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Abstract

We identify level one global Weyl modules for toroidal Lie algebras with certain twists
of modules constructed by Moody—-Eswara Rao—Yokonuma via vertex operators for
type ADE and by Iohara—Saito—Wakimoto and Eswara Rao for general type. The twist
is given by an action of SL,(Z) on the toroidal Lie algebra. As a by-product, we obtain
a formula for the character of the level one local Weyl module over the toroidal Lie
algebra and that for the graded character of the level one graded local Weyl module
over an affine analog of the current Lie algebra.
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Mathematics Subject Classification Primary 17B67; Secondary 17B10 - 17B65 -
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1 Introduction
1.1 Motivation

We study global/local Weyl modules for toroidal Lie algebras and an affine analog
of current Lie algebras. The notion of Weyl modules for affine Lie algebras has been
introduced by Chari—Pressley in [5] as a family of integrable highest weight modules
with a universal property. Later Chari—Loktev initiated in [4] to study Weyl modules for
current Lie algebras in a graded setting. The graded characters of local Weyl modules
for current Lie algebras have been studied by many authors. Now they are known
to coincide with Macdonald polynomials specialized at t+ = 0, a.k.a. g-Whittaker
functions (Chari—Loktev [4], Fourier—Littelmann [10], Naoi [17], Sanderson [19], Ion
[12], and Lenart—Naito—Sagaki—Schilling—Shimozono [14]).
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Toroidal Lie algebras are natural generalization of affine Lie algebras. For a finite-
dimensional simple Lie algebra g, the corresponding toroidal Lie algebra g, is defined
as the universal central extension of the double loop Lie algebra g ® C[s*!, r*!] with
the degree operators. We can also consider a Lie algebra gt‘gr which is defined by
replacing C[s*!, r*1] with C[s, r*!]. See Sect. 2.2 for precise definitions. We expect
that the characters of Weyl modules for g and g;’)r produce a very interesting class
of special functions. In this article, we study the first nontrivial example: the Weyl
module associated with the level one dominant integral weight.

A big difference between the toroidal and the affine Lie algebra is the structure of
their centers. The toroidal Lie algebra without the degree operators has an infinite-
dimensional center, while the center of the affine Lie algebra is one-dimensional. The
Weyl modules are examples of modules over the toroidal Lie algebra on which the
action of the center does not factor a finite-dimensional quotient. We note that Chari—
Le have studied in [3] local Weyl modules for a quotient of the toroidal Lie algebra. The
resulting quotient is an extension of the double loop Lie algebra by a two-dimensional
center with the degree operators. In particular, the Weyl modules considered in this
article are possibly bigger than those studied in [3] (see 1.3 below).

1.2 Outline

Let us summarize contents and results of the article. In Sect. 2, we introduce the main
object: the toroidal Lie algebra gir. We also introduce an affine analog of the current
Lie algebra which is denoted by gj;r. Then, we recall their basic properties. Among
other things, a certain automorphism of gy, will play an important role. The ring
C[s*!, r*'] admits an SL,(Z)-action by the coordinate change. This action naturally
induces automorphisms of gir. We denote by S the automorphism corresponding to
the S-transformation.

In Sect. 3, we define the global and the local Weyl modules following [1,3-5,9].
The global Weyl module Wgjop(A) for gior is attached to each dominant integral
weight A of the affine Lie algebra. We identify the endomorphism ring of Wgjop(A)
with a symmetric Laurent polynomial ring A(A) in Proposition 3.6 and define the
local Weyl module Wiy (A, a) for each maximal ideal a of A(A). The argument is
similar to known one for the affine and the current Lie algebras. The global/local
Weyl modules Wg{ob(A) and ngc(A, a) for g:gr are similarly defined. We prove in
Proposition 3.9 a finiteness property for weight spaces of the Weyl modules. By this
property, the characters of the local Weyl modules are well-defined. This result has
been established for the case of the affine Lie algebra in [5] and for a quotient of the
toroidal Lie algebra in [3]. We remark that we need to investigate the action of the
infinite-dimensional center, which is not treated in [3]. Then, we turn to a special case
where A is of level one. By the diagram automorphism, we can reduce the general
level one case to that for the basic level one weight A(. Therefore, we only consider
the case of A in the sequel. We give an upper bound for the graded character of the
level one local Weyl module W, (Ao, 0) over gif . in Proposition 3.19.

In Sect. 4, we prove an isomorphism between the level one global Weyl module
Waiob(Ag) over the toroidal Lie algebra g and the twist of a module V(0) by the
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automorphism S~!, where V(0) has been constructed in works of Moody—Eswara
Rao—Yokonuma [16], Iohara—Saito—Wakimoto [13] and Eswara Rao [6]. This is our
main theorem.

Theorem 1.1 (Theorem 4.10) We have an isomorphism

~

Walob(Ag) —> (S™1)*V(0)

of gror-modules.

As a by-product, we prove that the upper bound in Proposition 3.19 indeed gives
the characters of the level one local Weyl modules (see Sect. 2.5 for the definition of
ch, and ch) o).

Corollary 1.2 (Corollary 4.11) We have

h = ch, W} =ch !
chy, Wipe(Ag, a) = ¢ pwloc(AOa a) = chy, L(Ao) 1_[ 1= pn

n>0

fora € C* and

1
chy 4 W&(AO, 0) =ch, L(Ao) H )
n>0 - P4

Here, L(Ao) is the level one integrable irreducible module of the affine Lie algebra
with highest weight Ay.

1.3 Related works

Let us give two comments regarding other works. The first one is for [3] mentioned
earlier. In [3], Chari-Le have studied local Weyl modules for some quotients of gy,
and g:gr. They have proved that the level one local Weyl modules in their setting are
irreducible and are isomorphic to the evaluation modules [3, Theorem 4]. Hence, we
see by our results that the level one local Weyl modules for gi; and g:gr are bigger
than those studied in [3]. We remark that one of our results (Proposition 3.19) gives
an alternative proof of [3, Theorem 4].

The second one is for [21]. In [21, Theorem 3.8], Tsymbaliuk has proved that
the level one Fock representation of Saito—Takemura—Uglov [20] and Feigin—Jimbo—
Miwa—Mukhin [7] over the quantum toroidal algebra of type A is isomorphic to a twist
of the vertex representation of Saito [18]. Here, the twist is given by an automorphism
analogous to S~! which has been constructed by Miki [15]. This result motivated the
present work. In the situation of [21], both the Fock and the vertex representations
are known to be irreducible, and hence, it can be checked by comparing their highest
weights to show the isomorphism. Thus, although the calculation of S~! in the quantum
toroidal case is much more involved, the argument to show the isomorphism is simple.
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3056 R. Kodera

Itis an interesting problem to establish the results analogous to this article for quantum
toroidal algebras and affine Yangians.

2 Preliminaries
2.1 Simple Lie algebras

Let g be a finite-dimensional simple Lie algebra over C with a fixed Cartan subalgebra
bh. We also fix a Borel subalgebra containing h. The index set of simple roots is denoted
by I.Leta; (i € I)besimpleroots. We denote by A, A™, A~ the sets of roots, positive
roots, negative roots, respectively. Let g, (¢ € A) be the corresponding root space
and put go = h. The highest root is denoted by 6.

Let (, ) be a nondegenerate invariant symmetric bilinear form on g. We denote
by the same letter the bilinear form on h* induced from (, ) and normalize them by
0,0) =2.Putd; = (v;, ;) /2. We fix Chevalley generators e¢;, f;, h; (i € I) so that
(ei, fi) = all._1 and h; = [e;, fi]. We also fix root vectors eg € gp and fy € g_y so
that (e, fop) = 1. We denote by &, € b the coroot corresponding to « € A. The root
lattice Q is defined by Q = P, ; Ze;.

2.2 Toroidal Lie algebras

The universal central extension of the Lie algebra g ® C[s*!, t*!] is given by

g C[S:H, til] [45) QCIX:HJ:H ]/Imd.

Here, Q24 for a commutative C-algebra A denotes the module of differentials, and
d: A — Q4 the differential map. The Lie bracket is given by

[x®a,y®b]l=[x,yl®ab+ (x, y)(da)b.

See [16, Section 2] for details.
We put

skel=Vdr ifk #0,

kD) =
kD=1 g itk=o0
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for (k,1) € Z*\{(0,0)} and ¢y = s~'ds, ¢; = t~'dr. Then, Qgpg+1 ,+1)/Imd has a
C-basis c(k, ) with (k,1) € Z2\{ (0,0)}, cs, c;- We can explicitly describe the Lie
bracket as follows:

[x ® sk, y® smt"}

Im —k
L. y] ® M4 4 (x. ) ']:'+m”c(k+m,l+n) if k4 m #0, @.1)
[x, y1® " 4 (x, y)ke(0, 1 + n) if k+m=0andl+n #0,
[x, y]1® 1+ (x, y)(kes + Lcy) if k+m=0and!+n =0.

We add the degree operators dy, d; to this central extension and define the toroidal Lie
algebra gior by

gor =0 ®CT e P Celk.)) ® Cey ® Ce, @ Cdy ® Cdy,
(k.)EZ*\{(0,0)}

where the additional commutation relations are as follows:

lds, x ® sktl] =kx® sktl, ld;, x ® sktl] =Ix® sktl,
[ds, c(k, D] = ke(k, D), [d;, c(k, )] = lc(k, D),
[dsvcs] = [dlvcs] = [dS’ cl] = [dts Cl] = [dS1d[] = O

Remark 2.1 Note that we have

(—k/Ds*=1dlds if k #0,

kD) =
ek D=1 14 if k=0

for I # 0. In particular, c(k + 1, 1) is a nonzero multiple of skilds if 1 # 0. We will
use this fact throughout the article.

Let g;,, be the Lie subalgebra of gior without d:

0w =0®CI™,F1®e @ Celk,)) & Ce; & Ce; & Cdy.
(k,)Z2\{(0,0)}

We also consider the following Lie subalgebra g;’)r of gior:

g =0 ®Cls. 11 @ P Cek. 1) & Ce, & Cd,.

k>1
leZ

The Lie algebra g;5 is the semidirect product of the universal central extension of
g ® C[s, t*'] and the one-dimensional abelian Lie algebra Cd,. It is an affine analog
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3058 R. Kodera

of the current Lie algebra g ® C[s] and has a Z>¢-graded Lie algebra structure by
assigning

deg(x @ st'y =k (x € g), dege(k,l) =k (k> 1,1 €7Z), degc, =degd, =0.

Remark 2.2 Later, we will study graded gfgr—modules. It is equivalent to considering
modules of g} . & Cd.

The toroidal Lie algebra g contains two Lie subalgebras g;fcg and ggtf)f isomorphic

to the affine Lie algebra associated with g:
o =g @ Cls™ 1@ Ce, @ Cdy. gt = 9@ Clr*' ] @ Ce; @ Cdy.

Note that g = contains 9;2 We have

/
Gior = (gg’fi) ® Cls*'1 @ @) Cetk. 1) ® Ce, ® Cdy & Cdy,

keZ
170
/
ot = (s59) ®Cls1 @ P Cek.h @y,
k>1
1#£0

/
where (gfffi) = g®C[t*']@® Cc,. Here, the elements c(k, 0) = s¥¢~'dr are regarded
/
as¢; @ sk e (gfff%) ® sk.

Remark 2.3 Chari-Le [3] have studied a version of toroidal Lie algebras which is the
quotient of gior modulo the elements c(k, /) with [ # 0; namely, it is equal to

g®Cls*', 1@ @) Ce(k, 0) ® Ce, @ Ce, & Cdy & Cd
k#0

= (92(12‘) ® Cls*!1 @ Cey @ Cdy @ Cd;

as a C-vector space.

We introduce presentations of gy and gj;r. Put Iyg = I U{0}. Let (a;j)i, jer,y be
the Cartan matrix of gg& and setdy = 1.

Definition 2.4 Let t be the Lie algebra generated by e; «, fik, hix (i € last, k € Z),
cs, dg, d; subject to the following defining relations:

¢ central, [h; g, hj ]l = d;laijk5k+l,()cs,

leik, fji] = dij (hi,k+l + di_lk5k+1,ocs> ,

(hik.ejil = aijej kv, [hik, fiil=—aijfjk+is
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leiks €]l =0, [fik fial =0,

(adei o) "“ejx =0, (ad fi.0)' ™ fjx =0, (i #))
[dy, ei k] = keik, |ds, fik]l =kfik, lds,hir]=kh;pg,
[d;, ei k] = Si0eik, ldr, finl = —8i0fik, ldishir] =0,
[ds, di] = 0.

Definition 2.5 Let s be the Lie algebra generated by e; «, fi k, hi k (i € Lis, k € Z>o),
d; subject to the following defining relations:

[hik, hjil =0, leik, fjil=3dijhikti,

[hik.ejil = aijejivis  [hik, fii] = —aij fjx+i,

leik. €1l =0, [fix, fial =0,

(ade;0)' " ejx =0, (ad f;0)' " fix =0, (#J))
[d;, ei k] = Si0eik, Ldr, fikl = —bi0fik, ldis hig] =0.

Theorem 2.6 ([16] Proposition 3.5, [11] Proposition 4.4) We have an isomorphism of
Lie algebras t — gor such that

e ®sk ifiel, fi @ sk ifiel,
€k k oo ﬁ,k'_) ko—1 p»
fo®s“t ifi =0, eg ® s°t ifi =0,

hi ® sk fiel,
hips (O vi Cs > csy dy > dy, dy > d.
—hyg @ s+ st dr ifi =0,

Moreover, this restricts to an isomorphism s — g{gr.

Under the isomorphism, the elements ¢; o, fi.0, hi o are in the Lie subalgebra gng)f
and identified with its Chevalley generators. We sometimes denote them by e;, f;, h;.
Note that e; k, fik, hix (i € 1,k € Z), cs, dg generate the Lie subalgebra 9;(12 of
t = gior-

We introduce notions for the affine Lie algebra ggg Let nig be the Lie subalgebra
of gg& generated by e; (i € Iyr), and ﬁ;?‘ that generated by f; (i € I,gr). Set

b = h @ Cc; @ Cd,.

The generator of imaginary roots is denoted by §. We put g = —6 + § so that «;
(i € Iur) forms simple roots of gfff% We denote by A, A;}f the sets of roots and

positive roots, respectively. Let (g;’f%) (o € Agfr) be the corresponding root space.
o

The coroot is defined by hgiis = hg + lc; for B € A U{0} and [ € Z. We set
Qaff = @ielaff ZO[,’ and Q;}f = Zielaff Zzoal’.

We say that an element A of Homc(hgf}, C) is a dominant integral weight of gglfz«
if (h;, A) € Z>¢ holds for any i € I,g. In this article, they are further assumed to
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3060 R. Kodera

satisfy (d;, A) = O for simplicity. Define the fundamental weights A; (i € Iafr) by
(hj, A;) = 8;j and (d;, A;) = 0. We denote by L(A) the irreducible g'f-module with
highest weight A. We will use the symbol L(A)® for the irreducible gg‘g-module
with highest weight A.

2.3 Triangular decomposition

Let nyo; be the Lie subalgebra of gor generated by e; x (i € Iy, k € Z), and ny,, that
generated by fi x (i € lafr, k € Z). Set

tor = b ® Cls™'] & @) Ce(k, 0) & Ce, & Ce: & Cd, & Cd,
k#0

= (h ® Cc;) @ Clst! @ Cey @ Cdy & Cd,y.

Proposition 2.7 We have

tor = g ® Cls* 1 @ @ Ce(k. 1), for = ity ® Cls™' 1 & @) Cek, D).

keZ keZ
>1 I<—1

Proof Denote by n; . and i1y, the right-hand sides. Then, we see by the formula of the
Lie bracket (2.1) that noy D 1y, and fyer D Ny, We also see that oy + Gror + Neor =

Titor @D Gor D Nior. Since we have gior = N, B tror D Ny, the assertion holds. O

In this article, we call

Ftor = Nyor D Ator D Neor

the triangular decomposition of gior.
In gtf)r, the elements ¢; x (i € lafr, kK € Z>() generate

nior N gy = 0t ® Cls] & €P Cetk. D,

k>1
>1

and f; x (i € Ly, k € Z>0) generate

fitor N gy = iy ® Cls] @ P Celk. D).

k>1
I<-1

Further set
aéor = Otor N g;or =0eCc)® C[S:H] ® Cc; ® Cd,.
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2.4 Automorphisms

Let S be the ring automorphism of C[s*!, *1] defined by s > 7,7 > s~!. It naturally
induces a Lie algebra automorphism of g, which is denoted by the same letter S.
Later, we will rather use its inverse S~!. It corresponds to the assignment s — 1!,
t > s. In particular, we have

(k/Del, —k) if k,1 #0,
S~ ek, 1) = { —c(l,0) ifk=0, S Ye)=—c, S'e) =c.
(0, —k) if 1 =0,

We introduce Lie algebra automorphisms 7y and Ty of gior by

Ty = expad eg o exp ad(— fy) o expad ep,
Ty = expadeg oexpad(— fy) oexpad eg.
We can regard them as automorphisms of g;5 by restriction.
Lemma 2.8 We have eg ® skt = TyTp(ey @ s¥1'1?).
Proof By a direct calculation. We use the following:
Ty(ep ® s1'72) = — fy @ s*1'12,
expad eo(fy ® s¥'2) = f @ sk 2,
expad(— fo)(fo ® s51'72) = fo @ sK!T2 — (hg @ s*1!T1 — skl dr) — ep @ 554,
expadeg(hp ® skt”l) =hy ® skt 4 2fo ® skt”z,
expad eg(ey ® s¥t) = ey ® s¥t' — hg @ s + skl dr — fy @ s
O

Let M be a module of A = gior, g, OF gy and assume that M is integrable as a

ggc%-module. Then, Ty, Ty € Aut M are similarly defined. Moreover, they satisfy

To(xv) = To(x)To(v), To(xv) = To(x)Ty(v)

forx € Aandv € M.
The Lie algebra automorphism t, (a € C) of gj;r isinduced fromthe map s — s+a.

2.5 Characters

Let M be amodule of A = gior, groy» OF g;’;r andregarditasa ggtf)f-module by restriction.
For A € h* and m € C, let M, _,,s be the corresponding weight space. In this article,
we always assume that any gg&—module M has the weight space decomposition and

M; s = Ounless m € Z.
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We define the p-character ch, M of M by

ch, M = Z (dim My _p5)e* p™

reh*
meZ

if it is well-defined. This is nothing but the ordinary gyf%-character with p = 7%, Let
M be a graded gj(')r-module and M, _,5 = @nez M, _,,s[n] the decomposition of the
weight space into graded pieces. We define the (p, g)-character ch), ;, M of M by

chpg M = ) (dim My_pslnle* p"q"
rEh®
m,nez

if it is well-defined. For two formal sums

£=Y fmep" g=Y_ amep" (fim gm €D
reh* rebh*
mez mez
we say f < g if fim < ga.m holds for all A and m. We define an inequality < for
f= Z fx,m,nekpmq", 8= Z gx,m,nekpmq" (frmn> 8mn € 2)
reh* reh*

m,nez m,nez

similarly.

3 Weyl modules

3.1 Definitions of global/local Weyl modules

Definition 3.1 Let A be a dominant integral weight of g;tf% The global Weyl module
Waiob(A) for gor with highest weight A is the gio,-module generated by v, subject
to the following defining relations:

eiavn =00 € Lur. k€ Z), hvy = (b Ava (heb3).

hi,A)+1 .
T =06 € L),

cs VA = dsgvp = 0.

The global Weyl module Wngrob(A) for g;° with highest weight A is the g;> -module

generated by vj( subject to the following defining relations:
eikvl =0 G € lur.k € Zo0), oy = (h Ak (ke b)),

@ Springer



Level one Weyl modules for toroidal Lie algebras 3063

hi A)+1 .
ST — 06 € L),

We describe the endomorphism rings of Wyjop(A) and ngob(A). The following
argument is the same as in the case of the affine and the current Lie algebras. We give
some details for completeness.

Lemma 3.2 We have an action ¢ of U (a;y,) on each weight space Weion(A)r—p (B €
Q;}f) defined by

@(a)(Xvp) = X(avp)
fora € U(ay,) and X € U(gy,,).

Proof To see that the action is well-defined, we need to check that Xv, = 0 implies
X(avp) = 0. By the same argument as [1, 3.4], we can show that if v satisfies the
relations

eixv =00 € L.k €2), hv=(h, Ay (hebf),

FINTY =0/ € L) ev =0,

then so does av. This completes the proof. O
Let Ann v, be the annihilator ideal of U (ay,,) and set
A(A) = U(al,,)/ Annv,.

Since the action ¢ of a{or factors through an abelian Lie algebra a{or /Ccs ®Cd;, A(A)
is a commutative algebra.

Lemma 3.3 The action map
A(A) = Waiob(A)a, @ = avy

gives an isomorphism of C-vector spaces.

Proof The well-definedness and the injectivity immediately follow from the definition
of A(A). The surjectivity holds since we have Wgiop(A)p = U (a{or)v A- O

Lemma 3.4 The natural map
A(A) — Endy Wgob(A), a > ¢(a)

gives an isomorphism of C-algebras.
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Proof By the definition of A(A), we have a natural injective algebra homomorphism
A(A) > Endg Waon(A), a — ¢(a).
We also have a natural C-linear map
Endg Wiiob(A) = Waiob(A)a,  f > f(va)
and this is injective since Wyjop(A) is generated by v, . The composite of the maps
A(A) = Endg Waion(A) > Waion(A)

is given by a — awvy. Since this map is bijective by Lemma 3.3, the two injective
maps are bijective. O

Write A = )
define A(A) by

ie Ly m; A; with the fundamental weights A; and m; € Z>o. We

G
Ay =@clH ]

1€ l6f
the symmetric Laurent polynomial algebra associated with A.

Proposition 3.5 The assignment
mj
Z zf‘,m = ik
m=1

gives an isomorphism A(A) = A(A) of C-algebras.

Proof The well-definedness and the surjectivity of the map are proved in the same
way as [5, Proposition 1.1 (i), (iv), (v)].

We follow the argument in [2, 5.6] to show the injectivity. Take a nonzero ele-
ment a of A(A) and fix a maximal ideal m which does not contain a. Assume
that Wgiob(A) ®a(a) A(A)/m is nonzero. Then, the image of a in A(A)/m acts
on Wgob(A) ®4(a) A(A)/m by a nonzero scaler. Hence, we conclude that a acts on
Waiob(A) nontrivially and the map A(A) — A(A) = Endg{Or Waiob(A) is shown to
be injective.

Thus, it is enough to show that Wgioh(A) ®4(a) A(A)/m is nonzero. We denote
by 13,((’) (i € Ly, k € Z) the image of the power some function p,(cl) =y, Zf'{,m in
A(A)/m. We can choose a set of nonzero complex numbers {a; ,,} satisfying

mj

k ~(i)
Z Aim = Py
m=1
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under an identification A(A)/m = C. For each a € C*, we have the evaluation map

-y (0
eVa: Gior = Baff

defined as the composite of

Olor — g{or/@(Cc(k, )@ Ccey = (ggfz) ® Clst'] @ Cd,

keZ
1#0

and the evaluation at s = a. Then, we have a nonzero g;,.-module homomorphism
m;
Welob(A) ®a(a) A(A)/m — Q) Q) evi,, L(A)
i€l m=1

assigning va ® 1 to the tensor product of highest weight vectors. This proves the
assertion. O

We have a completely analogous story for the global Weyl module W, glob (A) over
.., if we replace A(A) with

AT = Q) Clzits s 2im 1

i €loff
We can summarize the discussion so far as follows.
Proposition 3.6 We have Endg{m Walob(A) = A(A) and Endgf glob(A) = AT(A).

For a maximal ideal a of A = A(A) or AT(A), we denote by C, the corresponding
one-dimensional module A/a.

Definition 3.7 We call
Wioe(A, a) = Weloh(A) @a(a) Ca, Wit (A, ) = W (A) @4+(a) Ca

the local Weyl modules for g; . and gt‘gr, respectively.

We denote the images of v and vf\ in the local Weyl modules by v 5 and UX,a-

Remark 3.8 The global/local Weyl modules for gor and gt‘gr can be regarded as a sort
of highest weight modules with respect to their triangular decompositions:

Otor = Tor D Gor D Nor, gj(_)r = (ﬁtor N gfgr) D (utor N g:gr) ® (ntor N g:f,r) .
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3.2 Finiteness of weight spaces

The goal of this subsection is to prove the following.

Proposition 3.9 (i) Everyweight space Wgiob(A) a—p is finitely generated over A(A).
Every weight space Wioc (A, @) o —g is finite-dimensional.
(i) Everyweight space Wg{ob (A) A—p isfinitely generated over A* (A). Every weight
space Wl'gC(A, a)A_p is finite-dimensional.
(iii) We have Wioe(A, a) = U(g; )va a-

We start to prove the following lemma.

Lemma 3.10 Let A be a dominant integral weight ofg;?f.

(1) For each positive root B € A:lrff, there exists a nonnegative integer N (B) satisfying
the following: we have

N(B)
(X p®sHa € Y (X p@5™)AA)vp

m=0

for any root vector X _g of ﬁ;tf)f corresponding to a negative root —f and any k.
(ii) For each positive integer | > 0, there exists a nonnegative integer N; satisfying
the following: we have

N, N
ek, ~Dva € Y c(m, —DAM)A + Y <<gfff§)16 ®sm> A(A)vy

m=1 m=0

for any k.

Proof The assertion (i) is proved in the same way as [3, Proposition 3.2 and Corol-
lary 3.1].

We prove (ii). Take an arbitrary element « of A1 and fix root vectors x, € g, and
X_q € g—q satisfying (xq, x_y) = 1. Then, we have

(skt_lds) VA = ([xa RS, X ® skt_l] —he ® sk+1t_l> VA
= (xg ®9) (x_a ® skfl> vpA — (ha ® skal) VA.

We have

N (a+18)
(xa ® ) (x,a ® skt_l) VA € (Xg ®5) Z (x_o @ 5™t HA(N) VA

m=0
by (i). The right-hand side is equal to

N(a+8)
Z (ha @ sl 4 smt_lds> A(A)vp

m=0
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N(a+18)+1
=y (ha ® "t~ + c(m, —l)) A(A)vs.
m=1
We have
N(5)
(ha @ "M 117 hun € Y (ha @ ™17 A(A)p
m=0

again by (i). Hence, we conclude that

N; N;
(skz—lds)v,\ € Z c(m, —1)A(A)vp + Z ((g%)_m ® s’") A(A)vp

m=1 m=0
if we put N; = max(N (/8), N(x +18) + 1). O

The following proposition is an analog of [5, Proposition 1.2] for the case of the
affine Lie algebra and of [3, Proposition 3.2 and Corollary 3.1] for the quotient of g,
modulo the elements c(k, [) with [ # O (cf. Remark 2.3).

Proposition 3.11 For each positive root B; € A;}f and each positive integer | > 0,
there exist nonnegative integers N (B ;) and Ny such that the weight space Wgiob(A) a—p
for B € Q:ff is spanned by elements of the form

b

(X_p @) (X_g, ®@s") [ [[etm). =1j) | A)va, (3.1)
j=1

where each X _g; is a root vector of ﬁ;tf)f corresponding to a negative root —f; and
each l; > 0 is a positive integer satisfying p = Z;f:l Bj + (Z?’:l lj> Sand 0 <
ki <N@Bj)1<mj; =< Nlj. A similar statement also holds for ng_ob(A)A—ﬂ'

Proof By the PBW theorem, we see that Wyioh (A) o —p is spanned by elements of the

form as (3.1) without any conditions on k; and m ;. Then, we use Lemma 3.10 to show
the assertion by the induction on a + b. O

Thus, we establish Proposition 3.9 from Proposition 3.11. We also have the follow-
ing.

Proposition 3.12 Let a be a maximal ideal of A(A) and regard it also as a maximal
ideal of AT(A). Then we have ch, W;' (A, a) > ch), Wioc(A, a).

Proof We have a ggr—homomorphism le)'c(A,a) —  Res Wjoc (A, a) assigning

vaa — VA .a. It is surjective by Proposition 3.9 (iii). O
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3.3 Upper bound for the level one Weyl module

In this subsection, we consider the case A = Ag. The ring A(Ag) is identified with
C[z*!] and the action on Walob(Ao) is given by

F(Xvay) = X (hoxva,)

for X € U(g,,,)- This identification induces A*(A¢) = C[z].
Lemma 3.13 We have h; yvp, =0 fori € I and k € Z.

Proof The defining relations e; yva, = 0 and f;va, = Ofori € I imply the assertion.
O

Recall that Zlel o ik = ske=1dr. By Lemma 3.13, we see that the action of A(A)

on Weloh(Ap) is given by > skr~1ds. In particular, z acts by ¢(1,0) = st~ Lds.
We have defined the local Weyl modules Wi (A, a) fora € C* and Wl‘gc (Ao, a)
fora € Cby

Wioe(Ao, a) = ngob(AO) ®A(Ag) Cas Wlic(Ao, a)= ng_ob(AO) ®a+(Ag) Ca.

Proposition 3.14 The p-character ch,, WI;“C(AO, a) is independent of a € C.

Proof The defining relations of W]IC (Ao, a) are given by

+ 3,7+ + +
(Mtor N Jio)Vpy 0 =05 hikvy, , = 8i, oa* vA a U €Lt k=0), divy =0,

fovh =0 fivk ,=0GeD.

Hence, we have 7 le;c(Ao, 0)= Wl?)LC(Ao, a), where 7, is the automorphism of gttr
defined in Sect. 2.4. This proves the assertion. O

We put
W(Ao) = Wil (Ao, 0) = Wi, (Ao) ®a+ag) Co

and denote its highest weight vector vj{o’o by vg. This W(Ay) is regarded as a graded
gt‘gr-module by setting deg vy = 0.
Lemma 3.15 We have f; yvo = 0 for any i € Iy and k > 1.

Proof The assertion for i € I follows from fivg = 0 and h; xvp = 0. The assertion
for i = 0 follows from

0=eorfivo = [eo,k, foz] vo = (=2 fo.x + 2 fohox)vo
and ho v = 0 for k > 1. O
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Lemma3.16 Letk > 1. We have

()
0 if 1<k,
ki Ik
t =
OBTTIOZN S 1 4 myer @17 if 1>k,
m=1
(ii)
0 ifl <k,
- Ik
t'd =
(s7 " ds)vo 3" ek, ~1+m)a"ds)vg if 1> k.
m=1

Proof We prove the assertions (i) and (ii) by induction on /.
Forl < 0, ¢y ® s*t~! is an element of nyyr N g:gr, hence it kills vy. For [ = 1,
e ® sk~ = Jo.x kills vg by Lemma 3.15. Then, we have

kil dsyv = (Lfo @5, e0 @ 55171 = [fa, e @ 11711 ) g = 0

for I < 1. We thus have proved (i) and (ii) for / < 1.

Let [ > 2. We assume the assertions (i) and (ii) for all I’ < [. By Lemma 2.8, we
have

(eg ® skt o = ToTy ((eo ® s*+ )T, T )

(
= 1oy (0 @ 5“7 (fowo))
i
i

(3.2)

Ty ((ep @ s*t71PH 1,7 (fo)vo)

757 (fodeo ® s 474 2)ug + e @ 5572 77 (fo)luo )
We have

leo ® s“t 72, T, (fo)l = [eg @ s5 7172, — fp @ 171
- ([69 ® skt ol + ek, —1 + 1))
= [fo, 0 @ skt —c(k, =1+ 1).

Put

A =T, (fo)eo @ s"t7)vg, B = fy(ep ® sk 17Ty
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Then, (3.2) is equal to ToTp (A + B — c(k, —I + 1)vp). By the induction assumption,
we have

1—2—k
A=T7(fo) Y ek, —1+2+m)(eg ® 1o,
m=1
1—1—k
B=f Y clk.~l+1+m)esg ® g

m=1
1—2—k
=fo Y ck,~1+2+m)es @ 1" uo.
m=0
Then, (3.2) is equal to
[—2—k
ToTe( > et~ +24+m) (T, (fo)eo ® 1) + fatew ® 17" Juo
m=1
+ ek, =14 2) fo(eg @ t ™V Yvg — ek, —1 + 1)v0) (3.3)

ifl > k+2and to ToTy(—c(k, =1 + Dvg) if ] < k+ 1.
We prove (i) for [. First, consider the case [ < k. In this case, we have

ToTy ((s* 't~ Dds)yvg) = 0

k
(ee ® s"z") v = ToTy(—e(k, =L+ Do) = =

by the induction assumption. Hence, (i) holds for /. Next, consider the case / = k + 1.
In this case, we have

(69 ® skt_l) vo = ToTy(—ck, —1 + 1)vg) = —c(k, —1 4+ 1)ToTy (vo).

Since we have TyTy (vo) = — fov = —(eg ® t~ vy, (i) holds for I =k + 1. Finally,
consider the case [ > k + 2. The equality (3.2) is valid even for k = 0, and hence, we
have

(e0 @) vy =TTy ((Tg_l(fo)(ee ®1") + foles ® r—m—l))v())

for each m. This implies that (3.3) is equal to

I-2—k
Z ctk, =l +2+m) (eg ® t_m_z) Vo

m=1

Hck, =1+ 2)ToTo(fo(es @ 1~ )vo) + c(k, =1 + 1)(eg ® t™Hwp.
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Since we can easily show To Ty (fo(eg ® t’l)vo) =(eg ® t’2)v0, (1) is proved for /.
We prove (ii) for /. By (i), we have

(s~ ds)vg = ([f@ ®s,e0 Qs 7 = [f,e0 ® sk+1t_l]) Vo

I~k
=(fo®s) Y clk,—l+m)(eg ®1™)vg
m=1
I—(k+1)
—fo Y clk+1.—~I+n)(es ® g

n=1
if I > k and (s ~!ds)vg = 0 otherwise. Therefore, we may assume / > k. We have
(fo ®s)(eo @1 ™)vo =[fo ®5,e0 @1 vy

= ([fo, e0 ® st "1+ 1"ds) vy
= fo(eg ® st™™)vg + (¢~ "ds)vg

m—1
= fo ) e(l,—m+n)(eg ® 1" )vo + (1" ds)vp.
n=1
We claim that

1—k m—1

Z clk, =1 +m) Z c(1, —m +n)(epg @t ™)y

m=1 n=1

1—(k+1)
= Z ctk+1, =1 +n)(eg @ t v
n=1

holds. Indeed, this equality is obtained by applying /g ® s to both sides of (i). Hence,
we conclude

I—k m—1
s t7lds)vy = Z clk, =1 +m) <f9 Z c(l,—m +n)(eg @t vy + (tmds)vo)
m=1 n=1
I—(k+1)
—fo Y clk+ 1,1+ n)(es @1 "0
n=1
I—k
=Y clk. —1 +m)(t~"ds)up.
m=1

]

We define the subalgebra 9_’ of U(g:gr) to be generated by c(k, —I) (k > 1,1 > 1).
Let C; be the subalgebra of C generated by c(1, —I) (I > 1).
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Lemma 3.17 We have Cvy = C)vp.

Proof Suppose k > 1 and ! > 1. We rewrite Lemma 3.16 (ii) as

0 if 1<k,
k-1 Ik
t'd = k
(s7 " ds)vo > s sy i 1> k.
—m
m=1

This implies that the action of c(k + 1, =) = ((k + 1)/1)s*t~"ds on vy is written in
terms of a polynomial in c¢(1, —m) = (1/m)t~"ds withm > 1. O

Lemma 3.18 We have
- (1) = r7ea()
(R @ sCls1) vo € QUG-

a

Proof Note that we have

ifos= P wost'e P ek

aeATU{0} aEAT
1>1 >0
Suppose k > 1. We show
(x ® s* vy € CLUGE)vo (3.4)

for

e xcgy(@e ATU{0)and! > 1;

e xegy(@we A7 )and! > 0.
Lemma 3.16 (i) and 3.17 imply (3.4) for x = eg and / > 1. Then, we obtain (3.4) for
X € gy (@ € AT)and [ > 1 by successively applying f;’s (i € I) to (eg @ s*t")vy.
We obtain (3.4) forx = h; (i € I)and! > 1 by applying f; to (e; @s¥1r~1yvy. We show
(B4)forx € gy (@ € A7) and ! > 0. The case !l = 0 is immediate from Lemma 3.15.
Assume [/ > 1. We use [y ® sk, X =2x® skt~ and xvg = 0 to deduce

1 N N
(x ® skt vy = —53 (e ® sk ey € xCLU @) vo < C1U G vp.

Proposition 3.19 We have
W (Ag) = C1U @ vo.

In particular, we have an inequality

chy4 W(Ag) < ch, L(Ag) [ |

n>0

1—pig
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Proof Let N be the C-span of monomials in ﬁ;’é ® sC[s]. Then, the PBW theorem

and Lemma 3.17 imply
W(Ag) = U (for N gy )v0 = C1U (R Nvo.
Since ﬁ;tf)f ®sC[s]is ad ﬁfl%)c-invariant modulo central elements, we prove the assertion

by Lemmas 3.17 and 3.18. O
Remark 3.20 We will show in Corollay 4.11 that the equality

1
Chp’q W(A()) = Chp L(A()) l_[ m

n>0
holds.
Remark 3.21 By Propositions 3.12, 3.14 and 3.19, we have an inequality
1
n

ch), Wioc (Ao, @) = chy L(Ao) [ | 1= et

n>0

We will show in Corollary 4.11 that the equality holds. In fact, we can directly prove
this inequality for ch, Wioc (Ao, @) by a similar calculation for Wio.(Ag, a) instead of

W (Ap). More precisely, we can show Wioc(Ag, a) = C U(ﬁgtf%)v[\o,a. Moreover, we
can show that

Wioe(Ao, @) = CoU (R Ay 4

also holds, where Cy is the subalgebra of U (g;,,) generated by c¢(0, —/) (I > 1).
Here, we gave the calculation for W (A() by two reasons:

(i) we are interested in the (p, ¢)-characters of the graded local Weyl modules for
+
Btor>
(i) the calculation for W(Ag) is easier than that for Wio. (Ao, a).
4 Vertex operator construction and Weyl modules

4.1 Heisenberg Lie algebras

We assume that g is of type ADE in Sects. 4.1 and 4.2. Recall that Q¢ = EBiE,aff Lo

is the root lattice of ggtf% We fix a bimultiplicative 2-cocycle €: Quf X Qafr — {£1}
satisfying

e, @) = (D@2 e, fe(B,a) = (—=D@P | (@, 8) =1

asin [16, Section 4]. Let C[ Q4¢r] be the group algebra of Q¢ with a C-basis denoted
by e“ (@ € Qafr). We make C[Q,fr] into a C[Q,¢r]-module via e, that is, we define
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e ef = &(a, ,B)e"”rﬁ. We denote by C.[ Q] this module. We define an action of
h e h™ on Ce[Qurl by h - e = (h, a)e®.
The toroidal Lie algebra gior contains a Heisenberg Lie algebra

H =P Chix & C;.

1€l
k#0

Define the Fock representation Fye of H by

Fait =UH)/ Y Uik + UH)(cs — D).

i€l
k>0

We set
V(O) = ]:aff & Cs[Qaff]~

Define the degree on V(0) by degh; x = k and dege® = («, «)/2. Then, we regard
V(0) as a module of aor = HD b ;;} @ Cd, via the actions of H and f)((ffi on Fagr and
C¢[Qatr], respectively, and so that d; counts the degree.

Similarly, we define F to be the Fock representation for a Heisenberg Lie subalgebra

EB Chi ik @ Ccy
iel

k0

of gyt

4.2 Vertex representations

For each o € A,fr, we set

hey ® s~ hy ® sk
X (o, u) = u @2 (e“uh“> exp <Z %uﬁ exp (— Z - fs u_k>

k>0 k>0

as an element of (Endc V(0))[[#T!]]. Here, u’ acts by

whe .o = @B B
Define Xj («) by the expansion

X(o,u) = ZXk(a)u_k.

keZ
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Theorem 4.1 ([16] Proposition 4.3) We can extend the action of aior = H @ bgf} ® Cd,

to gior on V(0) by
eik = Xe(@i), fir > Xi(—a;).

We denote by 7 the action of ¢(0, 1) on V(0). Then, by [16, (4.1) and Proposition 5.3
(i1)], the action of ¢(0, k) for k # 0 is given by 7%, The subalgebra of Endc V(0)
generated by t¥ (k € Z) is isomorphic to the Laurent polynomial algebra C[z*!].

We denote by (k) the action of c(k, 0) on V(0) for k < 0. They freely generate a
polynomial subalgebra of End¢ V(0) and we denote it by D. We have an isomorphism
of C-vector spaces

Fat EF® D.
Proposition 4.2 ([16] Lemma 5.6) The multiplication map gives an isomorphism
V(0) = F®Ce[Q]® D®Cle™]
of C-vector spaces. In particular, V(0) is free over C[t*!].

The ggsfg -submodule FQC,[ Q] is known to be isomorphic to the level one integrable

irreducible ggsfg—module L(Ap)® with highest weight Ao by Frenkel-Kac [8]. Hence,
it has the following defining relations:

(fo®@s)1®e") =0, ¢1®)=0Ge€el), 4.1)
10 =1®e, hde)=0Gel), d(1®) =0 4.2
(o ®s N1 =0, fi1®e)=0(el. 4.3)

We will determine the defining relations of V(0) as a gr-module as a main result of
this article.

4.3 General construction

We review the construction of g,r-modules given by Iohara—Saito—Wakimoto [13]
and Eswara Rao [6]. Assume that g is an arbitrary simple Lie algebra. Let D be the
polynomial algebra generated by the elements §(k) (k < 0). For a given smooth

gﬁ%-module M, we will define a gio-module structure on
M ® D ® C[t*!]

as follows. For an element x of g, we put x(u) = ) ;.7 (x ® s5yuk. Define a formal
series A;(u) for each ! € Z by

Ar(u) = exp (Z lS(k—k) uk> .

k>0
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We make D into a graded algebra by deg § (k) = k and let d(P be the operator which
counts the degree on D. We make C[t*!] into a graded algebra by deg v = 1 and let
d'™ be the operator which counts the degree on C[t*!].

Theorem 4.3 ([13]Lemma 2.1, [6] Theorem 4.1) Let M be a smooth ggsfz-module. The
assignment

Y et e xw ® AW ® 7
kel

forx € g,

d®6(k) ®id  ifk <0,

k—11 —k l k,—1
sSSTHHd uT " > s QA ) T, st df =
E( ) s 1(u) 0 ifk > 0.

kel
dy —> dy @id®id+id®d? ®@id, d, — id®id ®d™

gives a gor-module structure on M @ D ® C[e*!.

Remark 4.4 Let us give a remark on the results of [6,13] stated above. In [13], the
authors consider a Lie algebra bigger than gy, and the module they construct is bigger
than M ® D ® C[t*']. If one restricts the action to gor, we can take M ® D @ C[t*+!]
as a gior-submodule. Moreover, although they assume that g is of type ADE in [13],
the construction does not need the assumption. Later this construction of gi,.-modules
has been generalized in [6] to some Lie superalgebras.

Take M as the level one integrable irreducible ggg -module L(Ag)® with highest
weight Ag and set

V(0) = L(A0)Y ® D ® C[t*].

This definition is compatible with the construction given in Sects. 4.1 and 4.2 if g is
of type ADE. Indeed, the definition of the vertex operator X (o, u) implies that

XBu)QAw @t if peA,

X(B+15,u)=
B 1010 =11 o) @ 7! if B =0,

when we write o € Aur asa = B+ 15 with 8 € AU {0} and ] € Z.
Let v be a highest weight vector of L(Ao)"®). We generalize the relations given
in (4.1), (4.2), (4.3).

Lemma4.5 We have

(fr®)0Y @10 =0, ¢wV®1®1)=0(¢cl), @.4)
PRI =1Y1x1,
LW 1) =0Gecl), dOwY®1®1)=0, 4.5)

o ®s H?0YR101) =0, V1) =0Gel). (46)
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Proof These are direct consequences of the definition of the action and the relations
in L(Ag)®. i

Lemma 4.6 We have g (v @ 1® 1) = 0.

Proof Wehave g0 ®1®1) = (gv®)®1®1 = 0. To see the action of ey = f ®1,
consider the assignment

Y (fa@su™ > o @ A ® .
keZ

Expand Aj(u) = ) ;-0 Ag_k)uk. Then, the action of eg = fyp ® t is given by
D k=0(fo ® sH® A(l_k) ® 7. Since we have (fy ® s5)v® = 0 for k > 0, we
have eo(v™® ® 1 ® 1) = 0. Similarly, the action of fy = e ® r~! is given by
Zkzo(eg ® 5 ® A(:lk) ® t~!, hence it acts on v ® 1 ® 1 by 0. We have
Y ®1®1) =0and &;(v® ® 1 ® 1) = 0 by the definition of the action of
¢y and d;. O

4.4 Isomorphisms

We define a gio,-module V by the pull-back of V(0) via the automorphism § —1 that
is, V. = (S~H*V(0). Denote the vector of V corresponding to 8 @181 e V() by
V.

The action of ¢(1, 0) on V corresponds to 7! on V(0) via S~! since S~ (c(1, 0)) =
c(0, —1). We regard V as a module over A(Ag) = C[z*'] via z — ¢(1, 0), and then,
V becomes a free A(Ap)-module by Proposition 4.2. We put V, = V ®g(a,) Cq for
a € C*. This V,, is a g;,,-module. The character of V, is given as follows.

Proposition 4.7 We have ch, V, = ch, L(Ao) ]_[

n>0

1—pn

Proof The assertion obviously follows from the construction of the action of g on
V(0) = L(A9)® ® D ® C[t*!]. O
Let us study relation between the level one global Weyl module Wyjo(Ag) and V.

Lemma 4.8 We have

foranyk € Z.
Proof We have

h @tk ifiel,

S~ hig) =
(hi k) {sltkdé‘ —hy ® % ifi=0.
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By Lemma 4.6, we have (1; @ t )0 @ 1 ® 1) = (hg @ )P @ 1® 1) = 0.
Since we have (s 7't *ds)(V® @ 1 ® 1) = v *(v® ® 1 ® 1) and t~! corresponds
to z, the assertion is proved. O

Lemma 4.9 We have a surjective homomorphism Wgon(Ao) — V of modules over
both gior and A(Ao).

Proof The equalities (4.4), (4.5), (4.6) are equivalent to

eiv =0 (i € Iar),
agv=v, hiv=0(@G(el), dv=0,
fov=0, fiv=0Gel).

Moreover, we have

esv=S"le)WW @191 = - ®111) =0,
dv=S""d)wY®191)=-d(vY®1®1) =0

by Lemma 4.6. We need to check e; v = 0 for i € I and k € Z. This follows from
¢;v =0 and Lemma 4.8. O

By Lemma 4.9, we have a surjective g;,.-homomorphism Wioc(Ag, a) — V,, for
every a € C*. Hence, we have inequalities of the characters

ch, Wit (Ao, a) > chp Wige(Ag, a) > ch, V,, 4.7)

by Proposition 3.12.

Theorem 4.10 We have isomorphisms

ngob(AO) — V., Wiee(Ag,a) — V,

of modules over gior and gy, respectively.

Proof First, we prove the isomorphism Wi (Ag, a) = V,. We have

ch, Wi (Ag,a) =

—=ch,V, (4.8)

n>0

by Propositions 3.14, 3.19, 4.7. Then the inequalities (4.7) and (4.8) imply
ch, Wioc (Ao, a) = ch, V. This shows that the surjective homomorphism Wioc (Ao, a)
— V, is an isomorphism for every a € C*. Next, we prove the isomorphism
Walob(Ap) = V. Since V is a free A(Ap)-module, we can take a splitting of the
exact sequence

0 — Ker — Wgiop(Ag) >V — 0
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of A(Ap)-modules. The isomorphism Wioe(Ag, a) =V, implies Ker @ 4(p,)Ca = 0
for every a € C*. Then, by Nakayama’s lemma, we see that Ker = 0 and obtain the
isomorphism Wgjoh(Ag) = V. O

Corollary 4.11 We have

h = ch, W/, =ch e
chy, Wioe(Ao, a) = ch, Wi (Ao, a) = chy, L(Ao) l—[ 1 — pn

n>0

fora € C* and

chy g W(Ag) =ch, L(A0) [ []

n>0

1 —pq

Proof The equalities for the p-characters are verified in the proof of Theorem 4.10.
The equality for the (p, g)-character follows from that for the p-character and Propo-
sition 3.19. O
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