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Abstract
We develop variational representations for the deformed logarithmic and exponential
functions and use them to obtain variational representations related to the quantum
Tsallis relative entropy. We extend Golden–Thompson’s trace inequality to deformed
exponentials with deformation parameter q ∈ [0, 1], thus complementing the second
author’s previous study of the cases with deformation parameter q ∈ [1, 2] and q ∈
[2, 3].
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1 Introduction

The well-known concavity theorem by Lieb [12, Theorem 6] states that the map

A → Tr exp(L + log A), (1.1)

for a fixed self-adjoint matrix L, is concave in positive definite matrices. This theorem
is the basis for the proof of strong subadditivity of the quantum mechanical entropy
[13], and it is also very important in random matrix theory [17].
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Lieb’s concavity theorem is also closely related to the Golden–Thompson trace
inequality. Recently, the second author [7, Theorem3.1] studied (the known) concavity
of the trace function

A → Tr exp
(
H∗ log(A)H

)

in positive definite matrices, if H is a contraction. This analysis led to multivariate
generalizations of the Golden–Thompson trace inequality. Furthermore, the second
author [8, Theorem 3.1] obtained convexity/concavity properties of the trace function

(A1, . . . , Ak) → Tr expq

(
k∑

i=1

H∗
i logq(Ai )Hi

)

for H∗
1 H1+· · ·+H∗

k Hk = I ,where expq denotes the deformed exponential function,
respectively, logq denotes the deformed logarithmic function, for the deformation
parameter q ∈ [1, 3]. This analysis led to a generalization of Golden–Thompson’s
trace inequality for q-exponentials with q ∈ [1, 3].

There is furthermore a close relationship between Lieb’s concavity theorem (1.1)
and entropies. In [16], Tropp formulated a variational representation:

Tr exp(L + log A) = max
X>0

{Tr(L + I )X − D(X | A)} , (1.2)

for A > 0 and L = L∗, where D(X | A) = Tr (X log X − X log A) denotes the
quantum relative entropy. This variational representation, together with convexity of
the quantum relative entropy, enabled Tropp to give an elementary proof of Lieb’s
concavity theorem [12, Theorem 6]. Tropp’s variational representation can easily be
inverted to obtain a variational representation

D(X | A) = max
L=L∗ {Tr(L + I )X − Tr exp(L + log A)} (1.3)

of the quantum relative entropy. The well-known Gibbs variational principle for the
quantum entropy S(X) = −TrX log X states that

log Tr exp L = max
X>0,TrX=1

{TrXL − TrX log X} , (1.4)

and for X > 0 and TrX = 1,

− S(X) = max
L

{TrXL − log Tr exp L} , (1.5)

where L is self-adjoint. Other variational representations in terms of the quantum
relative entropy were given by Hiai and Petz [11, Lemma 1.2]:

log Tr exp(L + log A) = max
X>0,TrX=1

{TrXL − D(X | A)} , (1.6)
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and for X > 0 and TrX = 1,

D(X | A) = max
L

{TrXL − log Tr exp(L + log A)} , (1.7)

where A > 0, and L = L∗. Note that the identities (1.6) and (1.7) reduce to (1.4) and
(1.5) when A = I . See [20] for the various relations between the above variational
representations. Furuichi [5] extended the two representations above to the deformed
logarithmic and exponential functions with parameter q ∈ [1, 2]:

logq Tr expq(L + logq A) = max
X>0,TrX=1

{
TrLX2−q − D2−q(X | A)

}
, (1.8)

and if X > 0 and TrX = 1,

D2−q(X | A) = max
L

{
TrLX2−q − logq Tr expq(L + logq A)

}
, (1.9)

where A > 0, L is self-adjoint and D2−q(X | A) denotes the Tsallis relative quantum
entropy with parameter 2 − q.

In Sect. 2, we consider variational representations related to the deformed expo-
nential and logarithmic functions by making use of the tracial Young’s inequalities. In
Sect. 3, we derive variational representations related to the Tsallis relative entropies,
which may be considered extensions of equation (1.2). In Sect. 4, we consider the
generalization of the Gibbs variational representations and then tackle the variational
representations related to the Tsallis relative entropy under the conditions X > 0
and TrX = 1. Finally, in Sect. 5, we extend Golden–Thompson’s trace inequality to
deformed exponentials with deformation parameter q ∈ [0, 1).

Throughout this paper, the deformed logarithm denoted logq is defined by setting

logq x =
⎧
⎨

⎩

xq−1 − 1

q − 1
q �= 1,

log x q = 1,
x > 0.

The deformed logarithm is also denoted the q-logarithm. The deformed exponential
function or the q-exponential is defined as the inverse function to the q-logarithm. It
is denoted by expq and is given by the formula

expq x =
⎧
⎨

⎩

(x(q − 1) + 1)1/(q−1), x > −1/(q − 1), q > 1,
(x(q − 1) + 1)1/(q−1), x < −1/(q − 1), q < 1,
exp x, x ∈ R, q = 1.

The Tsallis relative entropy Dp(X | Y ) is for positive definite matrices X ,Y and
p ∈ [0, 1) defined, see [18], by setting

Dp(X | Y ) = Tr(X − X pY 1−p)

1 − p
= TrX p(log2−p X − log2−p Y ),
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and the definition may be extended to positive semi-definite matrices. The expression
converges for p → 1 to the relative quantumentropy D(X | Y ) introducedbyUmegaki
[19]. It is known that theTsallis relative entropy is nonnegative for states [6, Proposition
2.4]; see also [9, Lemma 1] for a direct proof of the nonnegativity.

2 Variational representations for some trace functions

We consider variational representations related to the deformed logarithm functions.

Lemma 2.1 For positive definite operators X and Y , we have

TrY =
⎧
⎨

⎩

max
X>0

{
TrX − TrX2−q (

logq X − logq Y
)}

, q ≤ 2,

min
X>0

{
TrX − TrX2−q (

logq X − logq Y
)}

, q > 2.

Proof For positive definite operators X and Y , the tracial Young inequality states that

TrX pY 1−p ≤ pTrX + (1 − p)TrY , p ∈ [0, 1].

As for the reverse tracial Young inequalities, we refer the readers to the proof of [3,
Lemma 12] from which we extracted the inequality

TrXs ≤ sTrXY + (1 − s)TrY−s/(1−s), 0 < s < 1.

Replacing s by 1/p and then replacing X by X p and Y by Y 1−p, it follows for p > 1
that

TrX pY 1−p ≥ pTrX + (1 − p)TrY .

It is also easy to see that the above inequality holds for p < 0. Thus, it follows that

TrY ≥ TrX − TrX − TrX pY 1−p

1 − p
, 0 ≤ p < 1 or 1 < p < ∞,

and

TrY ≤ TrX − TrX − TrX pY 1−p

1 − p
, p ∈ (−∞, 0).

For X = Y , the above inequalities become equalities, and hence

TrY =

⎧
⎪⎪⎨

⎪⎪⎩

max
X>0

{
TrX − TrX − TrX pY 1−p

1 − p

}
, 0 ≤ p < 1 or 1 < p < ∞,

min
X>0

{
TrX − TrX − TrX pY 1−p

1 − p

}
, p ∈ (−∞, 0).
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Setting q = 2 − p, we obtain

TrY

=

⎧
⎪⎪⎨

⎪⎪⎩

max
X>0

{
TrX − TrX2−q

(
Xq−1 − Yq−1

)

q − 1

}
, −∞ < q < 1 or 1 < q ≤ 2,

min
X>0

{
TrX − TrX2−q

(
Xq−1 − Yq−1

)

q − 1

}
, q ∈ (2,∞).

This proves the assertions except for the case q = 1. For q = 1, the assertion reduces
to the identity

TrY = max
X>0

{
TrX − TrX (log X − log Y )

}
,

which follows from the well-known inequality D(X | Y ) ≥ Tr(X − Y ). 	

Theorem 2.2 Let H be a contraction. For a positive definite operator A, we have the
variational representations

Tr expq
(
H∗ logq(A)H

)

=
⎧
⎨

⎩

max
X>0

{
TrX − TrX2−q (

logq X − H∗ logq(A)H
)}

, q ≤ 2,

min
X>0

{
TrX − TrX2−q (

logq X − H∗ logq(A)H
)}

, q > 2.

Proof Since H is a contraction, it follows for q > 1 that

H∗ logq(A)H >
−1

q − 1
.

By setting Y = expq
(
H∗ logq(A)H

)
in Lemma 2.1, we obtain the conclusions in the

case q ≥ 1. For q < 1, we have

H∗ logq(A)H <
−1

q − 1
.

SettingY = expq
(
H∗ logq(A)H

)
in Lemma 2.1, we obtain the conclusions for q < 1.

	

Corollary 2.3 Let H be a contraction and consider the map

ϕ(A) = Tr expq
(
H∗ logq(A)H

)

defined in positive definite operators. The following assertions are valid:

(i) ϕ(A) is concave for 0 ≤ q < 1,
(ii) ϕ(A) is concave for 1 ≤ q ≤ 2,
(iii) ϕ(A) is convex for 2 < q ≤ 3.
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Proof By calculation, we obtain

TrX − TrX2−q (
logq X − H∗ logq(A)H

)

=
(
1 − 1

q − 1

)
TrX + 1

q − 1

[
TrX2−q(I − H∗H) + TrX2−q H∗Aq−1H

]
.

Under the assumption in (i), we have

1 < 2 − q ≤ 2, −1 ≤ q − 1 < 0, (2 − q) + (q − 1) = 1.

By Ando’s convexity theorem [1], the trace function TrX2−q H∗Aq−1H is thus jointly
convex in (X , A). We also realize that TrX2−q(I − H∗H) is convex in X . Therefore,

TrX − TrX2−q (
logq X − H∗ logq(A)H

)

is jointly concave in (X , A). Hence, by Theorem 2.2 and [4, Lemma 2.3], we obtain
that ϕ(A) is concave for 0 ≤ q < 1. Under the assumption in (i i), we have

0 ≤ 2 − q ≤ 1, 0 ≤ q − 1 ≤ 1, (2 − q) + (q − 1) = 1.

By Lieb’s concavity theorem [12], the trace function Tr X2−q H∗Aq−1H is jointly
concave in (X , A). The expression

TrX − TrX2−q (
logq X − H∗ logq(A)H

)

is therefore also jointly concave in (X , A). By Theorem 2.2 and [4, Lemma 2.3] we
obtain that ϕ(A) is concave for 1 ≤ q ≤ 2. Under the assumption in (i i i), we have

−1 ≤ 2 − q < 0, 1 < q − 1 ≤ 2, (q − 1) + (2 − q) = 1.

By Ando’s convexity theorem [1], the trace function Tr X2−q H∗Aq−1H is jointly
convex in (X , A). Since obviously TrX2−q(I − H∗H) is convex in X , we obtain that

TrX − TrX2−q (
logq X − H∗ logq(A)H

)

is jointly convex in (X , A). Hence, ϕ(A) is convex for 2 < q ≤ 3, by Theorem 2.2
and [4, Lemma 2.3]. 	

Remark 2.4 The second author [8] proved the cases 1 ≤ q ≤ 2 and 2 ≤ q ≤ 3 in the
above corollary by another method. The case 0 ≤ q < 1 may be similarly proved by
using that the trace function

A → Tr(H∗Aq−1H)1/(q−1)

is concave for 0 ≤ q < 1 (see [2]).
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Proposition 2.5 Let H be a contraction.

(i) If 1 < q ≤ 2, then for positive definite A and self-adjoint L such that

L + H∗ logq(A)H > − 1

q − 1
,

we have the equality

Tr expq(L + H∗ logq(A)H)

= max
X>0

{
TrX + TrX2−q L − TrX2−q (

logq X − H∗ logq(A)H
)}

.

(ii) If q > 2, then for positive definite A and self-adjoint L such that

L + H∗ logq(A)H > − 1

q − 1
,

we have the equality

Tr expq(L + H∗ logq(A)H)

= min
X>0

{
TrX + TrX2−q L − TrX2−q (

logq X − H∗ logq(A)H
)}

.

(iii) If q < 1, then for positive definite A and self-adjoint L such that

L + H∗ logq(A)H < − 1

q − 1
,

we have the equality

Tr expq(L + H∗ logq(A)H)

= max
X>0

{
TrX + TrX2−q L − TrX2−q (

logq X − H∗ logq(A)H
)}

.

Proof Under the assumptions of (i), (i i) and (i i i), the expression expq(L +
H∗ logq(A)H) is well defined and positive definite. By setting Y = expq(L +
H∗ logq(A)H) in Lemma 2.1, we obtain (i), (i i) and (i i i). 	

Corollary 2.6 Let H be a contraction, and let L be positive definite. The map

A → Tr expq(L + H∗ logq(A)H),

defined in positive definite operators, is concave for 1 < q ≤ 2 and convex for
2 < q ≤ 3. The map

A → Tr expq(−L + H∗ logq(A)H),

defined in positive definite operators, is concave for 0 ≤ q < 1.
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Proof If 1 < q ≤ 2, the map X → TrX2−q L is concave. By an argument similar to
the proof of Corollary 2.3(ii), we obtain that the expression

TrX − TrX2−q (
logq X − H∗ logq(A)H

)

is jointly concave in (X , A). Then, obviously

TrX + TrX2−q L − TrX2−q (
logq X − H∗ logq(A)H

)

is jointly concave in (X , A). By Proposition 2.5(i) and [4, Lemma 2.3], we then
conclude that

Tr expq(L + H∗ logq(A)H)

is concave in A for 1 < q ≤ 2. The case for 2 < q ≤ 3 can be proved by a similar
argument as above. If 0 ≤ q < 1, then the map X → Tr X2−q L is convex. By an
argument similar to the proof of Corollary 2.3(i), we obtain that the expression

TrX − TrX2−q (
logq X − H∗ logq(A)H

)

is jointly concave in (X , A). Thus,

TrX − TrX2−q L − TrX2−q (
logq X − H∗ logq(A)H

)

is jointly concave in (X , A). By Proposition 2.5(iii) and [4, Lemma 2.3], we then
obtain that

Tr expq(−L + H∗ logq(A)H)

is concave in A for 0 ≤ q < 1. 	

Letting q → 1 in Corollary 2.6, we obtain:

Corollary 2.7 Let H be a contraction, and let L be self-adjoint. The map

A → Tr exp(L + H∗ log(A)H)

is concave in positive definite operators.

The corollary was shown in a more general setting in Theorem 3 of Lieb and
Seiringer [14] and in Theorem 2.5 of an earlier paper of Hiai [10].

Proposition 2.8 Let H be a contraction, and let L be positive definite. The map

A → Tr expq
(
L + H∗ logr (A)H

)

is convex in positive definite operators for q, r ∈ [2, 3] with r ≥ q.
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Proof Since H is a contraction and r ≥ q ≥ 2, we obtain the inequalities

H∗ logr (A)H >
−1

r − 1
≥ −1

q − 1
.

We may thus apply the deformed exponential and set Y = expq
(
L + H∗ logr (A)H

)

in Lemma 2.1 to obtain

Tr expq(L + H∗ logr (A)H)

= min
X>0

{
TrX + TrX2−q L − TrX2−q (

logq X − H∗ logr (A)H
)}

= min
X>0

{(
1 − 1

q − 1

)
TrX + TrX2−q

(
L + 1

q − 1
− H∗H

r − 1

)

+ 1

r − 1
TrX2−q H∗Ar−1H

}
,

where by the assumptions

2 − q ∈ [−1, 0], r − 1 ∈ [1, 2], (r − 1) + (2 − q) ≥ 1.

ByAndo’s convexity theorem and [4, Lemma2.3], we then get the desired conclusions.
	


3 Variational expressions related to Tsallis relative entropy

Theorem 3.1 Let H be a contraction. For positive definite operators X and A, the
following assertions hold:

(i) For 1 < q ≤ 2, we have the equality

TrX2−q (
logq X − H∗ logq(A)H

)

= max
L>−H∗ logq (A)H−(q−1)−1

{
TrX + TrX2−q L − Tr expq(L + H∗ logq(A)H)

}
.

(ii) For q > 2, we have the equality

TrX2−q (
logq X − H∗ logq(A)H

)

= min
L>−H∗ logq (A)H−(q−1)−1

{
TrX + TrX2−q L − Tr expq(L + H∗ logq(A)H)

}
.

(iii) For q < 1, we have the equality

TrX2−q (
logq X − H∗ logq(A)H

)

= max
L<−H∗ logq (A)H−(q−1)−1

{
TrX + TrX2−q L − Tr expq(L + H∗ logq(A)H)

}
.
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Proof Under the assumptions in (i) and the natural condition

L + H∗ logq(A)H > − 1

q − 1
,

ensuring that expq(L + H∗ logq(A)H) makes sense, we set

G(L) = TrX + TrX2−q L − Tr expq(L + H∗ logq(A)H)

and obtain that G(L) is concave. By Proposition 2.5(i), we then obtain the inequality

G(L) ≤ TrX2−q (
logq X − H∗ logq(A)H

)
.

Inserting L0 = logq X − H∗ logq(A)H yields

G(L0) = TrX2−q (
logq X − H∗ logq(A)H

)
,

such that G(L) attains its maximum in L0. Thus, we obtain

max
L>−H∗ logq (A)H−(q−1)−1

G(L) = TrX2−q (
logq X − H∗ logq(A)H

)
,

which proves (i). The case (i i) can be proved by a similar argument. Under the
assumptions in (i i i), and the condition

L + H∗ logq(A)H < − 1

q − 1
,

we set

G(L) = TrX + TrX2−q L − Tr expq(L + H∗ logq(A)H)

and obtain thatG(L) is concave. By Proposition 2.5(iii), we then obtain the inequality

G(L) ≤ TrX2−q (
logq X − H∗ logq(A)H

)
.

Inserting L0 = logq X − H∗ logq(A)H yields

G(L0) = TrX2−q (
logq X − H∗ logq(A)H

)

such that G(L) attains its maximum in L0. Hence,

max
L<−H∗ logq (A)H−(q−1)−1

G(L) = TrX2−q (
logq X − H∗ logq(A)H

)
,

which proves (i i i). 	
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Setting H = I , we obtain in particular

Corollary 3.2 The equality

D2−q(X | A) = TrX2−q (
logq X − logq A

)

= max
L+logq A>−(q−1)−1

{
TrX + TrX2−q L − Tr expq(L + logq A)

}

(3.1)

holds for q ∈ (1, 2].
Corollary 3.2maybe considered as a variational representation of theTsallis relative

entropy. Letting q → 1, we recover the well-known representation:

D(X | A) = TrX (log X − log A)

= max
L

{TrX + TrXL − Tr exp(L + log A)} ,

where the supremum is taken over self-adjoint L.This variational expression of D(X |
A) was essentially given by Tropp [16] as mentioned in Introduction. However, this
was formerly given by Petz [15] in the von Neumann algebra setting.

4 Variant representations related to Tsallis relative entropy

In this section, we generalize the Gibbs variational representations and the variational
representations in terms of the quantum relative entropy obtained by Hiai and Petz
[11]. We recall the Peierls–Bogolyubov-type inequalities for deformed exponentials
and quote from [9, Theorem 7].

Lemma 4.1 Let A and B be self-adjoint n×n matrices. The following assertions hold:

(i) If q < 1, and both A and A + B are bounded from above by −(q − 1)−1, then

logq Tr expq(A + B) − logq Tr expq A ≥ (
Tr expq A

)q−2Tr(expq A)2−q B.

(ii) If 1 < q ≤ 2, and both A and A + B are bounded from below by −(q − 1)−1,

then

logq Tr expq(A + B) − logq Tr expq A ≥ (
Tr expq A

)q−2Tr(expq A)2−q B.

(iii) If q ≥ 2, and both A and A + B are bounded from below by −(q − 1)−1, then

logq Tr expq(A + B) − logq Tr expq A ≤ (
Tr expq A

)q−2Tr(expq A)2−q B.

Using these Peierls–Bogolyubov-type inequalities, we obtain:

Theorem 4.2 The following variational representations hold:
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(i) If q < 1, then for L < −(q − 1)−1,

logq Tr expq L = max
X>0,TrX=1

{
TrX2−q L − TrX2−q logq X

}
,

and for X > 0 with TrX = 1,

TrX2−q logq X = max
L<−(q−1)−1

{
TrX2−q L − logq Tr expq L

}
.

(ii) If 1 < q ≤ 2, then for L > −(q − 1)−1,

logq Tr expq L = max
X>0,TrX=1

{
TrX2−q L − TrX2−q logq X

}
,

and for X > 0 with TrX = 1,

TrX2−q logq X = max
L>−(q−1)−1

{
TrX2−q L − logq Tr expq L

}
.

(iii) If q > 2, then for L > −(q − 1)−1,

logq Tr expq L = min
X>0,TrX=1

{
TrX2−q L − TrX2−q logq X

}
,

and for X > 0 with TrX = 1,

TrX2−q logq X = min
L>−(q−1)−1

{
TrX2−q L − logq Tr expq L

}
.

Proof We just prove the case of 1 < q ≤ 2. For X > 0 with TrX = 1 and setting
A = logq X , we have Tr expq A = 1. By (i i) of Lemma 4.1, we thus obtain

TrX2−q B ≤ logq Tr expq(logq X + B),

which holds for X > 0 with Tr X = 1 and B with logq X + B > −(q − 1)−1.

Replacing B with L − logq X yields

TrX2−q L ≤ logq Tr expq L + TrX2−q logq X , (4.1)

which is valid for X > 0 with TrX = 1 and L > −(q − 1)−1. It is easy to see that for
a fixed X , there is equality in (4.1) for L = logq X . We thus obtain

TrX2−q logq X = max
L>−(q−1)−1

{
TrX2−q L − logq Tr expq L

}
.
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By an elementary calculation, we obtain the equalities

logq
y

x
= logq y + yq−1 logq

1

x

and

logq
1

x
= −x1−q logq x

for q ∈ R. Therefore,

logq
expq L

Tr expq L
= logq expq L + (expq L)q−1 logq

1

Tr expq L

= L − (expq L)q−1(Tr expq L)1−q logq Tr expq L.

It follows that

logq Tr expq L + Tr

⎡

⎣
(

expq L

Tr expq L

)2−q

logq

(
expq L

Tr expq L

)⎤

⎦

= logq Tr expq L + Tr(expq L)2−q L

(Tr expq L)2−q
− Tr expq L(Tr expq L)1−q logq Tr expq L

(Tr expq L)2−q

= Tr

(
expq L

Tr expq L

)2−q

L.

For a fixed L , we therefore have equality in (4.1) for X = (Tr expq L)−1 expq L.

Hence,

logq Tr expq L = max
X>0,TrX=1

{
TrX2−q L − TrX2−q logq X

}

for L > −(q − 1)−1. The cases for q < 1 and q > 2 are proved by similar reasoning.
	


By replacing L with L + H∗ logq(Y )H in Theorem 4.2, we obtain:

Theorem 4.3 Assume H∗H ≤ I . For any positive definite operator Y , the following
assertions hold:

(i) If q < 1, then for L ≤ 0 we have the equality

logq Tr expq(L + H∗ logq(Y )H)

= max
X>0,TrX=1

{
TrX2−q L − TrX2−q (

logq X − H∗ logq(Y )H
)}

,
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and for X > 0 with TrX = 1 the equality

TrX2−q (
logq X − H∗ logq(Y )H

)

= max
L≤0

{
TrX2−q L − logq Tr expq(L + H∗ logq(Y )H)

}
.

(ii) If 1 < q ≤ 2, then for L ≥ 0 we have the equality

logq Tr expq(L + H∗ logq(Y )H)

= max
X>0,TrX=1

{
TrX2−q L − TrX2−q (

logq X − H∗ logq(Y )H
)}

,

and for X > 0 with TrX = 1 the equality

TrX2−q (
logq X − H∗ logq(Y )H

)

= max
L≥0

{
TrX2−q L − logq Tr expq(L + H∗ logq(Y )H)

}
.

(iii) If q > 2, then for L ≥ 0 we have the equality

logq Tr expq(L + H∗ logq(Y )H)

= min
X>0,TrX=1

{
TrX2−q L − TrX2−q (

logq X − H∗ logq(Y )H
)}

,

and for X > 0, TrX = 1 the equality

TrX2−q (
logq X − H∗ logq(Y )H

)

= min
L≥0

{
TrX2−q L − logq Tr expq(L + H∗ logq(Y )H)

}
.

Remark 4.4 We note that the cases 1 < q ≤ 2 in Theorem 4.2 and 1 < q ≤ 2 with
H = I in Theorem 4.3 were first obtained by Furuichi in [5], who gave a different
proof. Note also that when q → 1,we recover Gibbs’ variational principle for the von
Neumann entropy S(X) = −TrX log X together with the variational representations
related to the quantum relative entropy obtained by Hiai and Petz, when L is self-
adjoint. Moreover, we can derive convexity or concavity of the map

Y → logq Tr expq(L + H∗ logq(Y )H)

by using the joint convexity or concavity of the Tsallis entropy-type functionals:

(X ,Y ) → TrX2−q (
logq X − H∗ logq(Y )H

)
,

which in turn recovers the Peierls–Bogolyubov-type inequalities for deformed expo-
nentials. Note that the joint convexity or concavity for the Tsallis entropy-type
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functionals can be traced back to Lieb’s concavity theorem and Ando’s convexity
theorem, as demonstrated in Corollary 2.3.

Now, we consider two types of variational expressions with and without the restric-
tion TrX = 1. A special case of Theorem 2.2 states that

expq s = max
λ>0

{
λ − λ2−q(logq λ − s)

}
, q ≤ 2, (4.2)

and

expq s = min
λ>0

{
λ − λ2−q(logq λ − s)

}
, q > 2, (4.3)

for numbers s such that expq s is defined. The above formulas may be viewed as
Legendre–Fenchel-type dualities for deformed exponentials. The inequalities (4.2)
and (4.3) may also easily be obtained from the scalar Young’s inequality and its
reverse inequality. We now recover Theorem 2.2 from Theorem 4.3 and the above
scalar Legendre–Fenchel dualities. For 1 < q ≤ 2 and by using Theorem 4.3 (i i), we
obtain

max
X>0

{
TrX + TrX2−q L − TrX2−q (

logq X − H∗ logq(Y )H
)}

= max
λ>0

max
X̄>0,Tr X̄=1

{
TrλX̄ + Tr(λX̄)2−q L − Tr(λX̄)2−q (

logq(λX̄)

−H∗ logq(Y )H
)}

= max
λ>0

max
X̄>0,Tr X̄=1

{
λ2−q

(
Tr X̄2−q L − Tr X̄2−q(logq X̄ − H∗ logq(Y )H)

)

+λ − λ2−q logq λ
}

= max
λ>0

{
λ2−q logq Tr expq(L + H∗ logq(Y )H) + λ − λ2−q logq λ

}

= Tr expq(L + H∗ logq(Y )H),

where the last equality follows from (4.2). The cases for q < 1 and q > 2 are proved
by similar reasoning.

5 Golden–Thompson’s inequality for deformed exponentials

The second author generalizedGolden–Thompson’s trace inequality to q-exponentials
with deformation parameter q ∈ [1, 3]. We will now address the same question for
parameter values q ∈ [0, 1). The following result is an easy consequence of Corollary
2.3.
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Corollary 5.1 Let H1, . . . , Hk bematriceswith H∗
1 H1+· · ·+H∗

k Hk = I .The function

ϕ(A1, . . . , Ak) = Tr expq

(
k∑

i=1

H∗
i logq(Ai )Hi

)

, (5.1)

defined in k-tuples of positive definite matrices, is concave for q ∈ [0, 1).
The second author [8, Theorem 3.1] proved that ϕ is positively homogeneous of

degree one. Since ϕ is concave for q ∈ [0, 1) and by appealing to [8, Lemma 2.1], we
may reason as in [8, Corollary 3.4] to obtain:

Corollary 5.2 The function ϕ defined in (5.1) satisfies the inequality

ϕ(B1, . . . , Bk) ≤ Tr expq

(
k∑

i=1

H∗ logq(Ai )Hi

)2−q k∑

j=1

H∗
j

(
d logq(A j )Bj

)
Hj

for 0 ≤ q < 1, where d logq(A) denotes the Fréchet differential of logq(A).

Theorem 5.3 Let A and B be negative definite matrices. The inequality

Tr expq(A + B) ≤ Tr expq(A)2−q (
A(q − 1) + expq B

)

holds for 0 ≤ q < 1.

Proof In Corollary 5.2, we set k = 2, A1 = B1 and A2 = I . We then obtain the
inequality

ϕ(B1, B2) ≤ Tr expq(H
∗
1 logq(B1)H1)

2−q(H∗
1 B

q−1
1 H1 + H∗

2 B2H2) (5.2)

for 0 ≤ q < 1. Furthermore, we set H1 = ε1/2 for 0 < ε < 1. To fixed negative
definite matrices L1 and L2, we may choose B1 and B2 such that

L1 = H∗
1 logq(B1)H1 = ε logq(B1),

L2 = H∗
2 logq(B1)H2 = (1 − ε) logq(B2).

By inserting these operators in inequality (5.2), we obtain

Tr expq(L1 + L2)

≤ Tr expq(L1)
2−q(ε expq(ε

−1L1)
q−1 + (1 − ε) expq((1 − ε)−1L2)

)

= Tr expq(L1)
2−q(L1(q − 1) + ε + (1 − ε) expq((1 − ε)−1L2)

)
.

Since limε→0(1 − ε) expq((1 − ε)−1L2) = expq(L2), we obtain

Tr expq(L1 + L2) ≤ Tr expq(L1)
2−q(L1(q − 1) + expq(L2)

)
.

Finally, by replacing L1 and L2 with A and B, the assertion follows. 	
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Letting q → 1, we recover the Golden–Thompson inequality

Tr exp(A + B) ≤ Tr exp(A) exp(B),

firstly only for negative definite operators. However, by adding suitable constants to
A and B, we obtain the trace inequality for arbitrary self-adjoint operators.
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