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Abstract

We present an [F ,-Selberg integral formula of type A, in which the IF ,-Selberg integral
is an element of the finite field I ,,, where p is an odd prime. The formula is motivated by
analogy between multidimensional hypergeometric solutions of the KZ equations and
polynomial solutions of the same equations reduced modulo p. The A-type formula
was proved in a previous paper by the authors. The A;-type formula is proved in this
paper. We also sketch the proof of the A, -type formula for n > 2.
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1 Introduction

In 1944, Atle Selberg proved the following integral formula:

1 1 k
/ / 1_[ |x;i —xj|27’ Hxlfx_l(l —x)PVdx ... dxg
0

0 y<icj<k i=1

Frd+jy) T'la+G —-Dy)TB+ G — Dy)
r'd+y) Fa+B8+&k+j—2)y)

. (1.1)

j=1

where «, B, y are complex numbers such that Ree > 0, Ref > 0, and Rey >
—min[(Rea)/(n — 1)Re B)/(n — 1)]. See [1,22]. Hundreds of papers are devoted
to the generalizations of the Selberg integral formula and its applications, see for
example [1,10] and references therein. There are g-analysis versions of the formula,
the generalizations associated with Lie algebras, elliptic versions, finite field versions,
see some references in [1,2,4,5,7,8,10-12,17,18,24,27,28,30,38,39]. In the finite field
versions, one considers additive and multiplicative characters of a finite field, which
map the field to the field of complex numbers, and forms an analog of equation (1.1), in
which both sides are complex numbers. The simplest of such formulas is the classical
relation between Jacobi and Gauss sums, see [1,2,7].

In [21], we suggested another version of the Selberg integral formula, in which the
IF,-Selberg integral is an element of the finite field IF, with an odd prime number p
of elements.

Our motivation in [21] came from the theory of Knizhnik—Zamolodchikov (KZ)
equations, see [6,13]. These are the systems of linear differential equations, satisfied
by conformal blocks on the sphere in the WZW model of conformal field theory. The
KZ equations were solved in multidimensional hypergeometric integrals in [25], see
also [31,32]. The following general principle was formulated in [16]: if an example
of the KZ-type equations has a one-dimensional space of solutions, then the corre-
sponding multidimensional hypergeometric integral can be evaluated explicitly. As an
illustration of that principle in [16], an example of the sl differential KZ equations
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with a one-dimensional space of solutions was considered, the corresponding mul-
tidimensional hypergeometric integral was reduced to the Selberg integral and then
evaluated by formula (1.1). See other illustrations in [8,9,20,27,28,30,33].

Recently in [26], the KZ equations were considered modulo a prime number p
and polynomial solutions of the reduced equations were constructed, see also [23,
33-37]. The construction is analogous to the construction of the multidimensional
hypergeometric solutions, and the constructed polynomial solutions were called the
F,-hypergeometric solutions.

In [21], we considered the reduction modulo p of the same example of the sl
differential KZ equations, that led in [16] to the Selberg integral. We evaluated the
corresponding I ,-hypergeometric solution by analogy with the evaluation of the Sel-
berg integral and obtained the IF,-Selberg integral formula in [21, Theorem 4.1].

n [30, Theorem 3.3], the Selberg integral formula of type A, was proposed and
proved,

ki ko

/;’ﬂ’@ol nla 1(] t)ﬂl 11_[(1 S)ﬁz ll_[l_[|sj_tz| y

i=1j=1
x ]_[ t; — 15> ]—[ Isj —s;[? dty ...d, dsi .. .dsg,

I<i<i’'<k; l=j<j'=kz

_"ﬁ” LB+ (i — 1y)
Al T@+pi+G+k—2y)

5 1—[ T+ G —1y) LB+ o+ (i — 2)y)
T+ g+ +h—k—2y) Ta+pi+p+0+k—3)
1’2[ (1+ (i —k — Dy)T(iy) 1—[ T(a+ (i — Dy) T(iy)

1.2
C'(y) C'(y) (12

i=1

Here, Rea > 0,Reff; > 0, Re 8, > 0, Rey < 0 and |Re y| is sufficiently small.
The integration cycle ckik210, 1] is defined in [30, Sect. 3], also see its definition in
[10,38,39].

The starting point of this formula was an example of the joint system of the sl3
trigonometric differential KZ equations and associated dynamical difference equa-
tions, an example in which the space of solutions is one-dimensional. The A,-type
Selberg integral formula for arbitrary n was obtained in [38,39], see also [10].

In this paper, we consider the reduction modulo p of the same example of the joint
system of the sl,, ;1 trigonometric differential KZ equations and associated dynamical
difference equations, which led in [30,38] to the A,-type Selberg integral formula.
Using the reduction modulo p of these differential and difference equations, we obtain
our A,-type IF,-Selberg integral formula forn > 1, see (3.11). Forn = 1, the formula
is proved in [21, Theorem 4.1]. For n = 2, the formula is proved in Theorem 3.4
below. We sketch the proof of the formula for n > 2 in Sect. 5.4. The details of that
sketch will appear elsewhere.
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71 Page4of24 R. Rimanyi, A. Varchenko

The paper is organized as follows. In Sect. 2, we collect useful facts. In Sect. 3, we
introduce the notion of I ,-integral and discuss the integral formula for the [F,-beta
integral. In Sect. 3, we define the A, -type F ,-Selberg integral and present its evaluation
formula. Theorem 3.4 states that the formula holds for n = 2. In Section 3, we also
prove Theorem 3.7, which is used in the transition from the A,_;-type formula to the
Ap-type formula, in particular, in the transition from the known A-type formula to
the new Aj-type formula. In Sect. 4, we sketch the proof of formula (1.2) following
[30]. In Sect. 5, we adapt this proof to prove Theorem 3.4.

The authors thank I. Cherednik, P. Etingof, E. Rains for useful discussions.

2 Preliminary remarks

In this paper, p is an odd prime number.

2.1 Cancellation of factorials

Lemma 2.1 Ifa, b are non-negative integers and a +b = p — 1, then in F, we have
alb! = (=1t .1

Proof We have a! = (—1)*(p—1)...(p —a)and p —a = b + 1. Hence, a!b! =
(—=D%p — D! = (=1)**! by Wilson’s Theorem. o

2.2 Dyson'’s formula
We shall use Dyson’s formula

CT. J] (=xi/xp)d—xj/x) ko)t (2.2)

=
I<i<j<k ()

where C.T. denotes the constant term. See the formula in [1, Sect. 8.8].

2.3 [Fp-Integrals

Let M be an F,-module. Let P(x, ..., x;) be a polynomial with coefficients in M,
Pri,....x) =Y caxi . xk. (2.3)

d
Letl = (ly,...,Ily) € Zk>o- The coefficient ¢y, p—1,....1; p—1 is called the F,-integral

over the p-cycle [ly, ..., ], and is denoted by f[ll i’ P(xy,...,xp)dxy...dxyg.

@ Springer



The [Fp-Selberg integral of type A,

Page50f24 71

Lemma2.2 Fori=1,...,k— 1, we have
/ P(xp, ..., Xig1, Xiy oo Xp)dxy ..o dxy
seesdivnsdise s licdp
=/ P(x1,...,x)dxy...dxg. 2.4)
(- lelp
O
Lemma2.3 Foranyi =1,...,k we have
oP
/ — (X1, ..., xp)dxy...dx; =0.
(1, li], O%i
O
Letk = (ky,...,k;) € Z", and
[klp == [(Di;s k)kys -+ -5 kn—Di, 1, (2.5)
where x, denotes the y-tuple (x, ..., x). For example forn = 2, k = (3, 2), we have
k], =[1,1,1;3,3],.
2.4 [F,-Beta integral
For non-negative integers, the classical beta integral formula says
! b alb!
/ (1 —-x)’dx = ———. (2.6)
0 (@a+b+ 1)
Theorem 2.4 ([37]) Leta < p,b < p, p—1 <a+b. Then, in[F, we have
!'b!
/ A0 —x)bdx = —— &2 2.7
[l]p (d+b+1—p)'
Ifa+b < p—1, then
/ x4(1 —x)?dx =0. (2.8)
[11p
3 Fp-Selberg integral of type A,
3.1 Admissible parameters
Letk = (ky,....ky) € Z2y and k; > kiy1,i =1,...,n— 1. Setko = k4.1 = 0.
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Leta, by, ...,b,, c € Z-gy. Denote b = (by, ..., b,) and

Ry(a,b,c) =

kr—k,
Tl (r—s4bs+-+br+(i+s—r—De)

- l_[ l_[ r—s+1l+4+as+bs+--+b+G+s—r+ks—ks_1—2)c—381p)!

1<s<r<n i=l1
" kq n ky (ic)! n  ky
x (=1)Xi=1 ki(l_[(al - 1)c)!>( 111 —')(]_[ [T+ G~k — 1)c)!>, (3.1
i=1 r=li=1 & 7 r22i=l
wherea; =a, ap =--- =a, =0; & 11s 1 if s = 1 and is zero otherwise.

We say that a, by, ..., b,, c € Z~ are admissible if a + (k; — 1)c < p — 1 and
for any factorial x! on the right-hand side of (3.1) we have 0 < x < p. The set of all
admissible (a, b, ¢) is denoted by Ay.

Lemma 3.1 The set Ay is defined in Z';'gz by the following system of inequalities:

O<r—s+bs+---+b+(s—r)c,
r—s+bs+---+b+k —krpy1+s—r—Hc<p-—1, 3.2)

forl <s<r<n;

O<r—s+14+bs+--+b+(G—r+ks—ks_1— e,
r—=s+1+bg+---+b+G6—r+k —ky1+ks—ks—1 —2)c<p-—1,

(3.3)
for2 <s<r<mn;
p=<r+a+bi+---+b+ (ki —r,
r+a+by+---+b+ Kk —kpy1 +k1—r —1c <2p, (3.4)

forl <r <mnm;
a+tki—e<p—1, by=p—1—(a+ k1 —1c), 0<kic<p. (3.5)
(]
Lemma 3.2 Assume that (a, b, ¢) € Ag. Then,

by=2p—1—(a+ky—Dc), by>ks_1—ks+Dc—1, s=2,...,n.
(3.6)

Proof The inequality by > (ks—; — ks + 1)c — 1 for s = 2, ..., n follows from the

first inequality in (3.3) for r = 5. The inequality by > p — 1 — (a + (k1 — 1)c) follows
from the first inequality in (3.4) for r = 1. O
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Example Letn = 1, k = (k). Then,

ki . . .
B (ic)! @+ @G —=Do)! b+ (G —1)e)!
R(kl)(a,bLC)—E % OfethtGrh—2e—p) (3.7)

and A, consists of a, b, ¢ € Z~ such that

a+ky—Dec<p-1, b+ (ki —De=<p—-1, kic < p-—1,
p—1<a+b+ (ki — 1c, a+by+ 2k —2)c<2p—1. (3.8)

3.2 Main result

Givenk = (ky, ..., k,) € Z" , introduce k| + - - - + k, variables

t=0D, ™), where (D =@ ") i=1..n (39
Define the master polynomial
n ki

oxta b,y =[] (TTe)ma - TT @ —h*)
1

i=1 j= 1=j<j'<ki

n—1kiy1 ki . _
i U

i=1j=1j'=1

Denote
Sk(a, b, c):/ Oy dt . (3.10)
[k]p

The F-integral Sy (a, b, c) is called the F,-Selberg integral of type A,.

Conjecture 3.3 Let n be a positive integer. Let k = (ky, ..., ky) € Z, ki > kiy1,
i=1,...,n— 1. Then, for any (a, b, ¢) € Ay we have the equality in Fp:

Sk(a,b,c) = Ri(a,b,c). (3.1D)

For n = 1, formula (3.11) is proved in [21, Theorem 4.1]. For n = 2, formula
(3.11) is proved in the next theorem.

Theorem 3.4 Letk = (ky, k) € Z2>0’ ki > ky. Then, for any (a, b, ¢) € Ay we have
the equality in IF -

Sx(a,b,c) = Ry(a,b,c). (3.12)
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Formula (3.11) for n = 2 is deduced from formula (3.11) for n = 1 in Section 5.

More generally, for any k formula (3.11) for n = k can be deduced from formula
(3.11) for n = k — 1 similarly, see the sketch of that in Sect. 5.4. Details of that
deduction will appear elsewhere. Because of that formula (3.11) for any n is formulated
as a conjecture and not as a theorem.

Remark Theorem 3.4 can be extended to the case of k such that k; > kp, but the
structure of inequalities in Lemma 3.1 will depend on the appearance of the equality
ki = ko in k, and the proof of Theorem 3.4 will split into different sub-cases. To
shorten the exposition, we restrict ourselves to k such that k; > k.

Example Here is the simplest A>-type IF,-Selberg integral formula with k| = k> = 1.

Theorem 3.5 Assume that a, by, b>, c are integers such that

O<a<p, O<c<p, 0<by—c+1<p,
0<bi+by—c+1l<p, p—1<a+bi+br—c+1<2p—1.

Then, inIF, we have

/ (1 = )Pis — P~ — s)P2dt ds
[1:1]p

- albit+by—c+ D! (p—o)l(b)!
(a+bi+by—c+2—p) (br—c+ 1!’

(3.13)
Proof Change variables s = ¢ + (1 — t)v, then the I ,-integral becomes equal to

/ 19(1 — p)rtbr—etlyp=c _ )2 g1 gy.
[1,1],

Applying the IF ,-beta integral formula, we obtain the theorem. O

The simplest A3-type IF,-Selberg integral formula ky = k2 = k3 = 1 is given by
the next theorem.

Theorem 3.6 Let a, by, by, b3, ¢ be integers such that all factorials on the right-hand
side of formula (3.14) are factorials of non-negative integers less than p. Then, in I,
we have

f 11— P =P — 92w — )P (1 — w)P2dt ds du
(11511,

_abith+bi =2+ (p—olba+bi—c+ D! (p—0)!(b3)!
T @4biH+br+b3—2c+3—p)  (ha+b3—2c+2) (b3—c+ D!’
(3.14)

Proof The proof is the same as the proof of the previous theorem. O

The versions of identities (3.13), (3.14) over complex numbers see in [16, Theorem
1].
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3.3 Relation between the Ip-Selberg integrals of types A,_1 and A,

Theorem 3.7 Letn > landk = (ky, ..., ko), k' = (k1, ..., kn_1),b = (b1, ..., by),
b = (by,...,b,_1). Assume that formula (3.11) holds for the F,-Selberg integral
S[k/]p(a, b, c) of type Ay—1. Also assume that b, = (ky—1 — ky, + 1)c — 1. Then,
Jformula (3.11) holds for the F ,-Selberg integral Six),(a, b, c) of type Ap.

Proof Under the assumption b, = (k,—1 — k, + 1)c — 1, all variables (t](.")) in

(n))kn 1p—1

d>[k (t;a, b, c) are used to reach the monomial ]_[ " (t in the calcula-

tion of the IF ,-integral S ki, 1,(a, b, c). The remaining free variables (tj(. )) withi < n
all belong to the factor

dD[k/]p(t(l), ot D g b ) of @y, (t; a, b, ¢) and are used to calculate the
coefficient of [T5L, (1§")P~! [T/2) [T5_, () )k-1p=1,

More precisely, under the assumptions of the theorem we have

Sk(a,b,c) = (— 1)bnkn+ckn(kn*1)/2 (kno)!

e S’ b, c),

where (— 1)bnkntckn(kn=1)/2 % is the coefficient of ]—[ﬁ"zl (tj(.”))k"—1 P=1 in the expan-
sion of

kn kil—l

(n) _ (n=1)\p—c (n) _ (n)\2c
[T = [T @ =g
Jj=1j'=1 1<j<j' <kn

see Dyson’s formula. We have (—1)Pnkntckn(kn=1/2" — (1) Ekn—tkn—knn+1)/2c—kn |
Hence,

kn

Si(a. b, c) = (— 1)(k,, Ve =k (kn+1) /2) e —ky, (( )C) Sy (a, )
knc

_( 1)(1( _1kn—kp (k +1)/2)C —kn ((n)) Rk/(a b/ C)

where Sy (a,b’, ¢) = Ry (a, b, ¢) holds by assumptions. To prove the theorem, we
need to show that

(kno)!

Rt (@, (o, bu). €) = (=)ot nbrrbent 0

Ry (a, b, c).
Indeed, we have

kn . kn
, (io)! .
Ri(a. (b bu).c) = Ry (a.b' o) [] e [T+ G = knor = Do)
i=1 i=1

lk—"[ (n—s+bs+-+by+({+s—n—10)!
(

X
n—s+14as+bs+-+byn++s5s—n+ks—ks_| —2)c—31p)

1<s<ni=lI
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1—[ ﬁ m—s+as+bs+---+by_1+G+s—n+ks —ks_1—3)c—5.1p)!

(n—=1—=s+bs+---+by_1+(@+s—r—1o0)!

X

1<s<n—1li=1
_ : (0! 71 (b + G = 1) (p + G =Kyt = DO)!
= Ry/(a, b, l:[ l_[ (A +by+ G+ ky —kyp—1 —2)c)!
= Rp(@.b.o) ]k‘[ (ic)! ]‘[ (G +knmt = kn)e = D! (p + G = kn—1 = DO)!

(@ = Doyt

Ry (@, b/, ) (—1)Kn=tkn=knkn 1)/ 2)e=kn (k”c)',
(L') n

where in the last step we use the cancellation Lemma 2.1. The theorem is proved. O
Corollary3.8 Let n > 1, k = (ki,...,k;), and (a,by1,¢) € Aw,. Let b =
(b1, ...,by), where b; = (ki—1 — ki + )c — 1 fori = 2,...,n. Then, formula
(3.11) holds for the I ,-Selberg integral Sik1, (@, b, c) of type A,.

Proof Formula (3.11) for the IF,-Selberg integrals of type A is proved in [21]. Hence,
the corollary follows from Theorem 3.7 by induction on 7. O
4 The A,-type Selberg integral over C

In this section, we formulate the A>-type Selberg integral formula over C, formulated
and proved in [30], and sketch the proof of the formula, following [30]. In Sect. 5,

we adapt this proof to prove the A;-type I ,-Selberg integral formula, that is, formula
(3.11) forn = 2.

4.1 The Ay-formula over C
Forky > ky > 0,lett = (#1,..., %), s = (51, ..., S,). Define the master function
ki k2

k
cb(r;s)zl_l[t;y*‘(l P i 1]‘[(1—s)ﬁ2 "TIT T bsi —ul™
i=1

i=1j=1
<[] -l ]_[ Isj —s;0*" (4.1)

1<i<i'<k; 1<j<j'<ks

and the integral
S, Bi. B2 y) = f D(t;5) dt ds , (4.2)
cki-k210,1]

where the integration cycle ckik20, 1] is defined in [30, Section 3]. The explicit
description of this cycle is of no importance in this paper.
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Theorem 4.1 ([30, Theorem 3.3]) Let a, B1, B2, y be complex numbers such that
Rea > 0, ReB; > 0, Refr > 0, Rey < 0 and | Re y| sufficiently small. Then,

ki1—k

N . .
S pr.p.v) =[] (B1+ (@ = Dy)
i=l1

N+ p1+30+k —2)y)

5 lk_[ B2+ — Dy) (1 + B2+ (= 2)y)

LI TA+ Btk —k—2y) T@+pi+h+i+hk—3)y)
<1
i=1

2T+ G —ki — Dy)T(iy) ﬁ le+ G- Dy)TGy)

4.3
L(y) @)

n ()

In the next Sect. 4.2, 4.3, we sketch the proof of formula (4.3) following [30].
4.2 Weight functions
To evaluate S‘(a, Bi1, B2, v), we introduce a collection of new integrals Jj, j, m(c,

B1, B2, ¥), which also can be evaluated explicitly, see [30].
For a function f(#1, ..., #) set

1
Symy, g f(0 ) = Y flioy, oo to).

o €Sk

Given k1 > ko > 0, we say that a triple of non-negative integers (/1, [, m) is
allowable ifl} < k; —ky + 12, Io < ky and m < min(/1, /). For any allowable triple
(l1, Iz, m) define the weight function

Wiom (s oo by ST -y Sky) =
- Symt1 ..... tkl Symsl ..... Sko
1 k2 l—sb
(m H ( —n»l'[sb_,b H p—
a=1 a=lj+1 =l+ 172

and the integral

Ji, (e, B, B2, v) = / D(t;8) Wiy 1. (t;5)dt ds .
Ck|.k2[0’l]
In particular,

Josr0(at, B1, B2, ) = S, B1 + 1, B2, p). (4.4)
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71 Page12of24 R. Rimanyi, A. Varchenko

4.3 Representations of sl3

Consider the complex Lie algebra sl3 with standard generators f1, f2, e1, €2, h1, ha,
simple roots oy, o2, fundamental weights w;, wy. Let Vy,, Vi, be the irreducible
sl3-modules with highest weights

o B B2

M=——w, M=——0——w
Y Y

and highest weight vectors vy, vy. For k1 > k» > 0, consider the weight subspace

Vi, @ Vi, [A1 + A2 —kjo1 — kpo2] of the tensor product Vy, ® Vi, and the singular
weight subspace Sing Vi, ® Vi,[A1 + A2 — k101 — kp02] consisting of the vectors
w e Vi, ® Vi,[A1 + Ay — ko1 — kao2] such that ejw = 0, e;w = 0. A basis of
Viu ® Vi,[A1 + A2 — kjoy — kpo02] is formed by the vectors

f]kl—kz—ll'HZ[fl’ fZ]kz_lzvl ® f]ll_m[f], fZ]m 212—mv2
(ki —ky — 11 + 1) (ko — D)V (L1 — m)!m! (I — m)!

Uiy lp,m =

labeled by allowable triples (I, I, m). It is known from the theory of KZ equations
that the vector

J = Z (D" Tty (o, Br. B2, V) 1y Ly

li,lp,m

is a singular vector, see [14, Theorem 2.4], [15, Corollary 10.3], cf. [19].
The singular vector equations e;J = 0, eoJ = 0 are calculated with the help of
the formulas:

o
hivy = ——vy,  hav =0,
14

h1v2=—ﬂv2, hzvz=—&v2,
14 Y

(h1, il = =211, [h1, 21 = f2, [h2, il = f1, [h2, 21 = =2/,
le1, f1]l = hy, le1, f2] = le2, f1] = 0, le2, f2] = ha,

(A1, Lfs 211 = =LA, 21, Tha, L, 201 = =1, £,

ler, Lf1, 201 = fa,  leas Lf1, 21l = —f1.

Here are some of the singular vector relations.

Theorem 4.2 (cf. [30, Theorem 5.2]) We have

Ih—1 .
ki —ka+i+ 1)y
Jon.0 = (=000 - . 4.5)
: E) B +iy
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Proof We have

iRt g piesiv @ fiv

(ki — k2 4+ i) (kp — D)!i!

ki —ky+i+1 ky—i—1 ;

=_(kl_k2+l+1) 1 [flafZ] 1f1®f2.1)2
(ki —ka +i+ 1! (ky —i — 1!

k1—ko+i ko—i i—1
+(—&_i+l> L AT fy e

y ki —ky+ D)k =)@ —1)!
k) —ky+i+1 ko —i—1 i
Calculating the coefficient of hy (kl_,[(fil.j;z!](;_i)ﬁ‘!@fz 2 in e;J = 0, we obtain
(ki =k +i 4+ Dy Joio+ (B2+1iy) Joi+1,0 =0. (4.6)
This implies the theorem. O

Hence,

ko—1

(ki =k +i+1)
Joko0(@, Bi, B2, v) = (=1 Jo00(e, B1, B2, v) | | . r
o B2 +iy

4.7)

Combining (4.4) and (4.7), we observe that formula (4.3) is equivalent to the formula

ki1—k

Jooo(e B, B v) =[]

i=1

Fd+p1+G—-Dy)
Dl +a+ g1+ G +ki —2)y)

ﬁ T+ B+ (i — Dy) T(1+ B+ B+ (i —2)y)
LITU+ B+ +hk—k—2)y) TA+a+pi+p+i+k—3)y)
k2 . . k1 . .
TG — ki — DY) Ty) 12 D@+ (i — Dy) T(iy)
. 4.8
* 11 L) 11 ) @

Denote by Ro 0,0(c, B1, B2, ) the right-hand side of (4.8).
To prove (4.8), we use the following observation. The weight subspace V; [A] —
kio1 — kyoa] C V4, is one-dimensional with a basis vector

SR, prev @ v
(k1 — k2)! (k2)!

v0,0,0 =

By [15, Theorem 5.1], the vector-valued function Jo o.0(c, B1, B2, ¥)vo,0.0 satisfies
the dynamical difference equations introduced in [29],

Jo,0,0(e, B1 — 1, B2, ¥)vo,0,0 = Jo,0,0(, B1, B2, ¥) B1vo,0,0 , 4.9
Jo,0,0(c, B1, B2 — 1, ¥)vo,0,0 = Jo,0,0(c, B1, B2, v) B2vo0,0 - (4.10)
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Here, By, B, are certain linear operators acting on V3, and preserving the weight
decomposition of V},, see formulas for these operators in the example in [15, Sect.
7.1] and in [15, Sect. 3.1], also see [29, Formula (8)].

Written explicitly equations (4.9), (4.10) give us the difference equations for the
scalar function Jo 0,0 (o, B1, B2, y) withrespectto the shift of the variables 81 — f1—1
and B, — B — 1,

k1—ko .
a+ B+ G+k —2)
Joo.0(@. B — 1. B2, ¥) = Jooole Br. B2 v) ] Y

Pl B1+ (G -1y
ks )
Xl—[a+ﬂ1+ﬂ2+(l.+kz—3))f’ @11
i Br+ B2+ (i —2)y
Jo,0.0(e, B1, B2 — 1, v) = Jo0,0(e, B1, B2, V)
. ﬁ itk -k =2y atptptith-3y
Ba+ (G =1y Br+ B2+ (i —2)y

i=1

The difference equations for Jy 0.0(c, B1, B2, ¥) are the same as the difference
equations for the function R 0,0(c, 81, B2, y) with respect to the shift of the variables
B1 — B1 — land B — B» — 1. Therefore, the functions Jy 0.0, B1, B2, ¥) and
Ro.0.0(c, B1, B2, ) are proportional up to a periodic function of 81, B2. The periodic
function can be fixed by comparing asymptotics as Re f; — oo, Re 2 — oo. This
finishes the proof in [30] of formulas (4.8) and (4.3).

5 The A,-type Selberg integrals over [,
5.1 Relations between Fp-integrals

For k = (k1, k2), k1 > k > 0 and integers
0 < a, by, by, c < p define the master polynomial

ki ka ki ky
Op(t:sia, by by o) = [ [ =)™ TTa —sp? T[] =P

i=l1 j=1 i=1j=1

< [T @—uw [ =i (5.1)
1<i<i’'<k; 1<j<j'<k;
and the [F ,-integral
Sk(a, by, by, c) =/ @ (t;s;a,b1, by, c)dtds, (5.2)
(k1p

where the p-cycle [k], is defined in (2.5). This is the A>-type IF),-Selberg integral,
see (3.10).
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For an allowable triple (/1, [2, m) define the I ,-integral

Ill,lz,m(as bl s va C)

W, t;s
Z/ @i (t; s5a, b1, b2, 0) hpm (25 8)
[klp

Hill (1 —1) ]_[];2:] (1—s;)

dtds, (5.3)

where Wy, 1, (t; s) is the weight function defined in Section 4.2.
Clearly, we have

Ioky0(a, by, b2, c) = Sg(a—1,b1,b2 —1,¢). 5.4
Denote
2l — k40 + De
Bo(a, by, by, ) = (=D* []

0 by +ic

2

M2 by 4G+ — 2)c lk—[ a+bi+by+ (i +k —3)c

Bi(a, b1, by, ¢) = - :
e br b2, ,l] bi+G—De LT bhitbh+i-2)ec

k2
By(a, b1, by, ¢0) = l—[

i=1

’

by+(G+ky—ki—2)c a+by+by+ ({+k—3)c
by+ (i — 1) b1 +br+ (0 —2)c )
(5.5)

Theorem 5.1 Assume that k; < p.

(i) Assume that every factor in By in the numerator or denominator is a nonzero
element of F . Then,

Io.ky,0(a, b1, b2, ¢) = Bo(a, by, ba, ¢) Ipo,0(a, b1, b2, ¢) . (5.6)

(ii) Assume that every factor in By in the numerator or denominator is a nonzero
element of ¥, and by > 1, then

lo,00(a, by —1,b2,¢) = Bi(a, b1, b2, ¢) lpoola, br,by,c).  (5.7)

(iii) Assume that every factor in By in the numerator or denominator is a nonzero
element of ¥, and by > 1, then

loo.0(a,bi,by —1,¢) = Ba(a, by, by, ¢) lpoola, bi,br,c).  (5.8)
Proof Equation (5.6) is an IF ,-analog of equation (4.7), and its proof is analogous to
the proof of equation (4.7).

More precisely, consider the complex Lie algebra sl3 with standard generators
f1, f2. e1, ez, hy, ha, simple roots o1, o2, fundamental weights w;, wz. Let V,, Vi,
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71 Page 16 of 24 R. Rimanyi, A. Varchenko

be the irreducible s(3-modules with highest weights

a by by
w1, Ay = — w] — w
c+p c+p c+p

)\,1:— 2

and highest weight vectors vq, v2. The module Vj, has a basis (flr‘[fl, f21?vy1)
labeled by non-negative integers r1, 2, and the module Vj, has a basis (f; lr fi, 212

fzr *vy) labeled by non-negative integers 1, r7, r3. For every generator of 53, the matrix
. . . . sl a bl b
of its action on Vj, or on Vj, in these bases is a polynomial in tp “oip’ “oip

with integer coefficients.

Consider the Lie algebra sl3 over the field IF,. Let V)]LF1 ” be the vector space over
I, with basis ( flr '[f1, f2]"*v1) labeled by non-negative integers ry, rp and with the
action of s(3 defined by the same formulas as on Vj; but reduced modulo p. Similarly,

we define the sl3-module Vg r

F

Recall k = (k1, k2), k1 > ky > 0. Consider the weight subspace VE” QV, "[r +

2
A2 — kyo| — koo ] of the tensor product V}E” ® sz " This weight subspace has a basis
formed by the vectors

f]kl_k2_11+12[f], f2]k2_lzvl ® f]ll_m[f], fZ]m le_mvz
(k1 k2 — 11 + D)1 (ka — ) Iy —m)lm1 (1 — m)]

Uiy, lp,m =

labeled by allowable triples ({1, I, m).

Lemma 5.2 The vector

I= " (=)D 1,4, b1, b2 ) vy tym

l1,lp,m

. . F F .
is a singular vector of VM” YV, 2", that is, e1I =0, eol = 0.

Proof Equations eI = 0, eI = 0 are IF,-analogs of equations e;J =0, exJ =0
over C.

Fori = 1, 2, the vector ¢; J is the integral of a certain differential k| + k>-form p;.
It is shown in [26, Theorems 6.16.2], [14, Theorem 2.4] that u; = dv;, where v; is
some explicitly written differential k1 + k» — 1-form. This implies ¢; J/ = 0 by Stokes’
theorem.

The vector e; [ is the IF ,-integral of the same y; reduced modulo p. It is explained
in [26, Section 4] that the differential form v; also can be reduced modulo p and this
implies that the I ,-integral e; I is zero by Lemma 2.3. Cf. the proof of [26, Theorem
2.4].

Lemma 5.2 implies the equations

(ki —ko+i+1Dclyio+ (ba+ic)lpir1,0=0 (5.9
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fori =0, ..., kp— 1, similarly to the proof of equations (4.6). The iterated application
of equation (5.9) implies equation (5.6).

The proof of equations (5.7), (5.8) is parallel to the proof of equations (4.11), (4.12).
We prove (5.7). The proof of (5.8) is similar.

Equation (4.11) follows from equation (4.9):

Jo,0,0(ct, B1 — 1, B2, ¥)vo,0,0 — Jo,0,0(, B1, B2, ¥) Brvooo = 0 (5.10)

and equation Bjvg 0,0 = B1v0,0,0 in Vj,,. The explicit formulas for By show that under
the assumptions of Theorem 5.1 the action of By on vg o ¢ is well-defined modulo p

and gives the same result Bjvg 0.0 = Bjvg,0,0 but in VE".

The proof of (5.10) in [15] goes as follows. The left-hand side of (5.10) is a vector-
valued integral of a suitable differential k; + k>-form w. It is shown in [14, Theorem
5.1] that © = dv, where v is some explicitly written differential k; + kp — 1-form.
This implies (5.10) by Stokes’ theorem.

The p-analog of the left-hand side of (5.10) is the element

F
lo0,0(a,br — 1, by, c)vo,0,0 — Lo,0,0(a, bi, ba, c) Bivgoo € V,”.  (5.11)

This element is the I ,-integral of the same  reduced modulo p. Itis explained in [26,
Section 4] that the differential form v also can be reduced modulo p and this implies
that the IF ,-integral in the left-hand side of (5.11) equals zero by Lemma 2.3. Hence,
equation (5.7) is proved and Theorem 5.1 is proved. O

5.2 Proof of Theorem 3.4

Recall the set of admissible parameters .4y, introduced in Section 3.1 for k = (ky, k2),
ki > ky > 0.

Lemma 5.3 Assume that (a, by — 1, by, ¢), (a, by, by, ¢) € Ag. Then,

Su(d@. b1 — 1. b, ¢) = Se(a. by. by, ) k:ljf l4a+ b;l-:_(zi-i;k]l); 2Qc—p
Xﬁ2+a+lb1+b2+(i+‘k1—3)c—p. 512
i +byi+by+ (i —2)
Assume that (a, by, by — 1, ¢), (a, b1, by, ¢) € Ag. Then,
Sk(a. by, by — 1,¢) = Sk(a. by, by, c)i]]j Lt b2 Zz(rziki I)]Zl e
Xﬁ2+a+b1+b2+(i+k1—3)c—p (5.13)

Pl L+by+by+ ({0 —2)
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Proof The lemma follows from formulas (5.4) and (5.6) and Theorem 5.1. O

For n = 2, formula (3.1) takes the form:

ky—ko

Ri(a, by, by, ¢) = (—1)k1tk2 H (b1 + (@ — Do)t
i=1

(I+a+b+G+k —2)c—p)!

1’2[ (by + (i — 1)e)! (1+ by + by + (i —2)¢)!

A+by+G+kr—ki—2))! CQ+a+bi+by+(G+k —3)c—p)!
2 ko, '

Xl_[(a—i-(l—l)c)' H(p—i—(l—k]—l)c)'l_[ ZC—C') (5.14)

i=1 i=1 r=1i=1

Lemma 5.4 Assume that (a, by — 1, by, ¢), (a, by, by, ¢) € Ag. Then,

1+a+bi+@G+k—2c—p
b1+ (G —1c

Ry(a,by —1,by,¢) = Ri(a, by, by, ) l_[
i=1

2 ta+bi+by+ Gtk —3)c—p
<T]

- (5.15)
Pl L+by+by+ (i —2)c
Assume that (a, by, by — 1, ¢), (a, b1, by, ¢) € Ag(a, b1, by, ¢). Then,
l+by+ (i +ky— ki —2)c
Ry(a,by, by — 1, R b1, by,
k(a, Dby, by ¢) = Ry(a, by, by C)ll_[ byt — De
k2 .
2 b b ki —3)c —
Xl_[ +a+b + 2+(l+. 1 )ce—p (5.16)
i 1+bi+by+ (G —2)
[m}

By Lemmas 5.3 and 5.4, the functions Sk (a, b1, b2, ¢) and Ry (a, by, ba, ¢) defined
on Ay satisfy the same difference equations with respects to the shifts of variables
by — by —land by — by — 1.

Lemma 5.5 Assume that a, ¢ are positive integers such that0 < kjc < p — 1,
a+ (ki — 1)c < p — 1. Then, the point

(as b17b2’ C) = (a’ P - 1 - (a + (kl - I)C), (kl - k2 + ])C - 170) (517)

lies in Ay.
Proof If (a, by, by, c) is given by (5.17), then

ki—ko .
o Nki+k (p—1—=(a+ (k —i)o)!
Ri=Coire ] (i — Do)

i=1
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1]2[ (ki —ka +i)c = D! (p— 1 —(a+ (k —i)c))!

(i — De)! (ki —ky +i — 1)c)!

i=1

ki ko 2k (iC)'
x [[a+@=vor T[]+ -k —vor T[T
i=1 i=1

r=1i=1
This proves the lemma. O

Lemma 5.6 Assume that a, ¢ are non-negative integers such that 0 < kj¢ < p — 1,
a+ (ky —1)¢ < p—1. Denote by Ag(a, ¢) the set of all (a, by, by, ¢) € Ay such that
a = a, ¢ = ¢. Then, Ag(a, ¢) consists of the pairs (b1, by) of non-negative integers
satisfying the inequalities

p—1—(a+ (k1 — 1)c) < by, (k1 —k2o+1)c—1<by (5.18)
and some other inequalities of the form
by <A, by<Ay bi+by <A, (5.19)
where A1, Az, A1y are some integers such that

Arzp—1—(@+ k=13, Ar>(ki—k+1)c—1,
Ap=>=p—1—(@+ (ki =D+ (ky —k2+1c—1.

Proof The lemma follows from Lemmas 3.1 and 3.2. O

Corollary 5.7 Any point (a, b, by, ¢) € Ax(a,c) can be connected with the point
(a,p—1—(a+ (ky—1)0), (ki —ko+ 1)c — 1, ¢) € Ag(a, ¢) by a piece-wise linear
path in Ay (a, ¢) consisting of the vectors (0, —1, 0, 0) or (0,0, —1, 0). O

Proof of Theorem 3.4.Forn = 1, k = (k) and the point (a, p—1—(a+ (k1 — 1)¢), ¢)
formula (3.11) holds by [21, Theorem 4.1].

Forn = 2, k = (ky, kp) and the point (a, p—1—(a+(k;—1)¢), (kj—ka+1)c—1, ¢),
formula (3.11) holds by Lemma 5.5 and Theorem 3.7.

Forn = 2, k = (ky1, k) and arbitrary (a, by, by, ¢) € Ag(a, ¢), formula (3.11)
holds by Lemmas 5.3, 5.4 and Corollary 5.7. Theorem 3.4 for n = 2 is proved. O

Corollary 5.8 Letn > 2, k = (ki, ..., ky), and (a, (b1, b2),c) € Aw, k) Let b =
(b1, ...,by), whereb; = (ki—1 — ki +1)c—1fori =3, ..., n. Then, formula (3.11)
holds for the I ,-Selberg integral Sy, (a, b, ¢) of type A.

Proof Formula (3.11) for the IF,-Selberg integrals of type A is proved in Theorem
3.4. Hence, the corollary follows from Theorem 3.7 by induction on n. O
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5.3 Evaluation of Iy ¢ o(a, b1, b3, ¢)

In this section, we evaluate Ipo.o0(a, b1, b2, c) without using the evaluation of
Sk(a, b1, by, ©).

Theorem 5.9 Letk = (k1,kp), ki > ko > Oand a, by, by, ¢ € Z~(. Assume that
a+ (k1 — 1)c < p and all factorials on the right-hand side of the next formula are
factorials of the non-negative integers less than p. Then,

k1—kp
loo.o(a, by, by, c) = (—Dktk l—[

i=1

(b1 + (@ — Do)!
(a+b1+(G0+ki —2)c—p)!

1’2[ (by + (i — 1)c)! (b1 + by + (i —2)0)!

(by+ (i +ky—ki —2)c)! (@+bi+by+ (i +k —3)c— p)!

i=1

k1 ko 2 ki (iC)'
< [Ja+G=De=D ]+ G —ki = De—=D]]] C!‘. (5.20)

i=1 i=1 r=1li=I

Proof The proof is parallel to the proof of Theorem 3.4 for n = 2.
Denote by .A,IC the set of all a, by, by, ¢ € Z~ satisfying the assumptions of Theo-

rem 5.9. Notice that if (a, by, by, ¢) € A,’c, then
by > p—(a+ (k1 — Do), by > (k1 — ko + 1)c. (5.21)
O

Lemma 5.10 Formula (5.20) holds ifby = (k1—ka+1)cand (a, by, (ki —k2+1)c, ¢) €
AL

Proof If by = (k1 —ko+1)c, thenall variables (s ;) in the integrand of Iy ¢ o (a, b1, (k1—
ky 4+ 1)c, c) are used to reach the monomial ]_[I;"zl s*17~in the calculation of the F -
integral Ip 0.0(a, b1, (ki —k2+ 1)c, ¢). The remaining free variables (¢;) all belong to

the factor

ki

2 -1 b

Py (t1, s tiya— 1 b= [] @G—)*]]e 0 -
1<i<i’<k; i=1

-1
k] tp

of the integrand and are used to calculate the coefficient of the monomial [ | =l

More precisely, under the assumptions of the theorem we have

12 (kae)!
looo(@ br. (ki = ke + De.¢) = (- )HTRBTDATIE Sy @ = 1 b o),

cf. the proof of Theorem 3.7. We have (—1)22k2tcke(ka—=D/2 — (1) kika—ka(ka+1)/2)e—kz
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By [21, Theorem 4.1] we have S y(a — 1, b1, ¢) = Ry,)(a — 1, by, ¢). Hence,

Ioo.0(a, by, (ki —ky 4 De, ) = (—1)Kike—keberD/2e itk

(kyc)! 1’2[ GO @+ —De— Db+ (j — Do)
(chk2 P c! (@a+b+ ki +j—2)c— p)!

(5.22)

Denote by R,i (a, by, ba, c) the right-hand side in (5.20). We have

k1—kp

R,{(a, br. (ki — ks + 1)e. ¢) = (—DkiHe 1—[ (b1 + (i — Do)!

(a+b1+G+k —2)c— p)!

((ky — ko + De + (i — Do)!
Lk =k + De+ (G +ka = ki = 2)0)!

2
1—[ (b1 + (ki — k2 + D)c + (@ —2)c)!
iy @tbr4 (ki — k4 De+ (@ + ki —3)c = p)!

k1
x H(a+(1_1)6_1)' H(P+(l—kl—l)c—l)lHH(lc)‘.

r=1i=1
— (_1)k|+k2(_1)(k|k2 kz(k2+1)/2)0

ki . . .
(ko)! P GOt @+ (= De = DI b+ ( = Do)l
(C!)kz ]]:[1 c! (a+b+ ki +j—2)c—p)! s (5.23)

where we used the cancellation Lemma 2.1 in the last step. Hence,
Ipo.o(a, by, (ki —ka+ 1)c,c) = R,{(a, b1, (ki — kp + 1)c, ¢) and Lemma 5.10 is
proved. O

Comparing equations (5.7), (5.8) and the formula for R,ﬁ (a, b1, b2, ¢), we conclude
that the functions o o,0(a, b1, b2, ¢) and R,i (a, by, by, c) on .A,Ic satisfy the same dif-
ference equations with respect to the shifts of variables by — by — land b, — by — 1
and are equal if b, takes its minimal value (k1 — k2 + 1)c. This implies Theorem 5.9,
cf. Lemmas 5.5, 5.6 and Corollary 5.7.

5.4 Sketch of the proof of formula (3.11) forn > 2

The proof is parallel to the proof of Theorem 3.4.
Analogously to the proof of Theorem 5.1, consider the Lie algebra sl,, ;1 and its

. F F . . .
representations VM" and V)sz over I, with highest weights

a by by,
w1, Ay = — w
ctp c+p c+p

M =-—
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and highest weight vectors vy, vp. Consider the PBW basis B = (u) of the weight

subspace VAFI” ® V)]i "[A1 4+ A2 — X7 kioj] like in the proof of Theorem 5.1. We
distinguish two elements of that basis:

TR AR A U Sl o @ 02
! (ki —k2)! (kz — k3)! ... (kn)! ’
lklvl ®f2kz...f,{("v2

(k) (k) ... (kn)!

For n = 2, these vectors are the vectors vg 0,0 and v k,,o in the proof of Theorem 5.1.

To any basis vector u € B, we assign the weight function W, (¢) defined in [19,
Section 6.1], here ¢ is the collection of variables defined in (3.9). Then, we consider
the I ,-integrals

I,(a,b,c) =/ O(t,a,b,c)W,(t)dt.
[k1p

It follows from the formulas for the weight functions that
qu(a,b,c) = Sk(a - lablabz - 17 -"7bl’l - I,C),

cf. (5.4). It is known from the theory of KZ equations that the vector

I(a,b,c) = Zlu(a,b,c)u
ueBB

. . . F F .
is a singular vector in VMP ® VA; [A1 + A2 — X i, kio;]. From the singular vector
condition, it follows that

lyy(a, b, c) = Bola, b, ¢) 1y, (a, b, ¢), (5.24)

where By(a, b, c) is an explicit expression like in (5.6).
The vector 1, (a, b, c)u; is a generator of the one-dimensional weight subspace

Vfl "[A1 + A2 — Y 7_, kioj]. That vector satisfies the dynamical equations defined in
[29]. The dynamical equations take the form

Illl(avbl""vbi - 13""bnvc) = Bi(avbvc)lul(avbvc)’ l: 1,...,”,
(5.25)

where B;(a, b, c) are explicit products like in (5.7) and (5.8).

Equation (5.24) and difference equations (5.25) imply that the two functions
Sk(a, b, ¢) and Ry (a, b, c¢), defined on the set Ay, satisfy the same difference equa-
tions with respect to the shift of variables b; — b; — 1 fori =1, ..., n. By Corollary
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3.8, we also know that the two functions are equal at the distinguished point

(a,p—1—(a+ k=), ky —kz+Dc—1,...,(ky—1 —kp+Dc—1,¢)

E.Ak.

This implies that the two functions are equal (cf. Corollary 5.7) and formula (3.11)
holds for any n. The details of this sketch will be published elsewhere.
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