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Abstract
Exact Hausdorff dimensions are computed for singular continuous components of the
spectral measures of a class of Schrödinger operators in bounded intervals.
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1 Main results

We are interested in Hausdorff dimensional properties of spectral measures of
Schrödinger operators

(Hu)(x) = −d2u

dx2
(x) + V (x)u(x) (1.1)

acting in L2(Ib), where Ib = [0, b], 0 < b < ∞, is a bounded interval of R; our
potentials V (x) are signed combs of delta distributions carefully spaced in Ib and
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accumulating only at b. The boundary condition at 0 is

u(0) cos(ϕ) + u′(0) sin(ϕ) = 0, (1.2)

with ϕ ∈ [0, 2π) fixed.
Pearson [14] has presented a family of such Schrödinger operators −d2/dx2 +

V0(x), on the bounded interval Ib, which has purely absolutely continuous spectrum
in a certain range of energies. (The potential V0(x) is a selected comb of delta dis-
tributions, and its construction is recalled in “Appendix A.”) Borrowing ideas from
[12,15], we will perturb such potential V0(x) to obtain a model (1.1) with a singular
continuous spectral component in this interval (see also Example 14.6. j in [16]).

The main contribution of this work is to compute the Hausdorff dimensions of their
spectral measures. It is usually hard to present examples of potentials for which one
can say something about fractal properties of spectral measures. To the best of our
knowledge, these are the first examples, in bounded intervals, of singular continuous
Schrödinger operators with computable dimensions.

We need some preparation in order to state our main results.

1.1 Hausdorff dimension of measures

If μ is a positive and finite Borel measure on R, its lower local dimension at x ∈
support(μ) is given by

d−
μ (x) = lim inf

ε↓0
lnμ((x − ε, x + ε))

ln ε
.

The general idea is to estimate the scaling property μ((x − ε, x + ε)) ∼ εdμ(x) for
small ε > 0.

Let dimH(S) denote the Hausdorff dimension of the set S ⊂ R and 0 < α ≤ 1; the
upper Hausdorff dimension of μ is defined as

dim+
H(μ) = inf{dimH(S);μ(R \ S) = 0, S a Borel subset of R},

and its lower Hausdorff dimension as

dim−
H(μ) = sup{α;μ(S) = 0 if dimH(S) < α, S a Borel subset of R}.

If A ⊂ R is a Borel set, we shall also consider the dimensions of the restriction of μ

to such set, that is, μ;A(·):=μ(A ∩ ·).
It turns out that [5,13]

dim−
H(μ) = μ − ess.inf d−

μ , dim+
H(μ) = μ − ess.sup d−

μ . (1.3)

Hence, the information of the lower local dimensions of μ gives the values of its
Hausdorff dimensions.
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1.2 The potential

Let the potential V0(x) be a comb of delta distributions at suitable points an ∈ (0, b), as
constructed in [14–16], for which the Schrödinger operator (1.1) has purely absolutely
continuous spectrum on an interval J ⊂ R. We consider the potential

Vω(x) = V0(x) +
∞∑

n=1

gω
n δ(x − bn), 0 < x < b, (1.4)

with bn = ∑n
j=1 8a j and b = limn→∞ bn = ∑∞

j=1 8a j < ∞; the potential V (x) is
a perturbation of V0(x) by a δ comb located at the points of the sequence (bn).

We assume that (gω
n ) is a sequence of independent (real) random variables defined

in a probability space with (probability) measure ν(ω), and let E denote the expecta-
tion with respect to ν. For each realization ω, denote the corresponding Schrödinger
operator (with boundary condition (1.2)) by

Hω = − d2

dx2
+ Vω(x), 0 < x < b, (1.5)

and its spectral measure by ρω. We will also assume that there is λ > 0 such that

(i) E((gω
n )2) = λ2n−1 and, for a positive constant C4, E((gω

n )4) ≤ C4λ
4n−2;

(ii) E(gω
n ) = 0;

(iii) for some ε > 0, there is a positive constant C1 so that supω |gω
n | ≤ C1n− 1

3−ε ;
(iv) gω

n is independent of (gω
j )

n−1
j=1.

Note that the hypothesis that the fourth moment scales like the square of the second
moment is true for random variables following the normal distribution.

1.3 Main results

For 0 < λ < 2, denote

J = J (λ):=
(
6 − 3

√
4 − λ2

5
,
6 + 3

√
4 − λ2

5

) ∖ {
3(2 − √

2)

5
,
6

5
,
3(2 + √

2)

5

}
,

and observe that J (λ) ⊂ (0, 12/5) for all 0 < λ < 2.

Proposition 1.1 Fix λ ∈ (0, 2). Then, for ν-a.e. ω, J (λ) is a subset of the spectrum
of Hω and the restricted operator HωPHω(J (λ)) is purely singular continuous (where
PHω is the spectral projection of Hω).

To some extent, this proposition is similar to some of the results discussed in
Pearson [14–16], but here we have to deal with the role of random potentials, as
considered in [12].
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Theorem 1.2 Fix λ ∈ (0, 2). Then, for ν-a.e. ω and each E ∈ J (λ), the spectral
measure ρω has lower local dimension

d−
ρω

(E) = α = α(E, λ):=1 − 9λ2

60E − 25E2 . (1.6)

Corollary 1.3 Let ν, λ, J , Hω and ρω be as above. Then, for ν-a.e. ω,

(i) dim−
H(ρω;J ) = 0 and dim+

H(ρω;J ) = 1 − λ2

4 .
(ii) given an interval [m, M] ⊂ (0, 1 − λ2/4), m < M, there is a subset Jm,M ⊂

J so that, for the spectral measure ρm,M
ω :=ρω;Jm,M of the restricted operator

Hm,M
ω :=Hω PHω(Jm,M ), one has

dim−
H(ρm,M

ω ) = m and dim+
H(ρm,M

ω ) = M .

In Sect. 2, we present the proofs of Proposition 1.1, Theorem 1.2 and Corol-
lary 1.3, which make use of nontrivial technical estimates (in particular Theorem 2.1
on α(E, λ)-subordinate solutions) of the asymptotic behavior of solutions to the
eigenvalue equation for Hω. Section 3 provides results about Hausdorff subordi-
nacy in bounded intervals. In Sect. 4, some of the techniques mentioned above are
discussed, in order to prove Theorem 2.1 in Sect. 5. For the reader’s convenience,
some details regarding the construction of the unperturbed potential V0 are recalled in
“Appendix A.”

2 Proofs of themain results

Proposition 1.1 As discussed in Sect. 5.1, if
∑∞

n=1(g
ω
n )2 = ∞, then J (λ) is contained

in the spectrum of Hω and this operator is purely singular continuous there. Hence,
the proof here amounts to show that ν-a.e. ω one has

∑∞
n=1(g

ω
n )2 = ∞.

Let Xk,ω = ∑k
n=1(g

ω
n )2 and, given N > 0, set

UN =
{
ω ;

∞∑

n=1

(gω
n )2 < N

}
.

Then, ν(UN ) ≤ ν(Xk,ω < N ) for every k. Pick k0 such that E(Xk,ω) > N/2, for
every k ≥ k0.

From the classical Bienaymé–Chebyshev inequality, for every t > 0,

ν({ω ; |Xk,ω − E(Xk,ω)| > t}) ≤ var(Xk,ω)

t2
,

where var(·) denotes the variance. By the independence of gω
n ,

var(Xk,ω) =
k∑

n=1

var((gω
n )2) < C̃4,
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since E((gω
n )4) ≤ C4λ

4n−2.
Therefore, for each k,

ν({ω ; E(Xk,ω) − Xk,ω > t}) ≤ ν({ω ; |E(Xk,ω) − Xk,ω| > t}) ≤ C̃4

t2
,

which implies that ν(ω; Xk,ω < N ) < 4C̃4
N2 for k ≥ k0. Since N is arbitrary, the result

follows. �
For a solution u to the eigenvalue equation

(Hωu)(x) = Eu(x) (2.1)

and 0 < L < b, denote

‖u‖L =
(∫ L

0
|u(r)|2dr

)1/2

. (2.2)

For a finite Borel measure μ on R and 0 ≤ γ ≤ 1, consider the upper γ -derivative
of μ at x ∈ R, given by

D
γ

μ(x) = lim sup
ε→0

μ((x − ε, x + ε))

(2ε)γ
.

The proof of Theorem 1.2 is based on the following theorem, whose proof is presented
in Sect. 5, and it is an important technical part of this paper. Since for ν-a.e. ω the
operator Hω has no eigenvalue in J , for all nonzero solutions u to the eigenvalue
Eq. (2.1) with E ∈ J , one has ‖u‖L → ∞ as L → b.

Theorem 2.1 Let 0 < λ < 2, and α(E, λ) be as on the right-hand side of (1.6). Then,
for ν-a.e. ω and each E ∈ J (λ), there exists a solution uSE to (2.1) so that, for all
other solutions uE , linearly independent with uSE ,

lim
L→b

‖uSE‖L
‖uE‖α/(2−α)

L

= A (2.3)

holds for some appropriate value of A ∈ (0,∞).

The proof of Theorem 2.1 makes use of adaptations to the bounded interval setting
of sparse potentials in unbounded intervals [12]. In a bounded interval, one does not
have room for sparse potentials, which here will be replaced by signed delta comb
potentials, with diverging intensities as one approaches the interval endpoint b.

Theorem 1.2 First note that y �→ y/(2− y) is a monotonically increasing function of
y ∈ [0, 1]. For E ∈ J and α′ < α, by (2.3) one has

lim
L→b

‖uSE‖L
‖uE‖α′/(2−α′)

L

= ∞,
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and so, by the Hausdorff subordinacy theory (see Sect. 3 and [9]), it follows that

D
α′
ρω

(E) = 0. Hence, given δ > 0, for all ε > 0 small enough,

ρω((E − ε, E + ε))

εα′ < δ �⇒ ln ρω((E − ε, E + ε))

ln ε
>

ln δ

ln ε
+ α′,

and so d−
ρω

(E) ≥ α′; since this holds for all α′ < α, one has d−
ρω

(E) ≥ α.
On the other hand, if α < α′, by (2.3) one has

lim
L→b

‖uSE‖L
‖uE‖α′/(2−α′)

L

= 0,

and so, again by the Hausdorff subordinacy theory, it follows that D
α′
ρω

(E) = ∞.

Hence, given N > 0, there is a subsequence ε j ↓ 0 with

ρω((E − ε j , E + ε j ))

εα′
j

> N �⇒ ln ρω((E − ε j , E + ε j ))

ln ε j
<

ln N

ln ε j
+ α′

and so d−
ρω

(E) ≤ α′; since this holds for all α < α′, one has d−
ρω

(E) ≤ α. By
combining both inequalities, d−

ρω
(E) = α.

Corollary 1.3 (i) By (1.3) and Theorem 1.2, and since α(E, λ) is a continuous func-
tion of the variable E ∈ J , it is enough to note that infE∈J α(E, λ) = 0 and
maxE∈J α(E, λ) = 1 − λ2/4.

(ii) It is enough to use the inverse function α−1 to pick Jm,M = α−1(·, λ)
([m, M]∩

J (λ)
)
.

3 Hausdorff subordinacy in bounded intervals

We provide in this section the necessary results about Hausdorff subordinacy for
operators (1.1) acting in L2(Ib). We depart from known results on subordinacy for
Schrödinger operators with action (1.1) in the cases of unbounded intervals I = R or
I = [0,∞) [2,3,9–12]. The Hausdorff subordinacy results are generalizations of the
subordinacy theory of Gilbert and Pearson [6,8].

The subordinacy theory for operators (1.1) in bounded intervals was discussed in
[6,7,16]. Now we dwell on the adaptation of such results to Hausdorff subordinacy.
We begin by discussing the spectral properties of operators

H = − d2

dx2
+ V (x), (3.1)

acting in L2(Ib), that are regular at the point 0 and limit point at b (see [16] for such
standard concepts). A self-adjoint operator H can be obtained from H in a suitable
domain, satisfying the boundary condition (1.2) at point 0, with fixed ϕ ∈ [0, π).
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By varying the boundary conditions, we obtain a family of self-adjoint operators H
resulting from H.

The spectral function ρ(E) of H generates a Borel–Stieltjes measure ρ which is
the spectral measure associated with the operator H , which, by its turn, is related to
the Weyl–Titchmarsh m-function through

ρ(E2) − ρ(E1) = lim
δ→0

lim
ε→0

1

π

∫ E2+δ

E1+δ

Im(m(E + iε))dE,

and the inverse relation

m(z) =
∫ ∞

−∞
1

(E − z)
dρ(E) + cot(ϕ).

The m-function m(z) satisfies

û(x, z):=u2(x, z) + m(z)u1(x, z) ∈ L2(Ib), (3.2)

for all z ∈ C\R, with u1(x, z) and u2(x, z) solutions to Hu = zu satisfying the
orthogonal initial conditions

{
u1(0, z) = − sin ϕ u2(0, z) = cosϕ

u′
1(0, z) = cosϕ u′

2(0, z) = sin ϕ
. (3.3)

We denote by u1,E and u2,E the solutions to the Eq. (2.1) in Ib, satisfying the
initial conditions (3.3) for ϕ ∈ [0, 2π) fixed. Since at least one of these solutions has
unbounded norm, let L(ε) ∈ (0, b) be the length defined by the equality (see (2.2))

‖u1,E‖L(ε)‖u2,E‖L(ε) = 1

2ε
. (3.4)

Following the lines of Jitomirskaya and Last [9], and taking into account the param-
eter variation formula, i.e., equation (7.2.8) in [16], one can prove the following
inequalities:

Proposition 3.1 Assume that the differential operator H in (3.1) is regular at 0 and
limit point at b. Let H be the self-adjoint operator defined byH satisfying the boundary
conditions (1.2). Given E ∈ R and ε > 0, then

5 − √
24

|m(E + iε)| <
‖u1,E‖L(ε)

‖u2,E‖L(ε)

<
5 + √

24

|m(E + iε)| . (3.5)

Relation (3.5) allows for a generalization of Hausdorff subordinacy results [1,9–11]
to obtain dimensional properties of the spectral measure of H in bounded intervals.
The next result follows directly by Proposition 3.1 and relation (3.4).
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Corollary 3.2 Let H be as in Proposition 3.1, E ∈ R, ε > 0 and a fixed κ ∈ (0, 1].
Then,

lim sup
ε→0

ε(1−κ)|m(E + iε)| = ∞ ⇐⇒ lim inf
L→b

‖u1,E‖L
‖u2,E‖κ/(2−κ)

L

= 0.

Given κ ∈ (0, 1], a solutionu (for fixed E) to (2.1) is called κ-Hausdorff subordinate
at b if

lim inf
L→b

‖u‖L
‖v‖κ/(2−κ)

L

= 0,

for any solution v to (2.1) linearly independent with u. The (original) subordinate
notion [6,8] is recovered by taking κ = 1.

Inspired by known results presented in Chapter 7 of [16], we have

Theorem 3.3 Let ρ be the spectral measure associated with the operator H, as in
Proposition 3.1, with boundary condition (1.2) at point 0 with ϕ ∈ [0, 2π) fixed.
Pick κ ∈ (0, 1] and let I be a subset of the spectrum of H with ρ(I) > 0.

(i) Suppose that for all E ∈ I, the solution uE to (2.1) is κ-Hausdorff subordinate at
the point b. Then, D

κ

ρ(E) = ∞ for all E ∈ I, in particular the restriction ρ(I∩·)
is κ-Hausdorff singular.

(ii) Suppose that for all E ∈ I, there is no solution to (2.1) that is κ-Hausdorff
subordinate at b. Then, D

κ

ρ(E) < ∞ for all E ∈ I, in particular the restriction
ρ(I ∩ ·) is κ-Hausdorff continuous.

Proof By general results on Hausdorff measures and corresponding decompositions
with respect to the behavior of κ-derivative D

κ

ρ (see [4,5,13,17]), this theorem is a
simple consequence of Corollary 3.2 and the definition of κ-subordinate solution.

More precisely, we have

D
κ

ρ(E) = ∞ ⇐⇒ lim sup
ε→0

ε(1−κ)|m(E + iε)| = ∞. (3.6)

(i) If for all E , in some subsetI, the solutionuE toEq. (2.1) isκ-Hausdorff subordinate
at the point b, then, by Corollary 3.2, we have that

lim sup
ε→0

ε(1−κ)|m(E + iε)| = ∞ .

Consequently, by Eq. (3.6) we have D
κ

ρ(E) = ∞, for all E ∈ I. Thus, the
restriction ρ(I ∩ ·) is κ-Hausdorff singular.

(ii) If for all E , in some subset I, there is no solution to Eq. (2.1) that is κ-Hausdorff
subordinate at b, then by Corollary 3.2,

lim inf
ε→0

ε(1−κ)|m(E + iε)| < ∞.
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Similarly, by Eq. (3.6), we have D
κ

ρ(E) < ∞, for all E ∈ I. Then, the restriction
ρ(I ∩ ·) is κ-Hausdorff continuous.

�

4 Asymptotic behavior of solutions

In this section, we use some notations presented in “Appendix A.” Pick a decreasing
sequence (an) of positive numbers and set bn = ∑n

j=1 8a j so that

b = lim
n→∞ bn =

∞∑

n=1

8an < ∞,

and consider the matrices in Eqs. (A.2) and (A.6), respectively,

Mn,n−1(E) =
(
1 − 5

3 E + O(a1/2n ) 1 + O(a1/2n )

− 5
3 E + O(a1/2n ) 1 + O(an)

)
, M(E) =

(
1 − 5

3 E 1
− 5

3 E 1

)
.

To simplify the notation,wewill study the behavior of the solutions to the eigenvalue
equation

− u′′(x) + V (x)u(x) = Eu(x), (4.1)

with potential V (x) of the form (1.4), and will use Prüfer variables R and θ to analyze
the behaviors of its solutions. First write

(
uE (bn)
u′
E (bn)

)
= pn f+ + qn f−, (4.2)

with eigenvectors

f+ =
(

1
1 − e−iφ

)
and f− =

(
1

1 − eiφ

)

of the matrix M(E), associated with eigenvalues e±iφ , respectively. Define Rn > 0
and θn ∈ R by

pn = i Rne
iθn and qn = −i Rne

−iθn ,

satisfying the initial conditions

−2R0 sin θ0 = cosϕ, −2R0 sin θ0 + 2R0 sin(θ0 − φ) = sin ϕ , (4.3)
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where θ0 is chosen in [0, 2π). By relation (A.7), we can write, for each bn > 0,

∫ bn

0
[uE (x)]2dx = u′

E (bn)
d

dE
uE (bn) − uE (bn)

d

dE
u′
E (bn).

By (4.2),

uE (bn) = −2Rn sin θn, u′
E (bn) = 2Rn[− sin θn + sin(θn − φ)],

and so

‖uE‖2bn =
∫ bn

0
[uE (x)]2dx = 4R2

n
∂θn

∂E
sin φ (4.4)

We use transfer matrices to analyze the behavior of Rn and
∂θn
∂E for large values of n.

We have, by the construction of the potential V (x) and (4.2), that
(
uE (bn)
u′
E (bn)

)
=

(
1 0
gn 1

)
Mn,n−1(E)

(
uE (bn−1)
u′
E (bn−1)

)

=
(
1 0
gn 1

)
(M(E) + O(an))

(
uE (bn−1)
u′
E (bn−1)

)

=
(
1 0
gn 1

)
(pn−1e

iφ f+ + qn−1e
−iφ f−) + O(an)

=
(
1 0
gn 1

)(
pn−1e

iφ + qn−1e
−iφ

pn−1e
iφ(1 − e−iφ) + qn−1e

−iφ(1 − eiφ)

)
+ O(an)

=
(

pn−1e
iφ + qn−1e

−iφ

gn(pn−1e
iφ + qn−1e

−iφ) + pn−1(e
iφ − 1) + qn−1(e

−iφ − 1)

)
+ O(an),

and again by (4.2),

(
uE (bn)
u′
E (bn)

)
=

(
pn + qn

pn(1 − e−iφ) + qn(1 − eiφ)

)
. (4.5)

Thus, we conclude that

pn + qn = pn−1e
iφ + qn−1e

−iφ + O(an)pn(1 − e−iφ) + qn(1 − eiφ)

= gn(pn−1e
iφ + qn−1e

−iφ) + pn−1(e
iφ − 1) + qn−1(e

−iφ − 1) + O(an).

We need recurrence relations for pn and qn . Multiplying the above first equation
by (1 − eiφ) and subtracting the second one,

pn(−eiφ + e−iφ) = pn−1e
iφ(1 − eiφ) + qn−1e

−iφ(1 − eiφ) − gn(pn−1e
iφ + qn−1e

−iφ)

− pn−1(e
iφ − 1) − qn−1(e

−iφ − 1) + O(an)

= pn−1(1 − e2iφ) − gn(pn−1e
iφ + qn−1e

−iφ) + O(an).
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Therefore,

pn = pn−1e
iφ

(
1 − ign

2 sin φ

)
− igne−iφ

2 sin φ
qn−1 + O(an) , (4.6)

qn = qn−1e
−iφ

(
1 + ign

2 sin φ

)
+ igneiφ

2 sin φ
pn−1 + O(an) . (4.7)

Relation (4.7) can be obtained with a calculation similar to the one done to obtain pn
in terms of (pn−1, qn−1), i.e., multiplying by (1 − e−iφ), or equivalently using that
qn = p∗

n .
From pnqn = R2

n , we have

R2
n

R2
n−1

= 1 + g2n
2 sin2 φ

− gn
sin φ

(
sin 2(θn−1 + φ) + gn cos 2(θn−1 + φ)

2 sin φ

)
+ O(an).

(4.8)

To simplify the notation, we denote θ̃n = θn−1 + φ and Eq. (4.8) can be rewritten as

R2
n

R2
n−1

= 1 − gn
sin φ

sin(2θ̃n) + g2n
sin2 φ

sin2(θ̃n) + O(an). (4.9)

On the other hand, multiplying (4.6) by itself, we obtain

e2iθn = R2
n−1

R2
n

[
e2i θ̃n − η2n(e

2i θ̃n − e−2i θ̃n + 2) − 2iηn(e
2i θ̃n + 1) + O(an))

]
,

with ηn = gn
2 sin φ

. We can also write relation (4.9) as

R2
n

R2
n−1

= 1 + η2n(2 − e2i θ̃n − e−2i θ̃n ) + iηn(e
−2i θ̃n − e2i θ̃n ) + O(an).

Thus,

e2iθn = e2i θ̃n + η2n(e
2i θ̃n − e−2i θ̃n + 2) − iηn(e2i θ̃n + 1) + O(an)

1 + η2n(2 − e2i θ̃n − e−2i θ̃n ) + iηn(e−2i θ̃n − e2i θ̃n ) + O(an)
. (4.10)

Proposition 4.1 There is a parameter C > 0, depending on φ ∈ (0, π), such that

lim
n→∞

1

n

∣∣∣∣
∂θn

∂E

∣∣∣∣ = C,

with cosφ = 1 − 5
6 E.
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Proof To prove this bound on ∂θn
∂E , it suffices to consider

∂θn
∂φ

, because ∂θn
∂E = 5

6 sin φ
∂θn
∂φ

.

Since lim gn = 0 and remembering that ηn = gn
2 sin φ

, we can write (4.10) as

e2iθn = e2i θ̃n

1 + z(θn, φ)
+ t(θn, φ),

with

z(θn, φ) = η2n(2 − e2i θ̃n − e−2i θ̃n ) + iηn(e
−2i θ̃n − e2i θ̃n ) + O(an)

and

t(θn, φ) = η2n(e
2i θ̃n − e−2i θ̃n + 2) − iηn(e2i θ̃n + 1) + O(an)

1 + η2n(2 − e2i θ̃n − e−2i θ̃n ) + iηn(e−2i θ̃n − e2i θ̃n ) + O(an)
,

which are continuously differentiable functions and converge uniformly to zero as
n → ∞; hence, we obtain the estimate

∣∣∣∣
∂θn

∂φ

∣∣∣∣ ≤ Cn

(∣∣∣∣
∂θn−1

∂φ

∣∣∣∣ + 1

)
+ εn, (4.11)

with the sequences Cn → 1 and εn → 0.
Assume inductively that ∂θn−1

∂φ
= O(n − 1), that is, there is a constant D such that

∣∣∣∣∣
∂θ̃n−1

∂φ

∣∣∣∣∣ ≤ D(n − 1),

and observe that the induction base case follows from the initial conditions (4.3). Then,
by relation (4.11),

∣∣∣∣
∂θn

∂φ

∣∣∣∣ ≤ n

(
DCn + (1 − D)

n
Cn + εn

n

)
.

Since Cn → 1 and εn → 0 as n → ∞, we conclude that ∂θn
∂φ

= O(n). Therefore,
there is a C > 0, depending on φ ∈ (0, π), so that

lim
n→∞

1

n

∣∣∣∣
∂θn

∂E

∣∣∣∣ = C .

This completes the proof of the proposition. �
Note that, by Eq. (4.4), there is a 0 < C < ∞ so that

lim
n→∞

‖uE‖2bn
n

= lim
n→∞

1

n

∫ bn

0
[uE (x)]2dx = C lim

n→∞ R2
n . (4.12)
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We conclude that it is possible to obtain information about the asymptotic behavior
of the solutions uE by studying the behavior of the sequence (Rn), as n → ∞. In the
next section, we analyze the sequence (Rn) for selected (gn), concluding the proof of
Theorem 2.1.

5 Proof of Theorem 2.1

We note that the estimates for the Prüfer variables in (4.9) coincide, up to terms
of O(an), with the estimates in [12] (Equation (2.12.c)) for discrete Schrödinger
operators. Since the sequence (an) tends to zero, these terms are not expected to
interfere with the asymptotic behavior of the sequence (Rn). We will justify this
expectation in the following.

We specialize to the potential Vω(x) of the form (1.4) with independent random
variables gn ≡ gω

n defined in a probability space, with (probability) measure ν(ω),
and satisfying the conditions (i)-(iv) in Sect. 1.2.

Proposition 5.1 Suppose that the sequence (gω
n ) satisfy (i)-(iv) in Sect. 1.2. Fix φ ∈

(0, π), with φ �= π
4 , π

2 , 3π
4 . Then, for ν-a.e. ω, the variables Rn, associated with a

solution to the eigenvalue Eq. (4.1), satisfy

lim
n→∞

ln Rn(∑n
j=1

1
j

) = λ2

8 sin2 φ
. (5.1)

Proof Fix E and an initial condition θ0 associated with a solution to (4.1); by (4.9),

ln Rn − ln Rn−1 = 1

2
ln

(
1 − gω

n

sin φ
sin(2θ̃n) + (gω

n )2

sin2 φ
sin2(θ̃n) + yn

)
,

with (yn) a sequence so that |yn| ≤ Can , for a C > 0 independent of n. Since

sup
ω

∣∣∣∣
gω
n

sin φ
sin(2θ̃n) + (gω

n )2

sin2 φ
sin2(θ̃n) + yn

∣∣∣∣ −→ 0,

as n → ∞, we may use the expansion

ln(1 + x) = x − x2

2
+ O(x3)
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to get

ln
(
1 − gω

n

sin φ
sin(2θ̃n) + (gω

n )2

sin2 φ
sin2(θ̃n) + yn

)

= − gω
n

sin φ
sin(2θ̃n) + (gω

n )2

sin2 φ
sin2(θ̃n)

+ yn − (gω
n )2

2 sin2 φ
sin2(2θ̃n)

+ O
(
(gω

n )3 + an
)

.

Now, by using the trigonometric relation

sin2 θ − 1

2
sin2(2θ) = 1

2
− 1

2
cos(2θ) − 1

2

[
1

2
− 1

2
cos(4θ)

]

= 1

4
− 1

2
cos(2θ) + 1

4
cos(4θ),

we obtain that

ln Rn = 1

8

∞∑

n=1

E((gω
n )2)

sin2 φ
+ C1 + C2 + C3 + C4,

with corrections

C1 = − 1
2 sin φ

∑n
j=1 g

ω
j sin(2θ̃ j )

C2 = 1
2 sin2 φ

∑n
j=1

[
((gω

j )
2) − E((gω

j )
2)

] [
sin2(θ̃ j ) − 1

2 sin
2(2θ̃ j )

]

C3 = 1
2 sin2 φ

∑n
j=1(E(gω

j )
2)

[
1
2 cos(2θ̃ j ) − 1

4 cos(4θ̃ j )
]

C4 = ∑n
j=1 O

(
(gω

j )
3 + a j

)
.

Hence, the result follows if we prove that for each q = 1, 2, 3, 4 and a.e. ω,

lim
n→∞

|Cq(ω)|(∑n
j=1

1
j

) = 0.

For q = 1, 2, 3, the above limit follows exactly as in Theorem 8.2 in [12], since we
have analogous expressions for C1,C2,C3; here it is necessary that φ �= π

4 , π
2 , 3π

4 .
For q = 4, the result follows from hypothesis (iii) and the construction of the

sequence (an), since
∑∞

n=1 8an = b < ∞. �
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Proposition 5.2 Let (gω
n ) be as in Proposition 5.1. Fix φ ∈ (0, π), with φ �= π

4 , π
2 , 3π

4 .
Then, for ν-a.e. ω, there is a solution uθω to (4.1) so that R(θω) satisfies

lim
n→∞

ln R(θω)
n

ln n
= − λ2

8 sin2 φ
. (5.2)

Proof Let β = λ2

8 sin2 φ
. Let R(1)

n and R(2)
n be the radial Prüfer variables associated with

θ
(1)
n and θ

(2)
n , respectively. By Proposition 5.1, for a.e. ω and k = 1, 2,

lim
n→∞

ln R(k)
n

ln n
= β. (5.3)

By relation (4.5), we have that

uE (bn) = −2Rn sin(θn),

u′
E (bn) = −2Rn[sin(φ) cos(θn) + (1 − cosφ) sin(θn)].

Then, for any two linearly independent solutions u1,E and u2,E to Eq. (4.1), associated
with R(k) and θ(k), k = 1, 2, respectively, we have

W [u1,E , u2,E ](bn) = u1,E (bn)u
′
2,E (bn) − u′

1,E (bn)u2,E (bn)

= 4R(1)
n R(2)

n sin φ
(
sin(θ(1)

n ) cos(θ(2)
n ) − sin(θ(2)

n ) cos(θ(2)
n ))

)

= 4R(1)
n R(2)

n sin φ sin(θ(1)
n − θ(2)

n ).

Since the Wronskian is constant, one gets

R(1)
n R(2)

n sin φ sin(θ(1)
n − θ(2)

n ) = Cα.

So, by (5.3),

lim
n→∞

ln
∣∣ sin

(
θ

(1)
n − θ

(2)
n

)∣∣
ln n

= −2β.

Therefore, to conclude this proof it is enough to follow the same steps of the proof of
Lemma 8.8 in [12] (from equation (8.20) onwards). �

Our Propositions 5.1 and 5.2 are versions, in our setting, of Theorem 8.2 and
Lemma 8.8 in [12], respectively. These theorems are for φ �= π

4 , π
2 , 3π

4 .
Recalling that in the model discussed here we have cosφ = 1− 5

6 E , it follows that
E ∈ (0, 12

5 ) with

E �= 3(2 − √
2)

5
,
6

5
,
3(2 + √

2)

5
.
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By Proposition 5.2 and relation (4.4), it follows that for ν-a.e. ω there is a solution uSE
to Eq. (4.1) so that (the superscript S is for “subordinate”; see Sect. 5.1)

‖uSE‖bn � n−βn1/2, (5.4)

with r1(n) � r2(n) denoting the relation limn→∞ ln r1
ln r2

= C , for some 0 < C < ∞.

Note that if β < 1/2, then limn→∞ ‖uSE‖bn = ∞, and consequently, uSE /∈ L2(Ib).
Similarly, by Proposition 5.1 and relation (4.4), it follows that for every solution uE

to Eq. (4.1), with uE linearly independent with uSE , we have

‖uE‖bn � nβn1/2. (5.5)

Lemma 5.3 Suppose ‖u‖bn � nβ+1/2. If L j is a sequence in (0, b) with L j ↑ b,
for large j pick the (unique) subsequence (bn j ) so that bn j ≤ L j < bn j+1. Then,

‖u‖L j � nβ+1/2
j .

Proof Since ‖u‖L is a monotone function of L , one has

‖u‖bn j ≤ ‖u‖L j < ‖u‖bn j+1

and so

ln ‖u‖bn j
ln nβ+1/2

j

≤ ln ‖u‖L j

ln nβ+1/2
j

<
ln ‖u‖bn j+1

ln(n j + 1)β+1/2 × ln(n j + 1)

ln n j

and since ln(n j + 1)/ ln n j ↓ 1 as j → ∞, the result follows. �
Theorem 2.1 Fix 0 < λ < 2 and consider the Schrödinger operator generated by a
potential of the form (1.4) satisfying (i)-(iv). Let E ∈ J (λ), with J (λ) as in Sect. 1.3.

From cosφ = 1 − 5
6 E , for φ ∈ (0, π), we have

sin2 φ = 1 − cos2(φ) = 60E − 25E2

36
,

and since β = λ2

8 sin2 φ
, one finds

β = 9λ2

120E − 50E2 .

Thus, β < 1
2 if and only if λ < 2 and E ∈ J . We have, by (5.4) and (5.5), that

‖uSE‖bn � n
1
2−β , and for uE linearly independent with uSE , one has ‖uE‖bn � n

1
2+β.

Noting that
( 1
2 − β

) − α̃
( 1
2 + β

) = 0 if and only if α̃ = 1−2β
1+2β , consequently

lim
n→∞

‖uSE‖bn
‖uE‖α̃

bn

= A,
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for some 0 < A < ∞. Hence, we conclude, by Lemma 5.3 that for 0 < L < b,

lim
L→b

‖uSE‖L
‖uE‖α/(2−α)

L

= A (5.6)

with α̃ = α
2−α

, and any solution uE to (4.1), linearly independent with uSE . �

5.1 Singular continuous spectra

The fact that the Schrödinger operator, with a potential of the form (1.4) and
∑

n g
2
n =

∞, has singular continuous spectrum in (0, 12/5), follows by Proposition 3 of [15]
(since there are similarities in the calculations in our Sect. 4 with those in ([15], pages
32–35)). However, [15] does not provide information on Hausdorff dimensions.

Another way to verify that the operator (1.5), with 0 < λ < 2 and a potential of the
form (1.4) satisfying (i)-(iv), has singular continuous spectrum in J (λ) for ν-a.s. ω,
is by noting that for 0 < β < 1/2, then by relations (5.4)–(5.5) and Lemma 5.3, one
has

lim
L→ b

‖uSE‖L
‖uE‖L = 0,

for any solution uE to (4.1) linearly independent with uSE . Thus, for all E ∈ J , it
follows that uSE is subordinate at b (i.e., with κ = 1 in Sect. 3), and by (5.4), one has
uSE /∈ L2[0, b] and E is not an eigenvalue; hence, by Theorem 7.3 in [16], the operator
has a purely singular continuous spectrum in this set.
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Appendix A. The potential V0

We recall the example from [14] of a family Schrödinger operators H = −d2/dx2 +
V0(x), in the bounded interval Ib, which has purely absolutely continuous spectrum
in certain interval of energies. For 0 < a < 1, let Va(x) be given by

Va(x) = y1δ(x − a) + y2δ(x − 2a) + y2δ(x − 3a) + y1δ(x − 4a)

+y2δ(x − 5a) + y1δ(x − 6a) + y1δ(x − 7a) + y2δ(x − 8a), (A.1)
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with y1 ≡ y1(a) = (a−3/2 − a−1), y2 ≡ y2(a) = (a−1/2 − a−1); δ represents the
Dirac δ distribution.

Pick f (x) a solution to the eigenvalue equation

− f ′′(x) + Va(x) f (x) = E f (x), (E > 0).

Since f ′(x) is discontinuous at each δ-singularity x = Ka, with K = 1, . . . , 8, we
adopt the convention that f ′(Ka) is continuous from the right, that is,

f ′(Ka) = lim
x→Ka+ f ′(x).

One then associates transfer matrices to such eigenvalue equation as

(
f (a)

f ′(a)

)
= M (1)

a

(
f (0)
f ′(0)

)
and

(
f (2a)

f ′(2a)

)
= M (2)

a

(
f (a)

f ′(a)

)
,

with

M (1)
a =

(
1 0
y1 1

) (
cos(E1/2a) E−1/2 sin(E1/2a)

−E1/2 sin(E1/2a) cos(E1/2a)

)

=
(

cos(E1/2a) E−1/2 sin(E1/2a)

y1 cos(E1/2a) − E1/2 sin(E1/2a) y1E−1/2 sin(E1/2a) + cos(E1/2a)

)
,

M (2)
a =

(
1 0
y2 1

) (
cos(E1/2a) E−1/2 sin(E1/2a)

−E1/2 sin(E1/2a) cos(E1/2a)

)

=
(

cos(E1/2a) E−1/2 sin(E1/2a)

y2 cos(E1/2a) − E1/2 sin(E1/2a) y2E−1/2 sin(E1/2a) + cos(E1/2a)

)
.

Since we are interested in obtaining estimates of the behavior of these matrices as
a → 0, by using series expansions of sine and cosine functions, one finds

M (1)
a =

(
1 + O(a2) a + O(a3)

a−3/2 − a−1 − 1
2 Ea

1/2 + O(a) a−1/2 − 1
6 Ea

3/2 + O(a2)

)
,

M (2)
a =

(
1 − 1

2 Ea
2 + O(a5/2) a + O(a3)

a−1/2 − a−1 − 1
2 Ea + O(a3/2) a1/2 − 1

3 Ea
2 + O(a5/2)

)
.

The multiplication M (2)
a M (1)

a gives the transfer matrix from position 0 to 2a. Sim-
ilarly, the transfer matrix from 0 to 8a is

Ma(E) = M (2)
a (M (1)

a )2M (2)
a M (1)

a (M (2)
a )2M (1)

a =
(
1 − 5

3 E + O(a1/2) 1 + O(a1/2)
− 5

3 E + O(a1/2) 1 + O(a)

)
,

(A.2)
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that is,

(
f (8a)

f ′(8a)

)
= Ma(E)

(
f (0)
f ′(0)

)
.

We are now in position to describe the potential V0(x) in [0, b], defined in [14], so
that the operator H = −d2/dx2 + V0(x) has purely absolutely continuous spectrum
in the interval (0, 12/5). Let (bn) be an increasing sequence in [0, b) to be specified;
in each sub-interval [bn, bn+1), the potential V0(x) is defined from Van (x) as

V0(x) = Va1(x) + Va2(x − 8a1) + Va3(x − 8(a1 + a2))

+Va4(x − 8(a1 + a2 + a3)) + . . . , (A.3)

with (an) a decreasing sequence of positive numbers, bn = ∑n
j=1 8a j so that

b = lim
n→∞ bn =

∞∑

n=1

8an < ∞.

Remark A.1 In the limit as x → b, the amplitude of oscillations of V0(x) tends to
infinity, while the period of oscillation tends to zero; thus, V0(x) is unbounded from
both above and below near x = b.

Let ψE (x) be a solution to the equation

− ψ ′′
E (x) + V0(x)ψ(x) = EψE (x), (A.4)

and consider the transfer matrices Mn(E) and Mm,n(E)

(
ψE (bn)
ψ ′
E (bn)

)
= Mn(E)

(
ψE (0)
ψ ′
E (0)

)
,

(
ψE (bn)
ψ ′
E (bn)

)
= Mm,n(E)

(
ψE (bm)

ψ ′
E (bm)

)
. (A.5)

By (A.5) and the expression of V0(x), we have

Mn,n+1(E) = Man (E),

with Man (E) as in (A.2) for a = an . Since limn→∞ an = 0, it follows that

lim
n→∞ ‖Mn,n+1(E) − M(E)‖ = 0,

with

M(E) =
(
1 − 5

3 E 1
− 5

3 E 1

)
. (A.6)
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It is proven in [14] that the above convergence is uniform for the values of E in each
closed subinterval of (0, 12/5). The choice of E ∈ (0, 12/5) is important, because
within this interval M(E) is elliptic with distinct complex eigenvalues e±iφ , with
cosφ = 1 − 5E/6.

By Lemma 3 in [14], we have

‖ψE‖2bn =
∫ bn

0
[ψE (x)]2dx = ψ ′

E (bn)
d

dE
ψE (bn) − ψE (bn)

d

dE
ψ ′
E (bn). (A.7)

Hence, ‖ψE‖bn can be analyzed through the behavior of ψ and ψ ′ at bn , which can
be estimated by powers of the matrix M(E). Such arguments were employed in the
proof of Lemma 3 in [14], resulting in

0 < lim
n→∞

‖ψE‖2bn
n

= lim
n→∞

1

n

∫ bn

0
[ψE (x)]2dx < ∞. (A.8)

By using the relations recalled in this appendix, in [14,16] it is proven that
−d2/dx2 + V0(x), with the boundary conditions (1.2), has purely absolutely con-
tinuous spectrum in the interval (0, 12/5).

Remark A.2 By relation (A.8), any solutions ψE in the interval of energy (0, 12/5)
behave asymptotically as n1/2. The developments in Sect. 4 were pursued with this
given.
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