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Abstract
We study the quantum open system evolution described by a Gorini–Kossakowski–
Sudarshan–Lindblad generatorwith creation and annihilation operators arising in Fock
representations of the sl2 Lie algebra. We show that any initial density matrix evolves
to a fully supported density matrix and converges towards a unique equilibrium state.
We show that the convergence is exponentially fast and we exactly compute the rate
for a wide range of parameters. We also discuss the connection with the two-photon
absorption and emission process.

Keywords Quantum harmonic oscillator · Quantum Markov semigroup · Fock
representations of the sl2 algebra · Spectral gap
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1 Introduction

Models of quantum harmonic oscillators are usually based on commutation relations.
The Heisenberg–Weyl algebra commutation relations [H , A] = −A, [H , A+] = A+,
[A, A+] = 1, or in terms of position Q = (A+ + A)/

√
2 and momentum P =

i(A+ − A)/
√
2, [H , Q] = −iP , [H , P] = iQ, [Q, P] = i are the foundation

at the best known one. This model arises, for instance, replacing time derivatives
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in the classical equation q ′′ = −q by commutators with the Hamiltonian operator
H = (P2 + Q2)/2 so that we can write it as [H , [H , Q]] = Q. If we fix H and
define P = i[H , Q], then the double commutator equation reads as [H , P] = iQ and
if, moreover, we want H , P, Q to be elements of a Lie algebra, the Jacobi identity
[H , [P, Q]] + [P, [Q, H ]] + [Q, [H , P]] = 0 implies that [P, Q] commutes with
H . The most natural choice as −i1 corresponds to the commutation relations of the
Heisenberg–Weyl algebra.

Other choices lead to different models of quantum oscillators (see, for instance, [6]
and the references therein), and for some of them, it is possible to develop a complete
theory describing explicitly spectra of observables, eigenvectors, time evolution, etc.
The choice [P, Q] = −2iH corresponds to the commutation relations of the sl2 Lie
algebra.

This is a three-dimensional simple ∗-Lie algebra with basis {B+, B, M}, commu-
tation relations [B, B+] = M , [M, B+] = 2B+, [M, B] = −2B and involution
B∗ = B+, M∗ = M . The construction of Fock representations of sl2 Lie algebra
and of the current algebra associated to its central extension motivated a large number
of papers extending it in different directions: see Ref. [26] for the case of free white
noise; Ref. [4] for the connection with quantum Lévy processes; Refs. [1,2,10,11] for
the construction of the quadratic Fock functor.

The weak coupling limit (see [5]) of an harmonic oscillator coupled with a reser-
voir in equilibrium with inverse temperature β > 0 gives rise to a fundamental model
of an open quantum system with a lot of deep properties and quantities that can be
computed explicitly called in the literature the open quantum harmonic oscillator (see,
e.g. Ref. [21] and the references therein). If we consider, instead, the formal Gorini-
Kossakowski–Sudarshan–Lindblad (GKSL) generator arising in the weak coupling
limit of an oscillator based on the Fock representations of sl2 commutation relations,
we find

L(x) = −λ2

2

(
BB+x − 2BxB+ + x BB+)

−μ2

2

(
B+Bx − 2B+x B + x B+B

) + i[ζ+BB+ + ζ−B+B, x ] (1)

where ζ±, λ, μ are real parameters and λ,μ > 0. This is called the quadratic open
quantum harmonic oscillator because the operators B, B+ are the annihilation and
creation operators arising in Fock representations of sl2 and the action of BB+ and
B+B [see formulae (2)] is quadratic with respect to the level of the system while, for
the open quantum harmonic oscillator, it is linear. Constants λ2, μ2 are related with
the inverse temperature β by λ2μ−2 = e−sβ for some s > 0.

This is a simple and natural model; however, contrary to what happens for the
open quantum harmonic oscillator, it does not admit explicit solutions except for the
formula of the invariant state. As an example, if one looks at the action on the Abelian
algebra of functions of the number operator, one finds a birth and death process with
quadratic jump rates for which explicit representations for transition probabilities, to
the best of our knowledge (see Ref. [25]), are not known.
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In this paper, we first show that the formal GKSL generator with unbounded oper-
ators B, B+ generates a unique quantum Markov semigroup and we establish the
existence of a unique explicit equilibrium state. Then, we study the behaviour of the
evolution of states and observables for all values of parameters involved.We prove that
any initial state converges towards the unique equilibrium state for the trace norm (The-
orem 1). We also prove (Theorem 3) that any initial state ρ0, in particular also a pure
state, evolves to a faithful state ρt for all t > 0. Moreover, we show that, for some spe-
cial values of a parameter r determining the Fock representation of the sl2 commutation
relations this model is intimately related with the two-photon absorption and emission
process studied in [8,16]. Finally, we show that convergence towards the unique invari-
ant state is exponentially fast (with respect to the Hilbert–Schmidt norm induced by
the invariant state) and we also compute the sharp exponential rate for a wide range of
parameters (Theorem 6). Our analysis shows, in particular, that the decay rate of off-
diagonal terms of density matrices is smaller than the rate of convergence of the diago-
nal part towards the unique equilibrium state formore andmore values of the parameter
r as the inverse temperature β becomes big, i.e. the reservoir becomes cooler. In other
words, at low temperatures, decoherence is slower than relaxation for r away from 0.

The paper is organized as follows. In Sect. 2,we introduce themodel of the quadratic
open quantum harmonic oscillator. The full characterization of invariant states and the
asymptotic behaviour of the associated quantum Markov semigroup are studied in
Sect. 3. The close relationship with two-photon absorption and emission process is
studied in Sect. 4. In Sect. 5, we show that for all initial state the support of the state
evolved at any time t > 0 is full. The rate of the exponentially fast convergence
towards the unique invariant state is studied in Sect. 6.

2 Themodel

Let h be the Hilbert space h = �2(N) � Γ (C) with canonical orthonormal basis
(en)n≥0. We consider the operators B, B+, M of the Fock representation of the renor-
malized square of the white noise Lie algebra B, B+ and M with domain

Dom(B) = Dom(B+) = Dom(M) =
⎧
⎨

⎩
u =

∑

n≥0

unen
∣∣∣
∑

n≥0

n2|un|2 < ∞
⎫
⎬

⎭

defined, on vectors of the canonical orthonormal basis, by

Ben = ω
1/2
n en−1, for n > 0, Be0 = 0,

B+en = ω
1/2
n+1en+1

Men = (2n + r)en, (2)

where r > 0 is a real parameter (see Ref. [4] Section 3.2 p. 134 for the explanation
why r must be non-negative) and

ωn = n(n + r − 1)

which is strictly positive for all n ≥ 1 and satisfies ω0 = 0.
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Note that the domain of B, B+ and M coincides with the domain of the number
operator N defined by Nen = nen for all n ≥ 0.

We consider the formal Lindblad generator (1) which is of weak coupling limit type
(see Refs. [3,5]) since it arises in the weak coupling limit of a system with Hilbert
space �2(N) and Hamiltonian HS given by a constant s > 0 times the number operator
N coupled to a Boson reservoir in equilibrium with inverse temperature β > 0 and
interaction operator

B ⊗ A+(g) + B+ ⊗ A(g).

Constants λ2, μ2 satisfy λ2μ−2 = e−sβ for some s > 0.
Moreover (see Sect. 4) for r = 1/2 (resp. r = 3/2) and a suitable choice of the real

constants ζ−, ζ+ we find the even (resp. odd) part of the two-photon absorption and
emission generator studied in Refs. [8,16].

LetG be the operator defined on Dom(N 2), the domain of the square of the number
operator, by

G = −λ2

2
BB+ − μ2

2
B+B − i

(
ζ+BB+ + ζ−B+B

)

and let L1, L2 be the operators defined on Dom(N ) by

L1 = μB, L2 = λB+.

Clearly G is a function of the number operator N and since

G = −
(

λ2

2
+ iζ+

)
ωN+1 −

(
μ2

2
+ iζ−

)
ωN

with negative real part, it generates a strongly continuous semigroup of contractions
(Pt )t≥0 on h explicitly given by

Pten = e
−t

((
λ2
2 +iζ+

)
ωn+1+

(
μ2

2 +iζ−
)

ωn

)

en .

For every x ∈ B(h), the formal generator is the sesquilinear form

L−(x)[u, v] = 〈Gu, xv〉 +
2∑

�=1

〈L�u, xL�v〉 + 〈u, xGv〉, (3)

for u, v ∈ Dom(G) = Dom(N 2). One can easily check that conditions for construct-
ing the minimal quantum dynamical semigroup (QDS) associated with the above
G, L1, L2 [(H-min) in Ref. [12]] hold and this semigroup T = (Tt )t≥0 satisfies the
so-called Lindblad equation
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Quadratic open quantum harmonic oscillator 1763

〈v, Tt (x)u〉 = 〈v, P∗
t x Ptu〉 +

2∑

�=1

∫ t

0
〈L�Pt−sv, Ts(x)L�Pt−su〉 ds, (4)

for all u, v ∈ Dom(G).
A straightforward computation using the CCR (it could be done considering

quadratic forms on the linear manifold generated by vectors (en)n≥0 if one wants
to cope with unboundedness of the involved operators but we prefer to simplify the
notation) shows that

L−( f (N )) = λ2(N + 1)(N + r) ( f (N + 1) − f (N ))

+μ2N (N + r − 1) ( f (N − 1) − f (N )) .

Taking f (n) = (n + 1)2, for n ≥ 1 − r , we easily find

λ2(n + 1)(n + r) ( f (n + 1) − f (n)) + μ2n(n + r − 1) ( f (n − 1) − f (n))

= 2(λ2 − μ2)n3 + (λ2(2r + 3) + μ2(2r − 3)))n2

+(λ2(3r + 1) + μ2(r − 1))n + λ2r

and, for 0 ≤ n < 1 − r , i.e. n = 0 we obviously find 0. Therefore, defining as b the
maximum of the three constants

∣∣∣λ2(2r + 3) + μ2(2r − 3)
∣∣∣ ,

∣∣λ2(3r + 1) + μ2(r − 1)
∣∣

2
, λ2|r |,

we have

L−((N + 1l)2) ≤ −2(μ2 − λ2)N 3 + b(N + 1l)2.

As a consequence, if λ ≤ μ, L− satisfies a well known criterion for conservativity
(Ref. [12] Theorem 3.40). Moreover, for λ > μ the formal generator satisfies a simple
criterion for conservativity, seeRef. [19], Example 2. Then theminimalQDS isMarkov
(or conservative) if and only if λ ≤ μ. It follows from conservativity that the minimal
QDS is the unique solution of Eq. (4). Moreover an operator x ∈ B(h) belongs to the
domain of the generator L if and only if the sesquilinear form L−(x) is bounded (see
Ref. [12] Prop. 3.33 p.64).

The action of L on the linear manifold M = span{|e j 〉〈ek | : j, k ≥ 0} of finite
range operators is given by

L(x) = i
∑

j,k

(ζ+(ω j+1 − ωk+1) + ζ−(ω j − ωk))x jk |e j 〉〈ek |

+
∑

j,k

(
μ2ω

1/2
k ω

1/2
j x j−1 k−1 − μ2

2
(ω j + ωk)x jk

+λ2ω
1/2
j+1ω

1/2
k+1x j+1 k+1 − λ2

2
(ω j+1 + ωk+1)x jk

)
|e j 〉〈ek |. (5)
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3 Invariant states and asymptotic behaviour

The behaviour of the quadratic open quantum harmonic oscillator and the structure
of its invariant states depends crucially upon the parameters λ and μ. We begin by
considering the case where μ > λ > 0. Notice that, as mentioned in the introduction,
since the parameters are related with the inverse temperature β by λ2/μ2 = e−βs , this
condition corresponds to β > 0.

Proposition 1 If ν = λ/μ < 1 then the normal state

ρ = (1 − ν2)
∑

n≥0

ν2n|en〉〈en| (6)

is invariant.

Proof Let L∗ be the generator of the predual semigroup T∗ = (T∗t )t≥0, acting on
the Banach space of trace class operators on h. Consider the approximations ρn =
(1 − ν2)

∑2n
k=0 ν2k |ek〉〈ek |, of ρ by finite rank operators.

The operators ρn belong to the domain of L∗ and we can write L∗(ρn) as (1− ν2)

times

n∑

k=0

λ2ν2kωk+1 (|ek+1〉〈ek+1| − |ek〉〈ek |) +
n∑

k=1

μ2ν2kωk (|ek−1〉〈ek−1| − |ek〉〈ek |)

=
n∑

k=1

(
λ2ν2(k−1) − μ2ν2k

)
ωk |ek〉〈ek | +

n−1∑

k=0

(
μ2ν2(k+1) − λ2ν2k

)
|ek〉〈ek |

+λ2ν2n (ωn+1|en+1〉〈en+1| − ωn|en〉〈en|) .

Terms in the above summations vanish because μ2ν2(k+1) = λ2ν2k for all k ≥ 0.
Moreover

lim
n→∞ ‖L∗(ρn)‖1 = lim

n→∞ λ2ν2n(ωn+1 + ωn) = 0

because λ < μ. Since the operatorL∗ is closed, it follows that ρ belongs to the domain
of L∗ and L∗(ρ) = 0. ��
Remark It is worth noticing here that the above invariant state is the thermal state for
the Hamiltonian dΓ (s) at inverse temperature β = s−1 log(μ2/λ2). It is now clear
that the condition λ < μ, that corresponds to β > 0, means that the absorption rate
is smaller than the emission rate. On the contrary, the opposite inequality λ > μ,
meaning that the absorption rate is greater that the emission rate, implies a continuous
heating of the system, hence the absence of an invariant state.

In order to show uniqueness of the invariant state (6), we begin by recalling that
the support projection p of an invariant state with density matrix ρ, i.e. the orthogonal
projection onto the range of ρ, satisfies Tt (p) ≥ p for all t ≥ 0 (see, e.g. [14]
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Theorem II.1). Such projections, called subharmonic, are easily characterized in terms
of invariant subspaces of operators Pt and L1, L2 considered in Sect. 2. A QMS is
called irreducible if the only subharmonic projections are the trivial ones 0, 1l. In this
case, it is well-known (see Ref. [18] Lemma 1) that a faithful invariant state, if it exists,
is unique because the set of fixed points for the QMS T is the trivial algebra C1l. In
our framework, we can prove the following.

Proposition 2 The QMS T is irreducible for all λ ≤ μ. In particular, if λ < μ, the
state (6) is the unique T -invariant state.

Proof The range of any non-trivial subharmonic projection determines an invariant
subspace for the operators Pt for all t > 0 (see Ref. [14] Theorem III.1). Since these
operators are normal and compact, these invariant subspaces are generated by eigen-
vectors of Pt . Moreover, knowing the spectral decomposition of Pt (it is a function of
the number operator!) we infer that they are generated by collections of vectors (en)n∈I
for some subset I ofN. Invariance of these subspaces for B and B+ implies then that
they must coincide with the whole of h. This proves that the QMS is irreducible.

If λ < μ the QMS admits the faithful invariant state (6) and so the set of fixed
points for the QMS T is the trivial algebraC1l. It follows then from Lemma 1 of Ref.
[18] that (6) is the unique invariant state. ��

Applying the main result of Ref. [9], we can also show convergence towards the
invariant state in trace norm. As a preliminary step, we prove the following result
which is interesting on its own

Proposition 3 If ν = λ/μ < 1 the decoherence free subalgebra

N (T ) = {
x ∈ B(h) | Tt (x∗x) = Tt (x∗)Tt (x), Tt (xx∗) = Tt (x)Tt (x∗), ∀t ≥ 0

}
.

and the fixed point algebra F(T ) = {x ∈ B(h) | Tt (x) = x ∀t ≥ 0} are trivial.
Proof It is well-known that N (T ) is a von Neumann subalgebra of B(h) (see, e.g.
Proposition 2.1 (3) of Ref. [9]). Moreover, since the invariant state ρ defined in (6) is
faithful, alsoF(T ) is a vonNeumann subalgebra ofB(h). Indeed, if x belongs toF(T ),
then, by 2-positivity, Tt (x∗x) ≥ Tt (x∗)Tt (x) = x∗x and tr(ρ(Tt (x∗x) − x∗x)) = 0
because ρ is invariant. It follows that Tt (x∗x) = x∗x , i.e. x∗x ∈ F(T ).

As a by-product, if x ∈ F(T ), then

Tt (x∗x) = x∗x = Tt (x∗)Tt (x),

and the same identity holds exchanging x and x∗, i.e. F(T ) is contained in N (T ).
Thus, it suffices to prove thatN (T ) is trivial. To this end, we apply Theorem 4.1 of

Ref. [9] characterizingN (T ) as the generalized commutator of the set of unbounded
operators

D (T ) :=
{
e−it H L� eit H , e−it H L∗

� eit H | � ≥ 1, t ≥ 0
}

. (7)
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where H = ζ+BB++ζ−B+B. The additional technical domain assumptions that can
be easily checked taking as D the linearmanifold spanned byfinite linear combinations
of vectors en of the orthonormal basis and as operator C the number operator or
(N + 1)2.

If X is an operator in the generalized commutator of (7), then it is, by definition of
generalized commutator, bounded and, in particular, it satisfies

XB ⊆ BX , XB+ ⊆ B+X

(meaning that BX is an ampliation of XB and B+X is an ampliation of XB+). It
follows that

XB+B ⊆ B+XB ⊆ B+BX , XBB+ ⊆ BXB+ ⊆ BB+X ,

and so, since the difference BB+ − B+B is 2N + r1l, N X is an ampliation of XN
and

X(s + N ) ⊆ (s + N )X

for all s > 0. Left and right multiplying by the resolvent (s+N )−1, since the operators
(s + N )−1X and X(s + N )−1 are bounded, we find (s + N )−1X = X(s + N )−1 for
all s > 0. This shows that X commutes with every spectral projection |en〉〈en| of the
number operator and so it is a function f (N ) of the number operator itself. However,
since ωn+1 > 0 for all n ≥ 0 if r > 0

f (N )B+en − B+ f (N )en = ω
1/2
n+1( f (n + 1) − f (n))en

vanishes if and only if f is constant and so the generalized commutator of (7) is trivial.
��

We are now in a position to prove the following.

Theorem 1 If 0 < ν = λ/μ < 1 then (6) is the unique invariant state and

lim
t→∞ T∗t (η) = ρ

in trace norm for all initial state η.

Proof Since F(T ) = N (T ) = C1 by Proposition 3, the conclusion is immediate
from Theorem 3.3 of Ref. [9]. ��

We complete the study of the asymptotic behaviour by the following.

Proposition 4 If λ = μ > 0 the QMS is transient. In particular, it has no invariant
state.
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Quadratic open quantum harmonic oscillator 1767

Proof By Theorem 5 Ref. [15], it suffices to find a strictly positive bounded operator
X such that Tt (X) ≤ X for all t ≥ 0. Inspired by a result on classical birth and death
processes ([22] Theorem 2 and Lemma 1), we consider the operator

X =
⎛

⎝
∑

k≥n

(k + 1)−1(k + r)−1

⎞

⎠ |en〉〈en|

which is clearly bounded since
∑

k≥0(k + 1)−1(k + r)−1 < ∞ and is a function of
the number operator. A straightforward computation shows that

L−(X) = −|e0〉〈e0| ≤ 0.

It follows that X belongs to the domain of L ([12] Prop. 3.33 p.64) and

d

dt
Tt (X) = −Tt (|e0〉〈e0|) ≤ 0

so that Tt (X) ≤ X for all t ≥ 0. Since the QMS T is transient, it has no invariant state
by Proposition 6 of Ref. [15]. ��

In the case where there is a faithful invariant state, it is not difficult to show that the
quantum detailed balance condition (in most of its quantum formulations as in [17])
holds.

4 Relationship with the two-photon absorption and emission process

The two-photon absorption and emission process quantumMarkov semigroup is gen-
erated by

Ltp(x) = i [ξ−a+2a2 + ξ+a2a+2, x]
−λ2

2

(
a2a+2x − 2a2xa+2 + xa2a+2

)

−μ2

2

(
a+2a2x − 2a+2xa2 + xa+2a2

)

where a, a+ are the usual annihilation and creation operators in h, λ,μ, ξ+, ξ− ∈ R,
λ ≤ μ.

This generator has been studied in Ref. [16] for ξ+ = 0; however, this does not
change any result of that paper. In particular, it has been proved that the even and odd
projections

pe =
∑

k≥0

|e2k〉〈e2k |, po =
∑

k≥0

|e2k+1〉〈e2k+1|
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are harmonic (i.e. invariant) for the QMS generated by Ltp. As a consequence, we
can consider the restricted semigroups T e and T o on the von Neumann subalgebras
peB(h)pe and poB(h)po, identified, respectively, with B(peh) and B(poh).

Let Ue,Uo be the unitary operators

Ue : h → peh, Ueek = e2k, Uo : h → poh, Uoek = e2k+1

A straightforward computation shows that, if r = 1/2,

UeBU
∗
e e2k = 2 a2e2k, UeB

+U∗
e e2k = 2 a+2e2k

and, if r = 3/2, similarly

UoBU
∗
o e2k+1 = 2 a2e2k+1, UoB

+U∗
o e2k+1 = 2 a+2e2k+1,

so that, in both cases,

Ue
(
ζ+BB+ + ζ−B+B

)
U∗
e = 4

(
ζ+a2a+2 + ζ−a+2a2

)

As a consequence, the quadratic open quantum harmonic oscillator generator L, for
ξ± = 4ζ±, satisfies

UeL(U∗
e xUe)U

∗
e = 4Ltp(pexpe) for r = 1/2

UoL(U∗
o xUo)U

∗
o = 4Ltp(poxpo) for r = 3/2

This shows that the QMS of the quadratic open quantum harmonic oscillator is
unitarily equivalent (up to the multiplicative constant 4) to the QMS obtained by
restriction of the two-photon absorption and emission process to the even (resp. odd)
states of the number operator for r = 1/2 (resp. r = 3/2), for a suitable choice of the
parameters ξ±, ζ±. This analogy will serve as an inspiration to study the exponential
speed of convergence towards the equilibrium state.

5 Instantaneous spread of state supports

In this section, we will show that for all initial state η the range of the support of the
state T∗t (η) at any time t > 0 is the whole of h.

This property follows from a recent result by Hachicha, Nasroui and Gliouez [20]
Theorem 3.3 for QMSs associated with operatorsG, L� (in our case L1 = λB+, L2 =
μB) constructed form generators.

Theorem 2 Suppose that G generates an analytic semigroup in a sector Δ = {z ∈
C | | arg z| < θ} with θ ∈]0, π

2 ] and, moreover, that

L�

(
Dom(Gk)

) ⊆ Dom
(
Gk−1) (8)
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Quadratic open quantum harmonic oscillator 1769

for all k > 0. For all state ω = ∑
j∈J ω j |ψ j 〉〈ψ j |, with ω j > 0 for all j ∈ J and

all t ≥ 0, the support projection St (ω) of the state T∗t (ω) is the closure of linear
manifold generated by vectors

Ptψ j , δ
m1
G (L�1)δ

m2
G (L�2) . . . δ

mn
G (L�n )Ptψ j (9)

for all j ∈ J , n ≥ 1, m1, . . . ,mn ≥ 0 and �1, . . . , �n ≥ 1 where δmG denotes the m-th
iterated commutator with G and δ0G(L�) = L�.

In our framework the operator G can be written as

G = −
(

λ2 + μ2

2
+ i

(
ζ+ + ζ−))

N 2 +
(

λ2

2
+ iζ+

)
r

−
((

λ2 + μ2

2
+ i

(
ζ+ + ζ−))

r +
(

λ2 − μ2

2
+ i

(
ζ+ − ζ−)))

N .

Note that the self-adjoint operator N 2 generates a semigroup (ezN
2
)z∈C; �(z)≤0 defined

on the complex plane with non-positive real part which is an analytic semigroup in
the half plane {z ∈ C | �(z) < 0}. Thus, by a change of variable, the operator

G0 = −
(

λ2 + μ2

2
+ i

(
ζ+ + ζ−)

)
N 2 (10)

generates an analytic semigroup in the sector

�
((

λ2 + μ2

2
+ i

(
ζ+ + ζ−))

z

)
> 0,

which is equivalent to �(z) > 0 for ζ+ + ζ− = 0 and

�(z) <
λ2+μ2

2(ζ++ζ−)
�(z), if ζ+ + ζ− > 0,

�(z) >
λ2+μ2

2(ζ++ζ−)
�(z), if ζ+ + ζ− < 0.

In any case, the semigroup generated by the operator G0 in (10) is analytic in the
sector

{
z ∈ C | | arg (z)| < arctan

(
(λ2 + μ2)/(2

∣∣ζ+ + ζ−∣∣
)}

(11)

with the convention arctan(+∞) = π/2. Clearly Dom(G) = Dom(G0) = Dom(N 2)

and G is the sum of G0 and an operator with domain Dom(N ) = Dom(G1/2
0 ) where

G1/2
0 is defined as N times a square root of the complex number (λ2+μ2)/2+ i(ζ+ +

ζ−). It follows then from Corollary 2.4 p.81 of [24] that G generates an analytic
semigroup in the sector (11).

We can now prove the following.

123



1770 A. Dhahri et al.

Theorem 3 For all initial state η, the range of the support of the state T∗t (η) at any
time t > 0 is the whole of h.

Proof Assumption (8) obviously holds because Dom(Gk) = Dom(N 2k) and B, B+
map Dom(Nh) in Dom(Nh−1) for all h so that

B±(Dom(Gk)) ⊆ Dom(N 2k−1) ⊆ Dom(N 2k−2) = Dom(Gk−1).

For all state ω, we can write its spectral decomposition ω = ∑
j∈J ω j |ψ j 〉〈ψ j |,

for a collection (ψ j ) j∈J of orthonormal vectors and ω j > 0 for all j ∈ J and J
non-empty. Since L1 = λB+, L2 = μB−, δ0G(B±) = B± and [B, B+] − r 1 = 2N ,
by Theorem 2, all vectors

Nn Ptψ j = 2−n ([B, B+] − r1
)n

Ptψ j (12)

belong to the range of the support of T∗t (ω). Write Ptψ j = ∑
k≥0 z jk(t)ek and letm j

be the minimum k for which z jk(t) �= 0. Since the function z → e−zN is analytic for
�z > 0, and Ptψ j belongs to the range of the support of T∗t (ω), for all real number
s > 0

∑

n≥0

(−s)n

n! (N − m j1)n Ptψ j = e−s(N−m j1)Ptψ j

= z jm j (t)em j +
∑

k>m j

z jk(t) e
−s(k−m j )ek

belongs to range of the support of T∗t (ω) by (12) for all s > 0. Taking the limit as s
tends to infinity, we conclude that em j belongs to the range of the support of T∗t (η).
In the same way, starting from either

Bk Ptψ j = (
δ0G(B)

)k
Ptψ j or B+k Ptψ j = (

δ0G(B+)
)k
Ptψ j ,

we can conclude that

Bkem j and B+kem j

belong to the range of the support of T∗t (ω) for t > 0 for all k. As a consequence, the
range of the support of T∗t (ω) is the whole of h for all t > 0. ��

6 Spectral gap

In this section, we discuss the spectral gap of the generator of the semigroup of the
quadratic harmonic oscillator. For the purpose, we will follow the methods developed
in Refs. [7,8].
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6.1 Dirichlet form and spectral gap

Recall the invariant state ρ in (6). Let L2(h) be the space of Hilbert–Schmidt operators
on h with inner product 〈x, y〉 = tr(x∗y). Consider the embedding

ι : B(h) → L2(h), ι(x) = ρ1/4xρ1/4.

Let T = (Tt )t≥0 be the strongly continuous contraction semigroup on L2(h) defined
by

Tt (ι(x)) = ι(Tt (x)).

Let L be the generator of the semigoup (Tt )t≥0. We can check that

L(ρ1/4xρ1/4) = ρ1/4L(x)ρ1/4, for x ∈ D(L).

Lemma 1 For x = ∑
j,k x jk |e j 〉〈ek | ∈ M,

L(x) = i
∑

j,k≥0

(ζ+(ω j+1 − ωk+1) + ζ−(ω j − ωk))x jk |e j 〉〈ek |

+
∑

j,k≥0

(
μλ(ωkω j )

1/2x j−1 k−1 − μ2

2
(ω j + ωk)x jk

+μλ(ω j+1ωk+1)
1/2x j+1 k+1 − λ2

2
(ω j+1 + ωk+1)x jk

)
|e j 〉〈ek |. (13)

with the convention x j−1 k−1 = 0 if j = 0 or k = 0.
The Dirichlet form, defined for ξ ∈ D(L), is the quadratic form E

E(ξ) = −Re〈ξ, L(ξ)〉.

The spectral gap of the operator L is the non-negative number

gap L := inf{E(ξ) : ‖ξ‖ = 1, ξ ∈ (Ker L)⊥}.

Lemma 2 For ξ ∈ D(L) with ξ = ∑
j,k ξ jk |e j 〉〈ek |

E(ξ) = 1

2
μ2

⎛

⎝
∑

k≥1

ωk |ξ0k |2 +
∑

j≥1

ω j |ξ j0|2
⎞

⎠

+1

2

∑

j,k≥0

(∣
∣
∣μω

1/2
j+1ξ j+1 k+1 − λω

1/2
k+1ξ jk

∣
∣
∣
2 +

∣
∣
∣μω

1/2
k+1ξ j+1 k+1 − λω

1/2
j+1ξ jk

∣
∣
∣
2
)

.
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1772 A. Dhahri et al.

In particular, E(ξ) = E(ξ∗), where ξ∗ is the adjoint operator of ξ .

Proof By Lemma 1, we get

E(ξ) = −Re 〈ξ, L(ξ)〉
= −Re

∑

j,k

[
μλ(ω jωk)

1/2ξ jkξ j−1 k−1 − 1

2
μ2(ω j + ωk)|ξ jk |2

+μλ(ω j+1ωk+1)
1/2ξ jkξ j+1 k+1 − 1

2
λ2(ω j+1 + ωk+1)|ξ jk |2

]

Rearranging the terms, we get the desired expression. ��
Proposition 5 If W = {ξ ∈ D(L) : E(ξ) = 0} then

span{ρ1/2} = ι(KerL) = Ker L = W .

Proof Since 1 ∈ KerL, ρ1/2 = ι(1) ∈ Ker L . It is obvious that Ker L ⊂ W . Suppose
ξ = ∑

j,k ξ jk |e j 〉〈ek | ∈ W . By Lemma 2

ξ j+1 k+1 = ν

√
ωk+1

ω j+1
ξ jk = ν

√
ω j+1

ωk+1
ξ jk (14)

and

ξ0k = ξk0 = 0, for k ≥ 1.

Thus ξ must be diagonal and by (14), ξk+1 k+1 = νξkk . Hence for k ≥ 0, ξkk = νkξ00,
i.e. ξ = const.ρ1/2. This completes the proof. ��

Like the model of two-photon absorption and emission process discussed in [8],
there are invariant subspaces for the process of quadratic open quantum harmonic
oscillator. For m ∈ Z, define

Gm := span{|ek〉〈ek+m | : k ≥ max{0,−m}}.

One can easily check the following properties.

(1) ξ ∈ Gm ⇔ ξ∗ ∈ G−m .
(2) The linear spaces Gm are orthogonal in L2(h), and

L2(h) = ⊕{Gm : m ∈ Z}.

(3) Each Gm is invariant for the generator L and so also for the semigroup T .
(4) Each Gm is isometrically isomorphic to the space l2(N) of square summable

sequences.

By mimicking the proof of [8, Proposition 4], we can show the following.
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Proposition 6

gap L = inf
m≥0

Am,

where Am =
{
inf{E(ξ) : ‖ξ‖ = 1, ξ ∈ Gm}, for m �= 0

inf{E(ξ) : ‖ξ‖ = 1, ξ ∈ G0, ξ ⊥ ρ1/2}, for m = 0
.

We will now study separately off-diagonal and diagonal minima.

6.2 Off-diagonal minimum problems

Fix m > 0. For ξ ∈ Gm , we can write for some sequence y = (y j ) j≥0 in l2(N),

ξ =
∑

j

y j |e j 〉〈e j+m |,

where y j = ξ j j+m . Then

E(ξ) = 1

2
μ2ωm |y0|2 + 1

2

∑

j

(
|μ√

ω j+1y j+1 − λ
√

ω j+m+1y j |2

+|μ√
ω j+m+1y j+1 − λ

√
ω j+1y j |2

)
. (15)

Proposition 7 For any m ≥ 1,

Am ≥ μ2m

2

(
(m + r − 1) + ν2(m − r + 1)

)
(16)

The lower bound is attained by E(ξ) for

y2j = ν2( j+1)
(
j + m

m

)
Γ (m + r)Γ ( j + r)

Γ (r)Γ ( j + m + r)
y20

and y0 ≥ 0 such that ‖ξ‖2 = 1.

Proof We fix m ≥ 1 and ξ ∈ Gm . From formula (15), without loss of generality we
may assume y j ≥ 0 for all j ≥ 0 because |a − b| ≥ ||a| − |b|| for any complex
numbers a and b. Then we can rewrite

E(ξ) = 1

2
μ2ωm y

2
0 + 1

2

∑

j≥0

(
(ω j+1 + ω j+m+1)(μ

2y2j+1 + λ2y2j )

−4μλ
√

ω j+1ω j+m+1y j+1y j
)
. (17)
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Since

2λμ y j+1y j ≤ μ2θ j y
2
j+1 + λ2

θ j
y2j (18)

where θ j > 0 is such that

ω j+m+1 + ω j+1 − 2θ j
√

ω j+m+1ω j+1 = ωm

i.e.

θ j = ω j+m+1 + ω j+1 − ωm

2
√

ω j+m+1ω j+1
.

In this way, we get the inequality

E(ξ) ≥ μ2

2
ωm y

2
0 + μ2

2

∑

j≥0

ωm y
2
j+1

+λ2

2

∑

j≥0

(
ω j+m+1 + ω j+1 − 2

√
ω j+m+1ω j+1

θ j

)
y2j

= μ2

2
ωm‖y‖2 + λ2

2

∑

j≥0

(
ω j+m+1 + ω j+1 − 4ω j+m+1ω j+1

ω j+m+1 + ω j+1 − ωm

)
y2j

= μ2

2
ωm‖y‖2 + λ2

2

∑

j≥0

m(m − r + 1)( j + 1)( j + m + r)

(1 + j)( j + m + r)
y2j

= μ2

2
ωm‖y‖2 + λ2

2

∑

j≥0

m(m − r + 1)y2j .

It follows that

Am ≥ μ2ωm

2
+ λ2m(m − r + 1)

2
= μ2m

2

(
(m + r − 1) + ν2(m − r + 1)

)

The above lower bound for the Dirichlet form is attained if and only if the Schwarz
inequalities (18) are equalities namely μθ

1/2
j y j+1 = λθ

−1/2
j y j so that

y j+1 = ν

θ j
y j

for all j ≥ 1. Iterating we find

y j+1 = ν j+1

θ j . . . θ0
y0 = ν j+1y0

j∏

i=0

2
√

ωi+m+1ωi+1

ωi+m+1 + ωi+1 − ωm
.
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Since

lim
j→∞

y2j+1

y2j
= ν2 lim

j→∞
4ω j+m+1ω j+1

(ω j+m+1 + ω j+1 − ωm)2
= ν2 < 1,

we find
∑

j≥0 y
2
j < ∞ and so the lower bound is a minimum.

Minimizers can be written in an explicit form. First note that

y2j+1 = ν2
4( j + m + 1)( j + m + r)( j + 1)( j + r)

4( j + 1)2( j + m + r)2
y2j = ν2

( j + m + 1)( j + r)

( j + m + r)( j + 1)
y2j .

Iterating

y2j+1 = ν2( j+1) ( j + m + 1) . . . (m + 1)

( j + m + r) . . . (m + r)

( j + r) . . . r

( j + 1)! y20

= ν2( j+1) ( j + m + 1)!
m!( j + 1)!

( j + r) . . . r

( j + m + r) . . . ( j + 1 + r)
y20

= ν2( j+1)
(
j + m + 1

m

)
Γ (m + r)Γ ( j + r + 1)

Γ (r)Γ ( j + m + r + 1)
y20 .

��
The function m → (m + r − 1) + ν2(m − r + 1) is a positive and increasing function
of m for m ≥ 1 and so we have

Theorem 4 The off-diagonal gap is

inf
m≥1

μ2m

2

(
(m + r − 1) + ν2(m − r + 1)

)
= μ2

2

(
2ν2 + (1 − ν2)r

)
.

6.3 Diagonal minima

For any f in l2(N), let us denote by M f ∈ B(h) the multiplication operator by f ,
M f = ∑

j f j |e j 〉〈e j |. Then we get

L(M f ) = MA f for f ∈ D(A) := { f ∈ l∞ : M f ∈ D(L)}.

The (formal) explicit expression for A is given by

A f =
∑

j

(
λ2ω j+1( f j+1 − f j ) + μ2ω j ( f j−1 − f j )

)
e j .

The invariant measure for this classical birth and death process is

π = (πu)u≥0 with πu = (1 − ν2)ν2u .
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From now on, whenever there is no confusion we write simply f for M f ∈ B(h). By
Lemma 2, we can compute

E(π1/2 f ) =
∑

j

λ2ω j+1| f j+1 − f j |2π j .

Proposition 8 For any positive sequence (an)n, define the (strictly positive) constant

B(ν) := sup
u≥0

(μ2(1 − ν2))−1

auωu+1

⎧
⎨

⎩

∑

v≤u

(1 − ν2(v+1))av + (ν−2(u+1) − 1)
∑

v>u
ν2(v+1)av

⎫
⎬

⎭
.

Then gap(A) ≥ B(ν)−1.

Proof We follow the proof of [8, Proposition 7] with a change (2u + 1)(2u + 2)
by ωu+1, which amounts to consider the birth rate b j = λ2ω j+1 instead of b j =
λ2(2 j + 1)(2 j + 2). ��

The following was proven in [8, Lemma 8].

Lemma 3 Take a positive summable sequence (an)n≥0 and define the positive decreas-
ing tail sequence (Ak)k≥0 by Ak = ∑

n≥k ak . Then

B(ν) = sup
u≥0

1

μ2auωu+1

∑

k≥0

ν2k(Ak − Ak+u+1).

Thus the computation of the spectral gap relies on how we choose the sequence (an)n .
Here we propose the following choice. (cf. [8, Lemma 9])

Lemma 4 Let an = 1
(n+r+1)(n+r) . Then the following properties hold.

(i) Ak = ∑
n≥k an = 1

k+r .

(ii)
∑

k≥0 ν2kak = 2ν−2(r+1)
∫ ν

0
s2r−1

1−s2
(ν2 − s2)ds.

(iii)
∑

k≥0 ν2k Ak = 2ν−2r
∫ ν

0
s2r−1

1−s2
ds.

Proof The item (i) is trivial. To prove (ii), we write

∑

k≥0

ν2kak =
∑

k≥0

ν2k
(

1

k + r
− 1

k + r + 1

)
.

Let

a(ν) :=
∑

k≥0

ν2k
1

k + r
.
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Then, b(ν) := a(ν)ν2r satisfies

b′(ν) = 2
ν2r−1

1 − ν2
.

Since b(0) = 0, we get

b(ν) = 2
∫ ν

0

s2r−1

1 − s2
ds.

From this, we easily get the desired expression. For (iii), we see by (i) that the value
we are looking for is a(ν), which we computed in the above. ��

We can now find a lower bound for the diagonal minimum of the Dirichlet form on
vectors ξ orthogonal to ρ1/2.

Theorem 5

gap(A) ≥ μ2

⎛

⎝
∑

k≥0

ν2k
1

k + r

⎞

⎠

−1

= μ2ν2r
(
2

∫ ν

0

s2r−1

1 − s2
ds

)−1

.

Proof We choose the sequence (an)n as in Lemma 4. Let us define a function V :
N → R by

V (u) := 1

auωu+1

∑

k≥0

ν2k(Ak − Ak+u+1)

= u + r + 1

u + 1

∑

k≥0

ν2k
(

1

k + r
− 1

k + u + 1 + r

)
.

We can see that the function V (u) is increasing. In fact, regarding V (u) as a function
on the interval [0,∞), we differentiate it. With a little computation we see that

V ′(u) =
∑

k≥0

ν2k
k

(k + u + 1 + r)2(k + r)
> 0.

Therefore we get by using Lemma 4 (iii)

μ2B(ν) = sup
u≥0

V (u) =
∑

k≥0

ν2k
1

k + r
= 2ν−2r

∫ ν

0

s2r−1

1 − s2
ds.

The result now follows by Proposition 8. ��
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Remark The lower bound of theorem 5 can be written in a closed form by introducing
the Lerch function � : { z ∈ C | |z| < 1 } × N×]0,+∞[→ C

�(z, n, r) =
∑

k≥0

zk

(k + r)n
.

By Theorem 5, we have gap(A) ≥ μ2
(
�(ν2, 1, r)

)−1
. Moreover, by comparing the

off-diagonal explicit minimum and the diagonal lower bound we find the following.

Theorem 6 For all ν, r such that
(
2ν2 + r(1 − ν2)

)
�(ν2, 1, r) ≤ 2 we have

gap L = μ2

2

(
2ν2 + r(1 − ν2)

)
. (19)

In particular, if r ≥ 2ν2/(1 − ν2) the above identity holds.

Proof The first claim follows immediately by comparing the diagonal lower bound of
Theorem5 and the off-diagonalminimumofTheorem4.By the elementary inequality,

∞∑

k=0

ν2k

k + r
= 1

r

∞∑

k=0

rν2k

k + r
≤ 1

r

∞∑

k=0

ν2k =
(
r(1 − ν2)

)−1

we have �(ν2, 1, r) ≤ (
r(1 − ν2)

)−1
and so identity (19) holds, in particular, if

(
r(1 − ν2)

)−1 (
2ν2 + r(1 − ν2)

) ≤ 2, i.e. r ≥ 2ν2/(1 − ν2). ��
The graph in Fig. 1 shows the values of ν, r forwhich the identity

(
2ν2 + r(1 − ν2)

)

�(ν2, 1, r) = 2 holds.Clearly, for pairs (ν, r) lying above (or on) the graph the spectral
gap is given by (19).

Fig. 1 gap(L) =
μ2(2ν2 + r(1 − ν2))/2,
off-diagonal minimum, for (ν, r)
above the curve

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

ν

r
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The exact value of the spectral gap, for pairs (ν, r) lying below the graph, could
be also the diagonal minimum whose exact value is not known and we are unable to
compute. This will be clear studying upper bounds for the diagonal spectral gap.

6.4 Upper bound

In this section, we discuss the upper bound of the diagonal spectral gap. By definition,
any value E(ξ)with ‖ξ‖ = 1, with ξ orthogonal to ρ1/2 is an upper bound for the gap.
Thus to get a good upper bound we need to choose a vector ξ cleverly.

Looking at the explicit form of the off-diagonal minimizer that we get for m = 1,
we consider the first order polynomial f j = j − c where c is a constant chosen in

such a way that j → π
1/2
j f j is orthogonal to π

1/2
j , i.e.

∑
j π j ( j − c) = 0. It is

worth noticing here that this choice yields the desired minimizer of the Dirichlet form
on vectors orthogonal to ρ1/2 for the usual harmonic oscillator (see [7]). Using the
identities

(1 − ν2)
∑

k≥0

kν2k = ν2

1 − ν2
, (1 − ν2)

∑

k≥0

k2ν2k = ν2(1 + ν2)

(1 − ν2)2
,

one computes c = ν2/(1 − ν2). Then, considering ξ j = π
1/2
j ( j − c), one finds

‖ξ‖2 = (1 − ν2)
∑

k≥0

(k − c)2ν2k = ν2

(1 − ν2)2

E(ξ) = λ2
∑

j≥0

( f j+1 − f j )
2( j + 1)( j + r)π j = λ2

2ν2 + r(1 − ν2)

(1 − ν2)2

and so

E(ξ)

‖ξ‖2 = μ2(2ν2 + r(1 − ν2)).

As a consequence, one has the explicit upper bound

gap(L) ≤ μ2(2ν2 + r(1 − ν2))

which is twice the spectral gap in good cases by Theorem 6.
In order to show that the spectral gap converges to 0 as r → 0, we find another

upper bound computing the value of the Dirichlet form for another vector ξ suggested
by our choice of the sequence (Ak)k in Lemma 4.

Theorem 7

gap L ≤ λ2

∑
j

j+1
( j+r+1)2( j+r)

ν2 j

∑
j

(
1
j+r − c(ν, r)

)2
ν2 j

,
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1780 A. Dhahri et al.

where c(ν, r) = (1 − ν2)
∑∞

j=0
ν2 j

j+r = (1 − ν2)�(ν2, 1, r). In particular, for all
ν > 0 fixed, gap L tends to 0 as r → 0.

Proof We consider Ak = (k + r)−1 as in Lemma 4, and define fk = Ak − c =
(k + r)−1 − c(ν, r), where the constant c is such that

∑
j π j f j = 0. We compute

E(π1/2h) =
∑

j≥0

λ2ω j+1| f j+1 − f j |2π j

= (1 − ν2)λ2
∑

j≥0

j + 1

( j + r + 1)2( j + r)
ν2 j .

On the other hand, ‖ f ‖2π = (1 − ν2)
∑

j≥0

(
( j + r)−1 − c(ν, r)

)2
ν2 j . Therefore,

E(ξ)/‖ξ‖2 ≤ λ2

∑
j

j+1
( j+r+1)2( j+r)

ν2 j

∑
j

(
1
j+r − c

)2
ν2 j

(20)

We now check that the above upper bound tends to 0 as r → 0. To this end, note that
we can write the denominator as

∑

j≥0

ν2 j

( j + r)2
− (1 − ν2)

⎛

⎝
∑

j≥0

ν2 j

j + r

⎞

⎠

2

= 1

r2

⎛

⎝1 +
∑

j≥1

r2ν2 j

( j + r)2

⎞

⎠ + (1 − ν2)

⎛

⎝1

r
+

∑

j≥1

ν2 j

j + r

⎞

⎠

2

It follows that, if we multiply the denominator by r2 in the limit as r → 0 we get
1− (1− ν2) = ν2. On the other hand, if we multiply also the numerator by r2 we get

lim
r→0

∑

j≥0

r2( j + 1)ν2 j

( j + r + 1)2( j + r)
≤ lim

r→0

∑

j≥0

rν2 j

( j + r + 1)
≤ lim

r→0
r
∑

j≥0

ν2 j

( j + 1)
= 0.

This completes the proof. ��

7 Conclusion

Theorem 7 shows that, for r near 0, gap L is the diagonal gap whose exact value is
not known. Moreover, it tends to 0 as r → 0. The exact result of Theorem 6 holds in
the white region above the graph in Fig. 1. It is worth noticing here that the range of
values of r for which our exact result holds becomes closer and closer to the half-line
(0,+∞) as ν2 = e−sβ goes to 0, namely the inverse temperature β goes to+∞. This
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confirms the intuition that quantum (off-diagonal) effects prevail over the classical
(diagonal) ones when the temperature is small.
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