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Abstract
We introduce a new quantized enveloping superalgebraUqpn attached to the Lie super-
algebra pn of type P . The superalgebra Uqpn is a quantization of a Lie bisuperalgebra
structure on pn , and we study some of its basic properties. We also introduce the
periplectic q-Brauer algebra and prove that it is the centralizer of the Uqpn-module
structure on C(n|n)⊗l . We end by proposing a definition for a new periplectic q-Schur
superalgebra.

Mathematics Subject Classification 17B37 · 16T25 · 20C08

Introduction

The simple finite-dimensional Lie superalgebras over C were classified by V. Kac in
[22]. The list in loc. cit. contains three classes of Lie superalgebras: basic, strange and
Cartan-type. There are two types of strange Lie superalgebras—P and Q—both of
which are interesting due to the algebraic, geometric, and combinatorial properties of
their representations. The study of the representations of type P Lie superalgebras,
which are also called periplectic in the literature, has attracted considerable attention
in the last five years. Interesting results on the category O, the associated periplectic
Brauer algebras, and related theories have been established in [1,2,4,5,7–9,13,14,19–
21,23,30], among others.
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The purpose of this paper is to introduce a quantum superalgebra of type P via
the FRT formalism [15]. A similar approach was used by G. Olshanski in [29] to
define quantum superalgebras of type Q. We prove that our quantized enveloping
superalgebra Uqpn quantizes a Lie bisuperalgebra structure on pn , a periplectic Lie
superalgebra.

Using a Manin triple, we find a solution s of the classical Yang–Baxter equation.
This element is similar but different from the fake Casimir element used in [1,2]. The
quantum version of s, denoted S, is a solution of the quantum Yang–Baxter equa-
tion which serves as an essential ingredient in the definition of Uqpn . It follows that
the tensor superspace C(n|n)⊗� is a representation of Uqpn and the centralizer of
the action of Uqpn is a quantum version of the periplectic Brauer algebra. The clas-
sical setting corresponding to q = 1 was studied in [26]. A similar result for type
Q Lie superalgebras was established in [29], where the centralizer of the action of
the quantized enveloping superalgebra was proven to be the Hecke–Clifford super-
algebra of the symmetric group S�. Having at our disposal the periplectic q-Brauer
algebra, we can introduce the periplectic q-Schur superalgebra in a natural way. We
conjecture that these are mutual centralizers (that is, they satisfy a double-centralizer
property).

One immediate problem is to define Uqpn in terms of Drinfeld–Jimbo generators
and relations and study its category O. For type Q Lie superalgebras, this problem
was addressed in [17]. Furthermore, in [18], a theory of crystal bases for the tensor
representations ofUqgwas established. Unfortunately, it is unlikely that natural crystal
bases exist in the type P case due to the nonsemisimplicity of the category of tensor
modules, contrary to what happens in type Q. Another natural direction is to construct,
using also the FRT formalism, quantum affine superalgebras of type P . (See [6] for the
type Q case.) Yangians of type P and Q appeared already many years ago in the work
of M. Nazarov [27,28]. We hope to return to these questions in a future publication.

After setting up the notation and basic definitions in the first section, we introduce
the “butterfly” Lie bisuperalgebra in Sect. 2 and define the quantized enveloping super-
algebra of type P in the following section. Themain result of Section 3 is Theorem 3.3,
which states that S, the q-deformation of s, is a solution of the quantum Yang–Baxter
equation. In Sect. 4, we prove that Uqpn is a quantization of the Lie bisuperalgebra
structure from Sect. 2: see Theorem 4.3. The new periplectic q-Brauer algebra Bq,�

and the new periplectic q-Schur algebra are introduced in the last section, where we
prove thatBq,� can be defined equivalently either using generators and relations or as
the centralizer of the action of Uq(pn) on the tensor space: see Theorem 5.5.

1 The Lie superalgebra of type P

LetC(n|n) be the vector superspaceC
n ⊕C

n spanned by the odd standard basis vectors
e−n, . . . , e−1 and the even standard basis vectors e1, . . . , en . Let Mn|n(C) be the vector
superspace consisting of matrices A = (ai j ) with ai j ∈ C and with rows and columns
labelled using the integers −n, . . . ,−1, 1, . . . , n, so i, j ∈ {±1,±2, . . . ,±n}. Set
p(i) = 1 ∈ Z2 if −n ≤ i ≤ −1 and p(i) = 0 ∈ Z2 if 1 ≤ i ≤ n. The parity of the
elementary matrix Ei j is p(i)+ p( j) mod 2. We denote by gln|n the Lie superalgebra
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Quantized enveloping superalgebra of type P Page 3 of 17 84

over C whose underlying vector space is Mn|n(C) and which is equipped with the Lie
superbracket

[Ei j , Ekl ] = δ jk Eil − (−1)(p(i)+p( j))(p(k)+p(l))δil Ek j .

Recall that the supertranspose (·)st on gln|n is given by the formula (Ei j )
st =

(−1)p(i)(p( j)+1)E ji . The involution ι on gln|n which will be relevant for this paper
is given by ι(X) = −π(X st) where π : gln|n −→ gln|n is the linear map given by
π(Ei j ) = E−i,− j .

Definition 1.1 The Lie superalgebra pn of type P , which is also called the periplectic
Lie superalgebra, is the subspace of fixed points of gln|n under the involution ι, that
is, pn = {X ∈ gln|n | ι(X) = X}.

If X ∈ pn with

(
A B
C D

)
and A, B, C, D ∈ Mn(C), then D = −At , B = Bt and

C = −Ct where t denotes the transpose with respect to the diagonal i = − j . For
convenience, we set

Ei j = Ei j + ι(Ei j ) = Ei j − (−1)p(i)(p( j)+1)E− j,−i .

The superbracket on pn is given by

[E j i , Elk] = δilE jk − (−1)(p(i)+p( j))(p(k)+p(l))δ jkEli

−δi,−k(−1)p(l)(p(k)+1)E j,−l − δ− j,l(−1)p( j)(p(i)+1)E−i,k (1)

A basis of pn is provided by all the matrices Ei j with indices i and j respecting one
of the following inequalities:

1 ≤ | j | < |i | ≤ n or 1 ≤ i = j ≤ n or − n ≤ i = − j ≤ −1.

Note that Ei j = −(−1)p(i)(p( j)+1)E− j,−i for all i, j ∈ {±1, · · · ,±n}, hence Ei,−i = 0
when 1 ≤ i ≤ n.

2 Lie bisuperalgebra structure

To construct a Lie bisuperalgebra structure on pn , we define a Manin supertriple.
We follow the idea in [29] for the case of the Lie superalgebra of type Q. Recall
that a Manin supertriple (a, a1, a2) consists of a Lie superalgebra a equipped with
an ad-invariant supersymmetric non-degenerate bilinear form B along with two Lie
subsuperalgebras a1, a2 of a which are B-isotropic transversal subspaces of a. Note
that such a bilinear form B defines a non-degenerate pairing between a1 and a2 and a
supercobracket δ : a1 → a⊗2

1 via

B⊗2(δ(X), Y1 ⊗ Y2) = B(X , [Y1, Y2]),
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where X ∈ a1, Y1, Y2 ∈ a2.

Definition 2.1 The “butterfly” Lie superalgebra bn is the subspace of gln|n spanned
by Ei j with 1 ≤ |i | < | j | ≤ n and by Eii + E−i,−i , Ei,−i for 1 ≤ i ≤ n.

Note that after adding all diagonal matrices to bn , we obtain a Borel subalgebra of
gln|n whose simple roots are all odd. Note also that gln|n = pn ⊕ bn . It is well-known
that the bilinear form B(·, ·) on gln|n given by the super-trace, B(A, B) = Str(AB), is
ad-invariant, supersymmetric and non-degenerate.

One easily checks that B(X1, X2) = 0 if X1, X2 ∈ pn or if X1, X2 ∈ bn . Hence we
have the following result.

Proposition 2.2 (gln|n, pn, bn) is a Manin supertriple.

Remark 2.3 A similar Manin supertriple is given in [24], §2.2.

The quantum superalgebra that we will define in the next section will be a quantiza-
tion of the Lie bisuperalgebra structure given by the Manin supertriple (gln|n, pn, bn).

We extend the form B(·, ·) to a non-degenerate pairing B⊗2 on gln|n ⊗C gln|n by
setting

B⊗2(X1 ⊗ X2, Y1 ⊗ Y2) = (−1)|X2||Y1|B(X1, Y1)B(X2, Y2)

for all homogeneous elements X1, X2, Y1, Y2 ∈ pn . The sign (−1)|X2||Y1| is necessary
to make this form ad-invariant.

Let

s =
∑

1≤| j |<|i |≤n

(−1)p( j)Ei j ⊗ E ji + 1

2

∑
1≤i≤n

Ei i ⊗ (Eii + E−i,−i )

+1

2

∑
1≤i≤n

E−i,i ⊗ Ei,−i (2)

Remark 2.4 We note that the fake Casimir used in [1] is also defined using the sum of
tensor product of basis vectors in pn and their duals in p⊥

n , but the fake Casimir differs
from the element s defined above. One crucial difference is that the space p⊥

n used in
[1] is not a subalgebra of gln|n , while bn is.

Proposition 2.5 s is a solution of the classical Yang–Baxter equation: [s12, s13] +
[s12, s23] + [s13, s23] = 0.

The proof of the above proposition follows from the lemma below, which should
be well-known among experts.

Lemma 2.6 Let p be a finite dimensional Lie superalgebra and suppose that (p, p1, p2)
is a Manin triple with respect to a certain supersymmetric, invariant, bilinear form
B(·, ·). Let {Xi }i∈I , {X ′

i }i∈I be bases of p1 and p2, respectively, dual in the sense that
B(X ′

i , X j ) = δi j . (Here, I is just some indexing set.) Set s = ∑
i∈I Xi ⊗ X ′

i . Then s
is a solution of the classical Yang–Baxter equation.
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We next compute the supercobracket δ using the identity B(X , [Y1, Y2]) =
B(δ(X), Y1 ⊗ Y2) for all X ∈ pn and all Y1, Y2 ∈ bn . The formula for δ is (assuming,
without loss of generality, that | j | ≤ |i |):

δ(Ei j ) =
n∑

k=−n| j |<|k|<|i |

(−1)p(k)+1(Eik ⊗ Ek j − (−1)(p(i)+p(k))(p( j)+p(k))Ek j ⊗ Eik
)

−1

2
((−1)p(i)Ei i − (−1)p( j)E j j ) ⊗ Ei j

+1

2
Ei j ⊗ ((−1)p(i)Ei i − (−1)p( j)E j j )

−δ(i < 0)

2

(
Ei,−i ⊗ E−i, j − (−1)p( j)E−i, j ⊗ Ei,−i

)
(3)

+δ( j > 0)

2

(
(−1)p(i)E− j, j ⊗ Ei,− j + Ei,− j ⊗ E− j, j

)

Finally, the super cobracket on pn is related to the element s. The following lemma
is standard.

Lemma 2.7 The super cobracket can also be expressed as

δ(X) = [X ⊗ 1 + 1 ⊗ X , s], (4)

for X ∈ pn.

3 Quantized enveloping superalgebra

In this section, we define the quantized enveloping superalgebra Uqpn following the
approach used in [15] and [29]. We use a solution S of the quantum Yang–Baxter
equation such that s is the classical limit of S.

For simplicity, denote by Cq the field C(q) of rational functions in the variable q
and set Cq(n|n) = Cq ⊗C C(n|n).

Definition 3.1 Let S ∈ EndCq (Cq(n|n)⊗2) be given by the formula:

S = 1 +
∑

1≤i≤n

(
(q − 1)Eii + (q−1 − 1)E−i,−i

) ⊗ (Eii + E−i,−i )

+q − q−1

2

∑
−n≤i≤−1

Ei,−i ⊗ E−i,i

+(q − q−1)
∑

1≤| j |<|i |≤n

(−1)p( j)Ei j ⊗ E ji (5)

Remark 3.2 If we define S instead as an element of EndC[[�]](C�(n|n)⊗2) by the same
formula as in definition 3.1 but with q, q−1 replaced by e�/2, e−�/2 and Cq(n|n)⊗2

replaced by C�(n|n)⊗2, which equals C(n|n)⊗2[[�]], then S = 1 + �s + O(�2).
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Theorem 3.3 S is a solution of the quantum Yang–Baxter equation: S12S13S23 =
S23S13S12.

Proof The proof consists of verifying long computations. To simplify them, we have
used the following method. Set f (q) = S12S13S23 − S23S13S12. The main idea
is to consider f (q) as a Laurent polynomial

∑3
i=−3 fi qi with coefficients fi in

EndC

(
C

⊗3
n|n

)
. Then one shows the eight relations f (a) = 0, f ′(b) = 0, f ′′(c) = 0 for

a, b, c = ±1 and b = ±√−1. (Actually, just seven of those are enough.) We can then
deduce that f (q) is a scalar multiple of (q − q−1)3 and we show that the coefficient
of q3 in f (q) is zero.

Here are some more details.
Let us set

C =
∑

1≤i≤n

(Eii + E−i,−i ) ⊗ (Eii + E−i,−i ).

Then

S = 1 + (q − q−1)s +
(

q + q−1

2
− 1

)
C .

For convenience, we introduce the following notation:

[sC] =s12C13 + s12C23 + s13C23 + C12s13 + C12s23 + C13s23
− s23C13 − s23C12 − s13C12 − C23s13 − C23s12 − C13s12

[sCC] =s12C13C23 + C12s13C23 + C12C13s23
− s23C13C12 − C23S13C12 − C23C13s12

[ssC] =s12s13C23 + C12s13s23 + s12C13s23 − s23s13C12 − C23s13s12 − s23C13s12

The relations f (a) = 0, f ′(b) = 0, f ′′(c) = 0 for a, b, c = ±1 and b = ±√−1
follow from the next two lemmas and checking these involves explicit computations.

Lemma 3.4 [sC] = 2[sCC]
Lemma 3.5 [ssC] = 0

For instance, f ′(−1) = 0 follows from f ′(−1) = −4[sC] + 8[sCC] and the two
lemmas. Furthermore,

f ′′(−1) = −4[sC] + 8[sCC] − 16[ssC] + 8([s12, s13] + [s12, s23] + [s13, s23]).

Therefore, f ′′(−1) = 0 thanks to Lemmas 2.6, 3.4, and 3.5 . Similarly, the two lemmas
above imply that

f ′(
√−1) = 2

√−1[sC] − 4
√−1[sCC] − 4[ssC]
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vanishes.
The last step in the proof of Theorem 3.3 is to show the vanishing of the coefficient

f3 of q3. We have

f3 = s12s13s23 − s23s13s12 + 1

4
[sCC] + 1

2
[ssC] + 1

8
C12C13C23 − 1

8
C23C13C12,

which simplifies to

s12s13s23 − s23s13s12 + 1

4
[sCC] (6)

thanks to Lemma 3.5 and C12C13C23 − C23C13C12 = 0. Verifying that (6) vanishes
follows by direct and extensive computations. 
�

With the aid of S, we can now define the main object of interest in this paper.

Definition 3.6 The quantized enveloping superalgebra of pn is the Z2-graded
Cq−algebra Uqpn generated by elements ti j , t−1

i i with 1 ≤ |i | ≤ | j | ≤ n and
i, j ∈ {±1, · · · ,±n} which satisfy the following relations:

tii = t−i,−i , t−i,i = 0 if i > 0, ti j = 0 if |i | > | j |; (7)

T12T13S23 = S23T13T12 (8)

where T = ∑
|i |≤| j | ti j ⊗C Ei j and the last equality holds in Uqpn ⊗C(q)

EndC(q)(Cq(n|n))⊗2. The Z2-degree of ti j is p(i) + p( j).

Remark 3.7 One immediate corollary of the definition above is that if ti j is odd, then
t2i j = 0. This follows for example after taking i = k and j = l in (9).

Uqpn is a Hopf algebra with antipode given by T �→ T −1 and with coproduct given
by

�(ti j ) =
n∑

k=−n

(−1)(p(i)+p(k))(p(k)+p( j))tik ⊗ tk j .

4 Limit when q �→ 1 and quantization

Wewant to explain how Upn can be viewed as the limit when q �→ 1 of Uqpn and how
the co-Poisson Hopf algebra structure on Upn , which is inherited from the cobracket
δ on pn , can be recovered from the coproduct on Uqpn .

Set τi j = ti j

q−q−1 if i = j and set τi i = ti i −1
q−1 . LetA be the localization of C[q, q−1]

at the ideal generated by q − 1. Let UApn be the A-subalgebra of Uqpn generated by
τi j when 1 ≤ |i | ≤ | j | ≤ n.

Theorem 4.1 The map ψ : Upn −→ UApn/(q − 1)UApn given by ψ(E j i ) =
(−1)p( j)τ i j for |i | < | j |, 1 ≤ i = j ≤ n, and ψ(E−i,i ) = −2τ i,−i for 1 ≤ i ≤ n, is
an associative C-superalgebra isomorphism.
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Proof First, we need to write down explicitly the defining relation (8). Comparing
coefficients of Ei j ⊗ Ekl on both sides of relation (8), we obtain:

(−1)(p(i)+p( j))(p(k)+p(l))ti j tkl − tkl ti j + θ(i, j, k)
(
δ| j |<|l| − δ|k|<|i |

)
εtil tk j

+ (−1)(p(i)+p( j))(p(k)+p(l))(δ j>0(q − 1) + δ j<0(q
−1 − 1)

)(
δ jl + δ j,−l

)
ti j tkl

− (
δi>0(q − 1) + δi<0(q

−1 − 1)
)(

δik + δi,−k
)
tkl ti j

+ θ(i, j, k)δ j>0δ j,−lεti,− j tk,−l − (−1)p( j)δi<0δi,−kεt−k,l t−i, j

+ (−1)p( j)(p(i)+1)ε
∑

−n≤a≤n

(
(−1)p(i)p(a)θ(i, j, k)δ j,−lδ|a|<|l|ti,−atka

+ (−1)p(− j)p(a)δi,−kδ|k|<|a|tal t−a, j
)

= 0

(9)

In the identity above, we set

θ(i, j, k) = sgn(sgn(i) + sgn( j) + sgn(k)) and ε = q − q−1.

In order to check that ψ([E j i , Ekl ]) = [ψ(E j i ), ψ(Ekl)], we proceed as follows. We
apply ψ on both sides of (1). To show that the resulting right-hand side coincides with
[ψ(E j i ), ψ(Ekl)], we use (9) and pass to the quotientUApn/(q −1)UApn . This is done
via a long case-by-case verification for i, j, k, l.

From the way UApn is defined, it follows that ψ is surjective. It remains to prove
that it is injective. Since S is a solution of the quantum Yang–Baxter equation, the
space Cq(n|n) is a representation of Uqpn via the assignment ti j �→ si j (where S =∑n

i, j=−n si j ⊗ Ei j ), hence also of UApn by restriction. More explicitly,

τi j �→ (−1)p(i)E j i if |i | < | j |, and

τi,−i �→ E−i,i , τi i �→ (Eii − q−1E−i,−i ) if 1 ≤ i ≤ n.

Set CA(n|n) = A ⊗C C(n|n). The space CA(n|n) is a UApn-submodule and so
are all the tensor powers CA(n|n)⊗�. We thus have a superalgebra homomorphism
φ� : UApn −→ EndA(CA(n|n)⊗�) for each � ≥ 1.

Let π� be the quotient homomorphism

EndA(CA(n|n)⊗�) −→ EndA(CA(n|n)⊗�)/(q − 1)EndA(CA(n|n)⊗�)

∼= EndC(C(n|n)⊗�).

The compositeπ�◦φ� descends to a homomorphism π� ◦ φ� fromUApn/(q −1)UApn

to EndC(C(n|n)⊗�). The composite π� ◦ φ� ◦ ψ is the superalgebra homomorphism
Upn −→ EndC(C(n|n)⊗�) induced by the natural pn-module structure on C(n|n)⊗�

twisted by the automorphism of pn given by Ei j �→ (−1)p(i)+p( j)Ei j .
We can combine the homomorphisms π� ◦ φ� ◦ ψ for all � ≥ 1 to obtain a homo-

morphism Upn −→ ∏∞
�=1 EndC(C(n|n)⊗�). This map is injective since C(n|n) is a

faithful representation of pn . It follows that ψ is injective as well. 
�
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We next show that a PBW-type theorem holds for Uqpn . For this, we first introduce
a total order ≺ on the set of generators ti j , 1 ≤ |i | ≤ | j | ≤ n, of Uqpn as follows. We
declare that ti j ≺ tkl if

(i) |i | > |k|, or
(ii) |i | = |k| and | j | > |l|, or
(iii) i = k and j = −l > 0, or
(iv) i = −k > 0 and | j | = |l|.
This order leads to a total lexicographic order on the set of words formed by the
generators ti j . Namely, if A = A1 · · · Ar and B = B1 · · · Bs are two such words in
the sense that each Ak for 1 ≤ k ≤ r and each Bl for 1 ≤ l ≤ s is equal to some
generator ti j , then A ≺ B if r < s or if r = s and there is a p such that Ak = Bk for
1 ≤ k ≤ p − 1 and Ap ≺ Bp. Note that, in this order, the generators ti j with i = j or
i = − j are not grouped together. We call a generator of the from tii diagonal. Also, a
word Ak1

1 . . . Akr
r in the generators ti j is called a reduced monomial if A1 ≺ · · · ≺ Ar ,

and ki ∈ Z>0 if Ai is not diagonal, ki ∈ Z \ {0} if Ai is diagonal, and ki = 1 if Ai is
odd.

Theorem 4.2 The reduced monomials form a basis of Uqpn over Cq .

Proof We first show that the set of reduced monomials spans Uqpn . Note that it is
enough to show that all quadratic monomials are in the span of this set. Let ti j tkl be a
quadraticmonomialwhich is not reduced.We have that either tkl = ti j , or i = k, j = l
and ti j is odd. In the latter case, as explained in Remark 3.7, t2i j = 0. In the former
case, we proceed with a case-by-case reasoning considering seven mutually exclusive
subcases:

(a) |i | < |k| and | j | = |l|.
(b) |i | < |k| and j = l.
(c) |i | < |k| and j = −l.
(d) |i | = |k| and | j | < |l|.
(e) i = k and j = −l < 0.
(f) i = −k < 0 and j = l.
(g) i = −k < 0 and j = −l.

Let us consider in some details subcase (c). The remaining subcases are handled in
a similar manner. In subcase (c), (9) simplifies to:

(−1)(p(i)+p( j))(p(k)+p(− j))(δ j>0q + δ j<0q−1)ti j tk,− j

− tk,− j ti j + θ(i, j, k)δ j>0εti,− j tk j

+ (−1)p( j)(p(i)+1)ε
∑

−n≤a≤n

(−1)p(i)p(a)θ(i, j, k)δ|a|<| j |ti,−atka = 0
(10)

Let us assume that |l| = | j | = 1. Then the previous equation reduces to

(−1)(p(i)+p( j))(p(k)+p(− j))(δ j>0q + δ j<0q−1)ti j tk,− j

+θ(i, j, k)δ j>0εti,− j tk j = tk,− j ti j

123



84 Page 10 of 17 S. Ahmed et al.

Replacing j by − j leads to the equation

(−1)(p(i)+p(− j))(p(k)+p( j))(δ j<0q + δ j>0q−1)ti,− j tk j

+θ(i,− j, k)δ j<0εti j tk,− j = tk j ti,− j

The monomials tk,− j ti j and tk j ti,− j are properly ordered and the previous two equa-
tions can be solved to express ti j tk,− j and ti,− j tk j in terms of the former.

We then proceed by descending induction on | j | and show that ti j tk,− j can be
expressed as a linear combination of properly ordered monomials. The base case
| j | = 1 was completed above. We use again (10) and the corresponding equation
obtained after switching j and− j . In these two equations, by induction, themonomials
ti,−atka with |a| < | j | can be expressed as linear combinations of properly ordered
monomials. Moreover, tk,− j ti j and tk j ti,− j are already correctly ordered. As in the
case |l| = | j | = 1, we can then solve those two equations to express ti j tk,− j and
ti,− j tk j in terms of properly ordered monomials.

It remains to show that the reduced monomials form a linearly independent set. We
follow the approach in [29]. Let M1, . . . , Mr be pairwise distinct reduced monomials
in the generators τi j such that a1M1 + · · · + ar Mr = 0 for some a1, . . . , ar ∈ Cq .
Without loss of generality, we can assume that ai ∈ A. It is sufficient to prove that
a1, . . . , ar ∈ A implies a1, . . . , ar ∈ (q − 1)A.

Recall that there is a surjective homomorphism θ : UApn → Upn More precisely,
θ is the composite ofψ−1 from Theorem 4.1 and the projection UApn → UApn/(q −
1)UApn from Theorem 4.1. Let Mi = θ(Mi ) and denote by āi the image of ai in
A/(q−1)A. Since M1, . . . , Mr are pairwise distinct reducedmonomials, M1, . . . , Mr

are pairwise distinct monomials in Upn . Then using that

ā1M1 + · · · + ār Mr = θ(a1M1 + · · · + ar Mr ) = 0

and the (classical) PBW Theorem for Upn , we obtain ā1 = · · · = ār = 0. Hence,
a1, · · · , ar ∈ (q − 1)A as needed. 
�

As mentioned in Remark 3.2, we may replace C(q) by C((�)), q by e�/2, and A
by C[[�]], and an analog of Theorem 4.1 would hold true, implying that UC[[�]]pn

is a flat deformation of Upn . Moreover, the next theorem states that UC[[�]]pn is a
quantization of the co-Poisson Hopf superalgebra structure on Upn induced by the Lie
bisuperalgebra structure defined in Sect. 2. To be precise, the cobracket δ on pn extends
to a Poisson co-bracket on Upn , which we also denote by δ. Let (·)◦ be the involution
on (UC[[�]]pn)⊗2 given by A1 ⊗ A2 �→ (−1)p(A1)p(A2) A2 ⊗ A1 where p(Ai ) is the
Z/2Z-degree of Ai , i = 1, 2.

For convenience, for A ∈ UC[[�]]pn , we denote by A both the image of A in
UC[[�]]pn/hUC[[�]]pn and the corresponding element in Upn via the isomorphism of
the �-analogue of Theorem 4.1. Similarly, we identify the corresponding elements in(
UC[[�]]pn/hUC[[�]]pn

) ⊗ (
UC[[�]]pn/hUC[[�]]pn

)
and Upn ⊗ Upn .

Theorem 4.3 If A ∈ UC[[�]]pn, we have �−1(�(A) − �(A)◦) = δ(A). Hence,
UC[[�]]pn is a quantization of the co-Poisson Hopf superalgebra structure on Upn.
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Proof We show that the identity above holds for the generators τi j of UC[[�]]g, so let
A = τi j . We first note that the identity is trivially satisfied for i = j , as both sides are
zero. Assume henceforth that i = j . Then:

�
−1 (

�(τi j ) − �(τi j )
◦)

=
(

e�/2 − e−�/2

�

)
n∑

k=−n|i |<|k|<| j |

(
(−1)(p(i)+p(k))(p( j)+p(k))τik ⊗ τk j − τk j ⊗ τik

)

+
(

e�/2 − 1

�

) (
τi i ⊗ τi j − τi j ⊗ τi i + τi j ⊗ τ j j − τ j j ⊗ τi j

)

−
(

e�/2 − e−�/2

�

)
δi>0

(
(−1)p( j)τi,−i ⊗ τ−i, j + τ−i, j ⊗ τi,−i

)

+
(

e�/2 − e−�/2

�

)
δ j<0

(
(−1)p(i)τi,− j ⊗ τ− j, j − τ− j, j ⊗ τi,− j

)

Thus, in UC[[�]]g/�UC[[�]]g, we have:

�−1
(
�(τi j ) − �(τi j )◦

) =
n∑

k=−n|i |<|k|<| j |

(
(−1)(p(i)+p(k))(p( j)+p(k))τ ik ⊗ τ k j − τ k j ⊗ τ ik

)

+ 1

2

(
τ i i ⊗ τ i j − τ i j ⊗ τ i i + τ i j ⊗ τ j j − τ j j ⊗ τ i j

)

− δi>0

(
τ−i, j ⊗ τ i,−i + (−1)p( j)τ i,−i ⊗ τ−i, j

)

+ δ j<0

(
(−1)p(i)τ i,− j ⊗ τ− j, j − τ− j, j ⊗ τ i,− j

)

We next compute δ(τ i j ) using the isomorphism of Theorem 4.1 and (3).

δ(τ i j ) =(−1)p( j)δ(E j i )

=
n∑

k=−n|i |<|k|<| j |

(−1)p( j)+p(k)
(
(−1)(p(i)+p(k))(p( j)+p(k))Eki ⊗ E jk − E jk ⊗ Eki

)

− 1

2
(−1)p( j)

(
(−1)p( j)E j j − (−1)p(i)Ei i

)
⊗ E j i

+ 1

2
(−1)p( j)E j i ⊗

(
(−1)p( j)E j j − (−1)p(i)Ei i

)

− δ j<0

2
(−1)p( j)E j,− j ⊗ E− j,i + δi>0

2
E−i,i ⊗ E j,−i
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+ δ j<0

2
(−1)p(i)+p( j)E− j,i ⊗ E j,− j + δi>0

2
(−1)p( j)E j,−i ⊗ E−i,i

=�−1
(
�(τi j ) − �(τi j )◦

)

as needed. 
�

5 Periplectic q-Brauer algebra

In [26], D. Moon identified the centralizer of the action of pn on the tensor space
C(n|n)⊗l . This centralizer is called the periplectic Brauer algebra in the literature: see
[4,5,7,8].

Since S is a solution of the quantumYang–Baxter equation,we have a representation
of Uqpn onCq(n|n) via the assignment ti j �→ si j (where S = ∑n

i, j=−n si j ⊗ Ei j ), and

thus we also have a representation on each tensor powerCq(n|n)⊗l . In this section, we
identify the centralizer of the action of Uqpn on Cq(n|n)⊗l and call it the periplectic
q-Brauer algebra. For the quantum group of type Q, this was done in [29] and the
centralizer of its action is called the Hecke-Clifford superalgebra. Quantum analogs of
the Brauer algebra were studied in [25] where they appear as centralizers of the action
of twisted quantized enveloping algebras Utw

q on and Utw
q spn on tensor representations

(here, spn is the symplectic Lie algebra); see also [31].

Definition 5.1 The periplectic q-Brauer algebra Bq,l is the associative C(q)-algebra
generated by elements ti and ci for 1 ≤ i ≤ l − 1 satisfying the following relations:

(ti − q)(ti + q−1) = 0, c2i = 0, ci ti = −q−1ci , tici = qci for 1 ≤ i ≤ l − 1;
(11)

ti t j = t j ti , tic j = c j ti , cic j = c jci if |i − j | ≥ 2; (12)

ti ti+1ti = ti+1ti ti+1, ci+1cici+1 = −ci+1, cici+1ci = −ci for 1 ≤ i ≤ l − 2;
(13)

tici+1ci = −ti+1ci + (q − q−1)ci+1ci , ci+1ci ti+1 = −ci+1ti + (q − q−1)ci+1ci

(14)

Remark 5.2 Setting q = 1 in this definition yields the algebra Al from Definition 2.2
in [26].

Lemma 5.3 View C(q) as a purely odd Uqpn-module. We have Uqpn-module homo-
morphisms ϑ : Cq(n|n) ⊗ Cq(n|n) → C(q) and ε : C(q) → Cq(n|n) ⊗ Cq(n|n)

given by ϑ(ea ⊗ eb) = δa,−b(−1)p(a) and ε(1) = ∑n
a=−n ea ⊗ e−a.

Proof It is enough to check that, for all the generators ti j of Uqpn and any tensor
v ∈ Cq(n|n) ⊗ Cq(n|n),

ϑ(ti j (v)) = ti j (ϑ(v)) and ε(ti j (1)) = ti j (ε(1)). (15)

Here is a brief sketch of some of the computations.
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Using the formula for the coproduct, we have:

ti j (ea ⊗ e−a) =
n∑

k=−n

(−1)(p(i)+p(k))(p(k)+p( j))+(p(k)+p( j))p(a)tik(ea) ⊗ tk j (e−a)

(16)

This can be made more explicit using

tii (ea) =
n∑

b=−n

qδbi (1−2p(i))+δb,−i (2p(i)−1)Ebb(ea);

ti,−i (ea) = (q − q−1)δi>0E−i,i (ea);
ti j (ea) = (q − q−1)(−1)p(i)E j i (ea), if |i | = | j |.

We obtain, for instance,

tii (ea1 ⊗ ea2) =qδa1,i (1−2p(i))+δa1,−i (2p(i)−1)qδa2,i (1−2p(i))+δa2,−i (2p(i)−1)ea1 ⊗ ea2

If a2 = −a1 = −a, this simplifies to ea ⊗e−a and this allows us to check (15) quickly
for i = j .

Furthermore,

ti,−i (ea ⊗ e−a) = (−1)p(a)δi>0tii (ea) ⊗ ti,−i (e−a) + δi>0ti,−i (ea) ⊗ t−i,−i (e−a)

It follows that ti,−i
(∑n

a=−n ea ⊗ e−a
) = 0, so the identity for ε in(15) holds for

j = −i .
Suppose now that a1 = −a2. Then

ti,−i (ea1 ⊗ ea2) =δi>0δ(a1 = a2 = i)(q − q−1)qei ⊗ e−i

+ δi>0δ(a1 = a2 = i)(q − q−1)qe−i ⊗ ei

Observe that ϑ(ei ⊗e−i +e−i ⊗ei ) = 0, so we have shown that ϑ(ti,−i (ea1 ⊗ea2)) =
ti,−i (ϑ(ea1 ⊗ ea2)) and this proves (15) for ϑ when j = −i .

Next, we consider the case |i | = | j |. To prove the identity for ε in (15), we use

again (16) and obtain that ti j

(
n∑

a=−n

ea ⊗ e−a

)
= 0 by considering subcases i = ±a,

j = ±a, and k = ±a. To show that (15) holds for ϑ we also proceed with case-
by-case verification. The case a1, a2 /∈ {±i,± j} is immediate. If a1 ∈ {±i,± j},
a2 /∈ {±i,± j}, and a1 = −a2, then

ti j (ea1 ⊗ ea2)

= (q − q−1)2(−1)(p(i)+p(a2))(p(a2)+p( j))+(p(a2)+p( j))p(a1)(−1)p(i)+p(a2)Ea2i (ea1)

⊗ E ja2(ea2) + (q − q−1)(−1)p(i)E j i (ea1) ⊗ Ea2a2(ea2).
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This shows that ϑ(ti j (ea1 ⊗ ea2)) = 0 = ti j (ϑ(ea1 ⊗ ea2)). Similarly, we obtain the
desired identity in the other cases. 
�

By composing ϑ and ε, we obtain a Uqpn-module homomorphism ε ◦ ϑ :
Cq(n|n)⊗2 → Cq(n|n)⊗2. In terms of elementary matrices, this linear map is
given by

∑n
a,b=−n(−1)p(a)p(b)Eab ⊗ E−a,−b, which we abbreviate by c. The super-

permutation operator P on Cq(n|n)⊗2 is given by P = ∑n
a,b=−n(−1)p(b)Eab ⊗ Eba ,

so c = P(π◦st)2 where (π ◦ st)2 stands for the map π ◦ st applied to the second tensor
in the previous formula for P .

We can extend c to a Uqpn-module homomorphism ci : Cq(n|n)⊗l → Cq(n|n)⊗l

for 1 ≤ i ≤ l − 1 by applying c to the i th and (i + 1)th tensors.
The linear map Cq(n|n)⊗l → Cq(n|n)⊗l given by Pi Si,i+1 where Pi is the super-

permutation operator acting on the i th and (i + 1)th tensors is also a Uqpn-module
homomorphism: this is a consequence of the fact that S is a solution of the quantum
Yang–Baxter relation.

Proposition 5.4 The tensor superspace Cq(n|n)⊗l is a module over Bq,l if we let ti
act as Pi Si,i+1 and ci act as ci .

Proof That the linear operators Pi Si,i+1 satisfy the braid relation (the first relation in
(13)) is a consequence of the fact that S is a solution of the quantum Yang–Baxter
relation. The relations (12) for the operators Pi Si,i+1 and ci can be easily verified. As
for the other relations, they can be checked via direct computations. It is enough to
check the relations (11) onCq(n|n)⊗2 and the relations (14) onCq(n|n)⊗3. We briefly
sketch some of those computations below.

First, note that cP = −c and Pc = c. Also, we easily obtain the following:

c

(
(q − 1)

n∑
i=1

Eii ⊗ Eii

)
=c

(
(q−1 − 1)

n∑
i=1

E−i,−i ⊗ E−i,−i

)
= 0,

c

(
(q − 1)

n∑
i=1

Eii ⊗ E−i,−i

)
=(q − 1)

n∑
a=−n

n∑
b=1

Eab ⊗ E−a,−b,

c

(
(q−1 − 1)

n∑
i=1

E−i,−i ⊗ Eii

)
=(q−1 − 1)

n∑
a=−n

−1∑
b=−n

(−1)p(a) Eab ⊗ E−a,−b,

c

( −1∑
i=−n

Ei,−i ⊗ E−i,i

)
= −

n∑
a=−n

n∑
b=1

Eab ⊗ E−a,−b,

c

⎛
⎝ ∑

1≤| j |<|i |≤n

(−1)p( j)Ei j ⊗ E ji

⎞
⎠ =

n∑
a=−n

∑
1≤| j |<|i |≤n

(−1)p(a)(p(i)+1)+p( j) Ea,−i ⊗ E−a,i

=0.

Therefore, we have that c(S − 1) = (q−1 − 1)c, hence cS = q−1c. Now using that
c = −cP , we obtain the third relation in (11). Similarly, we prove (S −1)c = (q −1)c,
and then using Pc = c, we obtain the fourth relation in (11).
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For the remaining relations, we use the following formula:

P S =
n∑

i, j=−n

(−1)p( j)Ei j ⊗ E ji + (q − 1)
n∑

i=1

(
E−i,i ⊗ Ei,−i

)

+ (q − 1)
n∑

i=1

(Eii ⊗ Eii ) − (q−1 − 1)
n∑

i=1

(
Ei,−i ⊗ E−i,i

)

− (q−1 − 1)
n∑

i=1

(
E−i,−i ⊗ E−i,−i

) + (q − q−1)

−1∑
i=−n

(
E−i,−i ⊗ Eii

)

+ (q − q−1)
∑

| j |<|i |

(
E j j ⊗ Eii

) + (q − q−1)
∑

| j |<|i |

(
(−1)p(i)p( j)E ji ⊗ E− j,−i

)


�

Asmentioned after the definition ofBq,l , themodule structure given in the previous
proposition commutes with the action of Uq(pn) on Cq(n|n)⊗l . We thus have algebra
homomorphisms

Bq,l −→ EndUq (pn)(Cq(n|n)⊗l) and Uq(pn) −→ EndBq,l (Cq(n|n)⊗l).

The main theorem of this section states that Bq,l is the full centralizer of the action
of Uq(pn) on Cq(n|n)⊗l when n ≥ l.

Theorem 5.5 The mapBq,l −→ EndUq (pn)(Cq(n|n)⊗l) is surjective and it is injective
when n ≥ l.

Proof This is a q-analogue of Theorem 4.5 in [26]. The proof follows the lines of the
proof of Theorem 3.28 in [3].

Recall thatA = C[q, q−1](q−1) is the localization of C[q, q−1] at the ideal gener-
ated by q − 1. The algebra UApn was defined at the beginning of Sect. 4 and it acts
on CA(n|n)⊗l . Let us abbreviate it by Ũ for the moment. Let EndŨ(CA(n|n)⊗l) be
the A-subalgebra of EndA(CA(n|n)⊗l) that consists of all the A-endomorphisms of
CA(n|n)⊗l that commute with the action of Ũ.

Let Bq,l(A) be the A-associative subalgebra of Bq,l generated by ti and ci

for all i = 1, . . . , l − 1. Theorem 5.5 will follow from the statement that the A-
homomorphism

Bq,l(A) −→ EndŨ(CA(n|n)⊗l)

given also by Proposition 5.4 is surjective and is an isomorphism whenever n ≥ l.
Let Al be the algebra given in Definition 2.2 in [Mo]. Proposition 5.6 gives use an

isomorphism ρ : Al −→ (A/(q − 1)A) ⊗A Bq,l(A) which fits within the following
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diagram (see the proof of Theorem 3.28 in [3]).

Al
ρ

(A/(q − 1)A) ⊗A Bq,l(A) (A/(q − 1)A) ⊗A EndŨ(CA(n|n)⊗l)

Endpn (C(n|n)⊗l) EndC(C(n|n)⊗l)

The rest of the proof can proceed as in [3]), using Theorem 4.5 in [26] along with
Lemma 3.27 in [3], which can be applied in the present situation. 
�
Proposition 5.6 The quotient algebra Bq,l(A)/(q − 1)Bq,l(A) is isomorphic to the
algebra Al given in Definition 2.2 in [26].

Proof It follows immediately from the definitions of both Al and Bq,l(A) that we
have a surjective algebra homomorphism Al � Bq,l(A)/(q − 1)Bq,l(A). That it is
injective can be proved as in the proof of Proposition 3.21 in [3] using Theorem 4.1
in [26]. 
�

The q-Schur superalgebras of type Q were introduced in [3] and [11,12]. Consid-
ering loc. cit. and the earlier work on q-Schur algebras for gln (see for instance [10]),
the following definition is natural.

Definition 5.7 The q-Schur superalgebra Sq(pn, l) of type P is the centralizer of the
action of Bq,l on Cq(n|n)⊗l , that is, Sq(pn, l) = EndBq,l (Cq(n|n)⊗l).

We have an algebra homomorphism Uq(pn) −→ Sq(pn, l): it is an open ques-
tion whether or not this map is surjective. We also have an algebra homomorphism
Bq,l −→ EndSq (pn ,l)(Cq(n|n)⊗l) and it is natural to expect that it should be an iso-
morphism, perhaps under certain conditions on n and l.
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