodynamics type). Besides, the leading terms of certain type of
local compatible Poisson brackets (a local bihamiltonian structure) which admit(s) a
dispersionless limit form a flat pencil of metric [25].

One of the main ideas to find algebraic Frobenius structures is to restrict ourselves
to irreducible Weyl groups, i.e., crystallographic Coxeter groups, and to consider the
associated simple Lie algebras. Then, under the notion of opposite Cartan subalgebra,
regular primitive conjugacy classes correspond to certain nilpotent orbits of semisim-
ple type. On the other hand, we can obtain compatible local Poisson brackets for any
nilpotent orbit using Drinfeld—Sokolov reduction. These Poisson brackets form an
exact Poisson pencil, and one of them is (or satisfies identities leading to) a classical
W -algebra. However, they admit a dispersionless limit only when the nilpotent orbit is
regular (which corresponds to Coxeter conjugacy class). In this article, we will work
with a larger type of conjugacy classes called cuspidal. A cuspidal conjugacy class has
no representative in a Coxeter subgroup of smaller rank. Regular cuspidal conjugacy
classes correspond to what is called distinguished nilpotent orbits of semisimple type
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[12,31]. In other words, we get certain Drinfeld—Sokolov bihamiltonian structures
associated with regular cuspidal conjugacy classes in irreducible Weyl groups.

Examples of Frobenius manifolds constructed using Drinfeld—Sokolov bihamilto-
nian structure can be traced back to the work of I. Krichever [39]. In our terminologies,
he treated the case of Coxeter conjugacy classes in Weyl groups of type A,. (Here,
classical W-algebras are known as second Gelfand-Dickey brackets.) In [15], we gave
a generalization to all Coxeter conjugacy classes in Weyl groups which, as expected,
lead to the polynomial Frobenius manifolds.

For regular primitive non-Coxeter conjugacy classes, we always get algebraic non-
polynomial Frobenius structures. Pavlyk obtained the first example which is related
to the Weyl group of type D4 [43]. In [14], we got another example working with
Weyl group of type F4. We added another 3 by giving a uniform construction related
to certain conjugacy classes in Weyl groups of type E,, r = 6,7, 8 [18]. In all these
cases, we have to perform Dirac reduction for the Drinfeld—Sokolov bihamiltonian
structure to a subspace to get a bihamiltonian structure admitting a dispersionless limit.
In this article, we give a slightly better interpretation for this subspace which leads
to a uniform construction of algebraic Frobenius structures for all regular cuspidal
conjugacy classes. Precisely, we will prove the following theorem.

Theorem 1.1 Let g be a complex simple Lie algebra of rank r. Fix a regular cuspidal
conjugacy class [w] in the Weyl group W(g) of g. Assume the order of representatives
in [w] is n, + 1 and eigenvalues are €"i, i = 1, ..., r, where € is a primitive (n, +
D)th root of unity. Let Oy, be the distinguished nilpotent orbit of semisimple type
associated with [w] under the notion of opposite Cartan subalgebra. Consider the finite
bihamiltonian structure formed by the leading term of Drinfeld-Sokolov bihamiltonian
structure associated with a representative L of Or,. Then, its space of common
equilibrium points acquires an algebraic Frobenius manifold structure with charge

Z’;} and degrees Z’—ii This structure depends only on the conjugacy class.
r r

We explain in some details the major steps to prove Theorem 1.1 which lead us to a
construction of algebraic classical W-algebras admitting a dispersionless limit. Let g
be a complex simple Lie algebra of rank » with the Lie bracket [-, -]. Define the adjoint
representation ad : g — End(g) by ad,, (g2) := [g1, g2]. For g € g, let g8 denote
the centralizer of g in g, i.e., g8 := kerad,. Fix a distinguished nilpotent element
L of semisimple type. (More details are given in Sect. 3.) Then, using Jacobson—
Morozov theorem, we fix a nilpotent element f and a semisimple element /4 such that
A:={Ly,h, f} C gis asl-triple with relations

h, Lil= Ly, [h, fl=—f. [L1, fl=2h. (1.5)

We normalize the Killing form on g to get an invariant bilinear form (.|.) such that
(L1l f) = 1.

Let 1, denote the maximal eigenvalue of ad; acting on g. By definition, we can
(and we will) fix an element K for L suchthatad, K1 = —n,K; and i’/ := L1 + K,
is a regular semisimple element. Thus, b’ := ker adj, is a Cartan subalgebra known as

opposite Cartan subalgebra. The adjoint group element w := exp 772_7_’:1 ady, acts on b/
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as a representative of regular cuspidal conjugacy class of order 7, + 1 in the underline
Weyl group W(g) (see [31], and the appendix of [12]).

Let n; < ... < 5, be natural numbers such that €™ are eigenvalues of w where
€ is (n, + D)th root of unity. Let n = dim g/, then using representation theory of
sly-subalgebras, there exist natural numbers 7,41, ..., 1, such that the eigenvalues
of ad; on gf are —n;, i = 1,...,n. We list all distinguished nilpotent elements of
semisimple type in simple Lie algebras and the numbers 7; in Table 1.

We fix Slodowy slice Q := Lj + g/ as a transverse subspace to the orbit space
of Ly at Ly. Let £(g/) denote the space of smooth functions from the circle to g/
The affine loop space Q := L 4+ £(g/) carries compatible local Poisson structures
(Drinfeld—Sokolov bihamiltonian structure formed by) BZQ and IB%lg, where IBBzg is a

classical W-algebra [33,34] and ]B%IQ is related to a 2-cocycle on g provided by K.
They depend only on the adjoint orbit of L, and they can be obtained equivalently by
using Drinfeld—Sokolov reduction, bihamiltonian reduction and Dirac reduction [19].
Note that performing any of these reductions, we need to fix a transverse subspace.
However, taking a different subspace than Q will lead to isomorphic bihamiltonian
structures. As it is already known by experts, we will prove in Proposition 5.4 that IEBzQ
and ]B%]Q form an exact Poisson pencil.

We identify Slodowy slice Q with the subspace of constant loops of Q. We can
(and will) fix coordinates (z!, ..., z"%) for Q such that

Q=1L+ v, vieg adyyi=—niyi, i=1,....n (1.6)

where y; = f andforgq € Q,z1 = (L1|q). Then, the leading terms ofB,%, m=1,2,
can be written as follows:

(. O = Fl s — y),
), I = QD)) (x — ) + ) T, s —y). (1.7)
k

Such a local Poisson bracket admits a dispersionless limit iff F,ilj = 0. In general,
Fé‘i (z) and F lij (z) define compatible Poisson structures BzQ and B lQ, respectively, on
Q. Moreover, 82Q can be identified with the transverse Poisson structure of Lie-Poisson
structure on g [19]. We assign deg z' = n; + 1. Then, after certain normalization, we
will prove the following theorem

Theorem 1.2 There exists a quasihomogeneous change of coordinates on Q in the
form:

z!, i=1,
t' = { 7' + non linear terms, i=2,...,r (1.8)
Z, i=r+l1,...,n.

such that
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1. degt’ =degz' =n; +1
2. 1Y, ..., 1" form a complete set of Casimirs of BIQ and they are in involution with

respect to BZQ.

We will keep the notations (1, ..., t") for the coordinates obtained in the last
theorem. (Except in Sect. 6, we can and will assume they are flat coordinates of the
resulted Frobenius structure.)

We are interested in the space of common equilibrium points N of the bihamiltonian
structure formed by B2Q and BIQ . Combining results from [3] and [20], we explain in
theorem 4.10 that the argument shift method leads to a completely integrable system
for BzQ and

N ={q € Q:kerB2(q) = ker BZ(q)}. (1.9)

Using Chevalley’s theorem, we fix homogeneous set of generators Py, ..., P, of the

ring of invariant polynomials of g under the adjoint group action. Let F? denote the
restriction of P; to Q. We can choose Py, ..., P, such that the following theorem is
valid. Here, we assume L is of type Z,(a,;) where Z, is the type of g.

Theorem 1.3 The space of common equilibrium points N is given by

N=(:Ffe)y=0;i=1,...,r, B=r+1,...,n}, (1.10)
— (0P =0 j=r—s+1,....r, B=r+1,....n). (L11)

Moreover, (11, ..., 1) provide local coordinates around generic points of N. In addi-
tion, Dirac reduction of the Poisson pencil B)? = BZQ + XBlQ to N is well defined
and leads to the trivial Poisson bracket.

Then, we construct compatible local Poisson brackets on the loop space N' = £(N).

Theorem 1.4 The Dirac reduction of the Poisson pencil IB%? = BZQ + MB%IQ to N is
well defined and leads to compatible local Poisson brackets {., .}é\/— , o = 1,2 which
admit a dispersionless limit and form an exact Poisson pencil. Moreover, {., .}é\/ is an
algebraic classical W-algebra.

Let us emphasize that Theorem 1.4 implies that the leading terms of the local
Poisson brackets on N\ are Poisson brackets of hydrodynamic types, i.e.,

(1" (), " Y = QU (2 (x))8 (x — y) + T2 DRSS — ), wyv=1,...r, a =1,2.
(1.12)

where 1%, k > r are solutions of the polynomial equations (1.10) defining N.
One of the important steps on the construction is to prove that the matrices Q4" (¢)
are nondegenerate. We will show that this condition follows from the fact that the
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restriction of the Killing form on g to the Cartan subalgebra )’ is nondegenerate (see
Proposition 5.6).
Then, we will prove the following.

Theorem 1.5 The two metrics Q¥ and Q5" form a flat pencil of metrics on N which

is regular quasihomogeneous of degree d = Z’I_i
r

In the end, using Theorem 2.8 due to Dubrovin, we get the proof of Theorem 1.1.

We organize the article as follows. In Sect. 2, we fix notations and terminologies
within the theory of local Poisson brackets, flat pencils of metrics and Frobenius
manifolds. We review the classification of distinguished nilpotent orbits of semisimple
type in simple Lie algebras in Sect. 3, and we will drive some algebraic properties
associated with them. In Sect. 4, we will study the space N of common equilibrium
points and prove Theorems 1.2 and 1.3. We review the Drinfeld—Sokolov reduction
in Sect. 5 and prove Theorem 1.4. In Sect. 6, we will prove Theorem 1.1 and we give
examples. The notations given in the introduction are in agreement with the flow of
the article.

2 Preliminaries

In this section, we recall relations between local bihamiltonian structures, flat pencils
of metrics and Frobenius manifolds. We also review the notion of Dirac reduction for
local Poisson brackets.

2.1 Contravariant metrics and local Poisson brackets

Let M be a smooth manifold of dimension n and fix local coordinates (u!, ..., u") on
M. Here, and in what follows, summation with respect to repeated upper and lower
indices is assumed, i.e., we will adopt Einstein summation convention.

Definition 2.1 A symmetric bilinear form (., .) on 7*M is called a contravariant metric
if it is invertible on an open dense subset My € M. We define the contravariant Levi—

Civita connection or Christoffel symbols F,’C" for a contravariant metric (., .) by
ry = —¢"T/, @.1)

where 1": ¢ are the Christoffel symbols of the metric < ., . > defined on T' M by the
inverse of the matrix Q% (1) = (du', du’). We say the metric (., .) is flatif < .,. > is
flat.

Let (., .) be a contravariant metric on M and set Q2 (1) = (du’, du’). Then, we will
use Q7 to refer to both the metric and the entries defined by the metric. In particular,
Lie derivative of (., .) along a vector field X will be written £xQ'/, while X Q/ means
the vector field X acting on the entry Q.
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The loop space £(M) of M is the space of smooth functions from the circle to M.
A local Poisson bracket {., .} is a certain bracket on the space of local functional on
L£(M) [29]. We can write {., .} as a finite summation of the form:

0, ul () = Y (' (), u/ ()™
k=—1
k+1

fuf @), uw? (M =37 A @) D (x — y), 22)
=0

where AH (u(x)) are quasihomogeneous polynomials in 97" ul (x) of degree [ when

we assign degree 8;"ui (x) equals m, and §(x — y) is the Dirac delta function defined
by

/51 FMé(x —y)dy = f(x). 2.3)

Definition 2.2 [34] A local Poisson bracket {., .} in the form (2.2) is called a classical
W -algebra if there exist local coordinates (z], ..., 2" such that

o),y =cs (x—y) +22' )8 (x — ) + 2L 8(x — y),
(2", 2 () = i + D' ()8 (x — ) + nizh8(x — y), (24)

for nonzero constant c.

Let us fix a local Poisson bracket {., .} on £(M). The first terms can be written as
follows:

{u (), ! DI = FU(u(x))8(x — y), )
(! (), u? N = QU (u(x))8 (x — y) + T} wx)ubsx — y),
fu (), u? MM = S @) v —y) ..., k>0. (2.5)

Note that M can be defined as the subspace of constant loops of £(M). Then, QU (u),
Fii(u), S,’C] (u) and F,lcj (1) are smooth functions on M. Moreover, the matrix F/ (u)
represents a finite-dimensional Poisson structure on M. This gives a bridge between
finite-dimensional and local Poisson structures.

Definition 2.3 We say a local Poisson bracket {., .} in the form (2.5) admits a dis-
persionless limit if F¥/(u) = 0 and {., .} s 0. In this case {., .}I°! defines a local
Poisson bracket on £(M) known as Poisson bracket of hydrodynamic type. We call it
nondegenerate if det Q/ # 0 on an open dense subset of M.

The following theorem, due to Dubrovin and Novikov, relates contravariant metrics
on a manifold M to theory of local Poisson brackets on £(M).
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Theorem 2.4 [27] In the notations of formulas (2.5), if {. MOV s a nondegenerate
Poisson brackets of hydrodynamic type, then the matrix Q' (u) defines a contravariant
flat metric on M and F,lcj (u) are its contravariant Christoffel symbols.

We recall the notion of Dirac reduction of a local Poisson bracket to loop spaces of
certain sub-manifolds. Let us fix a submanifold M’ C M of dimension r. We assume

M’ is defined by the equations u* = 0 for @ = r + 1,..., n. We introduce three
types of indices: capital letters I, J, K, ... = 1,...,n, small letters i, j, k,... =
1,...,r which parameterize the submanifold M’ and Greek letters o, 8, ¥, 8, ... =
r+1,....n

Proposition 2.5 [19] In the notations of equations (2.5), assume the minor matrix F*P
is nondegenerate. Then, Dirac reduction is well defined on £(M"), and it gives a local
Poisson bracket. If we write the leading terms of the reduced Poisson bracket in the
form:

{ut o), u N = Flluys(x — ), (2.6)
{0, NI = Q9 )8 (x — y) + TV ks (x — y),
ful (0, uw! O = 57 s =y + ..., k> 0. 2.7

Then,
Fii — pii _ FiﬁFﬂaF“j,
QU = QY — QP Fgo FY + F'P Fgo Q" F,, FYJ — F'P Fgo 7/,
Tul = (0 =0 Fgo P + FFo Ty Fp F* — PP Fg Iy Yul

—(QF — F*F,Q%F) 3, (Fg, F¥7), (2.8)

while other higher terms could be found by solving certain recursive equations.

Corollary 2.6 FJ is the Dirac reduction of the finite-dimensional Poisson structure
F' on M to M'. If the entries F'* = 0 on M’, then the reduced Poisson bracket on
L£(M'") has the same leading terms, i.e.,

Fi=Fi QU=ql TY=r/ and 5/ =5 2.9)
2.2 From bihamiltonian structures to Frobenius manifolds

We use the notations given in Sect. 2.1 to bring a relations between local bihamiltonian
structures and Frobenius manifolds.

Definition 2.7 [25] Let Qij and Qi. be two flat contravariant metrics on M with
Christoffel symbols F jk and I‘1 &> respectively. Then, they form a flat pencil of metrics
if Q” = Q” + AQ defines a flat metric on T*M for generic A and the Christof-
fel symbols of @ satisfy I'Y = 'S + AT';. Such flat pencil of metrics is called
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quasihomogeneous of degree d if there exists a function T on M such that the vector
fields

E:=Vyr, E' = Q;jiiujr

e:=Vit, ¢ =Q/9,r (2.10)

satisfy the following properties
[e, El=e¢, ££QY =@ - 1Y, £ =Y and £,/ =0. (@.11)

In addition, the quasihomogeneous flat pencil of metrics is called regular if the (1,1)-
tensor

iod—-1_; ;
R/ = Ta{ + Vy;E/ (2.12)
is nondegenerate on M.

The connection between the theory of Frobenius manifolds and flat pencil of metrics
is encoded in the following theorem due to Dubrovin.

Theorem 2.8 [25] A contravariant quasihomogeneous regular flat pencil of metrics
of degree d on a manifold M defines a Frobenius structure on M of charge d.

It is well known that from a Frobenius manifold we always have a flat pencil of
metrics but it does not necessarily satisfy the regularity condition (2.12) [25]. Locally,
in the coordinates defining equations (1.3) and (1.4), the flat pencil of metrics is found
by setting

Qllj — nij’
Q) =(d—1+d; +dj)n'*n/Pd.0,sF. (2.13)

This flat pencil of metric is quasihomogeneous of degree d with r = ¢!. Furthermore,
we have

E= Zd,-z"at,-; €= 0. (2.14)

1

There is a source of flat pencil of metric within the theory of local bihamiltonian
structures.

Definition 2.9 Two local Poisson brackets {., .}; and {., .}, on £(M) form a bihamil-
tonian structure or they are compatible if the Poisson pencil {., .}, :={., .} + A{., .}1
is a Poisson bracket for generic constant A. Compatible Poisson brackets {., .}; and
{., .}2 form an exact Poisson pencil if there exists a vector field X such that

{., .31 =Lx{.. .} £x{...}1 =0. (2.15)

In this case, we call X Liouville vector field.
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For recent developments about the theory of exact Poisson pencil see [32] and [41].
Let us fix compatible local Poisson brackets {., .}» and {., .}; on £(M) and write
their leading terms in the form:

' ), ! IS = F7 (u(x)8(x — y),a = 1,2
{ul (0), ! (IO = QY ()8 (x — y) + T (@)uks(x — y).  (2.16)

Suppose that {., .}; and {., .}» admit a dispersionless limit. (We also say the bihamil-
tonian structure admits a dispersionless limit.) In addition, assume the corresponding
Poisson brackets of hydrodynamics type are nondegenerate as well as the dispersion-
less limit of {., .}, for generic A. Then, using Theorem 2.4, the matrices Qllj and lej
define a flat pencil of metrics on M.

3 Nilpotent elements of semisimple type

In this section, we collect properties of the so-called distinguished nilpotent elements
of semisimple type in simple Lie algebras. Then, we derive important identities needed
to prove our main results.

3.1 Background

We fix a complex simple Lie algebra g of rank r. We refer to the type of g by Z,.. For
g € g, let O, denotes the orbit of g under the adjoint group action. The element g
is called nilpotent if ad, is nilpotent in End(g) and it is called regular if dim g& = r.
Any simple Lie algebra contains regular nilpotent elements.

We fix a nilpotent element L in g. (Later, we will assume it is distinguished.) Let
A :={L1,h, f} C gbeanassociated s/,-triple satisfying the relations (1.5). It follows
from representation theory of s/;-algebra that the eigenvalues of ady, are integers and
half integers. Consider Dynkin grading associated with L

o= a: g:={(geg:adg=ig). 3.1)

|
i€5Z

We retrieve from [6] the following definitions concerning nilpotent orbits and their
classification. If L; is regular, then Oy, is called regular nilpotent orbit, and it is
equal to the set of all regular nilpotent elements in g. The nilpotent orbit O, is
called distinguished, and hence also L1, if O, has no representative in a proper Levi
subalgebra of g. It turns out that L is distinguished iff dim go = dim g;. Moreover, if
L is distinguished, then the eigenvalues of ad;, are all integers. The regular nilpotent
orbit in g is distinguished.

Distinguished nilpotent orbits, along with other nilpotent orbits, are classified by
using weighted Dynkin diagrams. In the case g is an exceptional Lie algebra, distin-
guished nilpotent orbits are listed in the form Z, (a;) where i is the number of vertices
of weight 0 in the corresponding weighted Dynkin diagram. If there is another orbit of
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the same number i of 0’s, then the notation Z, (b;) is used. For all simple Lie algebras,
the type of the regular nilpotent orbit is Z, (ag).

In case g is a classical Lie algebra, nilpotent orbits are also classified through
partitions of the dimension of the fundamental representation of g. In this article, by
By, (a,), we refer to the distinguished nilpotent orbit corresponding to the partition
[2m + 1,2m — 1, 1] when the Lie algebra g is so4,,+1 (type Ba,,). While, as usual in
the literature, Dy, (a,,—1) denotes the distinguished nilpotent orbit corresponding to
the partition [2m + 1, 2m — 1] when g is so4,, (type Day).

From [31], we recall the following definition and properties. The nilpotent element
L is of semisimple type, and so its orbit, if there exists an element g of the minimal
eigenvalue of ad;, such that L; + g is semisimple. In this case L + g is called a
cyclic element. If L; is also distinguished then L; + g will be regular. The list of
distinguished nilpotent elements of semisimple types is (idid, Lemma 5.1 and see the
appendix of [12]):

1. All regular nilpotent orbits in simple Lie algebras (those of type Z,(ap))

2. Subregular nilpotent orbits Fy(a;), E¢(ay), E7(ay) and Eg(ay).

3. Nilpotent orbits of type Bay, (an,) and Doy, (G —1).

4. Nilpotent orbits of type Fa(az), Fa(asz), E¢(a3), E7(as), Es(az),Es(as), Eg(ag)
and Eg(ay).

From now on, we assume that L is a distinguished nilpotent element of semisimple
type and we refer to its type by Z, (ay). Let n, denote the maximal eigenvalue of ady,.
Thus, we can (and will) fix an element K; € g_, such that the cyclic element
A1 := L1 + K is regular semisimple.

In what follows, we give a general setup associated with the cyclic element Aj. It
was initiated by Kostant for the case of regular nilpotent elements [37] and obtained
for distinguished nilpotent elements of semisimple type in [12]. Let b’ := g be the
Cartan subalgebra containing A; which is known as the opposite Cartan subalgebra.
Then, the adjoint group element w defined by

2mi
nr+1

w = exp ady, (3.2)

acts on b’ as a representative of a regular cuspidal conjugacy class [w] in the Weyl
group W(g) of g of order n, + 1. We recall that a conjugacy class [w'] C W(g) is
called cuspidal [35] (resp. primitive [5]) if det(w’ —I) # O (resp. det(w’ —I) = det K,
K is the Cartan matrix of YW(g)). Also, [w'] is called regular if w’ has an eigenvector
not fixed by any non-identity element in YW(g) (see [46] for the classification of regular
conjugacy classes). We emphasize that the results in this article depend on the nilpotent
orbit Or,, and not on the particular representative L1 of Op,.

3.2 Normalization and identities

The element A is an eigenvector of w of eigenvalue € = exp n2’_f1. We define the

multiset E(L1) which consists of natural numbers n;, i = 1, ..., r such that €7’s is
an eigenvalue of the action of w on §’. We call E(L) the exponents of the nilpotent
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element L. When L is a regular nilpotent element, E(L ) equals the exponents E(g)
of the Lie algebra [37]. In Table 1, we list elements of E(L1) in the second column. We
calculated them by combining the results of [12,31] and [46]. Note that E(g) is listed
in Table 1 as E(L1) when L is of type Z, (ap). We denote throughout this article, the
elements of E(L) by n; and elements of E(g) by v; and we assume they are given in
a non-decreasing order, i.e.,

m=m=...snandvi<vm=...<v. (3.3)

The following lemma summarizes an important relation between E(g) and E(L1).

Lemma3.1 Fori =1,...,r,

Ni + Nr—i+1 =nr + 1. 34
Moreover, there exists a unique non-negative integer (; such that v; — u;(n, + 1)
belongs to E(L1). Furthermore, the multiset formed by the numbers v; — ;i (n, + 1)

equals the multiset E(L1). In addition, the number of |u;s which are zero equals r — .

Proof The proof is obtained by examining the multisets E(L;) and E(g) for each
nilpotent orbit listed in Table 1. O

Example 3.2 In case L is of type E7(as). Then, n7 = 5 and the values of u;s are
given in the following table The last row is just the elements of E(L) (not in order).

i 1 2 3 4 5 6 7

V; 1 5 7 9 11 13 17

Wi 0 1 1 1

vi — pi(n7 +1) 1 5 1 3 5 1 5
We keep the notations i, i = 1, ..., r for the non-negative numbers introduced in

the last lemma. Many formulas below depend on these numbers. We list them in the
fourth column of Table 1 using conventional notation for repetitions. For example, we
write [0?, 13, 2?] instead of [0, 0, 1, 1, 1,2, 2].

Let A1, Ao, ..., A, be abasis of h’ of eigenvectors of w such that w(A;) = € A;.
Then, A; has the form:

ANi=Li+Ki; Li€gy, Ki €gpi—,+1, Li #0#K;, i=1,...,r. (3.5

We normalized the invariant nondegenerate bilinear form (.|.) on g such that
(L1]|f) = 1. Then, the following lemma is valid.
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Lemma 3.3 The matrix T;j = (A;|A;) is nondegenerate and antidiagonal with
respect to E(L1), i.e.,

T;j =0, if ni +nj #nr + 1.
Moreover, the elements A;, i > 1 can be normalized such that

(AilAj) = + Ddigjry1- (3.6)

Proof The first part follows from the fact that the restriction of (.|.) to a Cartan sub-
algebra is nondegenerate. Therefore, for any element A; there exists an element A ;
such that (A;|A ;) # 0. But for the Weyl group element w defined in (3.2), we have
the equality

2(n;i + nj)wi

(AilAj) = (wA;|lwAj) =exp —

(AilAG)

which forces n; +n; = n, + 1 in case (A;|A;) # 0. For the second part of the
lemma, recursively, we can define a change of basis with linear combination upon the
elements A; which have the same eigenvalue such that the matrix 7;; transform to the
anti-diagonal form: (, + 1)8i4; r41.

O

We assume from now on that the basis A; of ' is normalized and satisfies the
hypothesis of the previous lemma. Then, we get the following identities.

Corollary 3.4
(LilK;) =n0i6itjr+1, i, j=1,...,r. (3.7
Proof Recall that
ANi=Li+K;; Li €gy, Ki €8pi—pp+1)- (3.8)

Using the relation 0 = [A;, A;] = [L;, K] + [K;, L;] with the invariant bilinear
form yields

0= (hl[Li, K;]1+ [Ki, L;1) = i) (LilKj) + i — (- + D)(KGILj).  (3.9)

This equation with the normalization (A;|A;) = (L;|K;) + (K;|L;) = (nr +
1)8i4 j,r+1 leads to the required identity. O

Corollary 3.5
(K1, LilladfLi) = minjSivjrr1, L, j=1,...,7.
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Proof The identity [A1, Aj] =0leadsto [Ly, K;]1 = —[K1, L;]. Then,

(IK1, LjlladfLi) = —=([L1, K;1ILf, Lil) = (KGILL1, Lf S Lill) = (KGILq, [f s LaD)

= —(K;|[Li, h]) = ni(K;|Li) = ninjdi+jr+1- (3.10)
O
The commutators [A;, A;] = 0 imply that the set {L1, ..., L,} generates a com-

mutative subalgebra of g/'!. We consider the restriction of the adjoint representation to
the s/-subalgebra A generated by {L1, i, f}. Then, the vectors L; are maximal weight
vectors of irreducible .A-submodules V; of dimension 2n; + 1. We set n = dim g*1,
and we fix the following decomposition of g into irreducible .A-submodules

n
g= @V', dimVj = Zr]j +1, Lje Vj,adL]Lj =0, adth =n;Lj.
j=1
3.11)

Note that, for convenience, we extend the notation L ; to cover all maximal eigenvec-
tors, i.e., L;’s form a basis for ng. The numbers 71, ..., n, are given in Table 1 as
the collection of the numbers in the second and fourth columns. We refer to them as
the weights of the nilpotent element L. We could not find them in the literature, and
we had to calculate them explicitly. See [21] for a procedure to find the weights of a
distinguished nilpotent element and the calculation for the nilpotent element of type
Doy, (am—1). After calculating the weights, we observe the following:

Corollary3.6 n =r +2> ;.

Let E(Ll) denotes the multiset consisting of the numbers n;,i = r 4+ 1,...,n and
assume they are given in non-decreasing order, i.e.,

Nr+1 <Nl = oo = N
Then, from Table 1, we get
Corollary3.7 nyyi + p—iv1 =nrfori=1,....,n—r.

We use the fact that g is the dual of gZ! under (.|.) [48] to fix a basis y; of g/ such
that

vilLj) =6ij, i=1,...,n. (3.12)

Then, ady,y; = —n;y;. Let us introduce the following basis for @i <00i

i

Lo .
yi,adLly,-,...,n—adZ’ly,-, i:=1,...,n, (3.13)
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and similarly a basis for ), gi

Li,ad/~L,',...,ad7c"L,~, i=1,...,n. (3.14)

Lemma 3.8

1 n;
(Fadgly,-md]{Lj) = (—1)’<I’>5,-,-3”; 1=0,1,...,050 =0,1,...,n;.
(3.15)

Proof For I = J = 1, we get
(adr,yiladysL ;) = —(yiladp,ad¢ L) = (y;|[L;, hl) = —nid;j. (3.16)

Hence, by induction for / > 1,

1 1 _ _
(Sadp yiladLy) = (S adp yilladi L, 1)

nj—1+1 1 -1 -1 1 (i
=- 7 <(1_1)!adLl vilady " Lj) = (=1) / 8ij-
(3.17)

Suppose I > J.Then, we can recursively equate the value (adi1 yilad }{ L ;) to constant

multiplication of the zero valued (adﬁj_l YiladsLj). O
Corollary 3.9 y, = K.

Proof Recall that K; € g_;,. It follows from the Dynkin grading that K; € g/
Then, for j < r, it follows from Corollary 3.4 that (K |L ) = §;,. While for j > r,
we get from Dynkin grading and the fact that n; < n, that (Ky|L;) = 0. Thus, by
construction y, = K. O

4 The space of common equilibrium points

In this section, we fix Slodowy slice Q as a transverse subspace to the orbit space of L.
We discuss the integrability of the transverse Poisson structure at L of Lie-Poisson
structure on g which leads to the definition of the space of common equilibrium points
N. Then, we will introduce special coordinates on Q and give alternative definitions
for N.
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4.1 Background

Let us define the gradient VH : g — g for a function H on g by

d
ar) H(g +tv) =(VH(g)|v), Vg, v € g. 4.1
=0

We fix the following standard compatible Poisson structures on g which consists of
the frozen Lie-Poisson structure BlEl and the standard Lie-Poisson structure B2g. We
denote their Poisson brackets by {., .}f and {., .}g , respectively. For any two functions
Hand G ong,andv € T;g = g, we set

{H,G}{(g) = ([VG(g), VH(9)lIK1); B} (v) = [K1,v],
{H,G}(g) = (IVG(g), VH(9)llg); B5(v) = [g, vl. 4.2)

We use Big, i = 1,2 to refer to both the Poisson structures (tensors) and the corre-
sponding Poisson brackets. Then, the Hamiltonian vector field yxy of a function H
under 32g at a point g € g is defined by

xH(g) = —advhg = [g, VH()]. (4.3)

It is known that [1] the symplectic leaf through g € g coincides with the adjoint orbit
O, and invariant polynomials under the adjoint group action are global Casimirs of
Bj.

2Using Chevalley’s theorem, we fix a complete system of homogeneous generators
Py, ..., P of the ring of invariant polynomials under the adjoint group action. We
assume that degree P; equals v; + 1. These generators give a complete set of global
Casimir functions of B2El . In particular,

VPi(g)egs, Vgeg, i=1,...,r. (4.4)
Moreover, the functions P;(g + AK;) form a complete set of independent global

Casimirs of the Poisson pencil BY = Bg + )»Blg for any A € C [3].
Define Slodowy slice Q to be the affine space

Q=L +g'. (4.5)

Then, Q is a transverse subspace to the symplectic leaf O, of Bg through L. The
following proposition is a special version of Theorem 5.1 stated below.

Proposition 4.1 [19] The space Q inherits compatible Poisson structures B Q, BZQ
from Blg , Bg , respectively. Moreover, BZQ is the transverse Poisson structure at Ly of

Lie-Poisson structure Bf . Furthermore, for any ) € C, B)? = B2Q + )LBIQ can be
obtained from Bf using Dirac reduction.
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Let F? denotes the restriction of the invariant polynomial P; to Q. Since B)? can
be obtained by Dirac reduction, we have the following standard consequence.
Proposition 4.2 For A € C, F?(q + AKq), ... ,F(r)(q + AK1) form a complete set of
independent Casimirs of the Poisson pencil B)? .

Following the argument shift method ([2,40]), we consider the family of functions
F:=U, _c(P] : P} is a Casimir of BC}. (4.6)

This family commutes pairwise with respect to both Poisson brackets ([2], section
1.3). Let us consider the coefficient F{ of Taylor expansions

Pliq+1K) = WPl g € Q. @.7)
Jj=0

. —j . —0 ..
Then, the functions P{ functionally generate F. Moreover, P; are Casimirs of B2Q,

the highest non-constant term P’ are Casimirs of BIQ, and all functions P; are in
involution with respect to both Poisson structures. In Proposition 4.8, we will show
that 0; = u;.

The main propose for applying argument shift method is to show that F contains
enough number of functionally independent functions in order to get a completely

integrable system for B2Q. We explored this problem in [20] for arbitrary nilpotent
elements in g, and we proved the following theorem

Theorem 4.3 [20] Suppose L1 belongs to one of the following distinguished nilpotent
orbits of semisimple type: Doy, (am_l), By (an), Fa(ay), E¢(as), Eg(ay) and Eg(ay).
Then, the set of all functions Flj result from the expansion (4.7) are functionally
independent and form a polynomial completely integrable system under BZQ .

In what follows, a point ¢ € Q is generic if rank BZQ (g) = n — r. From [3] we get
the following theorem

Theorem 4.4 [3] The family F is complete (contains a completely integrable system)
if and only if, at a generic point g € Q, rank B)? (g) = rank BCQ (q) forall x,¢ € C.

We are concerned about the space of common equilibrium points N of the family
F which is defined by
N:={qe€ Q:B2WdP)q) =0, VP €F,eT). (4.8)

The following theorem gives an equivalent definition.

Theorem 4.5 [3] A point g € Q is a common equilibrium point if and only if
ker B)? (q) = ker B{Q (q) for all generic 1, ¢ € C.

Equivalently, for g to be in N, it is sufficient to require that the kernel of just two
generic brackets at g coincides, i.e., ker B,\Q (g) = ker B§Q (g) with A # ¢ [3].
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4.2 Special coordinates

Let us consider the adjoint quotient map

V:g—>C, V(g =(Pi(g),.... Pr(g). (4.9)

Kostant proved in [38] that the rank of W at g equals r if and only if g is a regular
element in g and it is known that the set of regular element is open and dense in g.
Later, Slodowy proved that the rank of W is » — I at subregular nilpotent elements [45].
Finally, Richarson [42] obtained the ranks of W at distinguished nilpotent elements
except for the nilpotent elements of type Eg(az). Results in this section are built on
and inspired by the articles mentioned in this paragraph.

We fix a basis e, e1, €2, . .. for g such that

1. Theelements e, e1, ..., ey4rare K, L1, Lo, ..., Ly, K1, K3, ..., K,_1,respec-
tively. Recall that A; = L; + K; are normalized according to lemma 3.3.
2. (ejlA1) #0Oifandonlyifi =0ori =r.

It is not hard to show that such a basis exists. Let us define on g the linear coordinates
Z(9) = (eilg), i=0,1,2,.... (4.10)

Then, by definition, VH = %ei for any function H on g. Note that the rank of
W at g equals the dimension of the vector space generated by V P;(g). In particular,
since A is regular, the gradients V P; (A1) are linearly independent and form a basis

for the opposite Cartan subalgebra f'. We use these remarks in the following lemma.

Lemma 4.6 The matrix with entries %(AD, i,j = 1,...,r, is non-degenerate.
Moreover, P; have the following form:

Pi=R!'+ R+ R} 4.11)
where
Rl= " 30 G
a(my+1)=v;—n,
vi—1r—1 ) ] aR%
RY =" i ja@)' GG+, S (A =0.Yk  (412)
a=0 j=1 '

Here, c; j 4 and 0; 4 are complex numbers.
Proof Since VP;(A1) € g™ = b’ and b’ has basis A; = L; + K, we get
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,
VP(A) =) Cijh;
j=1
r—1

,
=Y Cij(Lj+K))=Cirleot+e)+ Y Cijlej+enss). (413)

j=1 j=1
Hence,
A = (A, 0 < j <73
Ci,j= (4.14)
(A =, j=r
and ‘;%(A]) = 0 for other values of j. By definition of the coordinates and Corol-

lary 3.4, z/ (A1) are all zero except 2/ (A1) = 1 and z(A1) = . For0 < j < r,
imposing the condition %(AQ # 0 and using the homogeneity of P;, we find that
g% must contain the polynomial

v,-fl

> i@ T e jaeC. (4.15)
a=0

ap2 .
This gives the formula for Riz. Note that %(AQ = 0 since z/ (A1) =0for j #0
and j # r. Thus, for gf,’ (A1) to be nonzero, P; must contain terms of the form
Eia = (7)1 (%)~ But then a is constrained by the identity

08; . d08; g
T’,’“(Al)=<a+1)(nr)“t “=?1;“(A1)=(v,-—a)(nr>“l -l (.16

This leads to the formula for Rl.1 . The condition on Rl.3 is a direct consequence from our
analysis. Finally, the non-degeneracy condition follows from the fact that the vectors
V P;(A) are a basis for §’. O

For Slodowy slice O, we observe that 2%(q) = (K.|L1) = n, # 0 for everyq € Q
and (z!,...,z") define global coordinates on Q. The values of these coordinates

at Ay € Q are 7' = 8. We set degree z' equals n; + 1 and recall the following
quasihomogeneity theorem due to Slodowy.

Theorem 4.7 ([45], section 2.5) The restriction F? of P; to Q is quasi-homogeneous
polynomial of degree v; + 1.

This theorem leads to the following refinement of the last lemma.
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Proposition 4.8 The restrictions P; of the invariant polynomials P; to Q in the coor-
dinates (7%, ..., 7") take the form:

—0 ~ . -3 ~
Pl ... = Y G @M+ R (). G eC (417
vi—nj=pi(nr+1)
R 9Py
where ﬁ(Al) = 0fork = 1,...,n. Moreover, the square matrix V;(Al), i,j=

1, ..., r is nondegenerate.

Proof The restriction F? of P; to Q is obtained by setting z = 7, and z* = 0 for
k > n in the form (4.11). From the quasihomogeneity of ?? and lemma 4.6

—0 ~ i —3 ~
P, @, ..., = Z Z Ci.j.a@)'% + R (2), ¢ijacC
a=0 deg P;—deg z/=a(n,+1)
(4.18)

where E? is the restriction of Rl.3 to Q. The expressions given in (4.12) imply that

.3
%(Al) =0,k = 1,...,n Note that deg P; — degz/ = v —n; = a(y, + 1).
Using the relation between the multisets E(g) and E(L;) observed in lemma 3.1, a
can only equal y; and the values of n; are uniquely determined and depends on i. On
other words the constants ¢; j , in (4.11) are nonzero only if a = u;. This gives the
form (4.17). For the nondegeneracy condition, note that the only possible value for
the index a in (4.11) is @ = p; and so z° appear only with the power v; — w;. This
B_P,: -0
az/
Now we give a proof for Theorem 1.2 stated in the introduction.

implies that (A) = %(Al). Thus, the required matrix is nondegenerate. O

Proof of Theorem 1.2 Writing F? in the form (4.7) and using the last proposition, we
getﬁ?(q + 1K) = F?(zl 4+ A1, ..., 2"+ A8,r) and @; = ;. We observe that each
8Z“r" F? is a constant multiple of Ff *. Hence, the functions 82’? ?? are Casimirs of B IQ

.. . . —0
and are in involution with respect to BZQ . Furthermore, 82’? P; has the form

=0 _ =3 _
NP = Z ¢ijzl + 3R} (2), @,j € C, (4.19)
ni—nj=pi(Mr+1)

where 9 BZM," E? equals 0 at the origin (z¥ = 0, Vk). Thus,

1 0P)

atipd ey L
9,0, P; (0) = o e

AN, ivj=1,...r. (4.20)

. . . =0 .
We conclude, using proposition 4.8, that the matrix 0_; Bz’f‘ P; isnondegenerate. Hence,

Bz’i’ P; can replace the coordinates z* on Q fori = 1,..., r up to some permutation
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related to the repetition on E(L ). Moreover, using simple linear elimination, we can
get the required normalization #/ = z/ + (non linear terms) where ¢/ is a Casimir of

B1 . From Theorem 4.10, it follows that ¢!, ..., " form a complete set of Casimirs
for Blg . The fact that t! = z! follows from identifying ' with the Casimir function
(0]Q) and using (y1|L;) = 1. o

We fix the notations (tl, ..., t"") for the coordinates obtained in Theorem 1.2. Recall

that Z, (a,) denotes the type of L.

. —0 —0 . .
Corollary 4.9 The functions P, ..., P,._; are quasihomogeneous polynomials on
t! " onl
s ..., 1" only.
Proof This follows from the fact that u; = Ofori = 1, ..., r —s and the construction
of the coordinates (tl, o). O

4.3 Integrability and alternative definitions

We combine the theorems stated in Sect. 4.1 to get the following useful result.

Theorem 4.10 The family F is complete for every distinguished nilpotent element of
semisimple type. In particular, rank B lQ =n—rand

N ={q € Q:ker BZ(q) = ker BZ(¢)}. 4.21)

Proof For regular, subregular and nilpotent elements stated in Theorem 4.3, the family
F is complete [20]. Suppose L belongs to the nilpotent orbit E7(as), Eg(as), Eg(ag),

Eg(a7) or F4(az). We will check that rank BQ = n —r for every A € C and use
Theorem 4.4. It is not hard to show that rank B)? =n —r for A € C [20]. We need
to show that rank BIQ = n — r. We verify the equality by direct computations using
proposition 5.8 given below. More precisely, we fixed arbitrary basis L; for g/ and K
such that L1 4 K is regular semisimple. Then, we found that the rank of the matrix
(L;i|[K1, L;]) equals n — r. The last statement follows from Theorem 4.5. m]

Let us use the special coordinates on Q and denote the entries of the matrix of the
reduced Poisson structures by

’/(t) = {r, tJ} , a=1,2. 4.22)

Then, we prove Theorem 1.3 stated in the introduction.

Proof of Theorem 1.3 The first definition (1.10) of N follows directly from the struc-
ture of the matrices of the Poisson brackets under the coordinates (¢!, .. ., ). For the
second definition (1.11), we observe that dr', ..., dr" are a basis of ker BIQ, while

dﬁ(l), R dF(r) are basis for ker Bzg. However, by construction F(l), R F? ¢ are poly-

nomialsinz!, ... ¢ only. Hence, the two kernels coincide exactly on the defined set.
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Now we consider the restriction of the adjoint quotient map

wo 2, . "y =(P),..., P). (4.23)

40
andlet JW € := % denotes its Jacobian matrix. Then, N is defined by the set of points

t where the lower-right s x (n — r) minor of JW € is identically 0. From Corollary 4.9,
the upper-right (r — s) x (n — r) minor also vanishes by Corollary 4.9. Since regular
points of W Q are Zariski dense in 0, there exists open dense set Nyg € N such that the

left r x r minor of JW € is nondegenerate. In particular, Py, ..., P, are independent

functions on Ny. Hence, F(l), e, F(r) are a part of local coordinates and dim Ny > r.
However, the second definition (1.11) of N with Corollary 4.9 implies thatdim N < r.
Thus, dim No = r and (¢', ..., ") acts as local coordinates around each point of Ny.

Recall that B):Q, A € C, is of rank n — r. Since Ny consists of regular points, the

lower-right (n —r) x (n —r) minor F;" Bof F +/ is nondegenerate. Thus, Dirac reduction
is well defined on Ny. However, applying Corollary 2.6, the reduced Poisson structure
iszeroast!,...,t" are in involution with respect to the pencil Bg . O

5 Algebraic classical W-algebra

In this section, we summarize the construction of Drinfeld—Sokolov bihamiltonian
structure associated with the nilpotent element L and K. Then, we will apply Dirac
reduction to get a local bihamiltonian structure admitting a dispersionless limit on the
loop space A := £(N). This leads to an algebraic classical W-algebra on A.

5.1 Drinfeld-Sokolov reduction

We consider the loop algebra £(g) and we extend the bilinear form (.|.) on g to £(g)
by setting

(81182) = /S] (81(0)1g2(x))dx; g1, 82 € £(9). (5.1)

We use (.|.) to identify £(g) with £(g)*. We define the gradient § F (g) for a functional
F on £(g) to be the unique element in £(g) satisfying

%f(g + 0w) |g—0= (8}"(g)|w) forall w € £(g). 5.2)

Then, we introduce standard compatible local Poisson brackets {., .}; and {., .}» on
£(g) defined for any functionals Z and F on £(g) by

{F.T}h(g(x)) ::/s ([6Z(g(x)), K1118F (g(x)))dx,
1
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{(F.I}(g(x)) = /S] (0:8Z(g(x)) + [6Z(g(x)), g8 F (g(x)))dx. (5.3)

We denote their Poisson structures by B and B,, respectively. We mention that B,
can be interpreted as the restriction to £(g) of Lie-Poisson structure on the untwisted
affine Kac—Moody algebra associated with g. In particular, if we expand these Poisson
brackets as in (2.16), the leading term {., .}[1_1] is the frozen Lie-Poisson structure Blg

and {., .}[2_1] defines the Lie-Poisson structure 32El on g. Moreover, it is easy to show
that these Poisson structures form an exact Poisson pencil with Liouville vector field
d;r in the coordinates defined by (4.10), i.e.,

=28 1{. .2 L {. =0 (5.4)
Let us define the affine loop space
Q=L+ £g)). (5.5)

Then, Slodowy slice Q is identified with the subspace of constant loops of Q.

Theorem 5.1 [19] The space Q inherits compatible local Poisson structures By and

7
IB%IQ from By and By, respectively. They can be obtained equivalently by using the
bihamiltonian reduction with Poisson tensor procedure, Dirac reduction and the gen-
eralized Drinfeld—Sokolov reduction. Moreover, the leading terms of the bihamiltonian

structure on Q can be identified with the bihamiltonian structure BZQ and BlQ on Q.

Details on bihamiltonian reduction can be found in [7]. Drinfeld—Sokolov reduc-
tion is initiated and applied for regular nilpotent elements in [22]. Generalizations to
other nilpotent elements is obtained in [4,33] (see also [14]). The relation between
Drinfeld—Sokolov reduction and bihamiltonian reduction in the case of regular nilpo-
tent elements is treated in [8] and [44]. In [8], the Poisson tensor procedure is also
initiated (also called the method of transverse subspace in [41]). The relation between
Drinfeld—Sokolov reduction and Dirac reduction is also proved in [33]. See [11] and
references therein, for more recent development and tools used to study Drinfeld—
Sokolov reduction.

We let {., .}1Q and {., .}ZQ denote the Poisson brackets defined by ]B%IQ and IB%QQ,
respectively.

In what follows, we review Drinfeld—Sokolov reduction. We identify £(g) with the
space of operators of the form d, + g, g € £(g), and Q with the subspace of operators
of the form 3, + g + L1, g € £(g/). Let B denote the subspace of operators of the
form:

L=0,+b+L wherebe £(b). b:=Pa. (5.6)

i<0
There is a natural action of the adjoint group of £(n), n := €, _, g, on B defined by

(w, L) — (expadw) L forallw € £(n) and L € B. 5.7
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Moreover, for any operator £ € B there is a unique element w € £(n) such that
L:=0+q+ L = (expadw)L (5.8)

where ¢ € £(g/). Hence, g and w are differential polynomials in the coordinates of
b. The entries of g give a set of generators of the ring R of differential polynomials
invariant under the action (5.7) . More precisely, if we write

b—ZZbl(x) adLly,, q—Zz(x)y, andw—ZZw,(x) adLly,,

i=11=0 i=11=1
(5.9)
then equation (5.8) reads
g =W, Lil=b—wy +[w,b]+ ) - +1,adl( wx + [w, b] + [w, L1]).
i>0
(5.10)

Using Dynkin grading and the fact that g/ @ [n, L] = b, we get recursive equations
defining the coordinates of ¢ as differential polynomials on the coordinates of b. More-
over, if we assign degree 8)]§bij equals k+1; — J +1, then 7/ (x) is a quasihomogeneous
polynomial of degree n; + 1. The set of functionals R on Q are the functionals on B
with densities belonging to the ring R. It follows that R is closed Poisson subalgebra
with respect to the Poisson brackets {., .}, and {., .}1. Thus, the reduced Poisson pencil
{., .}/\Q =1, .}2Q + M., .}1Q can be obtained by apply the Leibniz rule

{"(x), z (y)}x :

9z"(x) ( 0z°(y)

i) ® iy 9y (b} (). b (y)}x)) (5.11)

where

{6 (), by (M)

1
el — ((ad ] Ljlad! L)y + (b(x) + AK1[[ad) L, ad) Li1) )5(x — )
11 I I 7
ool (tad L jlad Ly + (adh Ll + K1, ad Lj1))(x = )
J

(5.12)

and ®§ = (=1 ( ) We will use these formulas in the next sections to analyze the

leading terms of IB2 and ]BIQ.
We end this section by finding the linear terms of the generators of the invariant
ring R.
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Proposition 5.2 The linear terms of each 7' (x) equal
ni I
(=D ;
ZTa;b;. (5.13)
=0 ’

In particular, 7" (x) is the only generator of R depends on by (x) and this dependence
is linear. Moreover, all 7' (x) do not depend on derivatives of by(x).

Proof The second part of the statement follows from the quasihomogeneity of the
generators z' (x) of R. To find linear terms of each z/, we introduce spectral parameter
€ and set L(€) = 9, + €b + L. Let w(e) and £ (¢€) be the corresponding operators.
Then, £(0) = 9y + L1, w(0) = 0 and £°(0) = L£(0). Therefore, differentiating the
relation

1
Lo(e) = L(e) + [n(e), L(e)] + E[n(e), [n(e), L)+ ... (5.14)
with respect to € and evaluating at ¢ = 0 we get
q'(0) = b+ [w(0), L'(0)] + [W'(0), 8, + L1]
=b+[w(0),0, + L1]
=b—w,(0) + [W(0), L1]. (5.15)
Note that [w’(0), L] does not contribute to ¢'(0). Then, the coordinate of y; gives
&)'(0) = by — (W,(0)) (5.16)

where we write w'(0) = Y ' | > 1>0(w’(0))’}%ad21yi. Then, the coefficients of

1 I . . .
7rady yi for I > 0 give the recursive relations

[(W ()1, L1] — (W, (0)] + b} =0 (5.17)
which leads to
W (0))_; = ﬁ(—(w;(o»", +0)). (5.18)
For example,
W (O, = %(b"l.),
W (O0))y, 2 = m%(—%(axb;i) +0 ). (5.19)
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These recursive relations lead to

iy =D
CIOEDY 0 (5.20)
1=0 ’
O
Recall that the coordinates (tl, ..., t") of Q developed in Theorem 1.2 are quasi-
homogeneous polynomials in the coordinates (z', . .., z*). Thus, we get the following

corollary by construction.

Corollary 5.3 Proposition 5.2 is valid when we replace 7' (x) by t! (x).

5.2 Further reduction

In this section, we reduce Drinfeld-Sokolov bihamiltonian structure to A and analyze
the leading term using the coordinates (¢!, ..., ") obtained by Theorem 1.2.

Proposition 5.4 The reduced bihamiltonian structure on Q is exact with Liouville
vector field d;. The Poisson bracket with t' preserve the relations defining classical
W-algebra, i.e.,

(o, o2 = s (x —y) + 200 08 (x — y) + 115 (x — y),
(o), O = i+ DS (= y) + mitis(x —y), i =2,...,n. (5.21)

fOV some nonzero constant c.

Proof Wetaket!(z), ..., 1"(z) as generators for the invariant ring R. By Corollary 5.3,
t" (x) is the only invariant which depends on b (x). This implies that the invariant " (x)

appears in the expression of {¢! (x), ¢/ (y)}2Q only if, when using the Leibniz rule (5.11),
we encounter terms of {., .} depend explicitly on bg(x). Thus, {t' (x), ¢ (y)}zg is at
most linear on z" (x) and its derivatives. But the bihamiltonian structure on £(g) is
exactand {., .}; is obtained from {., .}, by the shift along b;,. Hence, {ti(x), 1! (y)}IQ is
obtained by the shift of {#/ (x), t/ (y)}zg along " (x), i.e., substituting " (x) by " (x) +¢
and evaluate %|€:0. Therefore, {., .}lg does not depend on " (x) or its derivatives.

From the work in [33], the reduced Poisson bracket {., .}? is a classical W-algebra in

the coordinates (z1 ,..., 2", 1.e., it satisfies the identities 2.4. Then, the argument for
identities (5.21) will be similar to the one given in the proof of proposition 6.2 below.
O

Then, Theorem 1.4 gives compatible local Poisson brackets {., .}{x\/ ,o = 1,2 on
the loop space N' = £(N) of the space of common equilibrium points N. The proof
is as follows.
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Proof of Theorem 1.4 From Theorem 1.3, the leading terms of {., .}kQ, k = 1,2 have
the form:

), P = B (t(0))8(x — y), (5.22)

where Fi*(t) = 0 and N is defined by Fi%(t) = 0,1 <i <randr+1 <
a < n. Thus, {., .})? satisfies the hypothesis of proposition 2.5 with the coordinates
(t',...,1") on N. Using Corollary 2.6, the reduced local Poisson bracket {., .}ﬁ\v on
N is obtaiped by setting {¢’ (x), tj(y)}ﬁv equals {t'(x), tj(y)}}? and substitute the
variables ¢*, i > r by solutions of the polynomial equations F;* = 0 defining N. In
particular, {t' (x), t/ ) }JA\[ is an algebraic local Poisson bracket and itis linearin A. This
leads to compatible local Poisson brackets {., .}é\/ and {., .}{\/ on N where the former
still satisfies the identities (5.21) defining classical W-algebras. From Theorgm 1.3
again, they both admit a dispersionless limit. Note that the defining equation F;* = 0
of N do not depends on ¢". Thus, from proposition 5.4, the reduced Poisson brackets
form an exact Poisson pencil. O

As in the introduction, we write the leading terms of {., .}é\/ ,o0 = 1, 2, in the form:

(1" (), " OO = QU (r(x))8 (x — ) + TVt (x)tk8(x —y), 1 <u,v <r.
(5.23)

In the remainder of this section, we want to prove that the determinate of the matrix
Q{”(t) is nonzero constant. For this end, we write

(K1, adfL; ]_ZA/ T'adLl)/z, T=n+n—J-n>=0 (524

where 7 is constrained by the Dynkin grading of g. Then, the values of {., .}; on the
coordinates of b are given by

. : 1 .
(b ). by = — 8T8 AT — y). (5.25)
©y
Thus, we get the following formula for the brackets
AT

(bl (). by (Nh = @—]ij(x =), I=ni+n;—J—n (5.26)
J

where AJJ ! possibly equals 0. Expanding using the Leibniz rule, we get

]i
u L (x) v (y) 4h
{t()t()}— x '8(_)’I:i+'_1_r
* P 12/:%: ®J a(bl)(l) (a(bj)(h) y ol y) Ni 1 n
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_ Aj 0 (x) 1 0V (x) \ (@+B) (otl—ap)
—L 2 D ( )(ﬂ) o) 3(bl)(l)( ) 8 (x =)

i,j l,h,ap d(bj )
(5.27)

Here we omitted the ranges of the indices since no confusion can arise. We observe
that the value of Q" is contained in the expression

uv Bt (x) ; 0tV (x) \h+i-1 o '
Fi ;;( 1) (l+h) ] 3(bz)(l)<a(bj)(h)) s I=ni+n—J—n

(5.28)

Lemma 5.5 The matrix Q’l‘”(t) is lower antidiagonal with respect to E(L1), and the
antidiagonal entries are constants. In other words, Q4" (t) is constant if n, + 1, =
nr + 1 and equals zero if n, + ny < 1y + L.

Proof Assume t"(x) and tV(x) are quasihomogeneous of degree 1, + 1 and 1, + 1,
respectively. Then, F|' is a quasihomogeneous polynomial of degree

Mu+1+n+1—-@—-1+1+D) -0 —J+h+1)
th+l—1=n+n —n —1

O

Recall that from the construction of the coordinates (¢1, . . ., ") and the second part
of proposition 3.3, the entry Q" in case u + v = r + 1 implies that , +n, = n, +1
and (AylAy) = nr + 1

Proposition 5.6 The antidiagonal entries of Q4 with respect to the set E(L) equal
nr + lin case u +v = r + 1 and zero otherwise. In particular, Q1" is nondegenerate
and its determinant equals (n, + 1)".

Proof We need only to examine the entry Q%Y where t* and ¢V are quasihomogeneous
of degree n, + 1 and n, — n, + 2, respectively. The expression (5.28) yields the
constrains

ni+1l—I<n+1=J=<n+n —n
nj+l=J<un—n+2=n+n-—n-1<J. (5.29)

Hence, Jequals Nu+nj—n—1lorn, +n; —n,. Consider J =n, +n; —n, — 1.

Then deg(b )(h) =n; —J+1+h =degt’ + h. This forces h = 0 and ¢" is linear

in bg. Therefore, from proposition 5.2, j = v and J = 0 which leads to 2~ = |

GG
Also

deg) =mi —I+h+1=n—@i+n—J—n)+1+1
=10y +1=degr". (5.30)
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Thus, the only possible value for / is 1. Note that / = n; — n, + 1. Hence, deg 1" =
deg(b})" and " is linear in (b})’. Then, i = u and I = 1 and from proposition 5.2,
ar (x)

= —1. Therefore, the case J = n, + n; — n, — 1, the expression (5.28)

3([,3)(1)
Ou
contributes to 7" with the value — %”g = —Ag“ since J =n, +n, —n, — 1 =0.
By definition,
Ou 1
—A) = n_(adeuHKl» Lyl) = nousv,r+1- (5.3D)
u
A similar analysis when J = 5, + n; — n, leads to the value 1,0,1y,,+1. By the
normalization of A;, it follows that the value of Qf" equals n, + 1, = 1, + 1
when u + v = r + 1 and zero otherwise. The determinant of the matrix Q’l“’ follows
accordingly. O

Corollary 5.7 The matrix Q4 (t) is nondegenerate on N'.

Proof It follows from the exactness of the Poisson pencil, ie., Q{"(t) = 0
Q5 (1). O

Recall the duality of the multiset E(L ) stated in Corollary 3.7. Then, the following

proposition is useful to find the rank of BlQ . Note that the proof depends only on the
linear part of the invariants #* (x).

Proposition 5.8 The matrix F{'"(t), u,v = 1,...,n is a lower antidiagonal in the
sense that F{'*(t) = 0 if n, + ny < n,. In particular, if n, + ny = n, then

Fi'*(t) = (Lul[K1, Ly]), (5.32)

and if n, +ny =0, + 1 then F{'(t) =0

Proof Note that the value of the matrix F}'’(¢) is contained in the expression

ATl ot (x) , at¥(x) \h+l
Nk — . ] —
E E (=D"— a(b")U)(a(bf)(h)) s I=ni+n;—J—n. (533)
i,J hl ®J 1 J

Then, the proof will be similar to the proof of lemma 5.5 and proposition 5.6. The
degree of this expression is 1, + 1, — 1. Thus, the matrix will be lower antidiagonal as
claimed. Letus assume 1, +1, = n,. Then, the only possible value for J is n,+n; —n,.
We also find & (resp. j, [ and i) must equal O (resp. v, 0 and u). Therefore, J = 0 and
the expression (5.33) will be Ag” = (L,|[K1, Ly]). For the last statement, note that
F'*(t) is a polynomial [19] and there is no variable of degree 1. O

6 Algebraic Frobenius manifold

In this section, we obtain the promised algebraic Frobenius structure and give examples
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6.1 General construction

We consider the flat pencil of metrics on N consists of Q{"(¢) and Q4" (¢) which is
afforded by Theorems 1.4, 2.4, Proposition 5.6 and Corollary 5.7. From the exactness
of Poisson pencil on A and defining equations of W-algebra given in proposition 5.4,
we have

1i ,
L, Q5" = Q. 2" (1) = (n + Dt. Ty (1) = ;8. (6.1)
Recall that we assign degree t* equals 1, + 1.

Proposition 6.1 Each entry Q5Y(t) is quasihomogeneous of degree 1, + n,, while
57 (t) is quasihomogeneous of degree n, + 1y — (i + 1).

Proof First part follows from the proof of lemma 5.5. Analyzing the coefficient of
8(x — y) is the expression (5.27) leads to the degree of I} (¢). O

Proposition 6.2 There exist a quasihomogeneous polynomial change of coordinates
of the form

s' = t' + non linear terms (6.2)

such that the matrix Q{°(s) = (9, + DUV Furthermore, in these coordinates
the metric Q57 (s) and its Christoffel symbols preserve the identities

Q" (s) = (n + Ds¥, TR (@) = 8}, (6.3)

Proof A local flat coordinates of the metric Qbf”(s) exist at each point of N and can
be found by solving the system [23]

QY0udus + T{)ops =0, u,k=1,...,r. 6.4)
First, we search for a quasihomogeneous change of coordinates in the form s’ =
si(e!, ..., t") withdegs’ = degt’ such that the matrix Q24" (s) is constant antidiagonal
with respect to the set E(L1). The proof of its existence can be obtained by following
the proof of a similar statement in ([23], Corollary 2.4). Note that we can write st in the
form (6.2) using eliminations. But then, after reordering, we can apply proposition 5.6

to get QYV(s) = (n, + 1)8“+v7+1_For the second part of the statement, we need only
to show that

. s .
Q;’I(S) = (ni + Ds', Tyl (s) = n;8}. (6.5)
Let us introduce the Euler vector field

E':="(ni+ Dt'd,. (6.6)
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Then, the formula for change of coordinates gives
Q) (5) = dras' 9ps? QL) = E'(s7) = (nj + 1)s7. (6.7)

Here, the last equality comes from quasihomogeneity of the coordinates s*. For Fé ,ﬁ ®),
the change of coordinates has the following formula:

P ()ds® = (80810057 Q57 (1) + Do 08 TE (1) ) s, (6.8)
But then we get
T ds* = (E’(&tcsj) + s’ F%f)dtc
= ((nj — Ne)dest + nca,(-sf)dz" =1n; des’dt€ = njdsj. (6.9)

O

From proposition 6.2, we can assume without loss of generality that the coordinates

¢! are the flat coordinates for Qaj . Then, we get a regular quasihomogeneous flat pencil

nr_l

of metrics of degree el

formed by Qilj and QIZJ on N as Theorem 1.5 states.

Proof of Theorem 1.5 In the notation of equations (2.10), we set 7 := ﬁtl. Then,

- 1 )
E:=Q50,10; = o Xi:(m + Dt'd,i,
e:=Q70,7 8, =or. (6.10)

The identities [e, E] = e, £5, Q5" = QY and £y, Q¥ = 0 are fulfilled. We also
obtain from proposition 6.1 that

mitloy _nitloy =2

LrQU = E©QY) — —
E R R A B nr+ 1

QY = (@ - 1RV (6.11)

We also have the regularity condition since the (1,1)-tensor Rl./ has the entries

Cod—1_; , o
R/ = Ta{ L VE = #5{. (6.12)
r

O
Now we can prove the main result, Theorem 1.1.

Proof of Theorem 1.1 It follows from Theorems 1.5 and 2.8 that N has a natural Frobe-

nius structure of charge Z’;i . This Frobenius structure is algebraic since the potential
r

[ is constructed using equations (2.13) and from Theorem 1.4 the matrix Q4" may
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contain variables X, k > r which are solution of the polynomial equations (1.10)
defining N. The Euler vector field is given by the formula (6.10). By construction,
different choices of a representative L or transverse subspace other than Slodowy
slice will lead to the same Frobenius structure. O

6.2 Examples
6.2.1 Regular nilpotent orbits

Suppose L is a regular nilpotent element in g. Then, the multisets E(L;) and E(g)
coincide. In this case, we get the standard Drinfeld—Sokolov reduction [22] on Slodowy
slice @ and the local bihamiltonian structure admits a dispersionless limit. Hence, the
space of common equilibrium points N equals Q. The algebraic Frobenius manifold
is polynomial. It coincides [30] with the polynomial Frobenius manifold constructed
by Dubrovin on the orbit spaces of the underlined Weyl group [23]. The construction
using the methods of this article was also obtained in [15].

6.2.2 Subregular nilpotent orbits

A nilpotent elements is called subregular if dim go = r + 2. The set of all subregular
nilpotent elements form one nilpotent orbit which exists in any complex simple Lie
algebra. However, not all subregular nilpotent elements of simple Lie algebras are of
semisimple type, which was wrongly assumed in the article [18]. Only the subregular
nilpotent elements of type D4 (ay), Fa(ay), E¢(ar), E7(a;) and Eg(ap) are of semisim-
ple type. Hence, all statements in [18] are valid only when considering those cases.
Let L be a subregular nilpotent element of semisimple type. Then, Slodowy slice Q
is of dimension r + 2. In [18], the set of common equilibrium points N was defined
in terms of the invariant polynomials P, ..., P using the normalization of the trans-
verse Lie-Poisson bracket {., .}2Q obtained in [9]. Moreover, the article [18] contains in
detail the construction of the potential of the algebraic Frobenius manifold associated
to D4(ay). So we are not keen to repeat writing this example here. We also constructed
the potential associated with Eg(ay), but it results in a huge polynomial in 8 variables
(consist of 303 monomials) with vast numbers and by all means unpublishable [16].
A simpler formula for this potential appears in [17].

6.2.3 Nilpotent element of type F4(a;)

We use minimal representation of F4 which is given by square matrices of size 27. The
following computations can be verified using any computer algebra systems. Below
€;,j denote the standard basis of the set of square matrices of size 27. To simplify
the notation we use E¢ ¢y, to denote the root vector corresponding to the root
ciay + c2an + c3a3 + caa4 While Feeyeq¢, for the root vector corresponding to the
negative root. We always set Fe,c,¢5¢, €quals the transpose of the matrix Ec,¢ycyey-
Then, the simple root vectors are

Egpo1 := —€45 + €78 + €911 + €20,22 + €21,6 + €23 24,
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Eo010 := —€3,4 + €810 + €11,13 + €18,20 + €19,21 + €24,25,
Eo100 := —€23 — €47 + €58 + €624 + €10,12 + €13,15 + €13,16 + €15,18
+€16,18 + €17,19 + €21,23 + €25,26,
E1000 := —€1,2 — €7,9 — €8,11 — €10,13 + €12,14 — €12,15 — €14,17
+e€15,17 + €18,19 + €20,21 + €22,6 + €26,27- (6.13)

We construct the remaining root vectors by setting

Eoo11 = [Eo001- Eoo10]
Eo111 = [Eoo11- Eo100]
Ep211 = [Eo111> Eo100]

Eo110 = [Eo010+ Eo0100]
Ep210 = [Eo100+ Eo110]
Er111 = [E1110, Eo001]

E1100 = [E0100, E1000]
E1110 = [E1000, Eo110]
E1210 = [E11105 E0100]

Ep221 = [Eo211, Eoo10] E1211 = [E1111, Eo100]
= [Eo221, E1000]
Ex21 = [Ex11, Eoo10]
= [E2421, Ego10]

E1221

En431

E2210 = [E1210, E1000]
E1321 = [E1221, Eo100]

Ex11 = [E1211 E1000] =
Erap1 = [E2321. Eo100]

Ex321 = [E2221, Eo100]
E2432 = [E2431, Eqo01]

We fix the following sl,-triple, where the nilpotent element L is of type Fa(az)

Ly = Ego10 + Eoo11 + Eo110 + Eor11 + Eo210 + Eo211 + E1o000 + E1100,

5 5
f = 3Fooi0 + 3Foo11 + Forio + Foi11 + ZFozlo + ZFozn + 6F1000 + 2F1100,
h = 5[Eo01, Fooo1] + 10[Eoo10, Foo1o]l + 7[Eo100, For00] + 4[E1000, F1o00],

(6.14)

The following vectors form a complete set of maximum weight vectors of the irre-
ducible s/>-submodules. They are of eigenvalues 1,5,5,4,3,2,1, respectively, under

adh.
L _20E ZSE 76E ZSE +38E
2 = 3 Eo0010 = 3 oot — 7z Eonio — T3 ot + 3 Eozio
+ 2 E + 3)2E 88E
13 Eoant + 73 Er000 = 77 Enoo,
Ly = 39E Ly = 39E + 9E
3= 5gFusn, La= 5B+ 7B,
Ls = E301 + Ezap1, Le =2E1221 +6E1321 + Exi0 — SE11,
L7 = —4E21 + E1110 — 5E1111 — E1210 + 5E1211,
2 6 14
Lg = §E0010 +2Epo11 — §E0110 - ?Eom
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—§E0210 + Eo211 — = E1100- (6.15)
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Then setting

15

K| = Fuzn, K= EF2431 — Foy3
s 39F 39F 39F 273F —|—39F 39F
3= 55 Foo10 = 55 Foonr = == Fono = = Finn + 7o Foann = 75 Fioo

K4 = 39F +204F + 3F 51F

4= 55 Fooro + —Foons ono = 5 Foun

B L . 6.16)
5 Foz10 + =5 Foann + 7 Frooo + = Fioo .

The vectors A; = L; + K; are basis of the opposite Cartan subalgebra h’. The nor-
malized bilinear form is given by (g1|g2) = ﬁTr(gl .g2). Then, one can check that
(Ai|Aj) = 63;;. The basis y; € gf such that (y;|L ;) = §;; are given by the formula

vi=f,
. 1677 1833 923 F n 247 F n 403 F
V2 = 1120 0010 1120 0011 1120 0110 1120 0111 2240 0210
. 247 7 n 39F 143F
2oag Fo2it + 35 F1000 = 155 F00,
15
V3= EF2431 — Fo32, ya = Faz,
= 27F + o F = > F + F F 7F
vs = ofmu + gt ve = e b+ o Fisan — g Fmio — oo,
- Dp T Fiin + — Fioio + 2 F
v1 = —5gfoo — 2 Fino — g Fun + e Fiao + 7 Faan,
. 405F n 135F L 75 F 375F
v8 = — 175 Fooro + 7= Foorr + 177 Fono — 5 Forn
B e+ 2R 155 6.17)
254 F0210 + 55 Foart = 77 Fiioo- .

We write elements of Slodowy slice in the form Q = L + Z?zl z;¥i. The restriction

PiQ of the invariant polynomials P; of degree v; + 1 is obtained from taking the trace

of the matrix Q"+, We can take P]Q = z1. The expression corresponding to the

invariant of maximal degree P4Q is omitted since it is very large. We give instead
3., P2
4ty -

44928 518400
P2 = 7441927} + - 2223 — - 2827
866970 , 923400 ,

- — 5760
29 4% 29 %84 2621
1600560 | 228002463 , 9871875
49 2WETTR9000 27 T eg6 8
150984 , 37986975, 163888
49 7 1372 28 3 3
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Y.I. Dinar

6786
—3456z74 — Tzzze

45734949 , 78300

7as T T

P2 = 40799232z} + 9584642527 — 110592002527 —

24883200
+ T 22 — 8601602620
209079702 4

1225 2

134573400 ,
49 222821

31000320 2
B

2287872
7 2721 —

24772608
+ [

13
1267200 | 9587156553 4
OL8LL T TTER6000 2

29615625 , 87267375 4 )
_ _ 25920
343 8 343 2w %6
112320, 29362905 , ,
49 F7 343 2°8
621000
7

21

31 1040meen 4 537489459
2527 6860 28

1296000 , 3456000 60840
+ 49 7728 — — 512328

13 7
18242205696
3., P2 = —45059604487] — ————_ 7,73
| 1004860800,

222
2043055872 ,

7 W8I T — Az
410572800 ,

245 24
zgz1 + 121651202621 +

20251269324 5 801900000 5
1225 2 343 8
87588864 , 1209265200
49 7 49 %

76972032
————— 23 — 530841624

13
41019264 7000116552 ,
2226

+ 7 343

Our special coordinates (1, .. ., f3) are given by

1 0 224
=R = e T s

@ Springer

89910000

2321 — 5160962471 — 109824722621 —

2623 + 2073602223 — 1497602224 +

222638

5782233600
49

2528 + 5702400z6z3.

(6.18)

80016768 5 ,

35 4

2321

84159972
49 22821

534378

35 2726

(6.19)

227821

(6.20)

—Z21 = 22, ti:Zi» i=5,6,7,8
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t 13 Q+ 13 pe + nonlinear terms

= ———— —_— = nonimnear terms,

3 331776000 "4 T 216000 3 T

ty = ! 0 29 Pl — + nonlinear terms (6.21)
4T 76912000 44 T 43200003 T : :

Writing the restriction of the invariant polynomials in these coordinates, the space N
of common equilibrium points is defined as the zero set of the following polynomials:

35 P2 = 31104017,
1478412 , 27799201 1458000
P2 = — R Sh+ 1§ 518401 — 622080115,
1866240 9401184 5598720
3, P2 = 31104015 — ny = — gt + =g
16116516 , 25758000
35 2! 7 8!
2799360

1713,

3 P2 = 588441601 + 272488321517 — 41472001517 —

84240 31300659 5 66825000 5
—62208016¢ ttgt t; — 13 t
6f1 + 5 21811 + 980 5 29 g + 2 3
21718125t 2 3456000t 2779920[ ;
49 3 " 7 %6
38534535 2916000
+ = 2y + tots. (6.22)

The local bihamiltonian structure is polynomial in #1, #2, 13, t4 and tg, where fg is
a solution of a cubic equation. The potential of the Frobenius structure in the flat
coordinates (s1, 52, 3, 54) 1S

IF_T2(664832691s15 393797781spst  117925163577s3s3  31524548679s3s7

43750 8750 2240000 1280000
1771475352
1820
141159923529353s1 59049535351 8090133251733s3 2558795253
286720000 1120 22937600000 35840
81990638748s° N 157687224903s,s7 2528450426975 s
546875 546875 875000
5680343128707s3 7
28000000
4053245357 41422089388329s357 150903 2+349410443449509s§s1
2275 448000000 350 2 17920000000
2075463535351 118472583689109s5 67553 5051241s3s3
5600 81920000000 1183 89600
2446443495072s]  8512750428624s,59
13671875 13671875
1593096854076s3s7 ~ 87566456228121s3 s}
1953125 175000000
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391896144535t 1357381494479907s5 53
284375 5600000000
700488525357 2132696762172393353 53
21875 224000000000
9533546157357 | 87348137456366631s351 16 ,
T 175000 3584000000000 169"
1 50502827753 5351
255 = 1400000
120333341133594693s] 7 i
57344000000000 13
4o
S

2
253

where T is a solution of the following cubic equation

15552, 4563  , 8424 213504 5 270231 4

——Ts71 — —=Ts5 — —=Ts150 — s] — $5
625 2500 625 15625 62500
44413251 , 516672512 256

15625 27 15625 2T 2925

0=T73—

(6.24)

Then, the quasihomogeneity condition reads
1 1 2
gasllF + 3352]1? + 05, F 4+ 0, F = 3 — g)IF. (6.25)

7 Conclusions and remarks

Consider a nilpotent element not of semisimple type and the associated Drinfeld—
Sokolov bihamiltonian structure. Then, the space of common equilibrium points is
still well defined and probably possesses a local bihamiltonian structure which admits
a dispersionless limit. However, examples show that its leading term does not define
a flat pencil of metrics.

It is known that for each conjugacy class in the Weyl group one can con-
struct Drinfeld—Sokolov hierarchy [10] and, under some restrictions, an accompanied
bihamiltonian structure [4]. This bihamiltonian structure agrees with the one used in
this article if the conjugacy class is regular [12].

In the case of a regular primitive conjugacy classes, we obtain a new local algebraic
bihamiltonian structure on the space of common equilibrium points. Since it defines
an exact Poisson pencil, its central invariants are constants [32]. It will be interesting to
calculate them and find if they are equal. In this case the bihamiltonian structure will be
related to the topological hierarchy associated with the algebraic Frobenius structure
[29]. This topological hierarchy seems to be a reduction of the Drinfeld—Sokolov
hierarchy (see [19] for details on Dirac reduction of Hamiltonian equations).
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In future work, we will analyze the bihamiltonian structure associated with
Drinfeld—Sokolov hierarchy for a primitive non-regular conjugacy class. Hoping, this
will lead to algebraic Frobenius structure not covered in this article.
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