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Abstract
We identify level one globalWeyl modules for toroidal Lie algebras with certain twists
of modules constructed by Moody–Eswara Rao–Yokonuma via vertex operators for
type ADE and by Iohara–Saito–Wakimoto and Eswara Rao for general type. The twist
is given by an action of SL2(Z) on the toroidal Lie algebra. As a by-product, we obtain
a formula for the character of the level one local Weyl module over the toroidal Lie
algebra and that for the graded character of the level one graded local Weyl module
over an affine analog of the current Lie algebra.
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1 Introduction

1.1 Motivation

We study global/local Weyl modules for toroidal Lie algebras and an affine analog
of current Lie algebras. The notion of Weyl modules for affine Lie algebras has been
introduced by Chari–Pressley in [5] as a family of integrable highest weight modules
with a universal property. LaterChari–Loktev initiated in [4] to studyWeylmodules for
current Lie algebras in a graded setting. The graded characters of local Weyl modules
for current Lie algebras have been studied by many authors. Now they are known
to coincide with Macdonald polynomials specialized at t = 0, a.k.a. q-Whittaker
functions (Chari–Loktev [4], Fourier–Littelmann [10], Naoi [17], Sanderson [19], Ion
[12], and Lenart–Naito–Sagaki–Schilling–Shimozono [14]).
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3054 R. Kodera

Toroidal Lie algebras are natural generalization of affine Lie algebras. For a finite-
dimensional simple Lie algebra g, the corresponding toroidal Lie algebra gtor is defined
as the universal central extension of the double loop Lie algebra g⊗C[s±1, t±1] with
the degree operators. We can also consider a Lie algebra g+

tor which is defined by
replacing C[s±1, t±1] with C[s, t±1]. See Sect. 2.2 for precise definitions. We expect
that the characters of Weyl modules for gtor and g+

tor produce a very interesting class
of special functions. In this article, we study the first nontrivial example: the Weyl
module associated with the level one dominant integral weight.

A big difference between the toroidal and the affine Lie algebra is the structure of
their centers. The toroidal Lie algebra without the degree operators has an infinite-
dimensional center, while the center of the affine Lie algebra is one-dimensional. The
Weyl modules are examples of modules over the toroidal Lie algebra on which the
action of the center does not factor a finite-dimensional quotient. We note that Chari–
Le have studied in [3] localWeylmodules for a quotient of the toroidal Lie algebra. The
resulting quotient is an extension of the double loop Lie algebra by a two-dimensional
center with the degree operators. In particular, the Weyl modules considered in this
article are possibly bigger than those studied in [3] (see 1.3 below).

1.2 Outline

Let us summarize contents and results of the article. In Sect. 2, we introduce the main
object: the toroidal Lie algebra gtor. We also introduce an affine analog of the current
Lie algebra which is denoted by g+

tor. Then, we recall their basic properties. Among
other things, a certain automorphism of gtor will play an important role. The ring
C[s±1, t±1] admits an SL2(Z)-action by the coordinate change. This action naturally
induces automorphisms of gtor. We denote by S the automorphism corresponding to
the S-transformation.

In Sect. 3, we define the global and the local Weyl modules following [1,3–5,9].
The global Weyl module Wglob(�) for gtor is attached to each dominant integral
weight � of the affine Lie algebra. We identify the endomorphism ring of Wglob(�)

with a symmetric Laurent polynomial ring A(�) in Proposition 3.6 and define the
local Weyl module Wloc(�, a) for each maximal ideal a of A(�). The argument is
similar to known one for the affine and the current Lie algebras. The global/local
Weyl modules W+

glob(�) and W+
loc(�, a) for g+

tor are similarly defined. We prove in
Proposition 3.9 a finiteness property for weight spaces of the Weyl modules. By this
property, the characters of the local Weyl modules are well-defined. This result has
been established for the case of the affine Lie algebra in [5] and for a quotient of the
toroidal Lie algebra in [3]. We remark that we need to investigate the action of the
infinite-dimensional center, which is not treated in [3]. Then, we turn to a special case
where � is of level one. By the diagram automorphism, we can reduce the general
level one case to that for the basic level one weight �0. Therefore, we only consider
the case of �0 in the sequel. We give an upper bound for the graded character of the
level one local Weyl module W+

loc(�0, 0) over g
+
tor in Proposition 3.19.

In Sect. 4, we prove an isomorphism between the level one global Weyl module
Wglob(�0) over the toroidal Lie algebra gtor and the twist of a module V(0) by the
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Level one Weyl modules for toroidal Lie algebras 3055

automorphism S−1, where V(0) has been constructed in works of Moody–Eswara
Rao–Yokonuma [16], Iohara–Saito–Wakimoto [13] and Eswara Rao [6]. This is our
main theorem.

Theorem 1.1 (Theorem 4.10) We have an isomorphism

Wglob(�0)
∼=−→ (S−1)∗V(0)

of gtor-modules.

As a by-product, we prove that the upper bound in Proposition 3.19 indeed gives
the characters of the level one local Weyl modules (see Sect. 2.5 for the definition of
chp and chp,q ).

Corollary 1.2 (Corollary 4.11) We have

chp Wloc(�0, a) = chp W
+
loc(�0, a) = chp L(�0)

(∏
n>0

1

1 − pn

)

for a ∈ C
× and

chp,q W
+
loc(�0, 0) = chp L(�0)

(∏
n>0

1

1 − pnq

)
.

Here, L(�0) is the level one integrable irreducible module of the affine Lie algebra
with highest weight �0.

1.3 Related works

Let us give two comments regarding other works. The first one is for [3] mentioned
earlier. In [3], Chari–Le have studied local Weyl modules for some quotients of gtor
and g+

tor. They have proved that the level one local Weyl modules in their setting are
irreducible and are isomorphic to the evaluation modules [3, Theorem 4]. Hence, we
see by our results that the level one local Weyl modules for gtor and g+

tor are bigger
than those studied in [3]. We remark that one of our results (Proposition 3.19) gives
an alternative proof of [3, Theorem 4].

The second one is for [21]. In [21, Theorem 3.8], Tsymbaliuk has proved that
the level one Fock representation of Saito–Takemura–Uglov [20] and Feigin–Jimbo–
Miwa–Mukhin [7] over the quantum toroidal algebra of type A is isomorphic to a twist
of the vertex representation of Saito [18]. Here, the twist is given by an automorphism
analogous to S−1 which has been constructed by Miki [15]. This result motivated the
present work. In the situation of [21], both the Fock and the vertex representations
are known to be irreducible, and hence, it can be checked by comparing their highest
weights to show the isomorphism.Thus, although the calculation of S−1 in the quantum
toroidal case is much more involved, the argument to show the isomorphism is simple.
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3056 R. Kodera

It is an interesting problem to establish the results analogous to this article for quantum
toroidal algebras and affine Yangians.

2 Preliminaries

2.1 Simple Lie algebras

Let g be a finite-dimensional simple Lie algebra overCwith a fixed Cartan subalgebra
h. We also fix a Borel subalgebra containing h. The index set of simple roots is denoted
by I . Let αi (i ∈ I ) be simple roots.We denote by�,�+,�− the sets of roots, positive
roots, negative roots, respectively. Let gα (α ∈ �) be the corresponding root space
and put g0 = h. The highest root is denoted by θ .

Let ( , ) be a nondegenerate invariant symmetric bilinear form on g. We denote
by the same letter the bilinear form on h∗ induced from ( , ) and normalize them by
(θ, θ) = 2. Put di = (αi , αi )/2. We fix Chevalley generators ei , fi , hi (i ∈ I ) so that
(ei , fi ) = d−1

i and hi = [ei , fi ]. We also fix root vectors eθ ∈ gθ and fθ ∈ g−θ so
that (eθ , fθ ) = 1. We denote by hα ∈ h the coroot corresponding to α ∈ �. The root
lattice Q is defined by Q = ⊕

i∈I Zαi .

2.2 Toroidal Lie algebras

The universal central extension of the Lie algebra g ⊗ C[s±1, t±1] is given by

g ⊗ C[s±1, t±1] ⊕ �C[s±1,t±1]/Imd.

Here, �A for a commutative C-algebra A denotes the module of differentials, and
d : A → �A the differential map. The Lie bracket is given by

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab + (x, y)(da)b.

See [16, Section 2] for details.
We put

c(k, l) =
{
sktl−1 dt if k �= 0,

s−1t l ds if k = 0
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for (k, l) ∈ Z
2\{(0, 0)} and cs = s−1ds, ct = t−1dt . Then, �C[s±1,t±1]/Imd has a

C-basis c(k, l) with (k, l) ∈ Z
2\{(0, 0)}, cs , ct . We can explicitly describe the Lie

bracket as follows:

[
x ⊗ sk tl , y ⊗ smtn

]

=

⎧⎪⎪⎨
⎪⎪⎩

[x, y] ⊗ sk+mtl+n + (x, y)
lm − kn

k + m
c(k + m, l + n) if k + m �= 0,

[x, y] ⊗ t l+n + (x, y)kc(0, l + n) if k + m = 0 and l + n �= 0,

[x, y] ⊗ 1 + (x, y)(kcs + lct ) if k + m = 0 and l + n = 0.

(2.1)

We add the degree operators ds , dt to this central extension and define the toroidal Lie
algebra gtor by

gtor = g ⊗ C[s±1, t±1] ⊕
⊕

(k,l)∈Z2\{(0,0)}
Cc(k, l) ⊕ Ccs ⊕ Cct ⊕ Cds ⊕ Cdt ,

where the additional commutation relations are as follows:

[ds, x ⊗ sktl ] = kx ⊗ sktl , [dt , x ⊗ sktl ] = lx ⊗ sktl ,

[ds, c(k, l)] = kc(k, l), [dt , c(k, l)] = lc(k, l),

[ds, cs] = [dt , cs] = [ds, ct ] = [dt , ct ] = [ds, dt ] = 0.

Remark 2.1 Note that we have

c(k, l) =
{

(−k/l)sk−1t lds if k �= 0,

s−1t lds if k = 0

for l �= 0. In particular, c(k + 1, l) is a nonzero multiple of sktlds if l �= 0. We will
use this fact throughout the article.

Let g′
tor be the Lie subalgebra of gtor without ds :

g′
tor = g ⊗ C[s±1, t±1] ⊕

⊕
(k,l)∈Z2\{(0,0)}

Cc(k, l) ⊕ Ccs ⊕ Cct ⊕ Cdt .

We also consider the following Lie subalgebra g+
tor of gtor:

g+
tor = g ⊗ C[s, t±1] ⊕

⊕
k≥1
l∈Z

Cc(k, l) ⊕ Cct ⊕ Cdt .

The Lie algebra g+
tor is the semidirect product of the universal central extension of

g ⊗ C[s, t±1] and the one-dimensional abelian Lie algebra Cdt . It is an affine analog
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of the current Lie algebra g ⊗ C[s] and has a Z≥0-graded Lie algebra structure by
assigning

deg(x ⊗ sktl) = k (x ∈ g), deg c(k, l) = k (k ≥ 1, l ∈ Z), deg ct = deg dt = 0.

Remark 2.2 Later, we will study graded g+
tor-modules. It is equivalent to considering

modules of g+
tor ⊕ Cds .

The toroidal Lie algebra gtor contains two Lie subalgebras g
(s)
aff and g

(t)
aff isomorphic

to the affine Lie algebra associated with g:

g
(s)
aff = g ⊗ C[s±1] ⊕ Ccs ⊕ Cds, g

(t)
aff = g ⊗ C[t±1] ⊕ Cct ⊕ Cdt .

Note that g+
tor contains g

(t)
aff . We have

gtor =
(
g
(t)
aff

)′ ⊗ C[s±1] ⊕
⊕
k∈Z
l �=0

Cc(k, l) ⊕ Ccs ⊕ Cds ⊕ Cdt ,

g+
tor =

(
g
(t)
aff

)′ ⊗ C[s] ⊕
⊕
k≥1
l �=0

Cc(k, l) ⊕ Cdt ,

where
(
g
(t)
aff

)′ = g⊗C[t±1]⊕Cct . Here, the elements c(k, 0) = skt−1dt are regarded

as ct ⊗ sk ∈
(
g
(t)
aff

)′ ⊗ sk .

Remark 2.3 Chari–Le [3] have studied a version of toroidal Lie algebras which is the
quotient of gtor modulo the elements c(k, l) with l �= 0; namely, it is equal to

g ⊗ C[s±1, t±1] ⊕
⊕
k �=0

Cc(k, 0) ⊕ Ccs ⊕ Cct ⊕ Cds ⊕ Cdt

=
(
g
(t)
aff

)′ ⊗ C[s±1] ⊕ Ccs ⊕ Cds ⊕ Cdt

as a C-vector space.

We introduce presentations of gtor and g+
tor. Put Iaff = I � {0}. Let (ai j )i, j∈Iaff be

the Cartan matrix of g(t)
aff and set d0 = 1.

Definition 2.4 Let t be the Lie algebra generated by ei,k , fi,k , hi,k (i ∈ Iaff , k ∈ Z),
cs , ds , dt subject to the following defining relations:

cs : central, [hi,k, h j,l ] = d−1
j ai j kδk+l,0cs,

[ei,k, f j,l ] = δi j

(
hi,k+l + d−1

i kδk+l,0cs
)

,

[hi,k, e j,l ] = ai j e j,k+l , [hi,k, f j,l ] = −ai j f j,k+l ,
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[ei,k, ei,l ] = 0, [ fi,k, fi,l ] = 0,

(ad ei,0)
1−ai j e j,k = 0, (ad fi,0)

1−ai j f j,k = 0, (i �= j)

[ds, ei,k] = kei,k, [ds, fi,k] = k fi,k, [ds, hi,k] = khi,k,

[dt , ei,k] = δi,0ei,k, [dt , fi,k] = −δi,0 fi,k, [dt , hi,k] = 0,

[ds, dt ] = 0.

Definition 2.5 Let s be the Lie algebra generated by ei,k , fi,k , hi,k (i ∈ Iaff , k ∈ Z≥0),
dt subject to the following defining relations:

[hi,k, h j,l ] = 0, [ei,k, f j,l ] = δi j hi,k+l ,

[hi,k, e j,l ] = ai j e j,k+l , [hi,k, f j,l ] = −ai j f j,k+l ,

[ei,k, ei,l ] = 0, [ fi,k, fi,l ] = 0,

(ad ei,0)
1−ai j e j,k = 0, (ad fi,0)

1−ai j f j,k = 0, (i �= j)

[dt , ei,k] = δi,0ei,k, [dt , fi,k] = −δi,0 fi,k, [dt , hi,k] = 0.

Theorem 2.6 ([16] Proposition 3.5, [11] Proposition 4.4)We have an isomorphism of
Lie algebras t → gtor such that

ei,k �→
{
ei ⊗ sk if i ∈ I ,

fθ ⊗ skt if i = 0,
fi,k �→

{
fi ⊗ sk if i ∈ I ,

eθ ⊗ skt−1 if i = 0,

hi,k �→
{
hi ⊗ sk if i ∈ I ,

−hθ ⊗ sk + skt−1dt if i = 0,
cs �→ cs, ds �→ ds, dt �→ dt .

Moreover, this restricts to an isomorphism s → g+
tor.

Under the isomorphism, the elements ei,0, fi,0, hi,0 are in the Lie subalgebra g(t)
aff

and identified with its Chevalley generators. We sometimes denote them by ei , fi , hi .
Note that ei,k , fi,k , hi,k (i ∈ I , k ∈ Z), cs , ds generate the Lie subalgebra g

(s)
aff of

t ∼= gtor.
We introduce notions for the affine Lie algebra g(t)

aff . Let n
(t)
aff be the Lie subalgebra

of g(t)
aff generated by ei (i ∈ Iaff ), and n̄

(t)
aff that generated by fi (i ∈ Iaff ). Set

h
(t)
aff = h ⊕ Cct ⊕ Cdt .

The generator of imaginary roots is denoted by δ. We put α0 = −θ + δ so that αi

(i ∈ Iaff ) forms simple roots of g(t)
aff . We denote by �aff , �+

aff the sets of roots and

positive roots, respectively. Let
(
g
(t)
aff

)
α
(α ∈ �aff) be the corresponding root space.

The coroot is defined by hβ+lδ = hβ + lct for β ∈ � ∪ {0} and l ∈ Z. We set
Qaff = ⊕

i∈Iaff Zαi and Q+
aff = ∑

i∈Iaff Z≥0αi .

We say that an element � of HomC(h
(t)
aff ,C) is a dominant integral weight of g(t)

aff
if 〈hi ,�〉 ∈ Z≥0 holds for any i ∈ Iaff . In this article, they are further assumed to
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satisfy 〈dt ,�〉 = 0 for simplicity. Define the fundamental weights �i (i ∈ Iaff ) by
〈h j ,�i 〉 = δi j and 〈dt ,�i 〉 = 0. We denote by L(�) the irreducible g(t)

aff -module with

highest weight �. We will use the symbol L(�)(s) for the irreducible g
(s)
aff -module

with highest weight �.

2.3 Triangular decomposition

Let ntor be the Lie subalgebra of gtor generated by ei,k (i ∈ Iaff , k ∈ Z), and n̄tor that
generated by fi,k (i ∈ Iaff , k ∈ Z). Set

ator = h ⊗ C[s±1] ⊕
⊕
k �=0

Cc(k, 0) ⊕ Ccs ⊕ Cct ⊕ Cds ⊕ Cdt

= (h ⊕ Cct ) ⊗ C[s±1] ⊕ Ccs ⊕ Cds ⊕ Cdt .

Proposition 2.7 We have

ntor = n
(t)
aff ⊗ C[s±1] ⊕

⊕
k∈Z
l≥1

Cc(k, l), n̄tor = n̄
(t)
aff ⊗ C[s±1] ⊕

⊕
k∈Z
l≤−1

Cc(k, l).

Proof Denote by n′
tor and n̄

′
tor the right-hand sides. Then, we see by the formula of the

Lie bracket (2.1) that ntor ⊃ n′
tor and n̄tor ⊃ n̄′

tor. We also see that n̄tor + ator + ntor =
n̄tor ⊕ ator ⊕ ntor. Since we have gtor = n̄′

tor ⊕ ator ⊕ n′
tor, the assertion holds. ��

In this article, we call

gtor = n̄tor ⊕ ator ⊕ ntor

the triangular decomposition of gtor.
In g+

tor, the elements ei,k (i ∈ Iaff , k ∈ Z≥0) generate

ntor ∩ g+
tor = n

(t)
aff ⊗ C[s] ⊕

⊕
k≥1
l≥1

Cc(k, l),

and fi,k (i ∈ Iaff , k ∈ Z≥0) generate

n̄tor ∩ g+
tor = n̄

(t)
aff ⊗ C[s] ⊕

⊕
k≥1
l≤−1

Cc(k, l).

Further set

a′
tor = ator ∩ g′

tor = (h ⊕ Cct ) ⊗ C[s±1] ⊕ Ccs ⊕ Cdt .
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2.4 Automorphisms

Let S be the ring automorphism ofC[s±1, t±1] defined by s �→ t , t �→ s−1. It naturally
induces a Lie algebra automorphism of gtor which is denoted by the same letter S.
Later, we will rather use its inverse S−1. It corresponds to the assignment s �→ t−1,
t �→ s. In particular, we have

S−1(c(k, l)) =

⎧⎪⎨
⎪⎩

(k/l)c(l,−k) if k, l �= 0,

−c(l, 0) if k = 0,

c(0,−k) if l = 0,

S−1(cs) = −ct , S−1(ct ) = cs .

We introduce Lie algebra automorphisms T0 and Tθ of gtor by

T0 = exp ad e0 ◦ exp ad(− f0) ◦ exp ad e0,

Tθ = exp ad eθ ◦ exp ad(− fθ ) ◦ exp ad eθ .

We can regard them as automorphisms of g+
tor by restriction.

Lemma 2.8 We have eθ ⊗ sktl = T0Tθ (eθ ⊗ sktl+2).

Proof By a direct calculation. We use the following:

Tθ (eθ ⊗ sktl+2) = − fθ ⊗ sktl+2,

exp ad e0( fθ ⊗ sktl+2) = fθ ⊗ sktl+2,

exp ad(− f0)( fθ ⊗ sktl+2) = fθ ⊗ sktl+2 − (hθ ⊗ sktl+1 − sktldt) − eθ ⊗ sktl ,

exp ad e0(hθ ⊗ sktl+1) = hθ ⊗ sktl+1 + 2 fθ ⊗ sktl+2,

exp ad e0(eθ ⊗ sktl) = eθ ⊗ sktl − hθ ⊗ sktl+1 + sktldt − fθ ⊗ sktl+2.

��
Let M be a module of A = gtor, g

′
tor, or g

+
tor and assume that M is integrable as a

g
(t)
aff -module. Then, T0, Tθ ∈ Aut M are similarly defined. Moreover, they satisfy

T0(xv) = T0(x)T0(v), Tθ (xv) = Tθ (x)Tθ (v)

for x ∈ A and v ∈ M .
TheLie algebra automorphism τa (a ∈ C) ofg+

tor is induced from themap s �→ s+a.

2.5 Characters

LetM be amodule ofA = gtor,g
′
tor,org

+
tor and regard it as ag

(t)
aff -module by restriction.

For λ ∈ h∗ and m ∈ C, let Mλ−mδ be the corresponding weight space. In this article,
we always assume that any g

(t)
aff -module M has the weight space decomposition and

Mλ−mδ = 0 unless m ∈ Z.
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We define the p-character chp M of M by

chp M =
∑
λ∈h∗
m∈Z

(dim Mλ−mδ)e
λ pm

if it is well-defined. This is nothing but the ordinary g(t)
aff -character with p = e−δ . Let

M be a graded g+
tor-module and Mλ−mδ = ⊕

n∈Z Mλ−mδ[n] the decomposition of the
weight space into graded pieces. We define the (p, q)-character chp,q M of M by

chp,q M =
∑
λ∈h∗
m,n∈Z

(dim Mλ−mδ[n])eλ pmqn

if it is well-defined. For two formal sums

f =
∑
λ∈h∗
m∈Z

fλ,me
λ pm, g =

∑
λ∈h∗
m∈Z

gλ,me
λ pm ( fλ,m, gλ,m ∈ Z),

we say f ≤ g if fλ,m ≤ gλ,m holds for all λ and m. We define an inequality ≤ for

f =
∑
λ∈h∗
m,n∈Z

fλ,m,ne
λ pmqn, g =

∑
λ∈h∗
m,n∈Z

gλ,m,ne
λ pmqn ( fλ,m,n, gλ,m,n ∈ Z)

similarly.

3 Weyl modules

3.1 Definitions of global/localWeyl modules

Definition 3.1 Let � be a dominant integral weight of g(t)
aff . The global Weyl module

Wglob(�) for gtor with highest weight � is the gtor-module generated by v� subject
to the following defining relations:

ei,kv� = 0 (i ∈ Iaff , k ∈ Z), hv� = 〈h,�〉v�

(
h ∈ h

(t)
aff

)
,

f 〈hi ,�〉+1
i v� = 0 (i ∈ Iaff),

csv� = dsv� = 0.

The global Weyl module W+
glob(�) for g+

tor with highest weight � is the g+
tor-module

generated by v+
� subject to the following defining relations:

ei,kv
+
� = 0 (i ∈ Iaff , k ∈ Z≥0), hv+

� = 〈h,�〉v+
�

(
h ∈ h

(t)
aff

)
,
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f 〈hi ,�〉+1
i v+

� = 0 (i ∈ Iaff).

We describe the endomorphism rings of Wglob(�) and W+
glob(�). The following

argument is the same as in the case of the affine and the current Lie algebras. We give
some details for completeness.

Lemma 3.2 We have an action ϕ of U (a′
tor) on each weight space Wglob(�)�−β (β ∈

Q+
aff) defined by

ϕ(a)(Xv�) = X(av�)

for a ∈ U (a′
tor) and X ∈ U (g′

tor).

Proof To see that the action is well-defined, we need to check that Xv� = 0 implies
X(av�) = 0. By the same argument as [1, 3.4], we can show that if v satisfies the
relations

ei,kv = 0 (i ∈ Iaff , k ∈ Z), hv = 〈h,�〉v
(
h ∈ h

(t)
aff

)
,

f 〈hi ,�〉+1
i v = 0 (i ∈ Iaff), csv = 0,

then so does av. This completes the proof. ��

Let Ann v� be the annihilator ideal of U (a′
tor) and set

Ã(�) = U (a′
tor)/Ann v�.

Since the action ϕ of a′
tor factors through an abelian Lie algebra a

′
tor/Ccs ⊕Cdt , Ã(�)

is a commutative algebra.

Lemma 3.3 The action map

Ã(�) → Wglob(�)�, a �→ av�

gives an isomorphism of C-vector spaces.

Proof The well-definedness and the injectivity immediately follow from the definition
of Ã(�). The surjectivity holds since we have Wglob(�)� = U (a′

tor)v�. ��

Lemma 3.4 The natural map

Ã(�) → Endg′
tor
Wglob(�), a �→ ϕ(a)

gives an isomorphism of C-algebras.
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Proof By the definition of Ã(�), we have a natural injective algebra homomorphism

Ã(�) → Endg′
tor
Wglob(�), a �→ ϕ(a).

We also have a natural C-linear map

Endg′
tor
Wglob(�) → Wglob(�)�, f �→ f (v�)

and this is injective since Wglob(�) is generated by v�. The composite of the maps

Ã(�) ↪→ Endg′
tor
Wglob(�) ↪→ Wglob(�)�

is given by a �→ av�. Since this map is bijective by Lemma 3.3, the two injective
maps are bijective. ��

Write � = ∑
i∈Iaff mi�i with the fundamental weights �i and mi ∈ Z≥0. We

define A(�) by

A(�) =
⊗
i∈Iaff

C

[
z±1
i,1 , . . . , z

±1
i,mi

]Smi
,

the symmetric Laurent polynomial algebra associated with �.

Proposition 3.5 The assignment

mi∑
m=1

zki,m �→ hi,k

gives an isomorphism A(�) ∼= Ã(�) of C-algebras.

Proof The well-definedness and the surjectivity of the map are proved in the same
way as [5, Proposition 1.1 (i), (iv), (v)].

We follow the argument in [2, 5.6] to show the injectivity. Take a nonzero ele-
ment a of A(�) and fix a maximal ideal m which does not contain a. Assume
that Wglob(�) ⊗A(�) A(�)/m is nonzero. Then, the image of a in A(�)/m acts
on Wglob(�) ⊗A(�) A(�)/m by a nonzero scaler. Hence, we conclude that a acts on
Wglob(�) nontrivially and the map A(�) → Ã(�) ∼= Endg′

tor
Wglob(�) is shown to

be injective.
Thus, it is enough to show that Wglob(�) ⊗A(�) A(�)/m is nonzero. We denote

by p̄(i)
k (i ∈ Iaff , k ∈ Z) the image of the power some function p(i)

k = ∑mi
m=1 z

k
i,m in

A(�)/m. We can choose a set of nonzero complex numbers {ai,m} satisfying
mi∑
m=1

aki,m = p̄(i)
k
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under an identification A(�)/m ∼= C. For each a ∈ C
×, we have the evaluation map

eva : g′
tor → g

(t)
aff

defined as the composite of

g′
tor → g′

tor/
⊕
k∈Z
l �=0

Cc(k, l) ⊕ Ccs ∼=
(
g
(t)
aff

)′ ⊗ C[s±1] ⊕ Cdt

and the evaluation at s = a. Then, we have a nonzero g′
tor-module homomorphism

Wglob(�) ⊗A(�) A(�)/m →
⊗
i∈Iaff

mi⊗
m=1

ev∗
ai,m L(�i )

assigning v� ⊗ 1 to the tensor product of highest weight vectors. This proves the
assertion. ��

We have a completely analogous story for the global Weyl module W+
glob(�) over

g+
tor if we replace A(�) with

A+(�) =
⊗
i∈Iaff

C[zi,1, . . . , zi,mi ]Smi .

We can summarize the discussion so far as follows.

Proposition 3.6 We have Endg′
tor
Wglob(�) ∼= A(�) and Endg+

tor
W+

glob(�) ∼= A+(�).

For a maximal ideal a of A = A(�) or A+(�), we denote byCa the corresponding
one-dimensional module A/a.

Definition 3.7 We call

Wloc(�, a) = Wglob(�) ⊗A(�) Ca, W+
loc(�, a) = W+

glob(�) ⊗A+(�) Ca

the local Weyl modules for g′
tor and g+

tor, respectively.

We denote the images of v� and v+
� in the local Weyl modules by v�,a and v+

�,a.

Remark 3.8 The global/local Weyl modules for gtor and g
+
tor can be regarded as a sort

of highest weight modules with respect to their triangular decompositions:

gtor = n̄tor ⊕ ator ⊕ ntor, g+
tor = (

n̄tor ∩ g+
tor

) ⊕ (
ator ∩ g+

tor

) ⊕ (
ntor ∩ g+

tor

)
.
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3.2 Finiteness of weight spaces

The goal of this subsection is to prove the following.

Proposition 3.9 (i) Everyweight spaceWglob(�)�−β is finitely generated over A(�).
Every weight space Wloc(�, a)�−β is finite-dimensional.

(ii) Everyweight spaceW+
glob(�)�−β is finitely generated over A+(�). Everyweight

space W+
loc(�, a)�−β is finite-dimensional.

(iii) We have Wloc(�, a) = U (g+
tor)v�,a.

We start to prove the following lemma.

Lemma 3.10 Let � be a dominant integral weight of g(t)
aff .

(i) For each positive root β ∈ �+
aff , there exists a nonnegative integer N (β) satisfying

the following: we have

(X−β ⊗ sk)v� ∈
N (β)∑
m=0

(X−β ⊗ sm)A(�)v�

for any root vector X−β of n̄(t)
aff corresponding to a negative root −β and any k.

(ii) For each positive integer l > 0, there exists a nonnegative integer Nl satisfying
the following: we have

c(k,−l)v� ∈
Nl∑

m=1

c(m,−l)A(�)v� +
Nl∑

m=0

((
g
(t)
aff

)
−lδ

⊗ sm
)
A(�)v�

for any k.

Proof The assertion (i) is proved in the same way as [3, Proposition 3.2 and Corol-
lary 3.1].

We prove (ii). Take an arbitrary element α of �+ and fix root vectors xα ∈ gα and
x−α ∈ g−α satisfying (xα, x−α) = 1. Then, we have(

skt−lds
)

v� =
([

xα ⊗ s, x−α ⊗ skt−l
]

− hα ⊗ sk+1t−l
)

v�

= (xα ⊗ s)
(
x−α ⊗ skt−l

)
v� −

(
hα ⊗ sk+1t−l

)
v�.

We have

(xα ⊗ s)
(
x−α ⊗ skt−l

)
v� ∈ (xα ⊗ s)

N (α+lδ)∑
m=0

(x−α ⊗ smt−l)A(�)v�

by (i). The right-hand side is equal to

N (α+lδ)∑
m=0

(
hα ⊗ sm+1t−l + smt−lds

)
A(�)v�
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=
N (α+lδ)+1∑

m=1

(
hα ⊗ smt−l + c(m,−l)

)
A(�)v�.

We have

(hα ⊗ sk+1t−l)v� ∈
N (lδ)∑
m=0

(hα ⊗ smt−l)A(�)v�

again by (i). Hence, we conclude that

(skt−lds)v� ∈
Nl∑

m=1

c(m,−l)A(�)v� +
Nl∑

m=0

((
g
(t)
aff

)
−lδ

⊗ sm
)
A(�)v�

if we put Nl = max(N (lδ), N (α + lδ) + 1). ��
The following proposition is an analog of [5, Proposition 1.2] for the case of the

affine Lie algebra and of [3, Proposition 3.2 and Corollary 3.1] for the quotient of gtor
modulo the elements c(k, l) with l �= 0 (cf. Remark 2.3).

Proposition 3.11 For each positive root β j ∈ �+
aff and each positive integer l > 0,

there exist nonnegative integers N (β j )and Nl such that theweight spaceWglob(�)�−β

for β ∈ Q+
aff is spanned by elements of the form

(X−β1 ⊗ sk1) · · · (X−βa ⊗ ska )

⎛
⎝ b∏

j=1

c(m j ,−l j )

⎞
⎠ A(�)v�, (3.1)

where each X−β j is a root vector of n̄(t)
aff corresponding to a negative root −β j and

each l j > 0 is a positive integer satisfying β = ∑a
j=1 β j +

(∑b
j=1 l j

)
δ and 0 ≤

k j ≤ N (β j ), 1 ≤ m j ≤ Nl j . A similar statement also holds for W+
glob(�)�−β .

Proof By the PBW theorem, we see that Wglob(�)�−β is spanned by elements of the
form as (3.1) without any conditions on k j andm j . Then, we use Lemma 3.10 to show
the assertion by the induction on a + b. ��

Thus, we establish Proposition 3.9 from Proposition 3.11. We also have the follow-
ing.

Proposition 3.12 Let a be a maximal ideal of A(�) and regard it also as a maximal
ideal of A+(�). Then we have chp W

+
loc(�, a) ≥ chp Wloc(�, a).

Proof We have a g+
tor-homomorphism W+

loc(�, a) → ResWloc(�, a) assigning
v+
�,a �→ v�,a. It is surjective by Proposition 3.9 (iii). ��
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3.3 Upper bound for the level oneWeyl module

In this subsection, we consider the case � = �0. The ring A(�0) is identified with
C[z±1] and the action on Wglob(�0) is given by

zk(Xv�0) = X(h0,kv�0)

for X ∈ U (g′
tor). This identification induces A+(�0) = C[z].

Lemma 3.13 We have hi,kv�0 = 0 for i ∈ I and k ∈ Z.

Proof The defining relations ei,kv�0 = 0 and fiv�0 = 0 for i ∈ I imply the assertion.
��

Recall that
∑

i∈Iaff hi,k = skt−1dt . ByLemma 3.13, we see that the action of A(�0)

on Wglob(�0) is given by zk �→ skt−1dt . In particular, z acts by c(1, 0) = st−1dt .
We have defined the local Weyl modules Wloc(�0, a) for a ∈ C

× and W+
loc(�0, a)

for a ∈ C by

Wloc(�0, a) = Wglob(�0) ⊗A(�0) Ca, W+
loc(�0, a) = W+

glob(�0) ⊗A+(�0) Ca .

Proposition 3.14 The p-character chp W
+
loc(�0, a) is independent of a ∈ C.

Proof The defining relations of W+
loc(�0, a) are given by

(ntor ∩ g+
tor)v

+
�0,a

= 0, hi,kv
+
�0,a

= δi,0a
kv+

�0,a
(i ∈ Iaff , k ≥ 0), dtv

+
�0,a

= 0,

f 20 v+
�0,a

= 0, fiv
+
�0,a

= 0 (i ∈ I ).

Hence, we have τ ∗
a W

+
loc(�0, 0) ∼= W+

loc(�0, a), where τa is the automorphism of g+
tor

defined in Sect. 2.4. This proves the assertion. ��
We put

W (�0) = W+
loc(�0, 0) = W+

glob(�0) ⊗A+(�0) C0

and denote its highest weight vector v+
�0,0

by v0. This W (�0) is regarded as a graded

g+
tor-module by setting deg v0 = 0.

Lemma 3.15 We have fi,kv0 = 0 for any i ∈ Iaff and k ≥ 1.

Proof The assertion for i ∈ I follows from fiv0 = 0 and hi,kv0 = 0. The assertion
for i = 0 follows from

0 = e0,k f
2
0 v0 =

[
e0,k, f 20

]
v0 = (−2 f0,k + 2 f0h0,k)v0

and h0,kv0 = 0 for k ≥ 1. ��
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Lemma 3.16 Let k ≥ 1. We have

(i)

(eθ ⊗ skt−l)v0 =

⎧⎪⎪⎨
⎪⎪⎩
0 if l ≤ k,
l−k∑
m=1

c(k,−l + m)(eθ ⊗ t−m)v0 if l > k,

(ii)

(skt−lds)v0 =

⎧⎪⎪⎨
⎪⎪⎩
0 if l ≤ k,
l−k∑
m=1

c(k,−l + m)(t−mds)v0 if l > k.

Proof We prove the assertions (i) and (ii) by induction on l.
For l ≤ 0, eθ ⊗ skt−l is an element of ntor ∩ g+

tor, hence it kills v0. For l = 1,
eθ ⊗ skt−1 = f0,k kills v0 by Lemma 3.15. Then, we have

(skt−lds)v0 =
(
[ fθ ⊗ s, eθ ⊗ skt−l ] − [ fθ , eθ ⊗ sk+1t−l ]

)
v0 = 0

for l ≤ 1. We thus have proved (i) and (ii) for l ≤ 1.
Let l ≥ 2. We assume the assertions (i) and (ii) for all l ′ < l. By Lemma 2.8, we

have

(eθ ⊗ skt−l)v0 = T0Tθ

(
(eθ ⊗ skt−l+2)T−1

θ T−1
0 v0

)
= T0Tθ

(
(eθ ⊗ skt−l+2)T−1

θ ( f0v0)
)

= T0Tθ

(
(eθ ⊗ skt−l+2)T−1

θ ( f0)v0
)

= T0Tθ

(
T−1

θ ( f0)(eθ ⊗ skt−l+2)v0 + [eθ ⊗ skt−l+2, T−1
θ ( f0)]v0

)
.

(3.2)

We have

[eθ ⊗ skt−l+2, T−1
θ ( f0)] = [eθ ⊗ skt−l+2,− fθ ⊗ t−1]

= −
(
[eθ ⊗ skt−l+1, fθ ] + c(k,−l + 1)

)
= [ fθ , eθ ⊗ skt−l+1] − c(k,−l + 1).

Put

A = T−1
θ ( f0)(eθ ⊗ skt−l+2)v0, B = fθ (eθ ⊗ skt−l+1)v0.
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Then, (3.2) is equal to T0Tθ (A + B − c(k,−l + 1)v0). By the induction assumption,
we have

A = T−1
θ ( f0)

l−2−k∑
m=1

c(k,−l + 2 + m)(eθ ⊗ t−m)v0,

B = fθ

l−1−k∑
m=1

c(k,−l + 1 + m)(eθ ⊗ t−m)v0

= fθ

l−2−k∑
m=0

c(k,−l + 2 + m)(eθ ⊗ t−m−1)v0.

Then, (3.2) is equal to

T0Tθ

( l−2−k∑
m=1

c(k,−l + 2 + m)
(
T−1

θ ( f0)(eθ ⊗ t−m) + fθ (eθ ⊗ t−m−1)
)
v0

+ c(k,−l + 2) fθ (eθ ⊗ t−1)v0 − c(k,−l + 1)v0

)
(3.3)

if l ≥ k + 2 and to T0Tθ (−c(k,−l + 1)v0) if l ≤ k + 1.
We prove (i) for l. First, consider the case l ≤ k. In this case, we have

(
eθ ⊗ skt−l

)
v0 = T0Tθ (−c(k,−l + 1)v0) = k

−l + 1
T0Tθ ((s

k−1t−(l−1)ds)v0) = 0

by the induction assumption. Hence, (i) holds for l. Next, consider the case l = k + 1.
In this case, we have

(
eθ ⊗ skt−l

)
v0 = T0Tθ (−c(k,−l + 1)v0) = −c(k,−l + 1)T0Tθ (v0).

Since we have T0Tθ (v0) = − f0v = −(eθ ⊗ t−1)v0, (i) holds for l = k + 1. Finally,
consider the case l ≥ k + 2. The equality (3.2) is valid even for k = 0, and hence, we
have

(
eθ ⊗ t−m−2

)
v0 = T0Tθ

((
T−1

θ ( f0)(eθ ⊗ t−m) + fθ (eθ ⊗ t−m−1)
)
v0

)

for each m. This implies that (3.3) is equal to

l−2−k∑
m=1

c(k,−l + 2 + m)
(
eθ ⊗ t−m−2

)
v0

+c(k,−l + 2)T0Tθ ( fθ (eθ ⊗ t−1)v0) + c(k,−l + 1)(eθ ⊗ t−1)v0.
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Since we can easily show T0Tθ ( fθ (eθ ⊗ t−1)v0) = (eθ ⊗ t−2)v0, (i) is proved for l.
We prove (ii) for l. By (i), we have

(skt−lds)v0 =
(
[ fθ ⊗ s, eθ ⊗ skt−l ] − [ fθ , eθ ⊗ sk+1t−l ]

)
v0

= ( fθ ⊗ s)
l−k∑
m=1

c(k,−l + m)(eθ ⊗ t−m)v0

− fθ

l−(k+1)∑
n=1

c(k + 1,−l + n)(eθ ⊗ t−n)v0

if l > k and (skt−lds)v0 = 0 otherwise. Therefore, we may assume l > k. We have

( fθ ⊗ s)(eθ ⊗ t−m)v0 = [ fθ ⊗ s, eθ ⊗ t−m]v0
= ([ fθ , eθ ⊗ st−m] + t−mds

)
v0

= fθ (eθ ⊗ st−m)v0 + (t−mds)v0

= fθ

m−1∑
n=1

c(1,−m + n)(eθ ⊗ t−n)v0 + (t−mds)v0.

We claim that

l−k∑
m=1

c(k,−l + m)

m−1∑
n=1

c(1,−m + n)(eθ ⊗ t−n)v0

=
l−(k+1)∑
n=1

c(k + 1,−l + n)(eθ ⊗ t−n)v0

holds. Indeed, this equality is obtained by applying hθ ⊗ s to both sides of (i). Hence,
we conclude

(skt−lds)v0 =
l−k∑
m=1

c(k,−l + m)

(
fθ

m−1∑
n=1

c(1,−m + n)(eθ ⊗ t−n)v0 + (t−mds)v0

)

− fθ

l−(k+1)∑
n=1

c(k + 1,−l + n)(eθ ⊗ t−n)v0

=
l−k∑
m=1

c(k,−l + m)(t−mds)v0.

��
We define the subalgebra C̄ of U (g+

tor) to be generated by c(k,−l) (k ≥ 1, l ≥ 1).
Let C̄1 be the subalgebra of C̄ generated by c(1,−l) (l ≥ 1).
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Lemma 3.17 We have C̄v0 = C̄1v0.

Proof Suppose k ≥ 1 and l ≥ 1. We rewrite Lemma 3.16 (ii) as

(skt−lds)v0 =

⎧⎪⎪⎨
⎪⎪⎩
0 if l ≤ k,
l−k∑
m=1

k

l − m
(sk−1t−l+mds)(t−mds)v0 if l > k.

This implies that the action of c(k + 1,−l) = ((k + 1)/l)skt−lds on v0 is written in
terms of a polynomial in c(1,−m) = (1/m)t−mds with m ≥ 1. ��
Lemma 3.18 We have (

n̄
(t)
aff ⊗ sC[s]

)
v0 ⊂ C̄1U (n̄

(t)
aff)v0.

Proof Note that we have

n̄
(t)
aff ⊗ sk =

⊕
α∈�+∪{0}

l≥1

gα ⊗ skt−l ⊕
⊕

α∈�−
l≥0

gα ⊗ skt−l .

Suppose k ≥ 1. We show

(x ⊗ skt−l)v0 ∈ C̄1U (n̄
(t)
aff)v0 (3.4)

for

• x ∈ gα (α ∈ �+ ∪ {0}) and l ≥ 1;
• x ∈ gα (α ∈ �−) and l ≥ 0.

Lemma 3.16 (i) and 3.17 imply (3.4) for x = eθ and l ≥ 1. Then, we obtain (3.4) for
x ∈ gα (α ∈ �+) and l ≥ 1 by successively applying fi ’s (i ∈ I ) to (eθ ⊗ skt−l)v0.
We obtain (3.4) for x = hi (i ∈ I ) and l ≥ 1 by applying fi to (ei ⊗skt−l)v0.We show
(3.4) for x ∈ gα (α ∈ �−) and l ≥ 0. The case l = 0 is immediate from Lemma 3.15.
Assume l ≥ 1. We use [hα ⊗ skt−l , x] = 2x ⊗ skt−l and xv0 = 0 to deduce

(x ⊗ skt−l)v0 = −1

2
x(hα ⊗ skt−l)v0 ∈ xC̄1U (n̄

(t)
aff)v0 ⊂ C̄1U (n̄

(t)
aff)v0.

��
Proposition 3.19 We have

W (�0) = C̄1U (n̄
(t)
aff)v0.

In particular, we have an inequality

chp,q W (�0) ≤ chp L(�0)
∏
n>0

1

1 − pnq
.
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Proof Let N be the C-span of monomials in n̄
(t)
aff ⊗ sC[s]. Then, the PBW theorem

and Lemma 3.17 imply

W (�0) = U (n̄tor ∩ g+
tor)v0 = C̄1U (n̄

(t)
aff)Nv0.

Since n̄(t)
aff ⊗ sC[s] is ad n̄(t)

aff -invariant modulo central elements, we prove the assertion
by Lemmas 3.17 and 3.18. ��
Remark 3.20 We will show in Corollay 4.11 that the equality

chp,q W (�0) = chp L(�0)
∏
n>0

1

1 − pnq

holds.

Remark 3.21 By Propositions 3.12, 3.14 and 3.19, we have an inequality

chp Wloc(�0, a) ≤ chp L(�0)
∏
n>0

1

1 − pn
.

We will show in Corollary 4.11 that the equality holds. In fact, we can directly prove
this inequality for chp Wloc(�0, a) by a similar calculation forWloc(�0, a) instead of

W (�0). More precisely, we can show Wloc(�0, a) = C̄1U (n̄
(t)
aff)v�0,a . Moreover, we

can show that

Wloc(�0, a) = C̄0U (n̄
(t)
aff)v�0,a

also holds, where C̄0 is the subalgebra of U (g′
tor) generated by c(0,−l) (l ≥ 1).

Here, we gave the calculation for W (�0) by two reasons:

(i) we are interested in the (p, q)-characters of the graded local Weyl modules for
g+
tor;

(ii) the calculation for W (�0) is easier than that for Wloc(�0, a).

4 Vertex operator construction andWeyl modules

4.1 Heisenberg Lie algebras

We assume that g is of type ADE in Sects. 4.1 and 4.2. Recall that Qaff = ⊕
i∈Iaff Zαi

is the root lattice of g(t)
aff . We fix a bimultiplicative 2-cocycle ε : Qaff × Qaff → {±1}

satisfying

ε(α, α) = (−1)(α,α)/2, ε(α, β)ε(β, α) = (−1)(α,β), ε(α, δ) = 1

as in [16, Section 4]. Let C[Qaff ] be the group algebra of Qaff with a C-basis denoted
by eα (α ∈ Qaff ). We make C[Qaff ] into a C[Qaff ]-module via ε, that is, we define
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eα · eβ = ε(α, β)eα+β . We denote by Cε[Qaff ] this module. We define an action of
h ∈ h

(t)
aff on Cε[Qaff ] by h · eα = 〈h, α〉eα .

The toroidal Lie algebra gtor contains a Heisenberg Lie algebra

H =
⊕
i∈Iaff
k �=0

Chi,k ⊕ Ccs .

Define the Fock representation Faff of H by

Faff = U (H)/
∑
i∈Iaff
k>0

U (H)hi,k +U (H)(cs − 1).

We set

V(0) = Faff ⊗ Cε[Qaff ].

Define the degree on V(0) by deg hi,k = k and deg eα = (α, α)/2. Then, we regard
V(0) as a module of ator = H ⊕ h

(t)
aff ⊕ Cds via the actions ofH and h(t)

aff on Faff and
Cε[Qaff ], respectively, and so that ds counts the degree.

Similarly,wedefineF to be theFock representation for aHeisenbergLie subalgebra

⊕
i∈I
k �=0

Chi,k ⊕ Ccs

of g(s)
aff .

4.2 Vertex representations

For each α ∈ �aff , we set

X(α, u) = u(α,α)/2
(
eαuhα

)
exp

(∑
k>0

hα ⊗ s−k

k
uk

)
exp

(
−

∑
k>0

hα ⊗ sk

k
u−k

)

as an element of (EndCV(0))[[u±1]]. Here, uhα acts by

uhα · eβ = u(α,β)eβ.

Define Xk(α) by the expansion

X(α, u) =
∑
k∈Z

Xk(α)u−k .
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Theorem 4.1 ([16] Proposition 4.3)We can extend the action of ator = H⊕h
(t)
aff ⊕Cds

to gtor on V(0) by

ei,k �→ Xk(αi ), fi,k �→ Xk(−αi ).

Wedenote by τ the action of c(0, 1) onV(0). Then, by [16, (4.1) and Proposition 5.3
(ii)], the action of c(0, k) for k �= 0 is given by τ k . The subalgebra of EndC V(0)
generated by τ k (k ∈ Z) is isomorphic to the Laurent polynomial algebra C[τ±1].

We denote by δ(k) the action of c(k, 0) on V(0) for k < 0. They freely generate a
polynomial subalgebra of EndCV(0) and we denote it by D. We have an isomorphism
of C-vector spaces

Faff ∼= F ⊗ D.

Proposition 4.2 ([16] Lemma 5.6) The multiplication map gives an isomorphism

V(0) ∼= F ⊗ Cε[Q] ⊗ D ⊗ C[τ±1]

of C-vector spaces. In particular, V(0) is free over C[τ±1].
Theg(s)

aff -submoduleF⊗Cε[Q] is known to be isomorphic to the level one integrable

irreducible g(s)
aff -module L(�0)

(s) with highest weight �0 by Frenkel–Kac [8]. Hence,
it has the following defining relations:

( fθ ⊗ s)(1 ⊗ e0) = 0, ei (1 ⊗ e0) = 0 (i ∈ I ), (4.1)

cs(1 ⊗ e0) = 1 ⊗ e0, hi (1 ⊗ e0) = 0 (i ∈ I ), ds(1 ⊗ e0) = 0, (4.2)

(eθ ⊗ s−1)2(1 ⊗ e0) = 0, fi (1 ⊗ e0) = 0 (i ∈ I ). (4.3)

We will determine the defining relations of V(0) as a gtor-module as a main result of
this article.

4.3 General construction

We review the construction of gtor-modules given by Iohara–Saito–Wakimoto [13]
and Eswara Rao [6]. Assume that g is an arbitrary simple Lie algebra. Let D be the
polynomial algebra generated by the elements δ(k) (k < 0). For a given smooth
g
(s)
aff -module M , we will define a gtor-module structure on

M ⊗ D ⊗ C[τ±1]

as follows. For an element x of g, we put x(u) = ∑
k∈Z(x ⊗ sk)u−k . Define a formal

series �l(u) for each l ∈ Z by

�l(u) = exp

(∑
k>0

lδ(−k)

k
uk

)
.
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We make D into a graded algebra by deg δ(k) = k and let d(D) be the operator which
counts the degree on D. We make C[τ±1] into a graded algebra by deg τ = 1 and let
d(τ ) be the operator which counts the degree on C[τ±1].
Theorem 4.3 ([13] Lemma 2.1, [6] Theorem 4.1) Let M be a smooth g(s)

aff -module. The
assignment

∑
k∈Z

(x ⊗ sktl)u−k �→ x(u) ⊗ �l(u) ⊗ τ l

for x ∈ g,

∑
k∈Z

(sk−1t lds)u−k �→ cs ⊗ �l(u) ⊗ τ l , skt−1dt �→
{
id⊗δ(k) ⊗ id if k < 0,

0 if k ≥ 0,

ds �→ ds ⊗ id⊗ id+ id⊗d(D) ⊗ id, dt �→ id⊗ id⊗d(τ )

gives a gtor-module structure on M ⊗ D ⊗ C[τ±1].
Remark 4.4 Let us give a remark on the results of [6,13] stated above. In [13], the
authors consider a Lie algebra bigger than gtor and the module they construct is bigger
than M ⊗D⊗C[τ±1]. If one restricts the action to gtor, we can take M ⊗D⊗C[τ±1]
as a gtor-submodule. Moreover, although they assume that g is of type ADE in [13],
the construction does not need the assumption. Later this construction of gtor-modules
has been generalized in [6] to some Lie superalgebras.

Take M as the level one integrable irreducible g(s)
aff -module L(�0)

(s) with highest
weight �0 and set

V(0) = L(�0)
(s) ⊗ D ⊗ C[τ±1].

This definition is compatible with the construction given in Sects. 4.1 and 4.2 if g is
of type ADE. Indeed, the definition of the vertex operator X(α, u) implies that

X(β + lδ, u) =
{
X(β, u) ⊗ �l(u) ⊗ τ l if β ∈ �,

id⊗�l(u) ⊗ τ l if β = 0,

when we write α ∈ �aff as α = β + lδ with β ∈ � ∪ {0} and l ∈ Z.
Let v(s) be a highest weight vector of L(�0)

(s). We generalize the relations given
in (4.1), (4.2), (4.3).

Lemma 4.5 We have

( fθ ⊗ s)(v(s) ⊗ 1 ⊗ 1) = 0, ei (v
(s) ⊗ 1 ⊗ 1) = 0 (i ∈ I ), (4.4)

cs(v
(s) ⊗ 1 ⊗ 1) = v(s) ⊗ 1 ⊗ 1,

hi (v
(s) ⊗ 1 ⊗ 1) = 0 (i ∈ I ), ds(v

(s) ⊗ 1 ⊗ 1) = 0, (4.5)

(eθ ⊗ s−1)2(v(s) ⊗ 1 ⊗ 1) = 0, fi (v
(s) ⊗ 1 ⊗ 1) = 0 (i ∈ I ). (4.6)
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Proof These are direct consequences of the definition of the action and the relations
in L(�0)

(s). ��
Lemma 4.6 We have g(t)

aff(v
(s) ⊗ 1 ⊗ 1) = 0.

Proof We have g(v(s) ⊗1⊗1) = (gv(s))⊗1⊗1 = 0. To see the action of e0 = fθ ⊗ t ,
consider the assignment

∑
k∈Z

( fθ ⊗ skt)u−k �→ fθ (u) ⊗ �1(u) ⊗ τ.

Expand �1(u) = ∑
k≥0 �

(−k)
1 uk . Then, the action of e0 = fθ ⊗ t is given by∑

k≥0( fθ ⊗ sk) ⊗ �
(−k)
1 ⊗ τ . Since we have ( fθ ⊗ sk)v(s) = 0 for k ≥ 0, we

have e0(v(s) ⊗ 1 ⊗ 1) = 0. Similarly, the action of f0 = eθ ⊗ t−1 is given by∑
k≥0(eθ ⊗ sk) ⊗ �

(−k)
−1 ⊗ τ−1, hence it acts on v(s) ⊗ 1 ⊗ 1 by 0. We have

ct (v(s) ⊗ 1 ⊗ 1) = 0 and dt (v(s) ⊗ 1 ⊗ 1) = 0 by the definition of the action of
ct and dt . ��

4.4 Isomorphisms

We define a gtor-module V by the pull-back of V(0) via the automorphism S−1, that
is, V = (S−1)∗V(0). Denote the vector of V corresponding to v(s) ⊗ 1⊗ 1 ∈ V(0) by
v.

The action of c(1, 0) onV corresponds to τ−1 onV(0) via S−1 since S−1(c(1, 0)) =
c(0,−1). We regard V as a module over A(�0) = C[z±1] via z �→ c(1, 0), and then,
V becomes a free A(�0)-module by Proposition 4.2. We put Va = V ⊗A(�0) Ca for
a ∈ C

×. This Va is a g′
tor-module. The character of Va is given as follows.

Proposition 4.7 We have chp Va = chp L(�0)
∏
n>0

1

1 − pn
.

Proof The assertion obviously follows from the construction of the action of gtor on
V(0) = L(�0)

(s) ⊗ D ⊗ C[τ±1]. ��
Let us study relation between the level one global Weyl module Wglob(�0) and V.

Lemma 4.8 We have

hi,kv =
{
0 if i ∈ I ,

zkv if i = 0

for any k ∈ Z.

Proof We have

S−1(hi,k) =
{
hi ⊗ t−k if i ∈ I ,

s−1t−kds − hθ ⊗ t−k if i = 0.
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By Lemma 4.6, we have (hi ⊗ t−k)(v(s) ⊗ 1 ⊗ 1) = (hθ ⊗ t−k)(v(s) ⊗ 1 ⊗ 1) = 0.
Since we have (s−1t−kds)(v(s) ⊗ 1 ⊗ 1) = τ−k(v(s) ⊗ 1 ⊗ 1) and τ−1 corresponds
to z, the assertion is proved. ��
Lemma 4.9 We have a surjective homomorphism Wglob(�0) → V of modules over
both gtor and A(�0).

Proof The equalities (4.4), (4.5), (4.6) are equivalent to

eiv = 0 (i ∈ Iaff),

ctv = v, hiv = 0 (i ∈ I ), dtv = 0,

f 20 v = 0, fiv = 0 (i ∈ I ).

Moreover, we have

csv = S−1(cs)(v
(s) ⊗ 1 ⊗ 1) = −ct (v

(s) ⊗ 1 ⊗ 1) = 0,

dsv = S−1(ds)(v
(s) ⊗ 1 ⊗ 1) = −dt (v

(s) ⊗ 1 ⊗ 1) = 0

by Lemma 4.6. We need to check ei,kv = 0 for i ∈ Iaff and k ∈ Z. This follows from
eiv = 0 and Lemma 4.8. ��

By Lemma 4.9, we have a surjective g′
tor-homomorphism Wloc(�0, a) → Va for

every a ∈ C
×. Hence, we have inequalities of the characters

chp W
+
loc(�0, a) ≥ chp Wloc(�0, a) ≥ chp Va (4.7)

by Proposition 3.12.

Theorem 4.10 We have isomorphisms

Wglob(�0)
∼=−→ V, Wloc(�0, a)

∼=−→ Va

of modules over gtor and g′
tor, respectively.

Proof First, we prove the isomorphism Wloc(�0, a) ∼= Va . We have

chp W
+
loc(�0, a) = chp W (�0) ≤ chp L(�0)

∏
n>0

1

1 − pn
= chp Va (4.8)

by Propositions 3.14, 3.19, 4.7. Then the inequalities (4.7) and (4.8) imply
chp Wloc(�0, a) = chp Va . This shows that the surjective homomorphismWloc(�0, a)

→ Va is an isomorphism for every a ∈ C
×. Next, we prove the isomorphism

Wglob(�0) ∼= V. Since V is a free A(�0)-module, we can take a splitting of the
exact sequence

0 → Ker → Wglob(�0) → V → 0
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of A(�0)-modules. The isomorphism Wloc(�0, a) ∼= Va implies Ker⊗A(�0)Ca = 0
for every a ∈ C

×. Then, by Nakayama’s lemma, we see that Ker = 0 and obtain the
isomorphism Wglob(�0) ∼= V. ��
Corollary 4.11 We have

chp Wloc(�0, a) = chp W
+
loc(�0, a) = chp L(�0)

(∏
n>0

1

1 − pn

)

for a ∈ C
× and

chp,q W (�0) = chp L(�0)

(∏
n>0

1

1 − pnq

)
.

Proof The equalities for the p-characters are verified in the proof of Theorem 4.10.
The equality for the (p, q)-character follows from that for the p-character and Propo-
sition 3.19. ��
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