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Abstract
Our goal is to find asymptotic formulas for orthonormal polynomials Pn(z) with
the recurrence coefficients slowly stabilizing as n → ∞. To that end, we develop
scattering theory of Jacobi operators with long-range coefficients and study the cor-
responding second-order difference equation. We introduce the Jost solutions fn(z)
of this equation by a condition for n → ∞ and suggest an Ansatz for them playing
the role of the semiclassical Liouville–Green Ansatz for the corresponding solutions
of the Schrödinger equation. This allows us to study Jacobi operators and their eigen-
functions Pn(z) by traditional methods of spectral theory developed for differential
equations. In particular, we express all coefficients in asymptotic formulas for Pn(z)
as → ∞ in terms of the Wronskian of the solutions {Pn(z)} and { fn(z)}.

Keywords Jacobi matrices · Long-range perturbations · Difference equations ·
Orthogonal polynomials · Asymptotics for large numbers

Mathematics Subject Classification 33C45 · 39A70 · 47A40 · 47B39

1 Introduction

1.1 Jacobi and orthogonal polynomials

As is well known, the theories of Jacobi operators given by three-diagonal matrices
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2858 D. R. Yafaev

J =

⎛
⎜⎜⎜⎜⎜⎝

b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
...

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

(1.1)

in the space �2(Z+) and of differential Schrödinger operators H = Dp(x)D + q(x)
(with, for example, the boundary condition u(0) = 0) in the space L2(R+) are to a
large extent similar. For Jacobi operators, n ∈ Z+ plays the role of x ∈ R+ and the
coefficients an , bn , play the roles of the functions p(x), q(x), respectively.

In our opinion, a consistent analogy between Jacobi and Schrödinger operators
sheds a new light on some aspects of the orthogonal polynomials theory. Of course,
this point of view is not new; for example, it was advocated long ago by Case [6].

In this paper, the sequences an > 0 and bn = b̄n in (1.1) are assumed to be bounded,
so that J is a bounded self-adjoint operator in the space �2(Z+). Its spectral family
will be denoted E(λ). The spectrum of J is simple with e0 = (1, 0, 0, . . .)� being
a generating vector. It is natural to define the spectral measure of J by the relation
dρ(λ) = d(E(λ)e0, e0).

Orthogonal polynomials Pn(z) associated with the Jacobi matrix (1.1) are defined
by the recurrence relation

an−1Pn−1(z) + bn Pn(z) + an Pn+1(z) = zPn(z), n ∈ Z+, (1.2)

and the boundary conditions P−1(z) = 0, P0(z) = 1. Obviously, Pn(z) is a polyno-
mial of degree n and the vector P(z) = {Pn(z)}∞n=−1 formally satisfies the equation
J P(z) = zP(z), that is, it is an “eigenvector” of the operator H . The polynomials
Pn(λ) are orthogonal and normalized in the space L2(R; dρ):

∫ ∞

−∞
Pn(λ)Pm(λ)dρ(λ) = δn,m;

as usual, δn,n = 1 and δn,m = 0 for n �= m. Alternatively, given the probability
measure dρ(λ), the polynomials P0(λ), P1(λ), . . . , Pn(λ), . . . can be obtained by the
Gram–Schmidt orthonormalization of the monomials 1, λ, . . . , λn, . . . in the space
L2(R+; dρ); one also has to additionally require that Pn(λ) = kn(λn + rnλn−1 +· · · )
with kn > 0. The coefficients an, bn can be recovered by the formulas an = kn/kn+1,
bn = rn − rn+1.

The operator (1.1)with the coefficients an = 1/2, bn = 0 is known as the “free” dis-
crete Schrödinger operator. This operator, denoted J0, plays the role of the differential
operator D2 in the space L2(R+). The operator J0 can be diagonalized explicitly. Its
spectrum is absolutely continuous and coincides with the interval [−1, 1]. The eigen-
functions of J0 are normalized Chebyshev polynomials Pn(λ) of the second kind, and
the corresponding spectral measure dρ0(λ) = d(E0(λ)e0, e0) is given by the formula

dρ0(λ) = 2π−1
√
1 − λ2dλ, λ ∈ (−1, 1). (1.3)
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Semiclassical asymptotic behavior of orthogonal polynomials 2859

Obviously, J = J0 + V where the “perturbation” V is given by equality (1.1) with an
replaced by αn = an − 1/2.

We refer to the books [1,13,27] and surveys [17,28] for general information about
orthogonal polynomials.

1.2 Statement of the problem

Our goal is to study an asymptotic behavior of the polynomials Pn(z) as n → ∞.
Of course, one has to distinguish the cases of z in the spectrum σ(J ) of the Jacobi
operator J and of z /∈ σ(J ). Asymptotic properties of Pn(z) can be deduced either
from the coefficients an , bn of the operator J or from its spectral measure dρ(λ):

(an, bn) dρ(λ)� �

�
�

��

�
�

��

Pn(z)
Asymptotic formulas were very well known (see, e.g., the book [10]) for the clas-

sical, that is, Jacobi, Laguerre and Hermite, polynomials, but the first general result
is probably due to Bernstein (see his pioneering paper [2,3] or Theorem 12.1.4 in
the Szegő book [27]). These results were stated in terms of the measure dρ(λ). It
was required that supp ρ ⊂ [−1, 1], the measure is absolutely continuous, dρ(λ) =
w(λ)dλ, and the weight w(λ) satisfies certain regularity conditions. The assumption
supp ρ ⊂ [−1, 1] accepted in [2,3,27] was later partially removed in [12,24]. In recent
years, the implication dρ(λ) → Pn(z) has been successfully developed with a help of
the Riemann–Hilbert problem method. (See the book by Deift [9].)

We suppose that the coefficients an, bn are known and deduce asymptotic properties
of the polynomials Pn(z) from the behavior of an, bn as n → ∞. Apparently, this
line of research (an, bn) → Pn(z) was initiated by P. G. Nevai (see his book [23])
and then successfully developed in various papers, some of them are quite ingenious.
His approach is briefly described in Sect. 1.5. We will not try to consistently discuss
specific methods of orthogonal polynomials theory because one of our goals is to
advocate a different approach based on a direct analogy with the theory of differential
operators.

Here we illustrate this approach on the case

lim
n→∞ αn = lim

n→∞ bn = 0 (1.4)

when the perturbation V = J − J0 is compact. Then the essential spectrum of the
operator J coincideswith the interval [−1, 1], and its point spectrum consists of simple
eigenvalues accumulating, possibly, to the points 1 and −1. We always assume that
condition (1.4) is satisfied. Our objective is to investigate the case where αn → 0 and
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2860 D. R. Yafaev

bn → 0 as n−1 or slower. More precisely, we assume that

∞∑
n=0

(|an+1 − an| + |bn+1 − bn|
)

< ∞. (1.5)

Thus, the sequences {an} and {bn} are of bounded variation. In the quantummechanical
terminology, such perturbations V of the operator J0 are called long range.

The traditional approach to scattering theory for differential operators relies on a
study of the so called Jost solutions f (x, z) of the Schrödinger equation

− (p(x) f ′(x, z))′ + q(x) f (x, z) = z f (x, z) (1.6)

distinguished by their asymptotics as x → ∞. We follow the same scheme and so
start with a construction of solutions f (z) = { fn(z)}∞n=−1 of the second order Jacobi
difference equation

an−1 fn−1(z) + bn fn(z) + an fn+1(z) = z fn(z), n ∈ Z+, (1.7)

(the number a−1 �= 0 may be chosen at our convenience; for definiteness, we put
a−1 = 1/2) satisfying a certain asymptotic condition as n → ∞. We call f (z)
the Jost solutions and f−1(z) the Jost functions. The Jost function is related to the
Wronskian {P(z), f (z)} of the solutions P(z) = {Pn(z)} and f (z) = { fn(z)} of Eq.
(1.7) by the identity

− 2−1 f−1(z) = {P(z), f (z)} =: 	(z). (1.8)

We express all coefficients in asymptotic formulas for Pn(z) in terms of the Jost
function f−1(z).

The asymptotics of the Jost solutions for the Schrödinger equation (1.6) with long-
range coefficients is given by the famous semiclassical Liouville–Green Ansatz. So,
our first goal is to find its analogue for Jacobi operators. Then we develop spectral
theory of Jacobi operators J with long-range coefficients essentially along the same
lines (see [33]) as in the short-range case when αn → 0 and bn → 0 faster than
n−1. We emphasize that in the problem we consider, the semiclassical approximation
applies for large n when oscillations of the coefficients αn and bn are not too strong.

Of course the asymptotic formulas we obtain are quite different for regular points
z of J , for its eigenvalues and for z = λ ∈ (−1, 1) lying on its continuous spectrum.
Since Pn(λ) are the continuous spectrum eigenfunctions of J , the last problem is
natural to consider in the scattering theory framework.
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Semiclassical asymptotic behavior of orthogonal polynomials 2861

1.3 Short-range perturbations

Let us describe the main ideas of our approach presented in [33] for the case of short-
range perturbations V = J − J0 when the condition

∞∑
n=0

(|an − 1/2| + |bn|
)

< ∞ (1.9)

is satisfied. Then the Jost solutions of Eq. (1.7) are distinguished by their asymptotics

fn(z) ∼ ζ(z)n (1.10)

as n → ∞. Here

ζ(z) = z −
√
z2 − 1 = (z +

√
z2 − 1)−1 (1.11)

(we choose
√
z2 − 1 > 0 for z > 1). The sequence fn(z) rapidly tends to zero for

z ∈ C\[−1, 1] and oscillates for z = λ ± i0, λ ∈ (−1, 1). At a formal level, solutions
fn(z) of Eq. (1.7) with asymptotics (1.10) were introduced in [6]. Under assumption
(1.9) their existence was proven in [33]. It is important that fn(z) are analytic functions
of z ∈ C\[−1, 1] and are continuous up to the cut along (−1, 1).

Once these results are established, spectral and scattering theories for the operator
J can be developed quite in the same way as for differential operators. Since

Pn(λ) = f−1(λ + i0) fn(λ − i0) − f−1(λ − i0) fn(λ + i0)

2i
√
1 − λ2

, λ ∈ (−1, 1),

n = 0, 1, 2, . . . , (1.12)

we see that f−1(λ + i0) = f−1(λ − i0) �= 0. It easily follows that the spectrum of
the operator J is absolutely continuous on the interval (−1, 1) and dρ(λ) = w(λ)dλ
with a continuous and positive weight

w(λ) = 2

π

√
1 − λ2| f−1(λ + i0)|−2. (1.13)

The operator J can also have infinite number of simple eigenvalues accumulating,
possibly, to the points 1 and −1; it is not excluded that these points are eigenvalues of
J .

Relations (1.10) and (1.12) lead to the asymptotic formula as n → ∞ for orthogonal
polynomials:

Pn(λ) = (2/π)1/2w(λ)−1/2(1 − λ2)−1/4 sin((n + 1) arccos λ

+πξ(λ)) + o(1), λ ∈ (−1, 1). (1.14)

The function ξ(λ) has different names: (a) In scattering theory, it is known as the
scattering phase or phase shift. (b) It can be also identified with the Kreı̆n spectral
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2862 D. R. Yafaev

shift function for the pair J0, J , that is

ξ(λ) = π−1 lim
ε→+0

argDet
(
I + V (J0 − λ − iε)−1).

(c) In orthogonal polynomial theory, it is constructed as the Hilbert transform of the
function lnw(λ) and is known as the Szegő function. It is shown in [33] that

Det
(
I + V (J0 − z)−1) = Aζ(z) f−1(z) where A =

∞∏
k=0

(2ak),

so that in view (1.13), lnw(λ) and ξ(λ) are (up to insignificant factors) harmonic con-
jugate functions. Thus, the spectral shift and Szegő functions are different definitions
of the same object.

Formula (1.14) is of course the same as in the classical works [2,3,27], but our
definition of the phase shift ξ(λ) and our assumptions on J are quite different from
[2,3,27]. We emphasize that the inclusion supp ρ ⊂ [−1, 1] is irrelevant for our
approach. Note that for the operator J0, the asymptotic formula (1.14) reduces to the
exact expression for the normalized Chebyshev polynomials of the second kind.

Formula (1.14) is very natural from the scattering theory viewpoint. Indeed, the
solutions fn(z) of the Jacobi equation (1.7) with asymptotics (1.10) are discrete ana-
logues of the Jost solutions f (x, z) of the Schrödinger equation (1.6)

where p(x) > 0, p(x) → p0 > 0 as x → ∞ and p(x)− p0, q(x) are in L1. These
conditions correspond to (1.9). The Jost solution is distinguished by its asymptotics

f (x, z) ∼ e−x
√−z/p0 , x → ∞, (1.15)

where Re
√−z/p0 ≥ 0, while the regular solution ϕ(x, z) of (1.6) is fixed by the

conditions ϕ(0, z) = 0, ϕ′(0, z) = 1. The regular solution plays the role of the
polynomial solution P(z) = {Pn(z)} of Eq. (1.7). Sinceϕ(x, λ) is a linear combination
of the Jost solutions fn(λ ± i0) [cf. (1.12)], it can be standardly (see, e.g., §4.1 and
§4.2 of [32]) deduced from (1.15) for z = λ ± i0 that

ϕ(x, λ) = (2/π)1/2w(λ)−1/2λ−1/4 sin(x
√

λ/p0 − πξ(λ)) + o(1),

λ > 0, x → ∞. (1.16)

Here w(λ) is the derivative of the spectral measure of the operator H = Dp(x)D +
q(x), and ξ(λ) is the spectral shift function for the pair of the operators H0 = p0D2,
H . Obviously, formulas (1.14) and (1.16) are quite analogous with n and x playing
similar roles.

1.4 Scheme of the approach

Our main goal is to study Jacobi operators J = J0 + V with the coefficients αn and
bn decaying so slowly that the condition (1.9) is not satisfied. Instead we require a
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Semiclassical asymptotic behavior of orthogonal polynomials 2863

weaker assumption (1.5). We follow here closely the well developed semiclassical
approach in the theory of differential equations reviewed recently in [34]. The starting
point of this approach is to find a suitable modification of the Jost solutions for the
long-range case. The paper [34] relied on a simplified Liouville–Green Ansatz given
by the formula

f (x, z) ∼ exp

(
−

∫ x

0

√
q(y) − z

p(y)
dy

)
, x → ∞, (1.17)

for solutions of Eq. (1.6).
In this paper, we combine the methods of [33] where short-range perturbations of

Jacobi operators were considered and of [34] where differential operators with long-
range coefficients were studied. Let us discuss the main steps of our approach in more
details:

a. We show in Sect. 2.2 that an analogue of (1.17) for solutions of the difference
equation (1.7) is given by the formula

fn(z) ∼ ζ
( z − b0

2a0

)
ζ
( z − b1

2a1

) · · · ζ ( z − bn−1

2an−1

) =: qn(z), n → ∞, (1.18)

where the function ζ(z) is defined by (1.11). Thismeans that the relative remainder

rn(z) := qn(z)
−1(an−1qn−1(z) + (bn − z)qn(z) + anqn+1(z)

)
, n ∈ Z+,

(1.19)

belongs to �1(Z+). Note that, unlike (1.10), asymptotic formula (1.18) takes into
account decay properties of the coefficients αn and bn . Since |ζ(z)| < 1 for
z ∈ C\[−1, 1] and2an → 1,bn → 0,we see that the Jost solutions fn(z) = O(εn)

for some ε = ε(z) < 1 as n → ∞. It is also easy to see that fn(λ ± i0) oscillate
as n → ∞ if λ ∈ (−1, 1).

b. Then, we make in Sect. 2.3 a multiplicative change of variables

fn(z) = qn(z)un(z) (1.20)

and reduce the difference equation (1.7) to a Volterra “integral” equation for the
sequence un(z) satisfying the condition un(z) → 1 as n → ∞.

c. This equation is standardly solved by iterations in Sect. 2.4 which allows us to
prove that un(z) are analytic functions of z ∈ C\[−1, 1] and are continuous up
to the cut along (−1, 1). According to (1.20) the same is true for the functions
fn(z) (see Theorem 3.1). All standard statements about spectral properties of the
Jacobi operator J and asymptotic formulas for the polynomials Pn(z) are easy
consequences of this analytic result.
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2864 D. R. Yafaev

d. If z ∈ C\[−1, 1]but is not an eigenvalue of the operator J ,weprove inTheorem4.4
that

lim
n→∞

(
qn(z)Pn(z)

)
= −{P(z), f (z)}√

z2 − 1
. (1.21)

To that end, we construct an exponentially growing solution gn(z) of Eq. (1.7) by
the formula

gn(z) = fn(z)
n∑

m=0

(am−1 fm−1(z) fm(z))−1, n ∈ Z+.

Perhaps this formula is new.
e. Since formula (1.12) remains true in the long-range case, we immediately obtain

the asymptotics

Pn(λ) = (1 − λ2)−1/2| f−1(λ + i0)| sin (
n arccos λ

+�n(λ)
) + o(1), λ ∈ (−1, 1), (1.22)

of the orthogonal polynomials. The phase�n(λ) is expressed in terms of the phase
of the Jost function f−1(λ+i0). It depends explicitly on the coefficients an , bn and
satisfies the condition �n(λ) = o(n) as n → ∞. The precise definition of �n(λ)

is given in Theorem 3.5; see also formula (3.11). In view of (1.13) the amplitude
factors in (1.14) and (1.22) are the same.

f. Our results on the Jost solution fn(z) directly imply that, under assumptions (1.4),
(1.5), the spectrum of the Jacobi operator J is absolutely continuous on (−1, 1)
and the corresponding weight w(λ) is continuous and strictly positive and can be
constructed by formula (1.13). This result is stated in Theorem 5.6. At the same
time, we obtain the limiting absorption principle for the operator J stating that
matrix elements of its resolvent R(z) = (J − z)−1, Im z �= 0, are continuous
functions of z up to the cut along (−1, 1).

We emphasize that in contrast to differential operators, short-range perturbations
obeying (1.9) are included in the class of long-range perturbations satisfying (1.5).
For example, condition (1.5) is satisfied if

an = 1/2 + αn−r1 + α̃n, bn = bn−r2 + b̃n (1.23)

where α, b ∈ R, r1, r2 ∈ (0, 1] and α̃n, b̃n ∈ �1(Z+). This reduces to (1.9) if α = b =
0. For Pollaczek polynomials, relations (1.23) are true with r1 = r2 = 1 and α̃n =
O(n−2), b̃n = O(n−2). In this case the phase in formula (1.14) is essentially changed
(see the book [27, Section 5 in the Appendix]). This resembles the modification of
the phase function for the Schrödinger operator with the Coulomb potential (see, e.g.,
formula (36,23) in the book [16]).

Condition (1.5) is very precise. Indeed, as shown in [22] (see also the preceding
paper [25]), there exist coefficients bn decaying only slightly worse than n−1 and
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Semiclassical asymptotic behavior of orthogonal polynomials 2865

oscillating as n → ∞ such that the point spectrum of the corresponding Jacobi
operator J with an = 1/2 is dense in [−1, 1]. In this case, the limiting absorption
principle for the operator J does not of course hold.

To emphasize the analogy between differential and difference operators, we often
use “continuous” terminology (Volterra integral equations, integration by parts, etc.)
for sequences labelled by the discrete variable n. Below C , sometimes with indices,
and c are different positive constants whose precise values are of no importance.

1.5 Related research

Now we are in a position to compare our approach with the paper [19] that is well
known in the orthogonal polynomial literature. The results of this paper (see also the
survey [29]) are close to some of our results but not quite coincide with them, and the
methods are essentially different.

The paper [19] relies on specificmethods of orthogonal polynomials theory. Appar-
ently, the initial point of [19] is the relation

lim
n→∞

Pn−1(z)

Pn(z)
= ζ(z), Im z �= 0,

established earlier by Nevai [23, Theorem 4.1.13], and improving one of Poincaré’s
theorems.

We proceed from spectral theory of Jacobi operators. One of important differences
compared to [19] is the introduction and consistent use of Jost solutions fn(z) of Eq.
(1.7) distinguished by their asymptotics (1.18) as n → ∞. Then relation (1.12) yields
asymptotic formula (1.22). Our proof of asymptotic relation (1.21) is also motivated
by results on differential equations.

For the Schrödinger operator with short-range coefficients, the scheme of Sect. 1.4
[except formula (1.21)] goes back to the paper [14] by R. Jost; it is described in Sect.
4.1 of the book [32]. There exists another approach due to N. Levinson (see the book
[7]) adapted to difference equations in the book [4]. Probably the methods of Jost and
Levinson are essentially equivalent, but, for our purposes, it is more convenient to use
the Jost method, moreover that it admits a direct quantum mechanical interpretation.

We followed here the paper [34] devoted to differential equations. Actually, the
Ansatz (1.17) appeared in [34] as an attempt to adjust the famous Liouville–Green
Ansatz (which compared to (1.17) contains an additional pre-exponential factor) to
difference equations. This allowed us in [34] to get rid of conditions on the second
derivatives of p(x) and q(x) required by the Liouville-Green Ansatz and to develop
spectral theory of the Schrödinger operator H under the assumptions p′ ∈ L1(R+),
q ′ ∈ L1(R+).

Let us try to advocate our approach. Its specific feature is that we treat the discrete
and continuous cases on equal footing. Thus we can use traditional methods well
known for differential operators in the discrete case. Introduction of the Jost solutions
allows us to study various problems of spectral theory in a unified way. Here are some
examples:
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1. Both asymptotic relations (1.21) and (1.22) were obtained in [19]. However,
expressions for the coefficients in the right-hand sides were not, at least in the
author’s opinion, very efficient. It was conjectured in [19] that the asymptotic coef-
ficients in (1.22) can be obtained from that in (1.21) as the limit on (−1, 1) from
complex values of z. This conjecture was later justified in [30]. In our approach
this problem does not even arise since both coefficients are expressed in terms of
the Wronskian {P(z), f (z)} of the polynomial and Jost solutions of Eq. (1.7).

2. Introducing and consistently using the Jost solutions, we avoid many more recent
methods, for example, transfer matrices, Prüfer variables, Gilbert–Pearson subor-
dinacy theory, etc.

3. The scheme used here yields automatically an expression for the spectral mea-
sure in terms of the Jost function. This shows, in particular, that this measure
is absolutely continuous and the corresponding density is a continuous positive
function.

Note that quite general conditions of the absolutely continuity of the spectral mea-
sure were given in the paper [26] and the book [31, Theorem 14.25], where the
subordinacy method of [11] was used.

I thank G. Świderski who kindly informed the author about the papers [19,30].

2 Volterra integral equation

Here we reduce the Jacobi difference equation (1.7) with asymptotics (1.18) to a
Volterra equation whose solution can be constructed by iterations. Below conditions
(1.4) and (1.5) are always assumed unless indicated otherwise.

2.1 Preliminaries

Let us consider Eq. (1.7). Note that the values of fN−1 and fN for some N ∈ Z+
determine the whole sequence fn satisfying the difference equation (1.7).

Let f = { fn}∞n=−1 and g = {gn}∞n=−1 be two solutions of Eq. (1.7). A direct
calculation shows that their Wronskian

{ f , g} := an( fngn+1 − fn+1gn) (2.1)

does not depend on n = −1, 0, 1, . . .. In particular, for n = −1 and n = 0, we have

{ f , g} = 2−1( f−1g0 − f0g−1) and { f , g} = a0( f0g1 − f1g0). (2.2)

Clearly, theWronskian { f , g} = 0 if and only if the solutions f and g are proportional.
It is convenient to introduce a notation

x ′
n = xn+1 − xn
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Semiclassical asymptotic behavior of orthogonal polynomials 2867

for the “derivative” of a sequence xn . We note the Abel summation formula (“integra-
tion by parts”):

M∑
n=N

xn y
′
n = xM yM+1 − xN−1yN −

M∑
n=N

x ′
n−1yn; (2.3)

here M ≥ N ≥ 0 are arbitrary, but we have to set x−1 = 0 so that x ′−1 = x0.

Let us fix the branch of the analytic function
√
z2 − 1 of z ∈ C\[−1, 1] by the

condition
√
z2 − 1 > 0 for z > 1. Obviously, this function is continuous up to the cut

along [−1, 1], it equals ±i
√
1 − λ2 for z = λ ± i0, λ ∈ (−1, 1), and

√
z2 − 1 < 0

for z < −1. Define the one-to-one, onto mapping ζ : C\[−1, 1] → D (the unit disc)
by formula (1.11). Since 2z = ζ(z) + ζ(z)−1, the sequence {ζ(z)n}∞n=−1 satisfies
the “free” Eq. (1.7) where an = 1/2, bn = 0. For λ ∈ [−1, 1], it is common to set
λ = cos θ with θ ∈ [0, π ]. Then ζ(λ ± i0) = e∓iθ .

Below the values of |z| are bounded, and hence, the values of ζ = ζ(z) are separated
from 0.

2.2 Ansatz

Here we show that the sequence qn(z) defined in (1.18) is an approximate solution
(Ansatz) of Eq. (1.7).

Let � = C\R, and let clos� be the closure of �. For z ∈ clos�, we set

zn = z − bn
2an

(2.4)

and

ζn = ζ(zn) = zn −
√
z2n − 1 =

(
zn +

√
z2n − 1

)−1

. (2.5)

Note that

anζn + anζ
−1
n + bn − z = 0. (2.6)

Obviously, zn → z and ζn → ζ(z) as n → ∞ because 2an → 1 and bn → 0.
Now, we define a sequence qn = qn(z) by the relations q0(z) = 1 and

qn(z) = ζ0ζ1 · · · ζn−1, n ≥ 1, (2.7)

which coincides with the right-hand side of (1.18). The functions qn(z) are analytic in
z ∈ � and continuous up to the real axis. Of course ζ(z̄) = ζ(z) and qn(z̄) = qn(z).
Note also that

|qn(z)| ≤ 1, (2.8)
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but qn(z) �= 0 for all n and all z ∈ clos�. We consider qn(z) for z ∈ � (not for
z ∈ C\[−1, 1]) because the values of ζn(λ + i0) and ζn(λ − i0) may be different for
|λ| > 1 if n is not too large.

We will show that the sequence qn(z) satisfies approximately Eq. (1.7). Let us
introduce a (relative) remainder in this equation by the formula (1.19) (the values of
q−1(z) and r0(z) are of course inessential). Since qn−1q−1

n = ζ−1
n−1 and qn+1q−1

n = ζn ,
we can rewrite (1.19) as

rn = an−1ζ
−1
n−1 + anζn + bn − z, (2.9)

or using (2.6) as

rn = an−1ζ
−1
n−1 − anζ

−1
n = (an−1 − an)ζ

−1
n−1 + an(ζ

−1
n−1 − ζ−1

n ). (2.10)

Lemma 2.1 For z ∈ clos�, an estimate

|rn(z)| ≤ C
|an − an−1| + |bn − bn−1|√

z2n−1 − 1 + √
z2n − 1

(2.11)

holds. In particular, {rn(z)}∞n=0 ∈ �1(Z+) if z �= ±1.

Proof Let us proceed from representation (2.10). By definition (2.5), we have

ζ−1
n−1 − ζ−1

n = (zn−1 − zn)
(
1 + zn−1 + zn√

z2n−1 − 1 + √
z2n − 1

)
, (2.12)

where according to (2.4)

zn−1 − zn = (z − bn)(an − an−1) + an(bn − bn−1)

2an−1an

so that

|zn − zn−1| ≤ C(|an − an−1| + |bn − bn−1|). (2.13)

Thus equality (2.12) yields estimate (2.11). ��

2.3 Multiplicative substitution

Let the sequence qn(z) be given by formulas (2.4), (2.5) and (2.7). We are looking for
solutions fn(z) of the difference equation (1.7) satisfying the condition

fn(z) = qn(z)(1 + o(1)), n → ∞. (2.14)

The uniqueness of such solutions is almost obvious.
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Lemma 2.2 Equation (1.7) may have only one solution fn(z) satisfying condition
(2.14).

Proof Let f̃n(z) be another solution of (1.7) satisfying (2.14). Then the Wronskian
(2.1) of these solutions equals

{ f , f̃ } = anqnqn+1o(1).

This expression tends to zero because the sequences an and qn are bounded according
to (1.4) and (2.8). Thus f̃ = C f where C = 1 by virtue again of condition (2.14). ��

For construction of fn(z), we will reformulate the problem introducing a sequence

un(z) = qn(z)
−1 fn(z), n ∈ Z+. (2.15)

Then (2.14) is equivalent to the condition

lim
n→∞ un(z) = 1. (2.16)

Let us derive a difference equation for un(z).

Lemma 2.3 Let z ∈ clos� and let rn(z) be given by formula (1.19). Then Eq. (1.7)
for a sequence fn(z) is equivalent to the equation

anζn(un+1(z) − un(z)) − an−1ζ
−1
n−1(un(z) − un−1(z)) = −rn(z)un(z), n ∈ Z+,

(2.17)

for sequence (2.15).

Proof Substituting expression fn = qnun into (1.7), we see that

q−1
n

(
an−1 fn−1 + (bn − z) fn + an fn+1

)
= an−1ζ

−1
n−1un−1 + (bn − z)un + anζnun+1

= an−1ζ
−1
n−1(un−1 − un)

+ rnun + anζn(un+1 − un).

by virtue of (2.9). Thus Eqs. (1.7) and (2.17) coincide. ��
According to Lemma 2.1 the sequence rn(z) of the coefficients of un(z) in the

right-hand side of (2.17) belongs to �1(Z+). This allows us to reduce the difference
equation (2.17) with condition (2.16) to a “Volterra integral” equation

un(z) = 1 −
∞∑

m=n+1

Gn,m(z)rm(z)um(z) (2.18)
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with kernel

Gn,m(z) = qm(z)2
m−1∑
p=n

(apζp)
−1qp(z)

−2, n,m ∈ Z+, m ≥ n + 1. (2.19)

Note that Gn,m(z̄) = Gn,m(z). The functions Gn,m(z) are analytic in z ∈ � and are
continuous up to the real axis.

2.4 Integral equation

Our plan is now the following. We first prove that, for all z ∈ clos�\{−1, 1}, a
solution un(z) of the integral equation (2.18) exists for sufficiently large n and tends
to 1 as n → ∞. Then we show that, for such n, the sequence un(z) satisfies also the
difference equation (2.17). To all n ≥ −1, the sequence un(z) is extended as a solution
of Eq. (2.17).

The following assertion plays the crucial role in our analysis of Eq. (2.18), in
particular, for z lying on the cut along [−1, 1]. It shows that the sequence (2.19) is
bounded uniformly in n and m provided the points ±1 are excluded.

Lemma 2.4 There exist constants C(z) and N (z) such that an estimate

|Gn,m(z)| ≤ C(z) < ∞, m − 1 ≥ n ≥ N (z), (2.20)

is true for all z ∈ clos�\{−1, 1}. The constants C(z) and N (z) are common for z in
compact subsets of clos�\{−1, 1}, that is, for all z ∈ clos� such that |z2 − 1| ≥ ε

and |z| ≤ R where ε > 0 and R < ∞ are some fixed numbers.

Proof According to definition (2.7), we have

(q−2
p )′ = (ζ−2

p − 1)q−2
p .

Set

ηp = a−1
p ζp(1 − ζ 2

p)
−1.

According to (1.4) ζp → ζ where ζ 2 �= 1 as p → ∞, so that |ηp| ≤ C < ∞ for
p ≥ N if N is sufficiently large. Therefore, it follows [cf. (2.12) and (2.13)] from
condition (1.5) that

∞∑
p=N

|η′
p| ≤ C

∞∑
p=N

(|a′
p| + |ζ ′

p|) ≤ C1

∞∑
p=N

(|a′
p| + |b′

p|) < ∞. (2.21)
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Integrating by parts, that is, using identity (2.3), we find that

m−1∑
p=n

(apζp)
−1q−2

p =
m−1∑
p=n

ηp(q
−2
p )′ = ηmq

−2
m+1 − ηn−1q

−2
n −

m−1∑
p=n

η′
p−1q

−2
p .

Substituting this expression into (2.19) and using the estimates |qmq−1
p | ≤ 1 form ≥ p

and (2.21), we see that

|Gn,m | ≤ C
(
1 +

m−1∑
p=n

|η′
p−1||q2mq−2

p |) ≤ C1 < ∞.

This proves (2.20). ��
Lemmas 2.1 and 2.4 allow us to solve the Volterra equation (2.18) by iterations.

Lemma 2.5 Let z ∈ clos�\{−1, 1}. Set u(0)
n (z) = 1 and

u(k+1)
n (z) = −

∞∑
m=n+1

Gn,m(z)rm(z)u(k)
m (z), k ≥ 0, (2.22)

for all n ∈ Z+. Then estimates

|u(k)
n (z)| ≤ C(z)k

k!

( ∞∑
m=n+1

|rm(z)|
)k

, ∀k ∈ Z+, (2.23)

are true for all sufficiently large n with the same constant C(z) as in Lemma 2.4.

Proof Suppose that (2.23) is satisfied for some k ∈ Z+. We have to check the same
estimate (with k replaced by k + 1 in the right-hand side) for u(k+1)

n . Set

Rm =
∞∑

p=m+1

|rp|.

According to definition (2.22), it follows from (2.20) and (2.23) that

|u(k+1)
n | ≤ Ck+1

k!
∞∑

m=n+1

|rm |Rk
m . (2.24)

Observe that

Rk+1
m + (k + 1)|rm |Rk

m ≤ Rk+1
m−1,
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and hence, for all N ∈ Z+,

(k + 1)
N∑

m=n+1

|rm |Rk
m ≤

N∑
m=n+1

(Rk+1
m−1 − Rk+1

m ) = Rk+1
n − Rk+1

N ≤ Rk+1
n .

Substituting this bound into (2.24), we obtain estimate (2.23) for u(k+1)
n . ��

Now we can conclude our study of the “integral” equation (2.18).

Theorem 2.6 Let assumptions (1.4) and (1.5) be satisfied. For z ∈ clos�\{−1, 1}, Eq.
(2.18) has a (unique) bounded solution {un(z)}∞n=0. This sequence obeys an estimate

|un(z) − 1| ≤ Cεn (2.25)

where the constant C is common for z in compact subsets of clos�\{−1, 1} and

εn :=
∞∑

m=n

(|α′
m | + |b′

m |). (2.26)

For all n ∈ Z+, the functions un(z) are analytic in z ∈ � and are continuous up to
the cut along R with possible exception of the points z = −1 and z = 1.

Proof Set

un =
∞∑
k=0

u(k)
n (2.27)

where u(k)
n are defined by recurrence relations (2.22). Estimate (2.23) shows that this

series is absolutely convergent. Using the Fubini theorem to interchange the order of
summations in m and p, we see that

∞∑
m=n+1

Gn,mrmum =
∞∑
k=0

∞∑
m=n+1

Gn,mrmu
(k)
m = −

∞∑
k=0

u(k+1)
n = 1 −

∞∑
k=0

u(k)
n = 1 − un .

This is Eq. (2.18) for sequence (2.27). It also follows from (2.23) that

|un(z) − 1| ≤ C
∞∑

m=n+1

|rm(z)|

which in view of (2.11) implies (2.25). Since every function u(k)
n (z) is analytic in

z ∈ � and is continuous up to the cut R (away from the points ±1), estimate (2.23)
guarantees that function (2.27) possesses the same properties. ��

Let us come back to the difference equation (2.17).
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Lemma 2.7 For z ∈ clos�\{−1, 1}, a solution un(z) of integral equation (2.18)
satisfies also difference equation (2.17).

Proof Below we consistently take into account that qn+1 = ζnqn . It follows from
(2.18) that

un+1 − un = −
∞∑

m=n+2

(Gn+1,m − Gn,m)rmum + Gn,n+1rn+1un+1. (2.28)

Since according to (2.19)

Gn+1,m − Gn,m = −(anζn)
−1q−2

n q2m and Gn,n+1 = ζna
−1
n ,

equality (2.28) can be rewritten as

an(un+1 − un) = ζ−1
n q−2

n

∞∑
m=n+1

q2mrmum . (2.29)

Putting together this equality with the same equality where n is replaced by n − 1, we
arrive to Eq. (2.17). ��
Remark 2.8 Let z ∈ � or z = λ ± i0 where |λ| > 1. Since |ζ | < 1 and ζn → ζ as
n → ∞, we see that |ζm | ≤ ε for some ε < 1 and sufficiently large m whence

∣∣qn/qm
∣∣ = |ζm · · · ζn−1| ≤ εn−m, n ≥ m. (2.30)

Note also that {rmum} ∈ �1(Z+). Thus, it follows from representation (2.29) that
{u′

n} ∈ �1(Z+).

3 Modified Jost solutions

3.1 Construction

Let us put together the results obtained in the previous section. According to Theo-
rem 2.6 for every z ∈ clos�\{−1, 1} there exists a solution un(z), n ∈ Z+, of the
integral equation (2.18). By Lemma 2.7 it satisfies also the difference equation (2.17).
Then Lemma 2.3 implies that the function fn(z) := qn(z)un(z) satisfies Eq. (1.7).
Estimate (2.25) for un(z) is obviously equivalent to the asymptotics

fn(z) = qn(z)
(
1 + O(εn)

)
, n → ∞, (3.1)

for fn(z).
Thus we arrive at the following result.
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Theorem 3.1 Let assumptions (1.4) and (1.5) be satisfied, and let z ∈ clos�\{−1, 1}.
Denote by un(z) the sequence constructed in Theorem 2.6. Then the sequence fn(z)
defined by equality (1.20) satisfies Eq. (1.7), and it has asymptotics (3.1). For all
n ∈ Z+, the functions fn(z) are analytic in z ∈ � and are continuous up to the cut
along R with possible exception of the points z = −1 and z = 1. Asymptotics (3.1) is
uniform in z from compact subsets of the set clos�\{−1, 1}.

Recall that the polynomials Pn(z) are solutions of Eq. (1.7) satisfying the conditions
P−1(z) = 0, P0(z) = 1. Put P(z) = {Pn(z)}∞n=−1, f (z) = { fn(z)}∞n=−1. Then the first
formula (2.2) yields relation (1.8) for the Wronskian 	(z) of the solutions P(z) and
f (z). By analogy with the continuous case, the sequence { fn(z)}∞n=−1 will be called
the (modified) Jost solution of Eq. (1.7) and f−1(z) will be called the (modified) Jost
function. For the operator H0, the Jost solution is {ζ(z)n}∞n=−1 and the corresponding
Wronskian

	0(z) = −(2ζ(z))−1. (3.2)

The following result is a direct consequence of Theorem 3.1.

Corollary 3.2 TheWronskian	(z) depends analytically on z ∈ �, and it is continuous
in z up to the cut along R except, possibly, the points ±1.

Note that

fn(z̄) = fn(z)

and, in particular,

fn(λ − i0) = fn(λ + i0), λ ∈ R\{−1, 1}. (3.3)

Remark 3.3 (i) In contrast to the short-range case, the functions fn(z) are not analytic
on the whole set C\[−1, 1] because, in general, fn(λ− i0) �= fn(λ+ i0) even for
|λ| > 1. This circumstance is, however, inessential—see Remark 5.2 below.

(ii) The definitions of the function qn(z) and of the Jost solution fn(z) are not intrinsic.
One can multiply them by a factor depending on z but not on n. For example, we
can set

f̃n(z) = qN0(z)
−1 fn(z)

where N0 is some fixed number. Then f̃n(z) satisfies Eq. (1.7) and f̃n(z) =
q̃n(z)(1 + O(εn)) where q̃n(z) = qN0(z)

−1qn(z) as n → ∞.

Let us find asymptotics of the sequence (2.7) as n → ∞.

Lemma 3.4 Let assumption (1.4) be satisfied, let z ∈ clos�\{−1, 1}, and let ζ = ζ(z)
be given be equality (1.11). Then

qn(z) = en(ln ζ+o(1)), n → ∞. (3.4)
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Proof Let the sequences zn and ζn be defined by formulas (2.4) and (2.5). It follows
from (1.4) that zn = z + o(1) and hence ζn = ζ(1 + εn) where εn → 0 as n → ∞.
For the sequence (2.7), this yields

ln qn = n ln ζ +
n−1∑
m=0

ln(1 + εm) = n ln ζ + o(n)

which is equivalent to (3.4). ��
Note that |ζ(z)| < 1 for z ∈ � and for z = λ ± i0 if |λ| > 1. Therefore for such

z according to (3.1) and (3.4), fn(z) = O(δn) with some δ < 1 as n → ∞ whence
f (z) ∈ �2(Z+).
Observe that 	(z) �= 0 for z ∈ �. Indeed, if 	(z) = 0, then, by definition (1.8),

Pn(z) = c fn(z) for some c ∈ C. Since f (z) ∈ �2(Z+), it follows that the complex
number z is an eigenvalue of the self-adjoint operator J which is impossible. This
argument also shows that a number λ ∈ (−∞,−1) ∪ (1,∞) is an eigenvalue of J if
and only if 	(λ ± i0) = 0. By (3.3), these equalities for the signs “+′′ and “−′′ are
equivalent to each other.

3.2 On the cut

Suppose now that z = λ ± i0 where λ ∈ (−1, 1) so that λ = cos θ , θ ∈ (0, π). Set

λn := λ − bn
2an

. (3.5)

For |λn| < 1, we have

ζ(λn ± i0) = λn ∓ i
√
1 − λ2n = e∓iθn(λ)

where

θn(λ) = arccos λn ∈ (0, π). (3.6)

Set θn(λ) = 0 for λn ≥ 1 when ζ(λn) > 0 and, similarly, θn(λ) = π for λn ≤ −1,
when ζ(λn) < 0. Then formula (2.7) reads as

qn(λ ± i0) = e∓iϕn(λ)
n−1∏
m=0

|ζ(λm ± i0)|

where

ϕn(λ) =
n−1∑
m=0

θm(λ). (3.7)
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Since |ζ(λm ± i0)| = 1 for sufficiently large m, the product

k(λ) :=
∞∏

m=0

|ζ(λm ± i0)|

consists of a finite number of terms. Obviously, k(λ) is a continuous function of
λ ∈ (−1, 1) and k(λ) �= 0.

Asmentioned in Remark 3.3 (ii), the definitions of the Jost solution fn(z) and hence
of the Wronskian 	(z) are not unique. For λ ∈ (−1, 1), it is convenient to normalize
them dividing by the factor k(λ):

fn(λ ± i0) = k(λ)−1 fn(λ ± i0), �(λ ± i0) = {P(λ), f(λ ± i0)}
= k(λ)−1	(λ ± i0). (3.8)

This simplifies formulas below.
The following direct consequence of Theorem 3.1 is stated in terms of the normal-

ized Jost solutions.

Theorem 3.5 Let assumptions (1.4) and (1.5) be satisfied. For λ ∈ (−1, 1), define the
phases ϕn(λ) by formulas (3.5)–(3.7). Then

fn(λ ± i0) = e∓iϕn(λ)(1 + O(εn)), n → ∞, (3.9)

where εn is given by (2.26).

By definitions (3.5), (3.6), we have

λn = λ + o(1) and θn = θ + o(1) (3.10)

where θ = arccos λ. It follows that

ϕn(λ) = n arccos λ + �n(λ)

where

�n(λ) =
n−1∑
m=0

(
θm(λ) − θ

) = o(n). (3.11)

In particular, we see that asymptotics (3.9) of fn(λ ± i0) as n → ∞ is oscillating.

4 Orthogonal polynomials

4.1 Uniform estimates

Let us start with an estimate on orthogonal polynomials Pn(z) for large n. This estimate
will be uniform in z from compact subsets of C\{−1, 1}. We recall that Pn(z) satisfy
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the difference equation (1.2) and the conditions P−1(z) = 0, P0(z) = 1. As before, we
define the sequence qn(z) by formula (2.7) but instead of (2.15)wemake a substitution

un(z) = qn(z)Pn(z). (4.1)

Observe that qn(z)−1 is an approximate solution of Eq. (1.7), that is

rn(z) := qn(z)
(
an−1qn−1(z)

−1 + (bn − z)qn(z)
−1 + anqn+1(z)

−1), n ∈ Z+,

where the remainder rn(z) is given [cf. (1.19), (2.9), (2.10)] by the formula

rn = an−1ζn−1 + anζ
−1
n + bn − z = an−1ζn−1 − anζn .

Similarly to Lemma 2.1, it is easy to show that {rn} ∈ �1(Z+) and, similarly to
Lemma 2.3, it is easy to obtain an equation

anζ
−1
n (un+1(z) − un(z)) − an−1ζn−1(un(z) − un−1(z)) = −rn(z)un(z), n ∈ Z+,

(4.2)

for sequence (4.1). This difference equation can be reduced to a Volterra integral
equation.

Lemma 4.1 The sequence (4.1) obeys an equation

un+1(z) = u(0)
n (z) −

n∑
m=1

Kn,m(z)rm(z)um(z), n ≥ 1, (4.3)

where u1(z) = q1P1(z) = 2z0ζ0,

u(0)
n (z) = u1(z) + a0ζ0

n∑
p=1

a−1
p ζpqp(z)

2

and

Kn,m(z) = qm(z)−2
n∑

p=m

a−1
p ζpqp(z)

2.

Proof Set

vn = an(u n+1 − u n) and �n = rnun . (4.4)

Then the second-order difference equation (4.2) for un yields a first-order difference
equation

ζ−1
n vn − ζn−1vn−1 = −�n (4.5)
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for the sequence vn . Note that ζnq2n is the solution of the corresponding homogeneous
equation because qn = ζn−1qn−1, by (2.7). Thus, setting vn = ζnq2nwn , we rewrite
(4.5) as an equation

wn − wn−1 = −q−2
n �n

for wn whence

wn = w0 −
n∑

m=1

q−2
m �m .

It follows that the solution of Eq. (4.5) is given by the formula

vn = v0q
2
nζnζ

−1
0 − q2nζn

n∑
m=1

q−2
m �m, n ≥ 1.

Using now (4.4), we find that

un+1 − u1 =
n∑

p=1

a−1
p vp = v0ζ

−1
0

n∑
p=1

a−1
p q2pζp −

n∑
p=1

a−1
p q2pζp

p∑
m=1

q−2
m rmum .

Interchanging the summations over p and m here and observing that v0ζ
−1
0 = a0ζ0,

we obtain Eq. (4.3). ��

Similarly to Lemma 2.4, integration by parts shows that the functions u(0)
n (z)

and Kn,m(z) are uniformly bounded. Therefore solving Eq. (4.3) by iterations (cf.
Lemma 2.5), we see that its solution un(z) is also bounded. Coming back to relation
(4.1), we can state the following result.

Theorem 4.2 Let assumptions (1.4) and (1.5) be satisfied, and let z ∈ C\{−1, 1}.
Define the sequence qn(z) by formula (2.7). Then the orthogonal polynomials Pn(z)
obey an estimate

|Pn(z)| ≤ C |qn(z)|−1, ∀n ∈ Z+,

where C does not depend on z in compact subsets of C\{−1, 1}.

Observe that (4.3) is different from the standard (see, e.g., equation (3.2) in [33])
equation for orthogonal polynomials relying on the perturbation theory, that is, on a
comparison of Pn(z) with the Chebyshev polynomials of the second kind. We empha-
size that Theorem 4.2 is very close to Lemma 4 in [30], and we state it mainly for the
completeness of our presentation.

123



Semiclassical asymptotic behavior of orthogonal polynomials 2879

4.2 Asymptotics in the complex plane

Here we find asymptotics of the polynomials Pn(z) for z /∈ [−1, 1]. We follow the
scheme exposed in [33] for Jacobi operators in the short-range case and in [34] for dif-
ferential operators with long-range coefficients. In this subsection we use Theorem 3.1
for a fixed z /∈ [−1, 1] only.

Let the sequence qn(z) be defined by formula (2.7), and let fn(z) be the Jost
solution of Eq. (1.7). If z = λ ∈ R\[−1, 1], we can choose the sequences qn(λ ± i0)
and fn(λ ± i0) for any of the signs “±′′. We start by introducing a solution gn(z) of
Eq. (1.7) exponentially growing as n → ∞. Perhaps this construction is of interest
in its own sake. In view of asymptotics (3.1), we can choose n0 = n0(z) such that
fn(z) �= 0 for all n ≥ n0 − 1. Note that, for Im z �= 0, one can set n0 = 0 because the
equality fn0−1(z) = 0 implies that the Jacobi operator J (n0) with the matrix elements
a(n0)
n = an+n0 , b

(n0)
n = bn+n0 has eigenvalue z. Put

Gn(z) =
n∑

m=n0

(am−1 fm−1(z) fm(z))−1, n ∈ Z+. (4.6)

Theorem 4.3 Let z ∈ C\[−1, 1]. Under assumptions (1.4) and (1.5) the sequence
gn(z) defined by

gn(z) = fn(z)Gn(z)

satisfies Eq. (1.7) and

lim
n→∞ qn(z)gn(z) = 1√

z2 − 1
. (4.7)

Proof First, we check Eq. (1.7) for gn . According to definition (4.6), we have

an−1 fn−1Gn−1 + (bn − z) fnGn + an fn+1Gn+1

= (
an−1 fn−1 + (bn − z) fn + an fn+1

)
Gn + an−1 fn−1(Gn−1 − Gn)

+an fn+1(Gn+1 − Gn).

The first term here is zero because Eq. (1.7) is true for the sequence fn Since

Gn+1 = Gn + (an fn fn+1)
−1,

the second and third terms equal − f −1
n and f −1

n , respectively.
Next, we prove asymptotics (4.7). Recall that fn = qnun where qn is defined by

formulas (2.5), (2.7) and un is constructed in Theorem 2.6. Let us set

vm = ζm−1ζm(1 − ζm−1ζm)−1(am−1um−1um)−1, tm = (qm−1qm)−1. (4.8)
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Then

t ′m = (
(ζm−1ζm)−1 − 1

)
tm

and

(am−1 fm−1 fm)−1 = (am−1um−1um)−1tm = vmt
′
m .

Integrating by parts [see formula (2.3)] in (4.6), we find that

Gn =
n∑

m=n0

vmt
′
m = vntn+1 − vn0−1tn0 −

n∑
m=n0

v′
m−1tm . (4.9)

Let us multiply this expression by qn fn = q2nun and pass to the limit n → ∞.
Since vn → 2ζ 2(1 − ζ 2)−1, we see that

q2nunvntn+1 = ζ−1
n unvn → 2ζ(1 − ζ 2)−1 = 1√

z2 − 1
(4.10)

as n → ∞. It follows from (2.30) that q2nunvn0−1tn0 = O(r2n). The contribution

q2nun

n∑
m=n0

v′
m−1tm = un

n∑
m=n0

v′
m−1

q2n
qm−1qm

of the third term in the right-hand side (4.9) can be estimated by

n∑
m=n0

r2(n−m)|v′
m−1| ≤ rn

∑
n0≤m<[n/2]

|v′
m−1| +

∑
[n/2]≤m≤n

|v′
m−1|. (4.11)

Recall that {u′
n} ∈ �1(Z+) according to Remark 2.8 and {ζ ′

n} ∈ �1(Z+) according to
definitions (2.4) and (2.5). It follows from (4.8) that {v′

n} ∈ �1(Z+), and therefore,
expression (4.11) tends to zero as n → ∞. Hence (4.10) implies (4.7). ��

By definition (4.6), the Wronskian (2.1) of f (z) = { fn(z)} and g(z) =
{ fn(z)Gn(z)} equals

{ f (z), g(z)} = an fn(z) fn+1(z)(Gn+1(z) − Gn(z)) = 1,

whence solutions f (z) and g(z) are linearly independent. It follows that

Pn(z) = d+(z) fn(z) + d−(z)gn(z)

where

d+(z) = {P(z), g(z)} and d−(z) = −{P(z), f (z)} = −	(z)
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according to (1.8). Obviously, d+(z) �= 0 if d−(z) = 0. Therefore, Theorems 3.1 and
4.3 imply the following result.

Theorem 4.4 Under assumptions (1.4) and (1.5) the relation (1.21) is true for all
z ∈ C\[−1, 1] with convergence uniform on compact subsets of z ∈ C\[−1, 1].
Moreover, if 	(z) = 0, then

lim
n→∞ qn(z)

−1Pn(z) = {P(z), g(z)} �= 0. (4.12)

Note that Theorem 4.2 does not follow from Theorem 4.4 because asymptotics
(1.21) is not uniform as z approaches the cut along (−1, 1).

The existence of the limit in (1.21) is the classical result of the Szegő theory. It is
stated as Theorem 12.1.2 in the book [27] where the assumptions are imposed on the
measure dρ(λ); in particular, it is assumed that supp ρ ⊂ [−1, 1]. Under short-range
assumption (1.9) asymptotic relations (1.21), (4.12) were established in [15] and, by
a different method, in [33].

4.3 Asymptotics on the continuous spectrum

To find asymptotic behavior of the polynomials Pn(λ) for λ ∈ (−1, 1), that is, on the
continuous spectrum of the Jacobi operator J , we have to consider two (normalized)
Jost solutions f(λ± i0) = {fn(λ± i0)}∞n=−1 for λ = cos θ ∈ (−1, 1). Of course, these
two solutions are complex conjugate to each other. Calculating the Wronskian (2.1)
of f(λ + i0) and f(λ − i0) for n → ∞ and using (3.7), (3.9), (3.10), we see that

{f(λ + i0), f(λ − i0)} = an
(
e−iϕn(λ)eiϕn+1(λ) − e−iϕn+1(λ)eiϕn(λ)

) + o(1)

= i sin θn(λ) + o(1) = i sin θ(λ) = i
√
1 − λ2 �= 0,

and hence, these solutions are linearly independent. It follows that

Pn(λ) = c(λ)fn(λ + i0) + c(λ)fn(λ − i0) (4.13)

for some complex constant c(λ). Taking theWronskian of this equation with f(λ+ i0)
and using notation (3.8), we find that

− c(λ){f(λ + i0), f(λ − i0)} = {P(λ), f(λ + i0)} = �(λ + i0). (4.14)

Thus (4.13) leads to the same formula as (1.14) in the short-range case.

Lemma 4.5 For λ ∈ (−1, 1), the representation

Pn(λ) = �(λ − i0)fn(λ + i0) − �(λ + i0)fn(λ − i0)

i
√
1 − λ2

,

λ ∈ (−1, 1), n = 0, 1, 2, . . . , (4.15)

holds true.
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Properties of the Wronskian (4.14) are summarized in the following statement.

Theorem 4.6 The Wronskians �(λ + i0) and �(λ − i0) = �(λ + i0) are continuous
functions of λ ∈ (−1, 1) and

�(λ ± i0) �= 0, λ ∈ (−1, 1). (4.16)

Proof The functions �(λ ± i0) are continuous by Corollary 3.2. If �(λ ± i0) = 0,
then according to (4.15) Pn(λ) = 0 for all n ∈ Z+. However, P0(λ) = 1 for all λ. ��

Let us set

κ(λ) = 2|�(λ + i0)|, −2�(λ ± i0) = κ(λ)e±iη(λ), κ(λ) > 0. (4.17)

In the theory of short-range perturbations of the Schrödinger operator, the functions
κ(λ) and η(λ) are known as the limit amplitude and the limit phase, respectively; the
function η(λ) is also called the scattering phase or the phase shift. Definition (4.17)
fixes η(λ) only up to a term 2πk where k ∈ Z.

Combined together relations (3.9) and (4.15) yield the asymptotics of Bernstein–
Szegő type for the polynomials Pn(λ). Recall that εn are defined by (2.26).

Theorem 4.7 Let assumptions (1.4) and (1.5) be satisfied, let λ ∈ (−1, 1) and let the
phase ϕn(λ) be defined by formulas (3.5)–(3.7). Then the polynomials Pn(λ) have
asymptotics

Pn(λ) = κ(λ)(1 − λ2)−1/2 sin(ϕn(λ) + η(λ)) + O(εn) (4.18)

as n → ∞. Relation (4.18) is uniform in λ on compact subintervals of (−1, 1).

The phase shifts η(λ) in (4.18) and πξ(λ) in the short-range formula (1.14) play
the same roles. They depend on the precise values of the coefficients an and bn for
all n and hence cannot be found from their asymptotic behavior as n → ∞. Under
additional assumptions, the growing part ϕn(λ) of the phase in (4.18) can be made
more explicit.

4.4 Hilbert–Schmidt perturbations

In addition to (1.5), assume now that condition

∞∑
n=0

(α2
n + b2n) < ∞, (4.19)

is satisfied, that is, V = J − J0 is a Hilbert–Schmidt operator. Then asymptotic
formulas of Theorems 4.4 and 4.7 can be made more explicit. We proceed from the
following elementary assertion.
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Lemma 4.8 Let z �= ±1. Under assumption (4.19), there exists a finite limit

lim
n→∞

(
ζ(z)−n exp

(
− 1√

z2 − 1

n−1∑
m=0

(2zαm + bm)

)
qn(z)

)
�= 0. (4.20)

Proof It follows [cf. (2.12)] from (2.4), (2.5) that

ζm − ζ = (zm − z)
(
1 − zm + z√

z2m − 1 + √
z2 − 1

)
. (4.21)

Since

zm − z = −2zαm − bm + O(α2
m + b2m)

and

1 − zm + z√
z2m − 1 + √

z2 − 1
= − ζ√

z2 − 1
+ O(

√
α2
m + b2m),

equality (4.21) implies that

ζm

ζ
= 1 + 2zαm + bm√

z2 − 1
+ O(α2

m + b2m) = exp
(2zαm + bm√

z2 − 1

)(
1 + O(α2

m + b2m)
)
.

Taking the product over m = 0, 1, . . . , n − 1 and using condition (4.19), we arrive at
(4.20). ��

Now the following statement is a direct consequence of Theorem 4.4.

Theorem 4.9 Let assumptions (1.5) and (4.19) be satisfied, and let z ∈ C\[−1, 1].
Then there exist finite limits

lim
n→∞

(
ζ(z)n exp

(
1√

z2 − 1

n−1∑
m=0

(2zαm + bm)

)
Pn(z)

)
�= 0 (4.22)

if z is not an eigenvalue of the operator J and

lim
n→∞

(
ζ(z)−n exp

(
− 1√

z2 − 1

n−1∑
m=0

(2zαm + bm)

)
Pn(z)

)
�= 0 (4.23)

if z is an eigenvalue of J .

Corollary 4.10 Suppose additionally that the conditions

∞∑
n=0

αn < ∞ and
∞∑
n=0

bn < ∞ (4.24)
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(these series should be convergent but perhaps not absolutely) are satisfied. Then the
exponential factors in (4.22) and (4.23) may be omitted, that is, the limits in (1.21)
and (4.12) exist.

We do not know whether relations (4.22) and (4.23) remain true under the only
assumption (4.19).

In some cases, the exponential factors in (4.22) and (4.23) can be simplified.

Example 4.11 Let conditions (1.23) be satisfied with some r1, r2 ∈ (1/2, 1). Then

n∑
m=0

(2z αm + bm) = 2zα(1 − r1)
−1n1−r1 + b(1 − r2)

−1n1−r2

+ 2zαγ r1 + bγ r2 +
∞∑

m=0

(2zα̃m + b̃m) + o(1) (4.25)

where γ r − (1− r)−1 is the Euler–Mascheroni constant. With a natural modification,
expression (4.25) remains true if r j = 1 for one or both j . In this case, (1−r j )−1n1−r j

should be replaced by ln n and γ 1 is the Euler–Mascheroni constant.

Let us now discuss relation (4.18). Similarly to Lemma 4.8, we have

Lemma 4.12 Under assumption (4.19), there exists a finite limit

lim
n→∞

(
ϕn(λ) − nθ − (sin θ)−1

n−1∑
m=0

(2 cos θ αm + bm)
) =: γ (λ). (4.26)

Proof It follows from (3.5), (3.6) that

θm = arccos
λ − bm
2am

= θ + (sin θ)−1(2 cos θ αm + bm) + O(α2
m + b2m).

Taking the sum over m = 0, 1, . . . , n − 1 and using condition (4.19), we arrive at
(4.26). ��

Now the following statement is a direct consequence of Theorem 4.7.

Theorem 4.13 Let assumptions (1.5) and (4.19) be satisfied. Then for λ ∈ (−1, 1),
the asymptotic formula

Pn(λ) = κ(λ)(1 − λ2)−1/2 sin
(
nθ + (sin θ)−1

n−1∑
m=0

(2 cos θ αm

+bm) + γ (λ) + η(λ)
) + o(1) (4.27)

holds as n → ∞. Relation (4.27) is uniform in λ on compact subintervals of (−1, 1).

123



Semiclassical asymptotic behavior of orthogonal polynomials 2885

Under assumption (1.23), the phase in (4.27) can be simplified if one takes relation
(4.25) (where z is replaced by cos θ ) into account.

Of course, formulas (4.22) and (4.27) are consistent with asymptotic formulas for
Pollaczek polynomials in Appendix in the book [27].

Without any additional assumptions, Hilbert–Schmidt perturbations V of the oper-
ator J0 were investigated in the deep papers [8,15]. In [15], necessary and sufficient
conditions in terms of the spectral measure dρ(λ) of the operator J = J0 + V were
found for V to be in the Hilbert–Schmidt class. Asymptotic behavior of the corre-
sponding polynomials Pn(z) was studied in [8]. It was proved in Theorem 5.1 that the
limit of ζ(z)n Pn(z) as n → ∞ exists if and only if conditions (4.19) and (4.24) are
satisfied.

As shown in Theorem 8.1 of [8], assumptions (4.19), (4.24) are sufficient also for
the validity of formula (1.16) but only in some averaged sense. Such a regularization
seems to be necessary since under these assumptions the structure of the essential
spectrum of the operator J can be quite wild.

Condition (1.5) accepted in this paper is different in nature from (4.19), (4.24). On
the one hand, it excludes too strong oscillations of the coefficients αn , bn but, on the
other hand, it permits their arbitrary slow decay as n → ∞.

5 Spectral theory of Jacobi operators

Here we show that the spectrum of the Jacobi operator J on the interval (−1, 1) is
absolutely continuous and the corresponding weight w(λ) is expressed via the Jost
function by the formula (1.13). It follows that w(λ) is a continuous strictly positive
function of λ ∈ (−1, 1).

5.1 Resolvent

First, we construct the resolvent R(z) = (J − z)−1 of the operator J . Recall that
P(z) = {Pn(z)} and f (z) = { fn(z)} are, respectively, the polynomial and the Jost
solutions of Eq. (1.7) and	(z) is their Wronskian (1.8). We denote by en , n ∈ Z+, the
canonical basis in �2(Z+). The proof below is almost the same as in the short-range
case (cf. Lemma 2.6 in [33]).

Lemma 5.1 For all n,m ∈ Z+, we have

(R(z)en, em) = 	(z)−1Pn(z) fm(z), Im z �= 0, (5.1)

if n ≤ m and (R(z)en, em) = (R(z)em, en).

Proof We will show that the operator R(z) defined by relation (5.1) is the resolvent
of J . We have

	(z)(R(z)u)n = fn(z)An(z) + Pn(z)Bn(z) (5.2)

123



2886 D. R. Yafaev

where

An(z) =
n∑

m=0

Pm(z)um, Bn(z) =
∞∑

m=n+1

fm(z)um, (5.3)

at least for all sequences u = {un} with a finite number of non-zero components un .
In this case R(z)u ∈ �2(Z+) because fn(z) ∈ �2(Z+) if Im z �= 0.

Our goal is to check that (J − z)R(z)u = u. It follows from definition (1.1) of the
Jacobi operator J and formula (5.2) that

	((J − z)Ru)n = an−1
(
fn−1An−1 + Pn−1Bn−1

)

+ (bn − z)
(
fn An + PnBn

) + an
(
fn+1An+1 + Pn+1Bn+1

)
. (5.4)

According to (5.3) we have

fn−1An−1 + Pn−1Bn−1 = fn−1(An − Pnun) + Pn−1(Bn + fnun)

and

fn+1An+1 + Pn+1Bn+1 = fn+1An + Pn+1Bn .

Let us substitute these expressions into the right-hand side of (5.4) and observe that
the coefficients at An and Bn equal zero by virtue of Eq. (1.7) for { fn} and {Pn},
respectively. It follows that

((J − z)Ru)n = 	−1an−1(−Pn fn−1 + fn Pn−1)un = un

whence R(z) = (J −z)−1. In particular, the operator R(z) defined by (5.1) is bounded
in the space �2(Z+). ��

In view of Theorem 3.1, fn(z), n = −1, 0, 1, . . ., and 	(z) are analytic functions
of z ∈ C\R, and they are continuous up to the cut along R with possible exception
of the points z = ±1. The values fm(λ ± i0) and 	(λ ± i0) on the upper and lower
edges of the cuts along (−∞,−1) and (1,∞) are, in general, different. Note however
the following obvious

Remark 5.2 If λ ∈ (−∞,−1) ∪ (1,∞) and 	(λ ± i0) �= 0, then

fm(λ + i0)

	(λ + i0)
= fm(λ − i0)

	(λ − i0)
. (5.5)

Indeed, consider the sequence

�m(λ) = fm(λ + i0)	(λ − i0) − fm(λ − i0)	(λ + i0).

It satisfies Eq. (1.7) where z = λ, belongs to �2(Z+) because λ /∈ [−1, 1] and
�−1(λ) = 0 by definition (1.8) of 	(λ ± i0). Since λ is not an eigenvalues of J ,
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we see that�m(λ) = 0 for allm which is equivalent to (5.5). It follows from (5.5) that
the function fm(z)/	(z) is analytic inC\[−1, 1]with poles at eigenvalues of the oper-
ator J . This is consistent with formula (5.1) since the matrix elements (R(z)en, em)

are analytic functions of z ∈ C\[−1, 1].
Taking also (4.16) into account, we obtain the following result.

Theorem 5.3 Let assumptions (1.4) and (1.5) hold. Then

(i) The resolvent R(z) = (J − z)−1 of the Jacobi operator J is an integral oper-
ator with matrix elements (5.1). For all n,m ∈ Z+, it is an analytic function
of z ∈ C\[−1, 1] with simple poles at eigenvalues of the operator J . A point
z ∈ C\[−1, 1] is an eigenvalue of J if and only if 	(z) = 0.

(ii) For all n,m ∈ Z+, the functions (R(z)en, em) are continuous in z up to the cut
[−1, 1] except, possibly, the points ±1.

(iii) Estimates

|(R(z)en, em)| ≤ C |	(z)|−1
∣∣qm(z)/qn(z)

∣∣ ≤ C1 < ∞, n ≤ m,

are true with some positive constants that do not depend on n, m and on z in
compact subsets of the set clos(C\[−1, 1]) as long as they are away from the
points ±1.

The statement (ii) is known as the limiting absorption principle. It implies

Corollary 5.4 The spectrum of the operator J on the interval (−1, 1) is absolutely
continuous.

Let us now consider the spectral projector E(λ) of the operator J . By the Cauchy–
Stieltjes formula, its matrix elements satisfy the identity

2π i
d(E(λ)en, em)

dλ
= (R(λ + i0)en, em) − (R(λ − i0)en, em). (5.6)

The following assertion is a direct consequence of Theorem 5.3, part (ii).

Corollary 5.5 For all n,m ∈ Z+, the functions (E(λ)en, em) are continuously differ-
entiable in λ ∈ (−1, 1).

We emphasize that the points 1 and −1 may be eigenvalues of J ; see Example 4.15
in [33].

Theorem 5.3 can also be obtained by the Mourre method [21]. It was applied to
Jacobi operators in [5]; to be precise, the problem in the space �2(Z) was considered
in [5], but this is of no importance. However, the Mourre method does not exclude
eigenvalues of J embedded in its continuous spectrum although it shows that these
eigenvalues may accumulate to the points 1 and − 1 only. Note also that very gen-
eral conditions of the absolute continuity of spectrum were obtained in [26] by the
subordinacy method of [11].
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5.2 Spectral measure

Now we are in a position to calculate the spectral family dE(λ) of the operator J .
Let us proceed from the identity (5.6). Using notation (3.8) and (4.14), we can rewrite
formula (5.1) as

(R(λ ± i0)en, em) = �(λ ± i0)−1Pn(λ)fm(λ ± i0), n ≤ m, (5.7)

where

fm(λ − i0) = fm(λ + i0) and �(λ − i0) = �(λ + i0).

Substituting expression (5.7) into (5.6), we find that

2π i
d(E(λ)en, em)

dλ
= Pn(λ)

�(λ − i0)fm(λ + i0) − �(λ + i0)fm(λ − i0)

|�(λ + i0)|2 .

Combining this representation with formula (4.15) for Pm(λ), we obtain the fol-
lowing result.

Theorem 5.6 Let assumptions (1.4) and (1.5) hold. Then, for all n,m ∈ Z+ and
λ ∈ (−1, 1), we have the representation

d(E(λ)en, em)

dλ
= (2π)−1

√
1 − λ2|�(λ ± i0)|−2Pn(λ)Pm(λ).

In particular, the spectral measure of the operator J equals

dρ(λ) := d(E(λ)e0, e0) = w(λ)dλ, λ ∈ (−1, 1), (5.8)

where the weight w(λ) is given by the formula

w(λ) = (2π)−1
√
1 − λ2 |�(λ ± i0)|−2 (5.9)

(the right-hand sides here do not depend on the sign).

According to (5.9), the amplitude factors in (1.14) and (4.18) are the same.
Putting together Theorem 4.6 and formula (5.9), we arrive at the next result.

Theorem 5.7 Under assumptions (1.4) and (1.5), the weight w(λ) is a continuous
strictly positive function of λ ∈ (−1, 1).

Note that this result was earlier obtained in [18] by specific methods of the orthog-
onal polynomials theory.

According to (3.2) for the operator J0, we have

�0(λ ± i0) = 	0(λ ± i0) = −2−1(λ ± i
√
1 − λ2),
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and hence expressions (5.8), (5.9) reduce to (1.3).
Observe that Theorem 3.1 does not give any information on the behavior of the

Jost function 	(z) as z → ±1. However, relation (5.9) implies that the normalized
function (3.8) obeys an estimate

∫ 1

−1

√
1 − λ2|�(λ ± i0)|−2dλ = 2π

∫ 1

−1
w(λ)dλ ≤ 2π,

and hence �(λ ± i0) cannot vanish too rapidly as λ → 1− 0 and λ → −1+ 0 (even
if 1 or −1 are eigenvalues of J ). For example, the behavior �(λ + i0) ∼ c±(λ ∓ 1)
with c± �= 0 is excluded.

In view of (4.17), (5.9), the amplitude in (4.18) can be written as

κ(λ)(1 − λ2)−1/2 = (2/π)1/2(1 − λ2)−1/4w(λ)−1/2. (5.10)

Substituting this expression into (4.18), we can reformulate Theorem 4.7 in a form
more common for the orthogonal polynomials literature.

Theorem 5.8 Let assumptions (1.4) and (1.5) be satisfied, let λ ∈ (−1, 1) and let the
phases ϕn(λ) and η(λ) be defined by formulas (3.7) and (4.17), respectively. Then the
polynomials Pn(λ) have asymptotics

Pn(λ) = (2/π)1/2(1 − λ2)−1/4w(λ)−1/2 sin(ϕn(λ) + η(λ)) + O(εn) (5.11)

as n → ∞. Relation (5.11) is uniform in λ on compact subintervals of (−1, 1).

Formula (5.11) is a generalization of (1.14) and reduces to it if the short-range
condition (1.9) is satisfied.

Of course, we can also replace the amplitude factor in (4.27) by its expression
(5.10).

5.3 Singular weights

Aswasmentioned inSect. 1.2, results onorthogonal polynomials Pn(z) canbededuced
fromsomeconditions on either the recurrent coefficientsan, bn or on the corresponding
spectral measure dρ(λ). We proceeded from conditions on an, bn , but our approach
gives automatically also some results about the regularity of dρ(λ) = w(λ)dλ (see
Theorem 5.7).

Weightsw(λ)with singularities or zeros inside (−1, 1) change both the asymptotic
behavior of the recurrent coefficients an, bn and of the orthogonal polynomials Pn(z).
For example, even weights w(λ) behaving like κ|λ|γ where γ > −1, κ > 0 as
λ → 0 were investigated in the paper [23]. Such weights are either singular at the
point λ = 0 if γ < 0 or w(0) = 0 if γ > 0. It was shown in [23, Theorem 7.4], that
the corresponding Jacobi coefficients an satisfy the asymptotic relation

an = 1/2 + (−1)nγ /(4n) + o(1/n)
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(the coefficients bn = 0 if the weight w(λ) is even). Since |a′
n| ∼ |γ |/(2n), the

condition (1.5) is now violated. For such weights, the asymptotic behavior of the
polynomials Pn(λ) in a neighborhood of the point λ = 0 differs from (1.22) and from
(1.14), in particular. The results of [20] for weights with a jump singularity are morally
similar to those in [23]. Thus, the long-range condition (1.5) is close to necessary even
for our results on the weight w(λ).

In our case, the weight w(λ) is a continuous positive function. Nevertheless, the
classical asymptotics (1.14) breaks down since an additional phase shift�n(λ) appears
in (1.22). This is quite similar to long-range scattering for the Schrödinger equation.
We emphasize, however, that asymptotics (1.22) obtained under assumption (1.5) is,
in some sense, more regular than the asymptotics of Pn(λ) in [20,23].
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