Letters in Mathematical Physics (2021) 111:67
https://doi.org/10.1007/s11005-021-01396-z

®

Check for
updates

Jacobi Ensemble, Hurwitz Numbers and Wilson Polynomials

2

Massimo Gisonni' - Tamara Grava'-2(® - Giulio Ruzza3

Received: 14 November 2020 / Revised: 26 March 2021 / Accepted: 1 April 2021 / Published online: 12 May 2021
© The Author(s) 2021

Abstract

We express the topological expansion of the Jacobi Unitary Ensemble in terms of
triple monotone Hurwitz numbers. This completes the combinatorial interpretation
of the topological expansion of the classical unitary invariant matrix ensembles. We
also provide effective formula for generating functions of multipoint correlators of
the Jacobi Unitary Ensemble in terms of Wilson polynomials, generalizing the known
relations between one point correlators and Wilson polynomials.

1 Introduction and results

Throughout this paper we denote Hy (/) the set of hermitian matrices of size N =
1,2, ... with eigenvalues in the interval / C R. In particular Hy (/) can be endowed
with the Lebesgue measure

N
dXZHdXii l_[ dReXl-j dImX,-j.
i=1

I<i<j<N
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The Jacobi Unitary Ensemble (JUE) is defined by the following measure on Hy (0, 1)
J 1 o B
dmy (X) = —5det® (X)det” (1 — X)dX, (1.1)
Cy

with parameters «, f satisfying Re «, Re 8 > —1. The normalizing constant

vov-n Y T(@4+k+ DOB+k+ 1)
=[]
k=0

)

cl = / det*(X)det?(1 — X)dX =7
N Svo T(@+B+2N -k

ensures that dm 1Jv has total mass 1; the above integral can be computed by a standard
formula [19] in terms of the norming constants & ,{ of the monic Jacobi polynomials,
see (4.2).

If « and B are integers, so that My, = a + N and Mg = B + N are integers,
the probability measure (1.1) describes the distribution of the matrix X = (W4 +
Wg) 1V 2Wa(Wa + Wr)~1/2 € Hy (0, 1) where Wy = ATA and Wz = BTB are the
Wishart matrices associated with the random matrices A, B of size My x N, Mg x N
respectively, with i.i.d. Gaussian entries [30].

Given positive integers k1, ..., k; > 0 we shall consider the expectation values

¢ ¢
<l_[trXikf>:=/ HtrXik-" dm, (X), (1.2)
i Hy (0,1)

j=1
which we term (respectively, positive and negative) JUE correlators.

Remark 1.1 Although (1.2) is defined only for Re o £ Zle ki>—1,Rep > —1,it
will be clear from the formula of Corollary 1.6 below that the JUE correlators extend
to rational functions of N, «, 8.

1.1 JUE correlators and Hurwitz numbers

Our first result gives a combinatorial interpretation for the large N topological expan-
sion [25,26,28] of JUE correlators (1.2). This provides an analogue of the classical
result of Bessis, Itzykson and Zuber [14] expressing correlators of the Gaussian Uni-
tary Ensemble as a generating function counting ribbon graphs weighted according to
their genus, see also [25]. At the same time, it is more similar in spirit (and actually
a generalization, see Remark 1.10) of the analogous result for the Laguerre Unitary
Ensemble, whose correlators are expressed in terms of double monotone Hurwitz
numbers [17], and (for a specific value of the parameter) in terms of Hodge integrals
[20,22,31]; in particular in [31] we provide an ELSV-type formula [24] for weighted
double monotone Hurwitz numbers in terms of Hodge integrals.

Our description of the JUE correlators involves triple monotone Hurwitz numbers,
which we promptly define; to this end let us recall that a partition is a sequence
A= (A1,...,Ap) of integers A1 > --- > Ay > 0, termed parts of A; the number ¢ is
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called length of the partition, denoted in general £(A), and the number |A| = Zf: Y
is called weight of the partition. We shall use the notation A - n to indicate that A is a
partition of n, i.e. |A| = n.

We denote S,, the group of permutations of {1, ..., n}; forany A - n let cyc(A) C
&, the conjugacy class of permutations of cycle-type A. It is worth recalling that the
centralizer of any permutation in cyc(1) has order

ao=[]mmn,  mi=|{j: x =i} (1.3)

i>1

where the symbol | - | denotes the cardinality of the set.

Hurwitz numbers were introduced by Hurwitz to count the number of non-
equivalent branched coverings of the Riemann sphere with a given set of branch points
and branch profile [37]. This problem is essentially equivalent to count factorizations
in the symmetric groups with permutations of assigned cycle-type and, possibly, other
constraints. It is a problem of long-standing interest in combinatorics, geometry, and
physics [3,4,32-36,47].

The type of Hurwitz numbers relevant to our study is defined as follows.
Definition 1.2 Given n > 0, three partitions A, i, v = n and an integer g > 0, we
define A4 (A, u, v) to be the number of tuples (w1, 2, 71, ..., T,) of permutations in
&, such that
l.r=2g—-2—n+4+L(n) +LWw)+ L),

2. m € cyc(u), mp € cyc(v),
3. 1; = (aj, b;) are transpositions, with @; < b; and by < --- < b,, and
4. mymaty -+ - T € cyc(A).

The relation of these Hurwitz numbers to the JUE is expressed by the following
result.

Theorem 1.3 Under the re-scaling o = (cq — 1)N, B = (cg — 1) N, for any partition
A we have the following Laurent expansions as N — 00;

L
|
(=DM NED M_l <1_[ tr X)‘./‘>
roy

j=1
L)
1 Cq
= Zo N2 XF:IAI (—cq — cp) LT L0252 ek, w, v),
§=> v
¢
|
(_1)|MN(()»)& 1_[ tr X
0 \joi

£(v)

1 (1 —Cq — c,g)
B Z:O N28—2 ; (ca — 1)@(u>+zz<v)+z<x>+2g—zhg(k’ o V),
gz kA

where z;, is given in (1.3) and hg(X, p, v) are the monotone triple Hurwitz numbers
of Definition 1.2.
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The proof is in Sect. 2. There is a similar result for the Laguerre Unitary Ensemble
(LUE) [17] which is recovered by the limit explained in Remark 1.10. However, the
proof presented in this paper uses substantially different methods than those employed
in [17]; in particular our proof is completely self-contained and uses the notion of
multiparametric weighted Hurwitz numbers, see, e.g. [36] and Sect. 2.1.

Remark 1.4 (Connected correlators and connected Hurwitz numbers) By standard
combinatorial methods [49] it is possible to conclude from Theorem 1.3 that the
connected JUE correlators

K c
<]_[trxﬂf> = Z (=DIP=1qpr =1 ]_[ <]‘[trxﬂa>
j=I ‘P partition of {1,...,£} AeP \acA

admit the same large N expansions as in Theorem 1.3, with the Hurwitz num-
bers hg (A, 1, v) replaced by their connected counterparts h;(k, i, v). The latter are

defined as the number of tuples (1, 72, 71, ..., Tr) satisfying (1)—(4) in Definition 1.2
and the additional constraint that the subgroup generated by 1, 72, 71, ..., T, acts
transitively on {1, ..., n}.

1.2 Computing correlators of hermitian models

To provide an effective computation of the JUE correlators we first consider the general
case of a measure on H y (/) of the form

1
dmpy(X) = —exptr V(X)dX, (1.4)
Cy

with normalizing constant Cy = fHN( 1) CXptr V(X)dX. Here V (x) is a continuous

functionof x € I° (theinterior of /) and we assume thatexp V (x) = O (|x — xo| 1t )
for some ¢ > 0 as x € I° approaches a finite endpoint xo of [; further, if / extends
to oo we assume that V(x) — —oo fast enough as x — =00 in order for the
measure (1.4) to have finite moments of all orders, so that the associated orthogonal
polynomials exist. The expression tr V (X) in (1.4) for an hermitian matrix X is defined
via the spectral theorem. The JUE is recovered for / = [0, 1] and V(x) = o logx +
Blog(l —x),Rea,Re g > —1.
Introduce the cumulant functions

¢
Gez= [ Tlef@-0" oo, ez1 as)
Hn () i=1

which are analytic functions of zy,...,z; € C\ I, symmetric in the variables
Z1, - .., 2¢. To simplify the analysis it is convenient to introduce the connected cumu-

lant functions
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G, ze) = > DPENP = D! ] | Giai(zadaca),  (1.6)

P partition of {1,...,£} AeP

from which the cumulant functions can be recovered by

Gz, ..., 20) = > [ €% (zadacn)- (1.7)

P partition of {1,...,0} AeP
For example, ¢ (z) = 47 (), €5 (21, 22) = €2(21, 22) — €1(21)€1(22),

€5 (21,22, 23) = €3(21, 22, 23) — €2(21, 22)61(23) — 62(22, 23)61(21)
— ¢2(21, 23)61(22) +261(21)61(22)61(23).

We now express the connected cumulant functions in terms of the monic orthogonal
polynomials Py(z) = z' + ... uniquely defined by

/Pg(x)Pm(x)eV(x)dx = h¢Se.m, (1.8)
I

and of the 2 x 2 matrix

1 Vix) dx_
Yy (2) = (_ Py (2) 2 f[ Py(x)e 122y ) , (1.9)

P2 Py-1(2) =g [y Py—1(x)eV ) 24

which is the well-known solution to the Riemann-Hilbert problem of orthogonal poly-
nomials [29]; it is an analytic function of z € C \ I.

Theorem 1.5 Let
10\ _
R(z) =Yy (2) (o 0) Yy,

with Yn (2) as in (1.9). Then the connected cumulant functions (1.6) are given by

. — i 1
¢ () =tr (YNI(Z)YN(Z)%>7 03 = <0 _01> ,
tr (R(z1)R(z2)) — 1
(z1 — 22)?

Z tr (R(zi,) ... R(zi,))

(Zil - Ziz) to (Zi( - Zil) '

G5 (z1,22) =

k]

{ >3,

Cp (21, 20) = —
(i1, ig)ecye((£))

where prime in the second formula denotes derivative with respect to z and cyc((£))
in the last formula is the set of L-cycles in the symmetric group Sy.
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The proof is given in Sect. 3. Formule of this sort for correlators of hermitian matrix
models have been recently discussed in the literature, see, e.g. [21,27]. They are directly
related to the theory of tau functions (formal [21] and isomonodromic [9,31]) and to
topological recursion theory [5,6,15,28]. Incidentally, similar formule also appear for
matrix models with external source [7,8,11-13,41]. In Sect. 3 we provide an extremely
direct derivation based solely on the Riemann-Hilbert characterization of the matrix
Yn(2).

We can apply these formule to the Jacobi measure dmljv, see (1.1), for which the
support is I = [0, 1]. Therefore we can expand the cumulants near the points z = 0
or z = 00; the expansion at z = 1 could be considered but we omit it as it is recovered
from the one at z = 0 by exchanging «, f and z +— 1 —z see (1.1). Using the definition
in (1.5) and (1.6), we obtain the generating functions for the JUE connected correlators
(1.2), namely

N . N 0 .
G0 -~ G0 Fw,
@) T @) (p=0,000022,

where

C
(Hﬁ':] tr ij>
C o— .
y(,oo(zl’ e 2e) = Z ki+1 ke+17
kiyonke=1 21 "%y

Vi c
T,z = (=D Y <HtrX_kf> PR (R 1)

Kiveke=1 \j=1

On the other hand, performing the same expansion on the right hand side of the
expressions for the cumulants in Theorem 1.5, we have an explicit tool to compute the
correlators.

For the specific case of Jacobi polynomials, we prove in Sect. 4 (Proposition 4.1)
that at z = oo the matrix R(z) has the Taylor expansion (valid for |z| > 1) of the form
R(z) = T~'RI®®l(2)T and the Poincaré asymptotic expansion R(z) ~ T~ 'RIl(z)T
at z = 0 valid in the sector 0 < argz < 27. Here T is the constant matrix

1 0
e 1 , (1.11)
0 > @t B2N)(@+B+2N—1)

with 2] given in (4.2), and the series RI>I(z), RI%(z) are

R[OO](Z)
_ (1 0)+ZL;<ZA5(N) N(a+N)(ﬂ+N)(a+/3+N)B«(N+1>>
00 o+ B4+ 2N \—Bi(N) —LA((N) '

=0

(1.12)
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R[O](Z)
_ (1 o) 3 z¢ <(£ + DAN) =N(@+ N)(B+ N)(@+ B+ N)Be(N + 1))
—\00 o+ B+2N B¢(N) —(€+ 1)A¢(N) ’
(1.13)
where
N(PB+N)
Ay = YPEN
o+ p+2N
Au(N) = N+ N)(B+N)(a+ B+ N)(o+2)—1
‘ @+ B+2N — Dipa
1—-¢,£4+2, 1—B—-—N, 1—N
4F3 + P 1), £>1,
2, a+2,2—a—B—2N
(a+ 1)g
B¢(N) =
(Ol+ﬁ +2N — 1)g+1
—£,¢+1, 1—-B—N, 1—N
4F3 + p 1], >0, (1.14)
I, a+1,2—a—8—-2N
and
~ (¢ +B+2N — 241
Ay = 2t AN,
(@ — €)ap41
~ 2N —1—14¢
By =@ th+ 2+ g (N). € 0. (1.15)
(o —€)2e41

Here 4 F3 is the generalized hypergeometric function, and we use the rising factorial

=56+ (s+k—1). (1.16)

For example, the first few terms read

N@+N)B+N)(@+p+N)

A1(N) = (@ +B+2N—D(a+B+2N)(a+B+2N+1)’
1
BN = a1
B _ 2
BN (@ —1)(a+B)+2N(@+B—1)+2N

(@+B+2N —2)(@+B+2N — (a+ B +2N)

Since the constant conjugation by 7 in (1.11) of the matrix R(z) does not affect the
formula of Theorem 1.5 (see also Sect. 4) we obtain the following corollary, which
provides explicit formula for the generating functions of the correlators.
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Corollary 1.6 Let RI°°I(z) and R\ (z) be the explicit series given in (1.12) and (1.13).
The one-point generating function (1.10) of the JUE are

e RO T P (R 1)
ylyoo(Z) = 21 —2) /oo (1 Rl,l (U))) dw (1 _Z)(a+‘3+2N)s

2N [* N
atp+2N (1 _ Rgo{(w)) dw — i
z(1—-12) 0 ’ 1—z

F10(2) =

where RE??], RE(){ denote the (1, 1)-entry of RI®!, ROV respectively. The multi-point
generating functions (1.10) are

tr (R[l’](zl)R[”](zz)) -1
(z1 —22)?
Z tr (R[P](Zh) . R[”](Z,'[))

(Zil _Ziz) "'(Zig _Zi1)

T3 (21, 22) =

T,z =~ , >3, p=0,c0.

(i1,..nig)€cyc((0)

The proof is in Sect. 4.2, and is obtained from the formula of Theorem 1.5 by
expansion at z; — 00, 0. In this corollary, the formul® on the right hand side are
interpreted as power series expansions at z = 0 or z = oo; to this end we remark
that for £ > 2 these series are well defined, as it follows from the fact that the
corresponding analytic functions are holomorphic in (C \ 7)¢ and in particular regular
along the diagonals z, = z; for a # b (see also Remark 3.2 and Lemma 3.3).

The coefficients of RI°!(z) and RI>°}(z) are rational functions of N, «, 8 and we
conclude that JUE correlators extend to rational functions of N, «, 8.

Examining more closely the formula for .7 o, we see that

N tr X*) — (tr X*+1
(1 =) F1(2) = ——+Z<r ! k+<f )
Z k=0 Z

which by the explicit expansion R[*°!(z) in (1.12) implies
<tr Xk> - <tr Xk“) — AL(N), (1.17)

where Ay (N) is defined in (1.14). Reasoning in the same way for .%| o(z) we obtain

et B = EECEE (e)-fet ).
(1.18)

where Zk(N ) is defined in (1.15). Equations (1.17) and (1.18) agree with the results
of [18].
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Remark 1.7 The coefficients A¢(N), B¢(N) can be expressed in terms of Wilson poly-
nomials [40,50], which are defined by
1>,

(1.19)

W,(k*;a,b,c.d) (—n,n+a+b+c+d—1,a+ik,a—ik
@+bu@+ana+rd, a+b ate atd

for more details see Proposition 4.4. Thus the formula of Corollary 2.7 extend the
connection between JUE moments (tr xk ) and Wilson polynomials described in [18]
(see also [42,43]) to the JUE multi-point correlators (tr X*1 - - tr X¢).

Remark 1.8 (JUE mixed correlators) We could consider more general generating func-
tions as follows; take ¢, r, s > O with g +r +s > 0 and expand the cumulant function

ng-'rr-l-s(zla"-’Zq’ Wi, ey Wy Y1y enes Ys)

for the Jacobi measure as z; — oo, w; — 0, y; — 1, to obtain the generating function

/ o XM XRee X e X T (1= X) e (1= X)Bdm Y (X)
kiskg>1 TV O.1)
iyeenir>1
jl«--~~js21
i—1 ir—1 i j—
y wi' T w T (= DA Lo (yy — 1)1

ki+1 kg+1
le "'qu

Itis then clear that we can compute the coefficients of such series in terms of the matrix
series R191, R[] and thus of Wilson polynomials, by the formule of Theorem 1.5;
note that the expansion of R(z) at z = 1 is obtained from R!% by exchanging o with
B and z with 1 — z.

Example 1.9 From the formula of Corollary 1.6 we can compute

((r x)%)
_ 2N(ax+ B)(B— )+ N)(B+ N)(+ B+ N)
T (@+B4+2N -2 (@+B+2N — D@+ B+2N)3(@+p+2N+ D@+ B+2N+2)

With the substitution « = (c¢y — 1)N and B = (cg — 1)N we have the large N
expansion

((trX)3>c—L ¢ 2 6 . 4
TN L \(ea +cp)? (catcp)t (ca+cp)d

+c

IS}

6 18 12
<_ Catep)  Catepy  (ca +cﬁ>6>
: 4 12 8 1
e ((ca Tep  (Catopb | (ca +c5>7>} o <W> '
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Matching the coefficients as in Theorem 1.3 we get the values for h{_ (A =
(1,1, 1), i, v) (the connected Hurwitz numbers defined in Remark 1.4) reported in
the following table;

v=@) =@ Dlv=(,1,1)
©=03) 2 6 4
n=21] 6 18 2

n= (11,0 4 12 8

For example, the numbers in the first row (u = (3)) can be read from the follow-
ing factorizations in G3. To list them let us first note that we have cyc(A) = {Id}
and cyc(n) = {(123), (132)}; therefore for v = (3) we have 2 factorizations

(r = number of transpositions = 0)
(123)(132) =1d, (132)(123) =1d,
forv = (2, 1) (cyc(v) = {(12), (23), (13)}) we have 6 factorizations (r = 1)

(123)(12)(13) = Id, (123)(13)(23) = Id, (123)(23)(12) = Id,
(132)(13)(12) = Id, (132)(12)(23) = Id, (132)(23)(13) = 1d,

and for v = (1, 1, 1) we have the 4 factorizations (r = 2, here the monotone condition
plays a role)

(123)1d(12)(13) = 1d, (123)1d(13)(23) = Id,
(132)1d(12)(23) = 1d, (123)1d(23)(13) = Id.

Similarly we can compute from Corollary 1.6

<(trX_1)3>c _ 2N(@+ N)(@ +2N)(B+ N)(a+ B+ N)(@ + 28+ 2N)
(@ —2)(a — a3 (o + (e +2)

1 2 6 4
W [((ca T PR T P 1>5> (Catcp—1)
6 18 12 )
- ((ca S § R P 1)6) (Catcp—1)

+ r oy B, 8 +—13]+(91
((ca—l)5 (ca — 1)F (ca—1)7>(c°‘ D (W>

and from Theorem 1.3 we recognize the connected Hurwitz numbers tabulated above.

Remark 1.10 (Laguerre limit) There is a scaling limit of the JUE correlators to the
LUE correlators; if kg, - - - , k¢ are arbitrary integers we have

l ( ot ka)det"‘ X)exp(—tr X)dX
lim gRittke Htr xki ) — Jrino. 400 (ITj=1 (X) exp( )
e j=1 Jrp 0. 400 det” (X) exp(—tr X)dX
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Therefore the results of the present work about the JUE directly imply analogous results
for the LUE; these results are already known from [17,31]. See also Remark 2.9.

2 JUE Correlators and Hurwitz numbers

In this section we prove Theorem 1.3. For the proof we will consider the so-called mul-
tiparametric weighted Hurwitz numbers; this far-reaching generalization of classical
Hurwitz numbers was introduced and related to tau functions of integrable systems in
several works by Harnad, Orlov [36], and Guay-Paquet [35], after the impetus of the
seminal work of Okounkov [47].

2.1 Multiparametric weighted Hurwitz numbers

Let C[S,,] be the group algebra of the symmetric group G,,; namely, C[S,,] consists of
formal linear combinations with complex coefficients of permutations of {1, ..., n}.
We shall need two important type of elements of C[S,,], which we now introduce. For
any A F n denote

Co= Y m 2.1)

wecyc(r)

where we recall that cyc(L) C G, is the conjugacy class of permutations of cycle-type
M. It is well known [48] that the set of C,, for A = n form a linear basis of the center
Z(C[6,]) of the group algebra.

The second class of elements consists of the Young-Jucys-Murphy (YJIM) elements
[39,46] J,,fora =1, ..., n, defined as

J1=0, Jo=0,a)+R2,a)+---+(@—1,a), 2<a<n,

denoting (a, b) (with a < b) the transposition of {1, ..., n} switching a, b and fixing
everything else.

Although singularly the YJM elements are not central, they commute amongst
themselves, and symmetric polynomials of n variables evaluated at 71, ..., J, gen-
erate Z(C[S,]). Indeed the following relation [39] takes place in Z(C[&,])[€];

[[a+egn =) e e 2.2)

a=1 rbn

With these preliminaries we are ready to introduce the class of multiparametric

Hurwitz numbers [10,35,36] which we need. Fix the real parameters y1, ..., yr, and
81,...,6y (L, M > 0) and collect them into the rational function
L
(14
G(z) := M (2.3)

ML=
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67 Page120f38 M. Gisonni et al.

Then, the (rationally weighted) multiparametric (single) Hurwitz numbers Hcd; A),
associated to the function G in (2.3) and labeled by the integer d > 1 and by the
partition A F n, are defined by

1 n
HE0) = —1e'CI ] 6 @) 2.4)

a=1

where the notation [€%Cy] denotes the coefficient in front of €C, in the expansion
of HZ:I G (eT;) € Z(C[S,)DI[[e]] in the basis {C;}; to compute the expression
G (eJ,) € Z(C[S,)DIle]], the denominators in (2.3) are to be understood as (1 —
$j2)7 1= 2 k=0 8’]?11‘.

2.2 Generating functions of multiparametric Hurwitz numbers in the Schur basis

The following result (see [36]) expresses the generating functions of multiparametric
weighted Hurwitz numbers in the Schur basis. In this context, the latter is regarded
as the basis {s) (t)} (A running in the set of all partitions) of the space of weighted
homogeneous polynomials in t = (t1, 2, . . . ), with deg #x = k, whose elements are

L)

A 2.5)

5.(t) = det [, —i4; (0]

where the complete homogeneous symmetric polynomials 4 (t) are defined by the
generating series'

k Ik
hi(t) = —
Z w"hi(t) = exp Z W
k>0 k=1
In the following we shall denote P the set of all partitions.
Proposition 2.1 ([36]) The generating function
1265)
oty =Y ! Y HEW [0 (2.6)
d>1  reP i=1

of multiparametric weighted Hurwitz numbers (2.4) associated to the rational function
(2.3) is equivalently expressed as

dim A
HGHEDY 0 995, 2.7)
reP '

! For convenience we adopt a normalization which differs from the one common in the literature by a
transformation f +— t; /k.
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where s, (t) are the Schur polynomials (2.5) and the coefficients are given explicitly
by
n9 = T GG -, 2.8)

(i, j)er
dim A being the dimension of the irreducible representation of &, associated with A.

Before the proof we give a couple of remarks.

1. In (2.8) and below we use the notation (i, j) € A where the partition A is identified
with its diagram, i.e. the set of (i, j) € Z? satisfying 1 <i < £(A), 1 < j < A;.
For example, the diagram of the partition A = (4, 2, 2, 1) I 9 is depicted below;

[ ]
. (2.9

~ o~~~
I
AW N =

2. There exist several equivalent formulz for dim A, including the well-known hook-
length formula; for later convenience we recall the expression

dim A _ H1§i<j§N()‘i —Aj+J — 1)
|A]! [T O — k + N)!

(2.10)

valid for all N > €(}), setting »; = O forall ¢(A) <i < N.
Proof of Proposition 2.1 We need a few preliminaries. First we recall that Z (C[&,,])

is a semi-simple commutative algebra; a basis of idempotents is given by (see, e.g.
[48])

dim A
T PIPAE
ukn

where x )’f are the characters of the symmetric group and C,, are given in (2.1). Namely

E A=A
§& =1 @2.11)

0 A#£N.
For any symmetric polynomial p(yy, ..., y,) inn variables we have already mentioned
that p(J1, - .., Ju) belongs to Z (C[&,,]); central elements are diagonal on the basis

of idempotents and it is proven in [39] that
P TE=p ({J —i}i per) & (2.12)
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where in the right hand side we denote p ({ J—ilq, j)ex) the evaluation of the sym-
metric polynomial p at the n values of j — i for (i, j) € Z* in the diagram of A - n;
in the example A = (4,2,2,1) - 9 above, see (2.9), this denotes the evaluation
p@©,1,2,3,—-1,0,-2, -1, =3).

We are ready for the proof proper. First note that by (2.12) and (2.8) we have

[]‘[ G(eja):| & =r99g,

a=1

which implies, using (2.11), that

H G =Y .

A=n

By the definition of Hg (w) in (2.4) we can rewrite the last identity as

dim A
P Y el ngonc, = Y r 6 = 3 SO,

ubknd=>1 Abn A ubn

Since C,, form a basis of Z (C[S5,,]) we get that for any partition 1

dim A G XM
Do elHg G = Y eI

|
=1 s A L

Multiplying this identity by [ [, ¢ | tu; and summing over all partitions u, on the left
we obtain (2.6) and on the right, thanks to the well-known identity [45]

u £(p)
CEDIE ILs
el
we obtain (2.7). The proof is complete. O

Remark 2.2 This result is used by the authors of [36] to prove that the generating func-
tion 7 (€; t) is a one-parameter family in € of Kadomtsev-Petviashvili tau functions
in the times t; a tau function such that the coefficients of the Schur expansion have the
form (2.8) is termed hypergeometric tau function. It is also worth remarking that the
theorem stated here is a reduction of a more general result, proved in [35], dealing with
generating functions of double (weighted) Hurwitz numbers. In this general setting,
the corresponding integrable hierarchy is the 2D Toda hierarchy.
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2.3 JUE partition functions

Let us introduce the formal generating functions

3 e
Z,jf,(u) :=/ exp Z—trXik dm]JV(X)z Z—H’“i’
Hy (0,1) k Zx ;
N, k>1 reP i=1
(2.13)

of JUE correlators; the sum in the right hand side is a formal power series in u running
over all partitions X, with the combinatorial factor z; defined in (1 3)%. We call Z; (u)
(resp. Zy (w)) the positive (resp. negative) JUE partition function. Although it will
not be needed in the following, we mention that these partition functions are Toda tau
functions in the times uy, uz, ... [1,2,19].

Our goal in this paragraph is to show that the JUE partition functions can be
expressed in the form (2.7) for appropriate choices of G (see Corollary 2.7).

The first step is to expand the JUE partition functions in the Schur basis; this is
achieved by the following well-known general lemma, whose proof we report for
the reader’s convenience. The idea of expanding a hermitian matrix model partition
function over the Schur basis has been recently used in the computation of correlators
in [38].

We first introduce the following notations

Ax) = 1_[ (xj—)c,-):det(xiN_j){V'1
i,j=

1<i<j<N

for the Vandermonde determinant and

(2.14)

for the characters of GL,,; again, we set A; = 0 for all £(A) <i < N.
Lemma 2.3 For any potential V (x) (x € 1) we have

Srpy @0t (VX) + Xy EXFF) dx B
fHN([)exptr (V(X))dX

+
Z C)\’NSA(U),

AEP:L(AM)<N

where the Schur polynomials are defined in (2.5) and the coefficients are

o GEHAT@ [Tazy exp V()] e
S ROTLL eV ealdYy

(2.15)

2 A formal power series in infinitely many variables u1, u3, - - - can be rigorously treated by introducing
the grading deg u; = k and working in the completion of the algebra of polynomials inuy, us, ..., filtered
by degree.
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- -1 -1
Here x = (x1,...,xy) and x 1=(x1 e Xy

Proof We have
fHN(I) exptr (V(X) + Y s Y x*K) dx
fHN(I) exptr (V(X))dX
S A2 TI oxp [V xa) + Xpey FxiF]dV x
Siv A2@ TToZ exp [V (xa) 1 dNx

, (2.16)

where we use the standard decomposition dX = AZ(x)d¥xdU of the Lebesgue
measure into eigenvalues x = (x1, ..., xy) and eigenvectors U € Uy of the hermitian
matrix X = UXUT, with dU a Haar measure on U ~ (whose normalization is irrelevant
as it cancels in (2.16) between numerator and denominator). The proof follows by an
application of the identity

exp lec—k(xfl +oy) = Y e s,
k=1 AEP: L) <N
which is nothing but a form of Cauchy identity, see, e.g. [49]. O

Remark 2.4 By applying Andreief identity

N

/IN det [ﬁ(xj)]f\jj:l det [g; (xj)]f\,’j:l dV¥x = N!det [/1 fi(x)g; (x)dxj|

i,j=1
it is straightforward to show that the coefficients c;_y in (2.15) can also be expressed
as

det [M :|N
MAN=IN=] i,j=1 M. - /X u j)e ()d}(,

N ’ iJ
+ I
see also [38]. However, for our purposes it is more convenient to work with the rep-
resentation (2.15).

Applying this general lemmato I = [0, 1] and V(x) = «logx + Blog(l — x) we
can expand the positive and negative JUE partition functions in the Schur basis as

Zyw = > s, (2.17)
AEP:L(M<N

where

Sy xG@EY A2 TN, x8 (1 = x)PdVx
C}L,N =
Jo.npn A2@) [Taz; x¢(1 = x)fdV x

(2.18)
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For the negative coefficients ¢, 5 we shall use the following elementary lemma.

Lemma 2.5 For any partition . = (°1, ..., A¢) of length £ < N we have

N
0 = (]_[ x;“) X (),
a=1

where X is the partition of length < N whose parts are ’):j =AM —AN—j+1.

Proof The proof follows from the following chain of equalities;

—N+j—1,; 1N 1—j—an_ i1V
det [xi ! "]' _, det [xl. I "“]_ -
-1 i,j= i,j=
6. = Y = Y
det [x_ +J] det [xi _1]
ij=1 ij=1

i
N—j+r—in_i1 1V
N det[xl. SN ’“]_' 1 N
—A i,j= -
(Hxa ) Y = (Hxa l)xx@-
a=1 det I:Xl- ]] a=1
i,j=1

In the first step we have shuffled the columns as j — N — j + 1, then we have
multiplied both numerator and denominator by (xg - - - xx)V+*1, and finally we have
applied the definition (2.14). O

For the simplification of the coefficients (2.18) we rely on the following Schur-
Selberg integral

/( - @A [T —x)fdVx

a=1
N
r 1918 N+i —k+1
— N l_[ ()»i—)»j-i-j—l')l_[ B+l (a+ N+ 2 + )’ (2.19)
k=1

T(+B+2N+ i —k+1)

1<i<j<N

for which we refer, e.g. to [45, page 385]. The above allows us to prove the following
proposition.

Proposition 2.6 We have

,  dimx 1—[ (N—i+ jpDa+N—-i+))

CAN = p . X
IA]! e (@ +B+2N—i+j)
- _ dim A 1—[ (N—i+ j)a+B+N+i—j) (2.20)
AN T | : : :
|A]! G)er (¢ +i—])
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Proof We start with c;: N> using (2.18), (2.19), and (2.10) we compute

. n|5i<j5N()‘i_)‘j+j_i)ﬁF(a+N+Ak7k+l)F(oc+ﬂ+2N7k+1)

c =
AN MicicjenG =0 i L@+ B+2N +he—k+ Dl (@+N—k+1)

_dim,\’ﬁ (N—k+ 1Dy (@+N—k+1),

AL @ BN —k+ D)y,
 dim 0l (N—i+De+N—i+j)

A s @FBA2N =i+ )

We remind that we are using the notation (1.16) for the rising factorial. For ¢, ,, we

first note that, thanks to Lemma 2.5 and (2.19), we have

N
/0 L0 HA%@ [0 - x)fdYx
©O,1)

a=1

N
- L o B+ (o — i +k)
= N! 1_[ i —Aj+] l)]l:[l[‘(a+,3+N—lk+k)’

I<i<j<N

then with similar computations as above we obtain

o hsicjan@i — 4 +7 — ) ﬁ T(@ =g+ (@+ B+ N +k)
mN MeicjenG =0 AT@+B+N - A+ +k)

_ dim 2 Nl_‘[l (N—k+ Dy (a+B+N—h+hky,

e L (o — M + k),
_ dimx I (N—i+j)a+B+N+i—j)
[A! (@+i—j) )

(@, 7)er

O

This proposition enables us to identify the Jacobi generating function (2.13) with
the generating function of multiparametric weighted Hurwitz numbers in (2.6). Indeed

we have the following result.

Corollary 2.7 Letcy := 14+a/N and cg := 1+ B/ N; then the Jacobi formal partition

functions in (2.13) take the form

a+2)(1+2)

1+ ’

1
Zy ) =16+ <e =¥ t) ., Gt = :
catcp

k=\—") Uk,
ca tcp
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I ’
1 co—1

N

— DN\
,k:(w) "

d+2)(1- #
Zy) = 16- <e = l,t), G () = < wtep 1>

co — 1
where T is introduced in Theorem 2.1.

Proof We first note that we can rewrite the expansion (2.17) as

Zy) =" ¢y,
rEP

with the sum over all partitions P and no longer restricted to £(A) < N; this is clear

as ci 5, = 0 whenever N =0, 1,2, ... and £(4) > N. Then the proof is immediate
by the formula (2.8) for the coefficients riG’é), since (2.20) can be rewritten as

+
N T

(ot ) (145G -0) (1 +2yu=0)

1 ..
Ca +Cp (i, j)er I+ (ca+6,a)N(] -
1, . 1 ..
_ dimx <(ca +op— 1)N>* 1+ %G =) (1= g U = D)
AN = — T . .
Al cqg — 1 (pen 1- m(] —1i)

2.4 Hurwitz numbers hg(4, i, v) and multiparametric Hurwitz numbers

We now connect the multiparametric Hurwitz numbers (2.4) for the functions G*(2),
appearing in Corollary 2.7, with the counting problem in Definition 1.2.

Proposition 2.8 If G(z) = %&jm, with'y and 8 parameters, then for all partitions
A b nand all integers g > 0 we have

_ 1
HCZ;g 2+n+€(k)(k) _ E Z ynfi(v)8@(;/.)+l(v)+€()u)+2g72fnhg()h “, V),

: n,vkn

where the triple monotone Hurwitz number hg (M, [1, v) has been introduced in Defi-
nition 1.2.

Proof We apply (2.2) to the first two factors of the following to get

[16 €l =[]0 +eT)( +eyTa)
a=1

a=1

1
1—€87,
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Y entiog, (Z(ey)”_“”)cu) D Y Tu T

ukn vkn r>0 1<a1<---<a,<n

By definition (2.4), extracting the coefficient of €?C; and dividing by z; we obtain
H g (A); therefore

HG ) = DV T g G ),

aleye@l T

where d, r, g in this identity are related via

r=L)+e(u)+Lw)+2g—2—n, d=2n—4L(u)—LO)+r.
The proof is complete by the identity z; |cyc(A)| = n!. O
2.5 Proof of Theorem 1.3

From Corollary 2.7 we have, with the scaling o = (¢ — 1)N, B = (cg — )N,

] 1209)
Zi () = ( ) HE, 0 [ Tun
N ; Z Ca +Cp G E
y —_ DN\ )
Zyw =Y 10 ¥ () g oo [T
d>1 rEP i=1

where we have used Proposition 2.1. It follows from (2.13) that

<]_[f.:1 tr X)‘1'>

Zn

<]_[j L tr X >

(2]
Al—d Ca d
=) e

d>1

co +cp—1 Al
BRI CEEtl

d>1

and using finally Proposition 2.8 we have

(o, v xﬁ') L)
Jj= ZNz 2g—0(L) Z (- 1)|M 2 he(X, i, V)
[ L) +E(M)+2g—2 8V I B0
2 m' = it (—ca —cp) (W)+LW)+L()+2g
<l_[§—1 trX_)"> (1-—ca—c )Z(v)
yvJo= I _ 2-2g—t(M) |M a—CB
Z MI' 2N 2D _ l)z(u)+e<u>+m)+2g—2hé’()"“’“)'
g>0 w,vbn
The proof is complete. O
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Remark 2.9 Let us note that letting cg — oo in the functions G* of Corollary 2.7 we
have Gt (z) — (1+2)(1+2z/ce) and G~ (z) — (142)/(1—z/(cq —1)). The Hurwitz
numbers corresponding to these limit functions can be identified as in Proposition 2.8
in terms of double strictly (+) or weakly (—) Hurwitz numbers, respectively. Thus,
bearing in mind the scaling limit for 8 — oo of JUE correlators to the correlators of
the Laguerre Unitary Ensemble of Remark 1.10, the Theorem 1.3 recovers the results
of [17].

3 Computing correlators of Hermitian models

In this section we prove Theorem 1.5. First of all, we introduce a few notations and
recall some standard facts about orthogonal polynomials. We denote with Py (z) the
monic orthogonal polynomials, 7, = f 7 PZ2 (x)e”™dx, see (1.8), and

N 1 d
Pi(z) := —.[Pg(x)ev(x)—x (3.1
2mwi J;g xX—z

their Cauchy transforms. The matrix

Py (2) Py (2)
Y = . N , 3.2
v (— 21y () — 2 PNl(z)> 2

hn— hn-1

introduced in (1.9), is an analytic function of z € C\ I. It satisfies the jump condition

1eV® R
Yn+(x) =Yy —(x) (0 1 ) ., xel®, (3.3)

where we use the notation

Yy+(x) = lim Yy(x £ie), xel°,
e—>04

and [° is the interior of the interval /. As z — oo we have

Yn(z) = (1 - O(z”)) Vo3, (3.4)

where we introduce also the standard notation o3 = <(1) _01)

It is well known [19] that

%(Z],...,Z@)=/ pext, .- Xe) dxq---dxg, 3.5
1t (z1 —x1) -+ (ze — x¢)

where

14

ij=1" Xl,...,x¢ €1, 3.6)

pe(x1, ..., x¢) = det [ky (x;, xj)]
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and ky (x, y) is the Christoffel-Darboux kernel

Vx)+V(y)
2

Py(x)Pn—1(y) — PN—1(x) Pn(y)
hn-1 xX—=y ’

c
kn(x,y) =

with Py (x) the monic orthogonal polynomials. Using the matrix entries of Yy (z) in
(3.2), the above expression can be conveniently rewritten as

V+vey)
2

k(e y) = 0 1)y @Yy (5) , 37)

B 2ri(x — y)

which is independent of the choice of boundary value of Y. Let us finally note that
the connected cumulant functions can be computed as

Py (X1, ..., xe)
¢ (1 —x1) - (2e — xp)

‘@C(Zl,...,u) =/ dxp - - - dxy, (3.8)
1

where (1.6), (1.7) and (3.6) imply

Pt x) = (=D Y k(e xi) -k (g X)),
(i1,-...ig)€cyc((£))

and the sum extends over the transitive permutations of {1, ..., £}, i.e. cycles of length
£ in Gg.
3.1Casel =1

In this case, it follows from (3.7) that

. eV
p1(x) =ky(x,x) = lim ky(x,y) =
y—x 2

(01) Yy )Yy (x) (é) . (39

i

In the following we shall use the notation
Alf] = fr() = f~(x),  x€l®

for the jump of a function f across I, namely fi(x) = lime o, f(x £ie).

The following lemma is well known, see, e.g. [16], and it is proven here for the
reader’s convenience.

Lemma 3.1 We have
. 1 -1 / o3
o =—5zalr (' or3)]
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Proof 1t follows from the jump condition (3.3) for Yy that

V(x) ! V(x)
Y{V’Jr(x) = YI/V’_(x) ((1) ¢ 1 ) + Yy —(x) <8 v (xz)e ) xel°.

Therefore we compute
1 o3 -1 03 -1 03
A [tr (YN (x)Y;V(x)7)] —tr (YNer(x)YI’\,#(x)?) —tr (YNﬁ(x)Yl’\,’_(x)E)
1 —eV®\ y 1eV®Y o3 ~1 / 03
=tr ((O | )YN,_(x)YNy_(x) o 1 )5 ) - (er @)

1 —eV®Y /0 V(x)eV® o3
tu ((o 1 )(0 o )2

The last term vanishes and so, by the cyclic property of the trace, we have

o B / eV ® | _eV@®
A [tr (YNl(x)YN(x)%” —tr [YN,t(x)Yqu(x) ((0 . ) % (0 ° )— %)}

which is equivalent to relation (3.9). O
From this lemma and (3.5) we get

e = fl I o (ry' vy 0% zd_x

z—x C27i ),
1 1 o3\ dx
=— | tr (Y x)Y5(x —) ,
2mi _/r v (DY) 2/ z—x
where I' is a smooth contour enclosing /, oriented counterclockwise (namely, the

interval 7 is always to the left of I"), and leaving z outside (namely z is to the right of
I')3. Using Cauchy residue theorem we have

X

dx
_x.

d
€ (z) = —xfgotr (Y&l(x)YI/\,(x)%> . a

— restr (Y_l(x)Y’ (x)2>
— X xX=z N N 2/ z

The first residue vanishes due to (3.4), while the second one is readily computed to
give

_ , 03
6@ =1 (V' @Y%)
3.2 Casel =2

In this case, using (3.7),

P5(x1, x2) = —kn (x1, x2)kn (X2, x1)

3 When I = R, we take a disconnected contour I' = —(R+ie) U(R —ie) with0 < e <Imz.
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VDV ()

— —1 1 —1 1
= T A — )G — 1) (01) Yy (x))Yn(x2) (O) (01) Yy (x2)Yn(x1) <O)

V(x1) V(x2)
w (e (5 ) v enmven (007 ) vt

Q2ri)?(x1 — x2)?

Introduce, as in the statement of Theorem 1.5,

10\,
R(z) = Yn(z) <0 o) Yyl (@). (3.10)
It is an analytic function of z € C \ I, satisfying
0 —eVW -
AR(x) = Ry (x) — R—(x) = Yn(x) Yy (x), xel®,
0 0
as it follows from (3.3). Furthermore A R(x) is nilpotent:
[ARM))? =0,

so that the right hand side of the expression

tr (AR(x1)AR(x2))
Q27i)2(x] — x2)2

p5(x1, x2) =
is regular on the diagonal. Therefore we have, from (3.8),

€5 (21,22) =

1 /‘ tr (AR(x1)AR(x2))dx1dxy
Q)2 Ji2 (21 — x1) (22 — x2) (x1 — x2)?

1 AR(xp) 1 R(x1)dx;
=—tr | — — . 2 dxs |,
271 Jp (z2 — x2) \ 271 Jr (z1 — x1)(x1 — x2)
where I" is an anticlockwise contour encircling / and we assume that both z1, z5 are

outside the interior of I'. Therefore the inner integral can be computed by Cauchy
residue theorem

1 R(x1)dxy R(x1)dx; R(x1)dx;

- 5 == res 3 res T -
271 Jr (z1 — x1)(x1 — x2) x1=00 (z1 — x1)(x1 —x2)*  x1=u (g1 — x1)(xX] — Xx2)

The residue at infinity vanishes, as from (3.4) we see that

10 _
R(z) = (0 0>+O(z Y as z — oo, (3.11)
and the one at z; is readily computed as

R(x1)dx; R(z1)
res 5= 5
xi=z1 (21 — x1)(x1 — x2) (z1 — x2)
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Therefore

. _ [ 1 [ R@DAR(x2)dx
@) =t [Zni /1 (z2 —x2)(z1 — xz)2i|

- [L/‘ R(z1)R(x2)dx2 ]
T 27 Jr (2o — x2)(z1 — x2)?

with the same contour I'. Again by Cauchy residue theorem (both z1, z> are outside
)

) = — res TERERC) A ot (REDR(2)) dxo
2\l =00 (z3 — x2)(z1 — x2)2  m=2 (22 — x2)(z1 — x2)?

tr (R(z1)R(x2)) dx;
0= (22 — x2)(21 — x2)%

The residue at infinity vanishes again because of (3.11) and the remaining ones are
computed as follows

tr (R(z)R(x2))dxy _ tr (R(z1)R(x2))
n=n (2 -x)@-x0)? (- 22)?
tr (R(z))R(x2))dxa 9 tr (R(z1)R(x2))
n=u (22— x)@ —x)? 0 @ —x) |y
_ o (RAzn) | (REDR(21)) 1

(z2 — 71)? 22— 21 (z1 — 22)?

where in the last step we have used tr R%(z) = 1 and its derivative tr (R(z)R’ (z)) =0,
as it follows directly from the definition (3.10) of R(z). The theorem is proved also
for £ = 2.

Remark 3.2 The function [tr (R(z1)R(22)) — 11/(z1 — z2)? is regular at z; = z», as
¢5 (21, z2) is. To verify this concretely, it suffices to note that tr R?*(z) = 1 from
the definition (3.10) of R(z), which implies that the numerator [tr (R(z1) R(z2)) — 1]
vanishes at second order at z; = z».

3.3 Casel >3

Using (3.7) we write

(=D kn (xiy s xiy) kv (i Xiy)

¢ GV
_ [licie (0 1) Yy (i) Yw (xip) ((1))

@i, — xiy) - (i, — X))

(0 1) Yy i)Y (i) <(1)>
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Vi) Vixi,)
<YN(.X,1) <0 ¢ 0 > ngl(xil) e YN(xig) (8 © 0 ‘ > ngl(-xiz)>

Qi) (xiy — xip) -+ (xip — X))
tr (AR(x;) -+ AR(x3,))

(Zni)z(xil - xiz) te (-xig - -xil)

= (D!

so that from (3.8) we obtain

G (1, es20)

— (! / tr (AR(xi) - AR(x;,))dxy -+ dxg
= l[)ecyc((l)) It (27'[1){()(” - xlz) (x,e — Xi])(Zl — xl) . (Zl _ x[)
=_L/ I‘(R(xil)...R(x,'é)) dxy -+~ dxe

Qri)t Jre (i) — Xiy) - (i — Xiy) (21 —x1) -+ (z¢ — x¢)

(i1,....ig)€cyc((£))

where, similarly as before, I" is a contour enclosing / in counterclockwise sense and
leaving z1, ..., z¢ outside (namely [ is to the left of " and zy, .. ., z, are to the right
of ).

Lemma 3.3 For all £ > 3 the function

Z tr (R(Zil)'“R(Zi())

Se(z1,...,20) =
(@ v iy — ziy) - Zig — Ziy)

(i1,....ig) €cye((£))

is holomorphic for (z1, . . ., z¢) € (C\ )Y, in particular it is regular on the diagonals
Zq = Zp for all a # b. Moreover, S(z1,...,2¢) = O(1/z;) as z; — oo, for any
j=1,...,¢

Proof For the first statement, the denominators in S vanish at z, = z;, only for £-cycles
of the form (i1, ...,i¢—3,a,b) and (i1, ..., ig—3, b, a); these terms have simple poles
at z, = zp of the form

tr (R(zi)) R(ziy_,) R(za)R(2p))
(ziy = 2in) *+ Zigy — 2a) Za — 2) (@b — 2iy)
1 [ tr (R(zi)) - R(ziy_») R*(za))
(le

Za — Zb _Ziz)"'(zi(,Z _Za)(za _Zi|)

4+ O(zq — Zb)i|

and

tr (R(ziy) - R(zi, ) R(zp) R(za))
iy — 2iy) -+ @ipy — 26) (@ — 2a)(Za — 2iy)

1 [ tr (R(zi,) -~ R(zi,_,)R*(za))

(Zil - Ziz) T (Ziefz —2a)(2qa — Zil)

= + O(zq — zb)j| ,
Zbh — Za
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so that the polar parts at z, = z, cancel each other in the summation. The second
statement follows directly from (3.11). O

Using this lemma we can complete our computation,

dxq---dxg
(z1 = x1) -+ (z¢ — x¢)

1 1 dxy dxy .- -dxy
Z—ﬁ - 2— S(xt, ..., xe) — — —
(2ri) re-1 \ 271 Jp (z1 —x1) /) (z2 —x2) -+ (z¢ — x¢)

1 dx dxp -+ -dxg
=———— — res S(xp,...,x¢)
(27mi) -1\ xi=z (z1 —x1) /) (z2 —x2) -+ (z¢ — x¢)

dxy
(z1—x1)

1
€z, ..., =—— S(xi, ...,
v (21 Z¢) Ny /Fl (x1 X¢)

because S(xy, ..., Xx¢)

has no residue at infinity. Thus

1

dxz“-dxg
égCZI,_,,,ZZ ———7 SZ, Dy o ooy XY
( ) (27‘[1) /‘(—I ( . X)

(z2 —x2) -+ (z¢ — x¢)

L 1 dx; dxz -+ -dxy
B =2 - | S(z1,x2,...,xp)
(27i) re-2 \2mi Jp (z2—x2) ) (23 — x3) -+ (z¢ — x0)
_ d dxz---d
= / (— res S(z1,x2,...,X¢) 2 ) X3 X¢
re-2

Qmi)t? x=2) (z2 —x2) ) (23 —x3) -~ (20 — X¢)
because S(z1, x2, ..., X¢) (szfiz) has no residue at infinity (and also it has no residue

at z1 because S is regular along diagonals). Then

dxz---dxg
(z3—x3) -+ (z¢ —xp)

1
%c g ey = — -7 5 S 9’ ) 9 ey
¢ (21 ze) =2 /FH (z1, 22, %3 xe)

Iterating this argument we arrive at
C@C(Zl’ L] ZZ) = _S(Zla L] Zl)5

which proves the theorem also in the case £ > 3.

Remark 3.4 We note here that since R(z) is a rank one matrix, the formulae of Theo-
rem 1.5 for 67, £ > 2, can be expressed in terms of the scalar quantities

21 N (D)TN-1(y) — TN—1(X) TN (Y)
hn-1 xX—=y

wx,y) =
as

Cr(zi, . z0) = — Z W(Ziy s Zip) = W(Zig_ys 2i)W(Zips 2iy)s £ > 2,
(@i1,...,ig)ecyc((£))

compare for instance with [23,51].
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4 JUE correlators and Wilson Polynomials
In this section we prove Corollary 1.6. This is done by expanding the general formula

of Theorem 1.5 as z; — 0, oco. To this end we consider the monic orthogonal polyno-
mials for the Jacobi measure, which are the classical (monic) Jacobi polynomials

12
J _ yal €+(X g‘*‘,B _ k _(—k
Pf@‘(a+ﬁ+z+1)@k§< k )(Z—k)(z e Gb

satisfying the orthogonality property

1
/ Pl ()P (x)x*(1 — x)Pdx = h]8¢m,
0

;g _UT@+ e+ DB+ L+ D@+ B+ L4 1)
6= FTa@+p+20+ Dl (a+B+20+2)

4.2)

4.1 Expansion of the matrix R

This paragraph is devoted to the proof of the following proposition.
Proposition 4.1 We have the Taylor expansion at z = oo
R@) =T 'R™®@)T, |7 > 1,
where T is the constant matrix (1.11) and R'V(z) is the matrix-valued power series

inz~Vin (1.12). We have the Poincaré asymptotic expansion at z = 0 uniformly within
the sector 0 < argz < 2w

R(z) ~T7'RY )T,

where T is the constant matrix (1.11) and R0 (z) is the matrix-valued (formal) power
series in z in (1.12).

Looking back at the definition (3.10) for the matrix R(z),

R(z) =Y. (z)<1 0)Y-‘<z>— 7”2Nﬂ*i'zp’6<zﬂ’l(1) POR©
UL O (L RO RCR S SO O

we notice that it is sufficient to compute the expansions of the product of the Jacobi
polynomials with their Cauchy transforms at the prescribed points. To this end, recall
the explicit formula (4.1) for the monic Jacobi orthogonal polynomials, which can be
rewritten as the Rodrigues’ formula

(—=D*

J _
PE@ = v,

4
71— z)‘ﬂs—zg [z"‘“(l - z)ﬁ“] . 43)
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The Cauchy transforms I/"\ZJ (z) defined in (3.1) can be expanded as stated below.
Lemma 4.2 The following relations hold true:

I 5 PIEACAR SR AR AN ER)
drila+ B+ e+ Dy g T T T+ p 2t + D

S i 4 1y @ DT@ 4D
i+ p+i+ Dt T M Tarpre—j 1)

P/ (2) =~ ., (4.4

Pl @) R (1 4.5)

where the first relation is a genuine Taylor expansion at 7 = oo, valid for all |z| > 1,
whilst the second one is a Poincaré asymptotic expansion at z = 0 uniform in the
sector 0 < argz < 2.

Proof We start with the expansion (4.4) at z = oo, which is computed as follows;

-~ 1 ! dx
PZJ(Z) = ;[0 Pzzj(x)xa(l *)C)"‘3
® a+j B
2;112 J'H/ Pl (x0)xH (1 — x)Pdx

@_ ZW/ P/ ()x* T (1 = x)Pdx
) Z 0

2 j=0
@b _ 271n (a+/(3-|-1)€€+ 0, ZZ;+1Z+1 /0 (d(fz ot — x)ﬁ+é> ity
2 - 27111 (a+p -il- L+ 1) 4 Z z/+1£+1 /(;1 X~ x)ﬁ+l%(xj+e)dx
- _2%1 @+ p Jlrz iy ;0 (Z]j:sz /01 HA -0
@) 1 1 - Fa+L+j+DIB+2+1)

— : i+ 1 -
2m(a+ﬁ+e+1)g;z-1+2+l(1 )e Ta+p+204+j+1)

In (i) we have expanded the geometric series and exchanged sum and integral by
Fubini theorem, in (ii) we use that PZJ (z) is orthogonal to z/ for j < £, in (iii) we
use the Rodrigues’ formula (4.3), in (iv) we integrate by parts, in (v) we compute
the derivative, and finally in (vi) we use the Euler beta integral. The computation at
z = Ois completely analogous, with the only difference that in (7) it is not legitimate to
exchange sum and integral so this step holds only in the sense of a Poincaré asymptotic
series. O

The next step is to compute the expansions of the products of the Jacobi polynomials

and their Cauchy transforms. To this end it is convenient to study more in detail the
properties of R(z).
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Proposition 4.3 The matrix Wy (z) = Yn (2)2%%/2(1 — 2)P?3/2 satisfies the following
linear differential equation

9:¥Nn(2) = U(@¥n(2) (4.6)
and the matrix R(z) satisfies the following Lax differential equation,
9:R(z) = [U(2), R(2)]. 4.7)

Here the matrix U (2) is explicitly given as

, (4.8)
with

IN(@+B+N)+a(atp) hy
Uo = Blet ) - 2%1\5(“ J;ﬂNJ; 2](\7 4/_3)1)
- 2mi a+B+N)+a(a+ ’
i@+ BN - 1) — TN

2N (@+B+N)+B@+p) I}
= | 2xi a+B+N)+Ba+
@t p2N -1 2 tFr2N)

Proof From the definition (3.10) we obtain R(z) = Wy (z) <(1) 8 \Ill;l (2); therefore

the Lax equation (4.7) follows from (4.6). The latter is a classical property of Jacobi
orthogonal polynomials [44]. O

To prove Proposition 4.1 is equivalent to prove that R(z) ~ RP)(z) for p =00,0
where

R@) =TR@T™. 4.9)
It follows from the previous proposition that R (z) satisfies
9 ~ ~ ~
a—ZR(Z) =[U(2), R(2)] (4.10)

where U(z) = TU ()T~ = Up/z + Ui /(1 — z), with

D= TUr = L (PP Nt N6+ Nt p+N)
o+ B+2N 1 7%

by - L (R N g NY(B + N) (et f 4 N)

PR T BN | WeatpNyBlath) :
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Introduce the matrices

(10 (01 (00
»=\o-1) “*T\oo) “Tl10)
and write

~ 1 ~
R(z) = 51 +r3o3+ryop+r_o_, U() =uzoz +uyo4r +u_o_,

where we used that tr R(z) = 1,tr U(z) = 0. For the sake of brevity we omit the
dependence on z in the sl components. The Lax equation (4.10) yields the coupled
first-order linear ODEs

0,73 = U4T— —U_T4, 0,74 = 2(u3ry — u4r3), 07— =2(u_rz — uzr_),
which are equivalent to three decoupled third-order linear ODEs, one for 9,73

32N@+ B+ N)+ala+p) —2—z((@+B+2N)2 —4)] .3
—[e* =4 —-2z@N@+ B+ N)+ale+ ) —12) + 2% (@ + B +2N)? — 24)] 2r3
—52(z — (1 = 22)83r3 + 22z — D343 = 0, @.11)

and for r4

RN@+B+NED+@=E D@+ ) — 2@+ B +2N £2)(@+ B +2N)re
—[a2—1—z(—4N(a+ﬁ+Ni1)—z(a+ﬁ)(aﬂ:1)+6)

+2UN@+ B+ N+ 1)+(a+,6)(a+ﬁ:|:2)—6)]azri
+32(z = D@z — DZre + 2z — D*re = 0. (4.12)

The following ansatz is quite natural in view of our previous work [31] about the
Laguerre Unitary Ensemble (see also [21] for the Gaussian Unitary Ensemble); namely
we write the expansions of the entries of R(z) at z = oo as

1

1 1
~Z LAL(N),
r3(2) 2+a+ﬂ+2N§z“1 ()

1 ZN(a+N)(ﬁ+N)(a+ﬁ+N)
o+ pB+2N zt1

ri(z) ~ Be(N + 1),

=0

1 1
_(z) ~ — B¢(N), 4.1
ro(2) a+ﬁ+2N;ZH] «(N) (4.13)
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for some coefficients A¢(N) = A¢(N, «, B) and Be(N) = B¢(N, «, B). By substitu-
tion in (4.11) and (4.12) we see that the ansatz is consistent with them; in particular
we get the following three term recurrence relations for A¢(N), B¢(N);

Q2+ 1D (a@+p)—L€l+1)+2N(a+ B+ N))A¢(N)

F =D —aM)A (N + (L +2) (€ + D = (@ + B +2N)) Agy1 (N) =0,
(4.14)

Q41D (@ —D(@+p)— L+ 1) +2N@+ B+ N — 1) Bi(N)
+ 06 —a®) B | (N) + (L + 1) (€ + 1)? = (@ + B+ 2N — 1)) By 1 (N) =0, (4.15)

for £ > 1, together with the initial conditions

AoV a gy = P AN, B) = NG@+N)B+N)a+p+N)
o(N, a, T a4+ pB+2N° 1V, a, T @+B+2N—D@+B+2N)a+p+2N+1)
R S _ (@—1(a@+B)+2N@+B+N-1)
Bo(N,a,ﬂ)—(a+ﬂ+2N_1), Bl(N,a,ﬂ)—(a+ﬁ+2N—2)(a+ﬂ+2N_1)(a+ﬂ+2N).

The initial conditions are obtained from (4.1) and (4.4). It can be checked that the
recurrence relation for the coefficients of 4 (z) are actually those of r_(z), modulo a
shift in V, as claimed in (4.13).

The three term recurrence relations (4.14) and (4.15) can be solved in terms of
Wilson polynomials (1.19).

Proposition 4.4 The coefficients A¢(N, «, ) and B¢(N, o, B) can be expressed in
terms of Wilson Polynomials, defined in (1.19), as

DV "N a+ Ol e+ B+ NS+ N)
(N— D@+ N— D+ B +2N +0)!

W (5 l)z.él 11 N

N-1|— +2 ,2,2,a+2,2—0t—/3— ,
DN "N a4+l a+B+N-1)!

(N—=DWa+N—Dla+B+2N+£—1)!

w £+12‘11 L3 B 2N
N_l 2 ’2729a 2’2 a .

This is equivalent to the hypergeometric representation

A¢(N,a, p) =

By(N,a,p) =

A¢(N,a,f) = N+ N)(B+ N)a+B+N)

(@ +2)e-1 (1L EF2 1=B=N 1-N|
@+B+2N - Do "\ 2, @42, 2—a—B—2N ’
(@ + 1)y —, t+1, 1—-B—N, 1-N
By(N,a, B) = 4F3 P 1).
@+ B +2N — Doy l,a+1, 2—a—pB—2N
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Proof The identification with the Wilson polynomials is obtained by comparing the
recurrence relations (4.14) and (4.15) with the difference equation for this family of
orthogonal polynomials, which reads

nn+a+b+c+d—Dwk) = Chwk +i) — [CKk) + D) wk) + D) w(k — i),

where w(k) = W, (k%; a, b, ¢, d) and

Clo — (@ —ik)b —ik) e — k) —ik) DUy (@ +ik) b +ik) (e +ik)(d +ik)
2ik(2ik — 1) 2ik(2ik + 1)

The hypergeometric representation of A;, B, then directly follows from that of the
Wilson polynomials in (1.19). O

The above Proposition, together with the expansions (4.13), yields the first part of
Proposition 4.1. The asymptotics of R(z) at z = 0 are obtained in a similar way. More
precisely, we claim that the expansion at z = 0 of the entries of R(z) reads as

1 1 a+pB+2N—¢
@) ~  + (a+p )26+1

2 (X+ﬂ+2N§ (o — £)2e+1

(L + AN, &, B)7",

1
ry(z)~~—————F= > NB+N)(a+N)(a+B+N
+( a+ﬁ+2Ng B )@+ B+N)
0+ B+2N+1—40)41
(@ — O2et1
1 (@+B+2N—1—40)41

Ol+/3+2NZZ(:) (@ —0)2et1

By(N + 1, a, p)2",

By(N, o, B)z". (4.16)

r—(z) ~

This can be proven by checking that plugging the formul® (4.16) in the equations
(4.11), (4.12), one obtains the same recurrence relations (4.14) and (4.15). The asso-
ciated initial conditions can again be computed from (4.1) and (4.5). This concludes
the proof of Proposition 4.1. ]

4.2 Proof of Corollary 1.6
4.2.1 Casel =1

From Theorem 1.5 we write the formula for 4] (z) by using the differential equation
(4.6) as

G(z) = tr (Ylg‘(zmv(z)%) =t (Y5 @Y @E)

1—z

=t (U@)R(@) - % (% _F ) , 4.17)
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where we denote Eq 1 = <(1) 8), in the first step we used that tr (YIQ1 (z)YI’\,(z)) =

tr U (z) = Oandinthe second one we used the definitionof R(z) = YNy () E11YN(2)™ L
the cyclic property of the trace and the equation

i o o ﬂ 03
Yy(@) =U@)YN(z) — P R YN(Z)?,

which follows from (4.6).

Lemma 4.5 We have
03
9; [z(I = )tr (U(2)R(2))] = —(a + B+ 2N)tr (R(z)?> :
Proof We compute

9z [z2(I = )tr (U(2)R(2)] = (1 = 22)tr (U(2)R(2))
+2(1 = Dtr (U' (2 R(2)) + z(1 = 2)tr (U ()R (2)).

The last term vanishes due to the Lax equation (4.7), because tr (U (z)[U (z), R(z)]) =
0 by the cyclic property of the trace. Then we use the identity

a+ B +2N
(1-29U@ +z2(1 - U’ (2) = _%%
which can be checked directly from (4.8). The proof is complete. O

By this lemma and (4.17) we obtain

1
d:[z(1 = 2)€1(2)] = —(a + B+ 2N) (Rl,l(Z) - 5)

+

where we use that tr R(z) = 1 to compute tr (R(z)03) = 2Rj,1(z) — 1, and we denote
Ry 1 the (1, 1)-entry of R. Integrating this identity implies that for any p € C\ [0, 1]
we have

z(1 = 2)61(z) — p(1 — p)€1(p) = (@ + B +2N)
/ (1= Ry 1(w)) dw + N(p — 2). (4.18)
14

Letting p — 0 in (4.18) we have p(1 — p)%1(p) — 0 and so

w ) (1 _ Rl,l(w)) dw —

0@ =—q—5" | 11—z
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Expanding this identity at z = 0 we get at the left hand side

G~ =Y (e x ) = 70,
k>0

and using Proposition 4.1 (note that (T R(z)T)1,1 = R1,1(z) because T is diagonal)
the formula for .%| o(z) is proved.

Letting instead p — oo we have p(1 — p)€1(p) ~ (1 — p)N — (tr X) + O(1/p)
and therefore from (4.18) we have (noting that Ry j(w) = 1+ O (w™2) so the integral
is well defined)

Z

7(1-2)61z)=(+8 +2N)/ (1 - Rl,l(w)) dw+ (1 —z)N — (tr X).

o0

We can compute

a+pB+2N

by expanding the general formula % (z) = tr (Y];l(z)Y/V (Z)03/2> at 7 = 0o, using
(4.1) and the first few terms in (4.4). We finally obtain
a+pB+2N (7

N N(a + N)
Eh A . - - :
Q== J Rt - e E W)

Expanding this identity at z = oo we get at the left hand side

r XK} N
G~ X ~+ Pl
k>0

and using Proposition 4.1 (again note that (TR(z)T)1,1 = Ri.1(z) because T is
diagonal) the formula for .%| (z) is also proved.

4.2.2 Casel > 2

In this case we note that

£>2

CE(ztye) = —

5 tr (R(zi)) - R(z;,)) 8.2

roimeyeqy G — @) @i = zi) (@ = 22)

where R (z) = TR(z)T ™" as in (4.9). We now expand both sides of this identity at
z = 0, co. The expansion of the right hand side follows from Proposition 4.1 which
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asserts that R (z) ~ ROI(z), RI*®(z) as z — 0, oo, respectively. For the left hand side
instead, at z — 0 we have

: —k— ke—1\¢ _k k .
G @)~ (=D Y <trX It x ke 1> Azt = F 20,
kiy..ske=0

while at z — oo we have

¢ k-1 —ke—1
Cp (21, ..., 20) ~ Z <ter1~~ter“> T g = F o 20,
ki,....kg=0

where in the last identity we use that terms with k; = 0 for some i do not contribute to
the sum; indeed the connected correlator (tr Xk .or X kf)c vanishes whenever k; = 0
for some i. The proof is complete. ]
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