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Abstract
We argue that the relevant higher gauge group for the non-abelian generalization of
the self-dual string equation is the string 2-group. We then derive the corresponding
equations of motion and discuss their properties. The underlying geometric picture is
a string structure, i.e., a categorified principal bundle with connection whose structure
2-group is the string 2-group.We readilywrite down the explicit elementary solution to
our equations, which is the categorified analogue of the ’t Hooft–Polyakov monopole.
Our solution passes all the relevant consistency checks; in particular, it is globally
defined on R4 and approaches the abelian self-dual string of charge one at infinity.
We note that our equations also arise as the BPS equations in a recently proposed
six-dimensional superconformal field theory and we show that with our choice of
higher gauge structure, the action of this theory can be reduced to four-dimensional
supersymmetric Yang–Mills theory.
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1 Introduction and discussion of results

In this paper, we derive the appropriate higher analogue of the Bogomolny monopole
equation and give the elementary solution. Our guidelines come from string theory
as well as the framework called higher gauge theory [1–6]. In this setting, connec-
tions on principal fiber bundles with Lie structure groups are replaced by categorified
connections on non-abelian variants of gerbes with structure Lie 2-groups.

1.1 Motivation

The motivation for our work is (at least) threefold: first, recall that BPS monopoles
can be described in string theory by D1-branes ending on D3-branes. A lift to M-
theory leads to configurations called self-dual strings, which are given by M2-branes
ending onM5-branes [7]. These self-dual strings should be BPS states in a long-sought
six-dimensional N = (2, 0) superconformal field theory, often simply referred to as
the (2,0)-theory. This still rather poorly understood theory is of great importance
because it should provide an effective description of stacks of multiple M5-branes,
just as maximally supersymmetric Yang–Mills theory does for D-branes. A classical
description of its BPS states would certainly advance our understanding.

A second motivation stems from the development and study of higher integrable
models. The BPS monopole equation is an example of a classical integrable system,
just as the self-dual Yang–Mills or instanton equation in four dimensions as well as
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The non-abelian self-dual string 1003

Hitchin’s vortex equations. This means that it has rich underlying geometric structures
that allow for a relatively explicit description of the solutions and their moduli space.
Among these, geometric structures are twistor descriptions as well as the Nahm trans-
form which, in an extreme variant, generates solutions to the Bogomolny monopole
equation from solutions to a one-dimensional equation via zero-modes of a Dirac
operator. Higher and non-abelian generalizations of integrable systems exist, and their
moduli spaces have been described using twistor methods [8–11]. The corresponding
higher Nahm transform would certainly be very interesting in its own right and yield
further insights into the dualities of M-theory. Most interestingly for mathematicians
is that it would provide us with a natural candidate for a categorified Dirac operator,
a very important and still missing ingredient in elliptic cohomology.

The third motivation comes from higher differential geometry. Abelian gerbes have
become an important tool in areas such as twisted K-theory and many interesting
examples are known, often of relevance in string theory. The situation is very different
for non-abelian gerbes: we are not aware of any other non-trivial and truly non-abelian
gerbe with connection of relevance to string or M-theory beyond the one presented in
this paper.Without explicit examples, however, it is difficult to develop amathematical
area to its full potential, and this seems to have been a problem of higher gauge
theory in the past. This is particularly true since there is a widespread belief that non-
abelian gerbes are essentially abelian and therefore cannot contribute new aspects to
mathematical physics.

1.2 Results

We start by considering the principal fiber bundles underlying the abelian Dirac
monopole and the non-abelian ’t Hooft–Polyakov monopole. We observe that the
appropriate gauge group for the ’t Hooft–Polyakov monopole is the total space
S3 ∼= SU(2) of the principal bundle describing the Dirac monopole. In particular,
there is a bundle morphism embedding the latter in the trivial SU(2)-bundle which
preserves all topological information. We then lift this picture to the self-dual string,
which suggests that the appropriate higher gauge group or gauge 2-group should be
the total space GF of the fundamental gerbe over S3, which can be endowed with a
higher group structure. The result is a 2-group model of the string group String(3),
which is also a very natural candidate for a gauge structure from a number of different
perspectives.

Working with higher or categorified structures implies working with larger classes
of equivalences. In particular, the 2-group model of String(3) can be cast in several
equivalent, but quite different looking forms. To demonstrate that our constructions are
reasonable, we will choose to work with two extreme models in parallel: the strict 2-
group model String

�̂
(3) employing path and loop spaces [12] as well as the semistrict

and finite-dimensional model Stringsk(3) of [13]. Since our aim is a self-dual string
equation on the contractible spaceR4, all objects are local and we can directly switch
to the corresponding Lie 2-algebra models string

�̂
(3) and stringsk(3).

Given an arbitrary higher gauge algebra, one can straightforwardly derive the corre-
sponding local notions of gauge potentials, curvatures, gauge transformations, Bianchi
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1004 C. Sämann, L. Schmidt

identities and topological invariants. For the string Lie 2-algebra models, we find that
the result is not suitable for a description of non-abelian self-dual strings. Instead, one
should modify the definitions of the curvatures as done in the case of twisted string
structures [14]. We shall indicate the twist by a superscript T attached to the gauge
Lie 2-algebra. In the case of the finite-dimensional Lie 2-algebra model stringT

sk(3),
the gauge field content consists of an ordinary, su(2)-valued gauge potential A and an
abelian B-field. The curvatures read as

F = dA + 1
2 [A, A], H = dB + 1

3! (A, [A, A]) − (A, F) = dB − (A, dA) − 1
3 (A, [A, A]),

(1.1)
where (−,−) is the Killing form on su(2) and the additional term (A, F) arises when
twisting the ordinary higher curvature. The corresponding Bianchi identity reads as
dH = (F, F), which suggests the following non-abelian self-dual string equations:

H = ∗dϕ and F = ∗F, (1.2)

where ϕ is an abelian Higgs field. These equations are indeed gauge invariant. They
clearly contain the abelian self-dual string and they are compatible with string theory
expectations. Aswe find, they nicely reduce to themonopole equations in three dimen-
sions and they appear as the BPS equations for a suitable choice of gauge structure in
the superconformal (1,0)-model of [15], see also [16]. Closely related configurations
were considered very recently in a different model [17], where they were called I-
strings. All these constructions can now be properly understood from the perspective
of (twisted) higher gauge theory. Finally, it is encouraging to see a Chern–Simons
term appear in the 3-form curvature. This points toward a close link to the M2-brane
models [18–20], which are Chern–Simons matter theories.

A similar modification of the 3-form curvature as in (1.1) leads to analogous results
in the case of the loop spacemodel string

�̂
(3) and there is a one-to-one correspondence

between gauge equivalence classes of solutions to both equations arising from the
expected categorical equivalence.

Interestingly, the modifications of the 3-form curvatures for both string Lie
2-algebra models stringsk(3) and string

�̂
(3) change the infinitesimal gauge trans-

formations of H from1

δH = μ2(H , α) + μ2(F ,�) − μ3(F , A, α) (1.3)

to δH = 0. This fixes the broken gauge invariance of one of the first non-abelian
higher gauge theories written down [1]. It also renders the non-abelian self-duality
equation H = ∗H in six dimensions gauge invariant beyond the case F = 0.

We now readily write down the charge one solution to (1.1) based on the elementary
SU(2)-instanton. The resulting fields are all non-singular overR4 and interacting in the
sense that non-trivial linear combinations of this solution are no longer solutions. This
clearly shows that our result is not an abelian solution simply recast in an unusual form,

1 cf. Eq. (3.7).
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The non-abelian self-dual string 1005

but rather a genuinely non-abelian self-dual string. At infinity, the solution approaches
the abelian self-dual string and the obvious considerations of topological charges work
as expected. As a last consistency check, we note that categorical equivalence between
stringsk(3) and string�̂(3) can be used tomap this solution to a solution of the self-dual
string equations for stringT

�̂
(3).

While our discussion onR4 is in principle consistent, the instanton solution suggests
that we are actually working over S4. There, the first fractional Pontryagin class 1

2 p1 =
(F, F) is clearly not trivial in H4(S4,Z).Mathematical string structures (i.e., principal
2-bundleswith structure 2-group the string 2-group) as defined in [14,21–24], however,
require [ 12 p1] = 0. In particular, a string structure is encoded in a spin structure and
a trivialization of 1

2 p1.
We note that this issue can be solved by extending our structure Lie 2-algebra

from stringT
sk(3) to string

T
sk(4), where the latter has underlying Lie algebra spin(4) ∼=

su(2) × su(2). In particular, we extend our Eq. (1.1) to

FL = ∗FL , FR = − ∗ FR, [ 12 p1] = [(F, F)] = 0, H = ∗dϕ. (1.4)

Here, FL and FR are the components of the 2-form curvatures taking values in the two
su(2)-factors of spin(4) and their total should have vanishing first Pontryagin class.
The field H is then globally defined and yields a trivialization of 1

2 p1 = (F, F) =
−dH .

We can directly extend our previous solution to an explicit string structure as
follows. Let FL and FR be the curvatures of a charge one instanton and a charge
one anti-instanton, respectively, which can be centered at different locations. Then
[ 12 p1] = 1 − 1 = 0 and the expressions for the trivialization H and the scalar field ϕ

are readily computed. In particular, H = 0 and ϕ = 0 if instanton and anti-instanton
are of the same size and centered at the same point.

Since our construction of the self-dual string fulfills our physical and mathematical
expectations, we can move on and ask what we can learn about the full (2,0)-theory.
Here, the most evident candidate for further progress is the (1,0)-model2 of [15],
which was derived from the closure of non-abelian generalizations of supersymmetry
transformations of supergravity tensor hierarchies.3 It is already known that this model
is based on an underlying higher Lie algebra which is endowed with some additional
structure maps [26,27]; also the relations to ordinary higher gauge theory were pointed
out [26]. To use the Lie 2-algebra stringT

sk(3) in the (1,0)-model, we require an inner
product structure on it. The appropriate notion of cyclic inner product is most naturally
encoded in a symplectic structure on the grade-shifted L∞-algebra, and we therefore
need to double stringT

sk(3) in an evident way to a Lie 3-algebra ̂stringω(3). We find
that the result is indeed a valid gauge structure for the (1,0)-model. Note that it has been

2 Considering (1, 0)-theories is indeed very natural: first, (2, 0)-theories are special cases of (1, 0)-theories.
Second, recall that general M2-brane models were expected to posses N = 8 supersymmetry in three
dimensions. The ABJM model, however, only features N = 6 supersymmetry, and full supersymmetry is
restored by non-local “monopole operators.” The six-dimensional analogue would be a (1, 0)-theory whose
supersymmetry is enhanced to that of the (2, 0)-theory by non-local “self-dual string operators.”
3 A closely related model was derived in [25].
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1006 C. Sämann, L. Schmidt

observed before that the string Lie 2-algebra is a suitable (1,0) gauge structure [16,26].
However, it seems that the relevance of this Lie 2-algebra has been underappreciated
due to the resulting 3-form curvature taking values in R ∼= u(1).

Our observations clarify at least two important problemswith the (1,0)-model. First,
it was not clear what the appropriate gauge structure for the (1,0)-model was supposed
to be. The stringLie 2-algebra, aswell as its twist and doubling to aLie 3-algebra, exists
for any Lie algebra of ADE type. Therefore, the doubling yields natural candidates for
higher gauge structures for all the ADE-classified (2, 0)-theories. Second, the (1,0)-
model had an instability due to a cubic scalar field interaction term. This term vanishes
in the case of the doubled string Lie 2-algebra.

An important consistency check that no classical candidate for a non-abelian
(2, 0)-theory has passed so far is a consistent reduction process to supersymmetric
Yang–Mills theory. We find that the (1,0)-model based on the doubled string Lie 2-
algebra ̂stringω(3) reduces toN = 2 super Yang–Mills theory in four dimensions by
a strong coupling expansion similar in spirit to the reduction of M2-brane models to
super Yang–Mills theory [28]. While this reduction still lacks features of the expected
reduction of the (2,0)-theory to Yang–Mills theory, it is certainly a step forward.

1.3 Outlook

In this paper, we have established the classical existence of truly non-abelian self-
dual strings. This means that there are interesting, non-trivial and physically relevant
higher gauge theories. It also implies that one might be able to learn more about the
six-dimensional N = (2, 0) superconformal field theory than commonly thought. In
particular, a classical description of the dynamics of multiple coinciding M5-branes
might become similarly feasible as in the case of coincidingM2-branes by introducing
categorified differential geometric notions.

Our results lead directly to a number of concrete and obvious open questions that
should be studied in detail. First, it is certainly worthwhile to explore the relation to
the ABJM model in detail. Since the latter model is a higher gauge theory [29] and
contains a Chern–Simons term, there is now hope that a link to boundary ABJM theory
analogous to, e.g., [30] is possible. Second, one should consider more solutions and
try to capture them by modifying the twistor constructions of [8–11]. We note that
the twisted string structure also yields a gauge invariant self-duality equation in six
dimensions, whose solutions should be of interest, too. Third, the explicit form of
the elementary self-dual string is now known explicitly, which opens up the road to
finding the appropriate higher version of the Nahm transform. Fourth, our result sheds
some light on the quantization of 2-plectic manifolds: The corresponding boundary
M2-brane model should describe the proper higher quantization of a 3-sphere, along
similar lines as those of [31]. The answers to this issue available in the literature do
not seem to be satisfying to us. Fifth, one should use our example of a (1,0) gauge
structure to revisit the (1,0)-model of [15] and to try to resolve its remaining issues.
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1.4 Reading guide

Whilemany of our constructions involvemathematical notions thatmay not be familiar
to theoretical physicists, the results should be relatively easy to understand. Here
are a few points to help navigate the paper without any understanding of higher or
categorified geometry and algebra:

� A first strong reason for choosing our gauge structure, the string Lie 2-group, is
given in Sect. 2.1; further arguments that this is the appropriate one are summarized
in Sect. 2.4. If the reader is happy with our choice of gauge structure, Sect. 2 can
be skipped.

� Our untwisted and twisted gauge structure exists in two different, but equiva-
lent formulations labeled stringsk(3) and string

�̂
(3) as well as stringT

sk(3) and
stringT

�̂
(3). While the fact that our discussion always preserves categorical equiv-

alence between these pairs is an important consistency check, we recommend to
focus on the case stringT

sk(3) at first.� A very brief introduction to the kinematical data of higher gauge theory with a
derivation of gauge potentials, curvatures and gauge transformations is found in
Sect. 3.1. An equivalent, but more modern andmore powerful approach is outlined
in Sect. 3.2.

� The canonical structures obtained as such require, however, a further twist to be
suitable for a description of non-abelian self-dual strings. For stringsk(3), this
twist is discussed in Sect. 3.4, while for string

�̂
(3), the twist is found directly in

Sect. 4.3. One can skip the motivation for the twist and directly go to the equations
of motion presented in Sects. 4.2 and 4.3.

� The explicit elementary solution for stringT
sk(3) is given in Sect. 4.5, where it is

also shown that this solution has the expected properties.
� The global geometric picture is discussed in Sect. 5 in a way that requires little

knowledge of 2-gerbes.
� The fact that our gauge structure readily extends to a suitable gauge structure for

the (1,0)-model obtained from tensor hierarchies is explained in Sect. 6. While the
extension presented in Sect. 6.1 requires some knowledge of NQ-manifolds, the
rest of the section including the reduction to four-dimensional super Yang–Mills
theory should be comprehensible without this.

� NQ-manifolds are introducedmerely as a technical tool, anything in the discussion
related to them can safely be ignored. Even for many of our arguments, knowledge
of L∞-algebras is sufficient.

� The appendix gives a brief introduction to higher or categorified algebra and geom-
etry, which makes the paper almost self-contained. Also, a number of hopefully
helpful references to more detailed explanations of the required background mate-
rial are provided.

2 The self-dual string and the string Lie 2-algebra

In this section, we develop the topological picture of a potential non-abelian self-dual
string solution, drawing on analogies with monopoles.
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1008 C. Sämann, L. Schmidt

2.1 Geometric description with principal 2-bundles

Recall that the Dirac monopole is described by the principal U(1)-bundle PD corre-
sponding to the Hopf fibration:

U(1) S3 ∼= SU(2)

π

S2 ∼= SU(2)
U(1)

(2.1)

This is the principal bundle over S2 with first Chern class 1. Because principal U(1)-
bundles over S2 are characterized by H2(S2,Z) ∼= Z, this bundle, together with its
dual, generates all possible principal U(1)-bundles over S2 via tensor products.

Since this bundle is non-trivial, it cannot be extended from S2↪→R3 to all ofR3, but
only toR3\{x} for some x ∈ R3.4 This fact is reflected in the singularity of the gauge
field description of the Dirac monopole in which the Higgs field has a singularity at
the point x .

The ’t Hooft–Polyakov monopole [32–34], on the other hand, can be extended
from S2 to all of R3, since it corresponds to a non-trivial field configuration whose
underlying geometry is the trivial principal SU(2)-bundle PHP. We can make the tran-
sition from the Dirac monopole to the ’t Hooft–Polyakov monopole preserving all
topological information by embedding PD into PHP via a homomorphism of principal
bundles. Recall that such a morphism PD↪→PHP involves a homomorphism of Lie
groups ρ:U(1) → SU(2). The remaining maps are read off the following diagram:

U(1)

ρ

SU(2)

π

π×id

SU(2) S2 × SU(2)

pr

S2

id

S2

(2.2)

It is well-known that this embedding even describes the underlying gauge field descrip-
tion of the monopole asymptotically.

Let us now try to find a corresponding picture for the self-dual string. The abelian
self-dual string soliton involves a 3-form curvature which is the curvature of the con-
nective structure of an abelian gerbe or principal 2-bundle over S3.

Principal 2-bundles are defined as categorifications of ordinary principal bundles.
That is, we start from the notion of a 2-space5 and use it to define Lie 2-groups and

4 Inversely since R3\{x} is homotopy equivalent to S2, any principal bundle on R3\{x} originates, up
to isomorphism, from a pullback along the embedding S2↪→R3\{x}. This extends in an obvious way to
Rn+1\{x} and Sn as well as to higher principal bundles.
5 A slight generalization of a Lie groupoid: A 2-space is a category whose objects and morphisms form
smooth manifolds and whose source, target, identity and composition maps are smooth. A simple notion
of a map between 2-spaces is given by a functor consisting of smooth maps.
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The non-abelian self-dual string 1009

fibrations of 2-spaces. The latter give rise to 2-actions and 2-covers, and we can follow
the usual definition of a principal bundle as done in [35] or in [36] for connections.

An important example of aLie 2-group isBU(1) = (U(1) ⇒ ∗) andprincipalBU(1)-
bundles are often called abelian gerbes. Let Y � M be a cover of a manifold M with
Y = �aUa the disjoint union of the patches Ua . Define Y [n] := Y ×M Y ×M · · ·×M Y
to be the n-fold fiber product or, equivalently, the disjoint union of the intersections
of any n patches. Recall that a principal U(1)-bundle corresponds to a bundle over
Y , whose components are glued together by bundle isomorphisms over Y [2], which
satisfy a cocycle condition over Y [3]. Analogously, a principal BU(1)-bundles is given
by bundles over Y [2], glued together by bundle isomorphisms over Y [3], which satisfy
a cocycle condition over Y [4]. While principal U(1)-bundles are characterized by
elements in H2(M,Z), principal BU(1)-bundles are characterized by elements in
H3(M,Z) called the Dixmier–Douady class of the abelian gerbe. More details and
references are given in “Appendix A”.

The self-dual string now corresponds to a categorified Dirac monopole over S3,
and we have the following analogue of (2.1) in terms of 2-spaces and maps between
these:

BU(1) GF

π

(S3 ⇒ S3)

(2.3)

Here, we regarded the space S3 as the trivial 2-space S3 ⇒ S3. The abelian gerbe
GF has Dixmier–Douady class 1. Since H3(S3,Z) ∼= Z, this principal BU(1)-bundle,
together with its dual, generates all principal BU(1)-bundles over S3. Again, because
GF is topologically non-trivial, it cannot be extended from S3↪→R4 to all of R4, but
just toR4\{x} with x ∈ R4. Just as in the case of the Dirac monopole, this is reflected
in a singularity of the Higgs field at x in the corresponding field description.

To follow the analogy with the ’t Hooft–Polyakov monopole, we observe that the
manifold underlying the relevant gauge group of the non-abelian monopole is simply
the total space of PD. Correspondingly, we wish to embed GF into a non-abelian
principal 2-bundle with a structure 2-group which has as its underlying 2-space GF.
Together with a homomorphism of Lie 2-groups ρ: BU(1) → GF, this embedding is
then given by

BU(1)

ρ

GF

π

π×id

GF (S3 ⇒ S3) × GF

pr

(S3 ⇒ S3)

id

(S3 ⇒ S3)

(2.4)

Note that all the maps in the above picture are now homomorphisms of 2-spaces.
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For this picture to make sense, we need a Lie 2-group structure on the 2-space GF.
This structure exists, and it completes GF to what is known as a 2-group model of
String(3).

2.2 String 2-groupmodels

The string group String(n) fits into the following sequence, known as the Whitehead
tower of O(n):

· · · → String(n) → Spin(n) → Spin(n) → SO(n) → O(n). (2.5)

The arrows describe isomorphisms at the level of homotopy groups, with the exception
of the lowest homotopy group: π0(O(n)) is removed in the step from O(n) to SO(n),
π1(O(n)) in the step to Spin(n) and π2(O(n)) is trivial, anyway. The string group
String(n) is obtained by removing π3(O(n)). That is, String(n) is a 3-connected cover
of Spin(n). This definition determines String(n) only up to homotopy, and the string
group structure is therefore only determined up to A∞-equivalence.

Note that String(n) cannot be a finite-dimensional Lie group, since π1 and π3
of String(n) are trivial. First models of the string group were presented in [22,37].
These models are slightly inconvenient since the underlying space is only deter-
mined up to a weak homotopy equivalence and only the homotopy type of the fiber
String(n) → Spin(n) is determined. This situation is ameliorated when considering 2-
group models of the string group, which are Lie 2-groups endowed with a Lie 2-group
homomorphism to Spin(n). Besides the better control over the fibers and the gained
natural smooth structure, there are a number of further reasons for considering Lie
2-group models. First, we can choose to work with a finite-dimensional Lie 2-group
model, leading to a corresponding finite-dimensional Lie 2-algebra, which turns out
to be convenient for certain purposes. More importantly, however, the 2-group refine-
ment is very natural from the string theory perspective, where the expected higher
gauge theory requires a higher gauge group. Also, this refinement of the string group
is induced by the second Chern class and therefore tightly linked to instantons, which
are expected to feature in the non-abelian self-dual string.

There are various such Lie 2-group models but for our considerations, those of [13]
and [12] will suffice. We will refer to these as the skeletal model Stringsk(n) and the
loop space model String

�̂
(n), respectively.

The two string 2-group models of String(3) start from two different but equivalent
ways of describing the fundamental bundle gerbe GF over S3 ∼= SU(2) ∼= Spin(3).
The skeletal model uses a suitable,6 ordinary cover Y1 = U = �aUa of SU(2), while

the loop space model starts from the surjective submersion Y2 = P0SU(2)
∂
� SU(2),

where
P0SU(2) := {γ : [0, 1] → SU(2) | γ (0) = 1}, ∂γ := γ (1). (2.6)

6 A cover of Spin(3) that extends to a simplicial cover of the nerve of BSpin(3) = (Spin(3) ⇒ ∗).
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The non-abelian self-dual string 1011

Note thatY [2]
2 is the space of pairs of pathswith the same endpoint.Modulo smoothness

at the endpoints,which is a technicalitywe shall suppress, this yields the space of based,
parameterized loops,

�SU(2) := {: [0, 1] → SU(2) | (0) = (1) = 1}. (2.7)

We then have the following two descriptions of GF:

P ̂�1SU(2)

�a,bUa ∩ Ub �a Ua �SU(2) P0SU(2)

∂

SU(2) SU(2)

(2.8)

Here the horizontal double arrows are the obvious maps from Ua ∩ Ub to Ua or Ub

as well as the projection from a parameterized loop split at τ = 1
2 ∈ [0, 1] onto the

two resulting based paths. Moreover, P and ̂�1SU(2) are principal U(1)-bundles over
�a,bUa ∩ Ub and �SU(2), respectively.

The string 2-group structure onGF in the skeletalmodel requires additional elements
in the Segal–Mitchison group cohomology complementing the 3-cocycle describing
GF geometrically. The loop space model, however, is specified canonically by point-
wise multiplication and the canonical product on the Kac–Moody central extension

̂�1SU(2). Moreover, the loop space model yields a Lie 2-group which is unital and
associative, albeit based on infinite-dimensional spaces.

We will not need any further details on the Lie 2-group models and therefore we
can directly move on to their Lie 2-algebras.

2.3 The string Lie 2-algebra

A method of differentiating Lie 2-groups to Lie 2-algebras was given by Ševera [38].
This procedure yields corresponding Lie 2-algebras in the form of 2-term L∞-algebra,
cf. [39] and “Appendices B and C”. In [40], Ševera’s method was used to differentiate
the skeletal model, and the result is the string Lie 2-algebra

stringsk(3) = (
R

0−→ su(2)
)

(2.9)

with non-trivial products

μ2: su(2) ∧ su(2) → su(2), μ2(x1, x2) = [x1, x2],
μ3: su(2) ∧ su(2) ∧ su(2) → R, μ3(x1, x2, x3) = (x1, [x2, x3]),

(2.10)
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1012 C. Sämann, L. Schmidt

where (−,−) is the appropriately normalizedKilling formon su(2). ThisLie 2-algebra
and closely related ones were first considered in [39]. It was named the string Lie 2-
algebra since it was shown to integrate to a 2-group model of the string group [12,41].

The fact thatμ1 is trivial7 might seem very restrictive at first glance. Note, however,
that any Lie 2-algebra is categorically equivalent to one with μ1 = 0 [39].

The loop space model, on the other hand, can also be differentiated in a straight-
forward fashion, since it corresponds to a strict Lie 2-group. The result is

string
�̂
(3) = (

�su(2) ⊕ R
μ1−−→ P0su(2)), (2.11)

where μ1 is the concatenation of the projection ̂�1su(2) ∼= �su(2) ⊕ R → �su(2)
with the embedding �su(2)↪→P0su(2) as closed based paths. The remaining non-
trivial products are

μ2: P0su(2) ∧ P0su(2) → P0su(2), μ2(γ1, γ2) = [γ1, γ2],
μ2: P0su(2) ⊗ (�su(2) ⊕ R) → �su(2) ⊕ R, (2.12)

μ2
(
γ, (λ, r)

) =
(

[γ, λ] , −2
∫ 1

0
dτ

(
γ (τ),

d

dτ
λ(τ)

))
.

The categorical equivalence between bothLie 2-algebraswas shown in [12]. Explic-
itly, we have the morphisms8 � = (φ0, φ1) and � = (ψ0, ψ1) with

stringsk(3)
�−−→ string

�̂
(3)

�−−→ stringsk(3). (2.13)

The chain maps φ0 and ψ0 are given in the diagram

R �su(2) ⊕ R
prR

R

su(2)
· f (τ )

P0su(2)
∂

su(2)

(2.14)

where prR is the obvious projection, ∂: P0su(2) → su(2) is the endpoint evaluation
and · f (τ ): su(2) → P0su(2) is the embedding of x0 ∈ su(2) as the straight line
x(τ ) = x0 f (τ ), where f : [0, 1] → R is a smooth function with f (0) = 0 and
f (1) = 1. The maps φ1 and ψ1 read as

φ1(x1, x2) = ([x1, x2]( f (τ )− f 2(τ )), 0
)
, ψ1(x1, x2) =

∫ 1

0
dτ (ẋ1, x2)− (x1, ẋ2).

(2.15)

7 This also informs the name skeletal, as an L∞-algebra with trivial μ1 corresponds to a category where
source and target maps agree, cf. [39].
8 See “Appendix D” for definitions and notation.
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The non-abelian self-dual string 1013

Clearly, (� ◦�)0 is the identity map, and using the composition of morphisms of Lie
2-algebras (D.4), we readily verify that � ◦ � = idstringsk . On the other hand, there
is a 2-morphism χ :� ◦ � → idstring

�̂
encoded in a map

χ : P0su(2) → �su(2) ⊕ R, χ(γ ) = (γ − f (τ )∂γ, 0), (2.16)

see “Appendix D” for the relevant definitions. Further details are found in [12, Lemma
37]. Thus, stringsk(3) and string�̂(3) are equivalent as Lie 2-algebras. All this readily
generalizes from su(2) to arbitrary Lie algebras g with a preferred element μ3 ∈
H3(g,R).

2.4 Further arguments for using the string 2-group

Our geometric picture in Sect. 2.1 strongly suggests that the correct gauge 2-group
for an interesting non-abelian self-dual string solution should be a Lie 2-group model
of the string group String(3). There is a number of further reasons for this, which we
shall now summarize.

First of all, in the string theory picture of monopoles as D1-branes ending on D3-
branes, the Lie algebra su(2) arises as part of the Lie algebra of endomorphisms acting
on the Hilbert space of the fuzzy 2-sphere [42]. The corresponding M-theory lift is
expected to involve a fuzzy 3-sphere, cf. [43]. A fully satisfactory quantization of the
3-sphere as a multisymplectic manifold has not yet been given, but one would expect
it to follow along the lines developed in [31]. There, it was shown that the string
2-group, and correspondingly its Lie 2-algebra, acts very naturally on the 2-Hilbert
spaces arising in higher geometric quantization.

A very detailed discussion of further arguments from a string theory perspective is
found in [44, Section 2.4]. In particular, it has been shown in [45] that the non-abelian
principal 3-bundle arising from multiple coinciding M5-branes involves in general
the group ̂�E8 included in String(E8). Since non-abelian self-dual strings should be
described by configurations of coinciding M5-branes, we are again led to a string 2-
groupmodel. Closely linked to this observation is the fact that the supergravityC-field
can be regarded as a string structure [44].

Finally, recall from the ADE-classification of (2,0)-theories that we expect a (2,0)-
theory for any simply laced Lie algebras. For these, we can readily construct a
corresponding string Lie 2-algebra and its integrating string Lie 2-group.

An obvious question is now how the string Lie 2-algebra of su(2) is related to 3-Lie
algebras, i.e., the gauge structure underlying the BLG M2-brane model [18,19]. As
shown in [46], 3-Lie algebras are special cases of strict Lie 2-algebras. In particular,
the 3-Lie algebra called A4 is equivalent to the Lie 2-algebra

A4 = (
u(2)

μ1−−→ su(2) ⊕ su(2)
)
, (2.17)
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1014 C. Sämann, L. Schmidt

where μ1 = 0 and μ2 is given by the commutator on su(2)⊕ su(2) as well as the left
and right actions of the su(2) on u(2). It may be interesting to note that the string Lie
2-algebra stringsk(3) is categorically equivalent to the Lie 2-algebra

˜stringsk(3) = (
u(2) ∼= R ⊕ su(2)

(0,id)−−−−→ su(2) ⊕ su(2)
)
, (2.18)

see “Appendix D” for details on equivalences of Lie 2-algebras. That is, both Lie 2-
algebras can be based on the same graded vector space, but they differ in their products.
Moreover, since both A4 and stringsk(3) are skeletal (i.e., μ1 = 0), it is quite obvious
from the explicit form of Lie 2-algebra equivalences that they cannot be equivalent as
Lie 2-algebras.

3 Higher gauge theory and categorical equivalence

We now come to the mathematical framework that we will use to derive the self-dual
string equation.

3.1 Higher gauge theory

A higher gauge theory is a dynamical principle on kinematical data living on a higher
principal bundle. The full picture involves categorified spaces and groups, but we can
restrict ourselves to local data. Therefore, the higher analogue of Lie algebras will suf-
fice in the following. For a definition of these L∞-algebras, we refer to “Appendix B”.

We thus start from an n-term L∞-algebra or Lie n-algebra9 L = (L0
μ1←−− L1

μ1←−−
· · · μ1←−− Ln−1), which one should think of as the higher analogue of the Lie algebra of
the structure group in a principal bundle. In order to generalize connections from Lie
algebra valued 1-forms to a collection of L∞-algebra valued i-forms, i = 1, . . . , n
we can now use the following observation that will also become very useful later in
our discussion. The tensor product of an L∞-algebra L = ⊕

k∈Z Lk with the de Rham
complex on some manifold M carries again an L∞-algebra structure, see e.g., [10].
The underlying graded vector space reads as

L̂ = �•(M) ⊗ L =
⊕

k∈N0

L̂−k with L̂−k =
⊕

i− j=k

�i (M) ⊗ L j , (3.1)

where the total degree is the L∞-degree minus the form degree. In this convention, the
exterior derivative d is of degree−1 and k-forms with values in L0 are of degree−k.10

9 We use both terms interchangeably, cf. “Appendix B”.
10 Unfortunately, one always has to employ slightly awkward grading conventions when working simulta-
neously with L∞-algebras, differential forms and NQ-manifolds.

123



The non-abelian self-dual string 1015

The higher products are defined as the linear span of the following products of elements
ωi ∈ �•(M) and i ∈ L of homogeneous degrees:

μ̂i (ω1 ⊗ 1, . . . , ωi ⊗ i ) :=
{
dω1 ⊗ 1 + (−1)|ω1|ω1 ⊗ μ1(1) for i = 1,
±(ω1 ∧ · · · ∧ ωi ) ⊗ μi (1, . . . , i ) else.

(3.2)
The sign in the last equation is the Koszul sign convention11 from permuting the ωi

past the i and the μi .
A natural equation on a differential graded Lie algebra (g, d) is the Maurer–Cartan

equation da + 1
2 [a, a] = 0 for a ∈ g with |a| = −1. This generalizes in an obvious

manner to the homotopy Maurer–Cartan equation for an element  in some L∞-
algebra L with || = −1,

∑

k∈N

(−1)
k(k+1)

2 +1

k! μk(, . . . , ) = 0. (3.3)

We will call an element  satisfying this equation a homotopy Maurer–Cartan element
of L.

A (reasonably small) gauge transformation between two homotopyMaurer–Cartan
elements 1 and 2 in L is given by a homotopy between them. That is, a homotopy
Maurer–Cartan element ̂ ∈ �•([0, 1]) ⊗ L such that ̂(0) = 1 and ̂(1) = 2. The
homotopy Maurer–Cartan equations on ̂ determine in particular ∂

∂t ̂|t=0. The latter
can be identified with the change due to an infinitesimal gauge transformation, δ,
while the gauge parameters λ are given by the differential forms ι ∂

∂t
̂|t=0. Note that λ

is of degree 0, and we arrive at the formula

δ :=
∑

k∈N

(−1)
k(k+1)

2 +1

(k − 1)! μk(, . . . , , λ). (3.4)

The homotopyMaurer–Cartan equations (3.3) describe a generalization of flat con-
nections, but we shall be mostly interested in the non-flat case. We will call an element
of�•⊗L for some L∞-algebra L an L-valued higher connection and the corresponding
left-hand side of the homotopy Maurer–Cartan equation (3.3) its higher curvatures.

A Lie 2-algebra valued higher connection reads as A+ B ∈ L̂−1 with A ∈ �1(M)⊗
L0 and B ∈ �2(M)⊗ L1. From the homotopy Maurer–Cartan equations (3.3), we can
read off the corresponding higher curvatures

F := dA + 1
2μ2(A, A) + μ1(B) ∈ �2(M) ⊗ L0,

H := dB + μ2(A, B) + 1
3!μ3(A, A, A) ∈ �3(M) ⊗ L1,

(3.5)

11 Interchanging two odd elements requires inserting a minus sign.

123



1016 C. Sämann, L. Schmidt

which take values in L̂−2. From Eq. (3.4), we obtain the gauge transformations

δA = dα − μ1(�) + μ2(A, α),

δB = d� + μ2(A,�) + μ2(B, α) − 1
2μ3(A, A, α),

(3.6)

which are parameterized by α ∈ �0(M) ⊗ L0 and � ∈ �1(M) ⊗ L1. On curvatures,
the gauge transformations act as

δF = μ2(F , α),

δH = μ2(H , α) + μ2(F ,�) − μ3(F , A, α).
(3.7)

Note that theμi here act only on the gauge structure of the fields and gauge parameters.
They are not the μ̂i from (3.2).

3.2 Higher gauge theory from differential graded algebras

Let us also give a different description of higher gauge theory which will be very
useful for our subsequent discussion. This approach is a generalization of ideas by
Atiyah [47] partially due to [48–50] and, to its full extent, due to [4]. In this framework,
connections and curvatures are described in terms of morphisms of differential graded
algebras.

We shall need the definition of the Chevalley–Eilenberg algebra CE(L) of a Lie
n-algebra L, as given in “Appendix C”. This differential graded algebra sits inside
the Weil algebra W(L) of L, which is the Chevalley–Eilenberg algebra of T [1]g with
differential QW = QCE + σ , where σ is the nilquadratic grade-shift operation which
anticommutes with QCE,

σ 2 = 0, σ ◦ QCE = −QCE ◦ σ, (3.8)

and satisfies the graded Leibniz rule.
A morphism of differential graded algebras from W(L) to the de Rham complex

(�•(M), d) = W(M) encodes now the local data for a connection and a curvature for
structure Lie n-algebra L. Moreover, infinitesimal gauge transformations are encoded
in homotopies between such morphisms for which the curvature vanishes along the
homotopy direction.

As an illustrative example, consider an ordinary Lie algebra g. Its Chevalley–
Eilenberg algebra CE(g) = C∞(g[1]) is generated by coordinates ξα on g[1] of
degree 1 with differential QCE = − 1

2 f αβγ ξ
βξγ ∂

∂ξα
. Its Weil algebra W(g) is gener-

ated by coordinates ξα and ζ α = σξα on T [1]g[1] of degree 1 and 2, respectively,
with differential QW = QCE + σ acting according to

QWξα = − 1
2 f αβγ ξ

βξγ + ζ α,

QWζ α = −σ Qξα = − f αβγ ξ
βζ γ .

(3.9)
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The non-abelian self-dual string 1017

A morphism � from W(g) to (�•(M), d) = W (M) is fixed by the images of the
coordinate functions, and we have

�: ξα �→ Aα and �: ζ α �→ Fα, (3.10)

where Aα and Fα are one- and two-forms, respectively. Compatibility with the dif-
ferentials implies that

dAα = − 1
2 f αβγ Aβ Aγ + Fα or F = dA + 1

2 [A, A] (3.11)

as well as
dFα = − f αβγ Aβ Fγ or ∇F = dF + [A, F] = 0. (3.12)

Note that F = (d ◦ � − � ◦ QCE)ξ
α can also be seen as the failure of the map � to

be a morphism of differential graded algebras on CE(g).
To obtain gauge transformations, we extend M to M × I , I = [0, 1] and impose

flatness along I . Let t be the coordinate along I . The condition ι ∂
∂t

F = 0 implies that

δA := ∂

∂t
Â

∣∣∣∣
t=0

= dα + [A, α], (3.13)

where we split Â = αdt + A.
The same discussion is readily extended to the case of Lie 2-algebras (as well as

Lie n-algebras) and reproduces formulas (3.5) and (3.6).
Contained in the Weil algebra W(L) is the differential graded algebra of invari-

ant polynomials, inv(L), whose images under � yield all the topological invariants.
Explicitly, we have a complex

inv(L) ↪→ W(L) → CE(L), (3.14)

and elements p of inv(L) are polynomials in the fiber coordinates of T [1]g[1] satisfy-
ing QW p = 0. In the case of an ordinary Lie algebra as discussed above, an example
of an invariant polynomial is καβζαζ β , where καβ is the Killing form on g. The topo-
logical invariant resulting from the image of � is simply the second Chern character
tr (F† ∧ F).

3.3 Categorical equivalence

Clearly, we would expect field equations for higher connections to be transparent to
categorical equivalences. In particular, we would think that for two equivalent Lie
2-algebra L and L̃, there is an isomorphism between gauge equivalence classes of
solutions to well-formed field equations for higher connections. Let us discuss this
issue in some more detail.
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1018 C. Sämann, L. Schmidt

Consider morphisms12 � = (φ0, φ1) and� = (ψ0, ψ1) underlying an equivalence
of the Lie 2-algebras L and L̃,

L
�

L̃
�

. (3.15)

These induce morphisms between the corresponding Weil algebras W(L) and W(L̃),
from which we derive morphisms �, � between local connective structures via the
commutative diagram

�•(M)

�

W(L)
�=(A+B,F+H)

�∗

�•(M)

�

W(L̃)
�̃=( Ã+B̃,F̃+H̃)

�∗ (3.16)

Let us give some details of this picture. Let τα and ta form a basis on L0 and
L1, respectively, and introduce corresponding coordinates ξα, ba , which we assign
degrees 1 and 2, respectively, to match the NQ-picture. Let (τ̃μ, t̃m) and (ξ̃μ, b̃m) be
the corresponding basis vectors and coordinates on L̃. Then � reads as

φ0(τα) = φμ
α τ̃μ, φ0(ta) = φm

a t̃m, φ1(τα, τβ) = φm
αβ t̃m (3.17)

for some coefficients φμ
α , φm

a and φm
αβ . At the level of the Chevalley–Eilenberg algebra,

we have
ξ̃ μ �→ φμ

α ξ
α and b̃m �→ φm

a ba + 1
2φ

m
αβξ

αξβ. (3.18)

To lift this to amorphism between theWeil algebras of L̃ and L, we introduce additional
coordinates (ζ α, ca) and (ζ̃ μ, c̃m) of degrees (2, 3). The lift of� then necessarily reads
as

ξ̃ μ �→ φμ
α ξ

α, b̃m �→ φm
a ba + 1

2φ
m
αβξ

αξβ,

ζ̃ μ �→ φμ
α ζ

α, c̃m �→ φm
a ca + φm

αβζ
αξβ.

(3.19)

From this map, we can read off the action of the morphisms on the gauge potentials
and their curvatures,

Ã + B̃ := �(A + B) = φ0(A) + φ0(B) + 1
2φ1(A, A),

F̃ + H̃ := �(F + H) = φ0(F) + φ0(H) + φ1(F , A).
(3.20)

Note that this map behaves well under composition of Lie 2-algebra morphisms. Also,
the gauge parameters α + � as introduced above are mapped to �(α + �) with

α̃+ �̃ = �(α+�) = φ0(α+�)+φ1(α+�, A + B) = φ0(α)+φ0(�)+φ1(α, A).
(3.21)

12 See again “Appendix D” for definitions and notation.
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The non-abelian self-dual string 1019

We then have
δα̃+�̃( Ã + B̃) = ˜δα+�(A + B) + φ1(α,F). (3.22)

Let us now consider an important example of a higher gauge theory, the self-duality
equation for the 3-form curvature of a higher connection on M = R1,5, H = ∗H .
At least for L = (u(1) → ∗), this equation is linked to the description of M5-branes.
Again, under a morphism� of L∞-algebras, the underlying higher connection A + B
will be mapped to Ã + B̃ as in (3.20), and for H , we have

H̃ = φ0(H) + φ1(F , A). (3.23)

That is, for H = ∗H to be transparent under equivalence of Lie 2-algebra, we have
to complement it with the fake flatness condition F = 0. This condition is also
responsible for rendering a higher parallel transport of strings invariant under surface
reparametrizations [2].

The same result evidently holds also for the dimensional reduction of the self-
duality equation to the non-abelian self-dual string equation in four dimensions, see
e.g., [8,51]. Fake flatness, however, is too strong a condition since it allows for gauge
transformations to the abelian case [40], which we can readily see as follows. The
obvious lift of the abelian self-dual string equation H = ∗dϕ to higher gauge theory
with skeletal string Lie 2-algebra stringsk(3) takes the same form

H := dB + 1
3!μ3(A, A, A) = ∗dϕ. (3.24)

Fake flatnessF = F = dA+ 1
2μ2(A, A) = 0 implies that A is equivalent to the trivial

connection by a finite gauge transformation, cf. [40]. The self-dual string Eq. (3.24)
then reduces to the abelian one.

The same statement is true in the loop space picture. Assume that F = dA +
1
2μ2(A, A) + μ1(B) = 0. This is a gauge invariant statement and for convenience,
we gauge transform by � = A − f (τ )∂A such that A = f (τ )∂A =: f (τ )A0 and
f (τ ) > 0 for all τ ∈ [0, 1]. Then

F = dA + 1
2μ2(A, A) = f (τ )dA0 + 1

2 ( f (τ ))2[A0, A0]. (3.25)

Since F = 0, F is in the image of μ1, which implies that dA0 + 1
2 [A0, A0] = 0

and A0 is pure gauge. It follows that also A is of the form A = g(τ )d(g(τ ))−1 and
thus pure gauge. Again, F = 0 cannot be part of the equations of motion of a truly
non-abelian self-dual string.

Essentially this problem was encountered before, in a general discussion of non-
abelian higher gauge theories based on strict Lie 2-groups [52] as well as in a first
approach to using higher gauge theory to describe non-abelian self-dual strings [53].
The new loophole to this problem is a reformulation of the above expressions of higher
gauge theory in awaywhich ismore suitable for the description of string andM-theory,
as we shall explain now.
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3.4 Reformulation: twisted higher gauge theory

In the following, we briefly outline the arguments of [14,44,54], which explain how
to cast our above formulas for a non-abelian higher gauge theory on the world volume
of M5-branes in a more natural way. The upshot of these arguments will be presented
in Sect. 4.2, and it is safe to jump directly to this subsection.

Our above formulaswere not suited for accommodating appropriate anomaly cance-
lation condition arising inM-theory. At first sight, onemight assume that this condition
is irrelevant; after all, anomaly cancelation is a global issue and we are interested in
higher gauge theory over the contractible spaceR4. Note, however, that our solutions
correspond to topological configurations, and it is not surprising that these turn out to
imply a one-point compactification of R4 to S4.

First, recall that the first Chern class of aU(n)-bundle is the obstruction for reducing
the structure group of the underlying principal bundle to SU(n). In terms of stacks BG
of principal G-bundles, this is reflected in the following homotopy pullback:

BSU(n) ∗

BU(n)
c1 BU(1)

(3.26)

Correspondingly, we can describe principal SU(n)-bundles alternatively as principal
U(n)-bundles P with a choice of trivialization of the determinant line bundle c1(P).
This generalizes to principal bundles with connections.

In the case of supergravity on an M5-brane boundary [55,56], the kinematical data
are contained in a spin connection and an E8 gauge field. Anomaly cancelation requires
that the first fractional Pontryagin class 1

2 p1 of the first equals twice the canonical 4-
class of the latter. The two characteristic classes are maps

BSpin(n)
1
2 p1−−−→ B3U(1) and BE8

a−→ B3U(1), (3.27)

and fit into the homotopy pullback

BStringa(n) BE8

a

BSpin(n)
1
2 p1

B3U(1)

(3.28)

where B3U(1) is the (higher) stack of 2-gerbes, circle 3-bundles or principal B2U(1)-
bundles. The anomaly cancelation condition modifies the Bianchi identity dH =
1
2μ3(dA, A, A) coming from (3.5) to
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dH = (FA, FA) − 2(FÃ, FÃ), (3.29)

where A is the spin connection and Ã is the E8 gauge field.
For our discussion, it is sufficient to ignore the E8 gauge field and put a = 0.

Following the above picture, we now describe a principal String(n)-bundle as a
principal Spin(n)-bundle with a trivialization of a principal B2U(1)-bundle (with con-
nection) [44]. A precise derivation of this picture is found in [54, Section 6.3] or [57,
Section 7.1.6.3]. To develop the appropriate notions of gauge potentials and connec-
tions as discussed in Sect. 3.2, we switch to the differential graded algebras of the
involved Lie 3-algebras. We arrive at the commutative diagram

CE(spin(n)) CE(B2u(1))
μ:=− 1

3!μαβγ ξ
αξβξγ

W(spin(n)) W(B2u(1))
cs:=καβξ

αζβ− 1
3!μαβγ ξ

αξβξγ

inv(spin(n)) inv(B2u(1))
1
2 p1:=καβζ

αζβ

(3.30)

where ξα and ζ α are coordinates on W(spin(n)), introduced in Sect. 3.3.
It is nowconvenient to replace spin(n)with the equivalentLie 3-algebra ̂stringsk(n),

̂stringsk(n) = Bu(1) → stringsk(n) = u(1)
id−−→ u(1)

0−→ g, (3.31)

with non-trivial brackets

μ2(x1, x2) = [x1, x2], μ3(x1, x2, x3) = (x1, [x2, x3]), μ1(s) = s (3.32)

for xi ∈ g and s ∈ u(1). The equivalence of spin(n) with ̂stringsk(n) follows from
the L∞-algebra quasi-isomorphism

∗
φ0

∗
φ0

g

φ0=id

R
id

R
0

g

with φ2(x1, x2, x3) = (x1, [x2, x3]), (3.33)

cf. “Appendix D”. Following the observation about the first Chern class above, we
can now describe principal String(n)-bundles as principal 3-bundles with structure
Lie 3-algebra ̂stringsk(n), together with additional data trivializing the image of 1

2 p1.
Note that a related description has appeared in [24].
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One subtle point in this picture, however, is that we need to modify the structure of
the Weil algebra in (3.30), employing W̃(̂stringsk(n)), to guarantee that the diagram

CE(spin(n)) CE(̂stringsk(n))
∼= CE(B2u(1))

W(spin(n)) W̃(̂stringsk(n))
∼= W(B2u(1))

inv(spin(n)) inv(̂stringsk(n))
= inv(B2u(1))

(3.34)

commutes. In coordinates ξα, ζ α, b, c, k, l of degrees 1, 2, 2, 3, 3, 4, respectively, the
differential Q on W̃(̂stringsk(n)) acts as follows:

Qξα = − 1
2 f αβγ ξ

βξγ + ζ α, Qζ α = − f αβγ ξ
βζ γ ,

Qb = cs + c − k, Qc = l − 1
2 p1,

Qk = l, Ql = 0,

(3.35)

cf. [14]. The expressions cs and 1
2 p1 are defined in diagram (3.30). Applying the for-

malism of Sect. 3.2 yields the following local description over a contractible manifold
M [14]. We have gauge potentials

A ∈ �1(M) ⊗ g, B ∈ �2(M) ⊗ u(1), C ∈ �3(M) ⊗ u(1) (3.36)

with curvatures

F = dA + 1
2 [A, A], H = dB + C − (A, dA) − 1

3 (A, [A, A]), G = dC,

(3.37)

satisfying the Bianchi identities

∇F = 0, dH = G − (F, F), dG = 0. (3.38)

Since CE(̂stringsk(n)) does not change, H is no longer the failure of � to be a mor-
phism of differential graded algebras at the level of CE(̂stringsk(n)). In the following,
we shall refer to the above potentials and curvatures with C = 0 as higher gauge
theory with structure L∞-algebra stringT

sk(n).
We note that similar curvatures arose from a non-abelian version of the tensor

hierarchies in supergravity [15], see also [26] for further relations to higher gauge
theory.
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Gauge transformations are readily derived via homotopies which are partially flat,
as detailed in Sect. 3.2, and we obtain

δA = dα + μ2(A, α),

δB = d� − � + (α, F) − 1
2μ3(A, A, α),

δC = d�,

(3.39)

which are now parameterized by α ∈ �0(R4) ⊗ su(2), � ∈ �1(R4) ⊗ R and
� ∈ �2(R4) ⊗ R. Under these transformations the curvatures transform as

δF = μ2(F, α), δH = 0, δG = 0. (3.40)

We note that the gauge invariance of H allows us to write down a gauge-invariant
self-duality equation in six dimensions. Studying this equation is beyond the scope of
this paper, but certainly of great interest.

When working with the loop space model string
�̂
(3) we will have to implement

an analogous twist, which we shall explain in Sect. 4.3.

4 Non-abelian self-dual strings

In this section, we derive the self-dual string equations and present explicit solutions
for both the skeletal and the loop model.

4.1 The abelian self-dual string

Consider a single flat M5-brane trivially embedded into flat Minkowski space R1,10

such that the time direction is contained in theM5-brane’s world volume. The presence
of theM5-branebreaks someof the isometries (and their superpartners) ofR1,10 aswell
as some of the gauge symmetries of the 3-form background field in supergravity. The
corresponding collectivemodes yield the (2, 0) tensormultiplet in six dimensions [58],
which consists of 5 scalars, a 2-form B with self-dual curvature H = dB = ∗H
together with sixteen fermionic partners. We shall focus on the 2-form field B.

An M2-brane may end on an M5-brane with a one-dimensional boundary [59,60],
which is the M-theory analogue of the fact that a string and a D2-brane can end on
a D4-brane. If the remaining direction of the M2-brane is perpendicular to the world
volume of our flat M5-brane from above, we arrive at the self-dual string soliton [7].
The latter is governed by the equation

H = dB = ∗dϕ (4.1)

on the part of the world volume R4 of the M5-brane which it does not share with the
M2-brane. In thisR4, the boundary of the M2-brane is a point x0 ∈ R4. Note that this
equation is a dimensional reduction of the self-duality equation H = ∗H from R1,5

to R4 with the scalar field ϕ identified with the components of B along the reduced
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directions. Also, a further dimensional reduction toR3 yields the abelian Bogomolny
monopole equations F = ∗dϕ.

From the Bianchi identity dH = 0, we learn that ϕ is a harmonic functions onR4.
Therefore, interesting solutions will be singular at a point x0. For a single self-dual
string at x0, the solution is

ϕ = 1

(x − x0)2
, (4.2)

and the concrete expression for the B-field, which is singular alongDirac strings going
from the origin through opposite poles of S3 to infinity, can be found (up to its radial
dependence), e.g., in [61]. Because Eq. (4.1) is linear in both B and ϕ, we can form
linear combination of solutions to obtain new solutions. That is, the abelian self-dual
strings do not interact.

This is fully analogous to the Dirac monopole. In the case of the latter, we can
obtain non-singular and interacting configurations by considering non-abelian gener-
alizations. Our aim is the construction of corresponding non-singular and interacting
self-dual strings.

4.2 The self-dual string equations in the skeletal case

After our discussion in Sect. 3.4, it is now straightforward to write down the 3-form
part of the non-abelian self-dual string equation onR4 for the two models of the string
Lie 2-algebra. In the case of stringT

sk(3), we have kinematical data consisting of fields

A ∈ �1(R4) ⊗ su(2), B ∈ �2(R4) ⊗ u(1), ϕ ∈ �0(R4) ⊗ u(1), (4.3)

satisfying
H := dB − (A, dA) − 1

3 (A, [A, A]) = ∗dϕ. (4.4)

Next, note that the Bianchi identity leads to

∗ dH = − ∗ (F, F) = �ϕ, (4.5)

and therefore the Higgs field ϕ is determined by the second Chern character, which
captures instantons onR4. Since knowing theHiggs field should suffice to describe the
self-dual string modulo gauge invariance, it is natural to replace fake flatness F = 0
with the instanton equation

F = ∗F . (4.6)

This result is also in agreement with a different point of view. In the six-dimensional
N = (1, 0) supersymmetric model of [15], the BPS equation leads to �ϕ = − ∗
(F, ∗F) [16]. This BPS equation follows from our Eq. (4.5), if it is supplemented
with the instanton equation F = ∗F . We shall discuss the implications of our choice
of gauge structure for the (1,0)-model in Sect. 6.

As a first consistency check, note that by putting A = 0, our Eqs. (4.4) and (4.6)
reduce to the abelian self-dual string Eq. (4.1).
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Another consistency check that we can immediately perform is the reduction from
M2-branes ending on M5-branes to D2-branes ending on D4-branes. That is, we
dimensionally reduceR4 along an M-theory direction, say x4. The resulting kinemat-
ical data consist of the following fields

Ă1 ∈ �1(R3) ⊗ su(2), ϕ̆1 ∈ �0(R3) ⊗ u(1), B̆ ∈ �2(R3) ⊗ u(1),

Ă2 ∈ �1(R3) ⊗ u(1), ϕ̆2 ∈ �0(R3) ⊗ su(2).
(4.7)

Our Eqs. (4.4) and (4.6) reduce to the following expressions:

∗∇ϕ̆2 = d Ă1 + 1
2μ2( Ă1, Ă1) =: F̆,

0 = d B̆ − ( Ă1, d Ă1) − 1
3 ( Ă1, [ Ă1, Ă1]) =: H̆1,

∗dϕ̆1 = d Ă2 − ( Ă1, dϕ̆2) − (ϕ̆2, d Ă1) − ( Ă1, [ Ă1, ϕ̆2]) =: H̆2.

(4.8)

Here the first equation is just the monopole equation on R3 for connection Ă1 and
Higgs field ϕ̆2. The second equation can be satisfied by choosing an appropriate B̆.
This is possible by Poincaré’s lemma, since the form to be canceled by d B̆ is a top
form on R3, hence closed. The third equation can be rewritten as

∗ dϕ̆1 − d Ă2 = −2(ϕ̆2, F̆) + d(ϕ̆2, Ă1) = − ∗ d(ϕ̆2, ϕ̆2) + d(ϕ̆2, Ă1), (4.9)

where we used F̆ = ∗∇ϕ̆2. This is clearly solved by

Ă2 = −(ϕ̆2, Ă1) and ϕ̆1 = −(ϕ̆2, ϕ̆2). (4.10)

Altogether, the dimensional reduction of our self-dual string Eqs. (4.4) and (4.6) leads
to the Bogomolny monopole equations onR3, as expected from string theory.

4.3 The self-dual string equations for the loop spacemodel

Next, let us consider the corresponding equations for the model string
�̂
(3). Here, the

kinematical data is given by fields

A ∈ �1(R4)⊗P0su(2), B ∈ �2(R4)⊗(�su(2)⊕R), ϕ ∈ �0(R4)⊗(�su(2)⊕R).

(4.11)
Analogously to the skeletal case, we also need to modify the original 3-form curvature
H = dB + μ2(A, B) to render H gauge invariant. The correct twist to stringT

�̂
(3) is

now given by
F := dA + 1

2μ2(A, A) + μ1(B),

H := dB + μ2(A, B) − κ(A,F),
(4.12)

where
κ: P0su(2) × P0su(2) → �su(2) ⊕ R,

κ(γ1, γ2) :=
(
χ([γ1, γ2]) , 2

∫ 1

0
dτ(γ̇1, γ2)

) (4.13)
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and χ(γ ) = (γ − f (τ )∂γ, 0) is defined in Eq. (2.16). Note that for γ1 or γ2 a loop,
κ(γ1, γ2) = μ2(γ1, γ2). This modifies the gauge transformations as follows:

δA = dα + μ2(A, α) − μ1(�),

δB = d� + μ2(A,�) − μ2(α, B) + κ(α,F).
(4.14)

The 2- and 3-form curvatures (4.12) then transform according to

δF = μ2(F , α) + μ1(κ(α,F)),

δH = 0.
(4.15)

Having a gauge invariant H at our disposal, we readily write down a suitable set of
equations of motion:

F = ∗F , H = ∗∇ϕ, μ1(ϕ) = 0. (4.16)

Note that the third equation13 is necessary and sufficient to render the second one
gauge invariant.14 The appropriate Bianchi identities read as

∇F = μ1(κ(A,F)) + μ1(H), ∇H = μ2(A, H) − κ(F ,F). (4.17)

The dimensional reduction to monopoles is now accomplished by restricting to the
endpoint in path space, ∂F , and projecting ontoR in �su(2)⊕R, where we recover
the skeletal situation.

In fact, it is not hard to see that Eq. (4.16) are categorically equivalent to (4.4)
and (4.6) in the sense that gauge equivalence classes of solutions to each of these
equations are in one-to-one correspondence with gauge equivalence classes of solu-
tions of the respective other ones. This correspondence is established by themap (3.20)
of higher gauge potentials induced by the morphisms of Lie 2-algebras underlying the
equivalence

stringsk(3)

�

string
�̂
(3)

�

(4.18)

as defined in (2.14) and (2.15).More explicitly, given a solution (Ask, Bsk, ϕsk) to (4.4)
and (4.6), one readily verifies that

A
�̂

= Ask f (τ ), B
�̂

= ( 12 [Ask, Ask]( f (τ ) − f 2(τ )), Bsk) and ϕ
�̂

= (0, ϕsk)
(4.19)

13 This condition is trivially satisfied in the skeletal case.
14 As remarked earlier, one can also write down a gauge-invariant self-duality equation in six dimensions.
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is a solution to (4.16). Here, f : [0, 1] → R is some smooth function with f (0) = 0
and f (1) = 1. Gauge transformations of (Ask, Bsk, ϕsk) parameterized by (αsk,�sk)

are mapped to gauge transformations of (A
�̂
, B

�̂
, ϕ

�̂
) parameterized by

α
�̂

= αsk f (τ ) and �
�̂

= ([αsk, Ask]( f (τ ) − f 2(τ )) , �sk
)
. (4.20)

Conversely given a solution (A
�̂
, B

�̂
, ϕ

�̂
), it is straightforward to check that

Ask = ∂A
�̂
, Bsk = prRB

�̂
+

∫ 1

0
dτ (A

�̂
, Ȧ

�̂
), ϕsk = prRϕ

�̂
(4.21)

is a solution to (4.4) and (4.6). Moreover, gauge transformations parameterized by
(α

�̂
,�

�̂
) are mapped to gauge transformations parameterized by

αsk = ∂α
�̂

and �sk = prR�
�̂

+
∫ 1

0
dτ (α̇

�̂
, A

�̂
) − (α

�̂
, Ȧ

�̂
). (4.22)

4.4 Bogomolny bound

Recall that both the instanton and monopole equations can be derived as equations
for the Bogomolny bound of a suitable action principle. The same is true for our
non-abelian self-dual string equations. This will also lead to an identification of the
appropriate topological charge.

For simplicity, we restrict ourselves to the skeletal case stringT
sk(n). We then have

the following obvious action functional of higher Yang–Mills–Higgs theory:

S =
∫

R4
H ∧ ∗H + dϕ ∧ ∗dϕ + (F, ∗F), (4.23)

where F , H and ϕ are the 2- and 3-form curvature as well as the Higgs field introduced
in the above sections. For ϕ = 0, this action was given before in [1] in a more general
context, where it was, however, not gauge invariant. Since δH = 0 for the skeletal
string Lie 2-algebra (as well as for the twisted strict Lie 2-algebra), this problem does
not arise here. We can recast this action in the following form:

S =
∫

R4
(H −∗dϕ)∧∗(H −∗dϕ)−2H ∧dϕ+ 1

2

(
(F −∗F), ∗(F −∗F)

)+ (
F, F

)
.

(4.24)
As expected, the minimum of this action is given by solutions to our self-dual string
equations

H = ∗dϕ, F = ∗F, (4.25)

and for such solutions, the action is given by the topological invariants

S = −2
∫

R4
H ∧ dϕ +

∫

R4

(
F, F

) = −2
∫

R4
H ∧ dϕ +

∫

S3∞
H , (4.26)
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where we used the Bianchi identity dH = (F, F).

4.5 The elementary solution

Let us now come to the explicit form of the elementary solution, starting with the case
of the skeletal algebra stringT

sk(3). The relevant field content is (4.3) and we wish to
solve

H := dB+(A, dA)+ 1
3 (A, [A, A]) = ∗dϕ and F := dA+ 1

2 [A, A] = ∗F . (4.27)

We start from the elementary instanton solution and a trivial 2-form potential,

Aμ(x) = −i
ηi
μν σi (xν − xν

0 )

ρ2 + (x − x0)2
, B(x) = 0, (4.28)

where σi are the Pauli matrices satisfying [σi , σ j ] = 2iεi jkσk and ηi
νκ are the ’t Hooft

symbols, which form a basis of self-dual 2-forms on R4. The variables x0 ∈ R4 and
ρ ∈ R denote the position and the size of the elementary instanton. The inner product
(−,−) on su(2) is the one appropriately normalized Killing form,

(x, y) = tr(x†y) with (iσi , iσ j ) = (σi , σ j ) = δi j . (4.29)

With these conventions, we find that

ϕ(x) = (x − x0)2 + 2ρ2

(
(x − x0)2 + ρ2

)2 (4.30)

completes the solution.
Let us now perform the obvious consistency checks on our solution (4.28)

and (4.30). First of all, it is evident that this solution is non-singular on all of R4,
which sets it apart from the abelian solution (4.2). In the limit |x | → ∞, however,
ϕ ∼ 1

x2
, which is the solution to the abelian self-dual string.

The moduli of our elementary solution are the same as those of the instanton: the
position x0, the size parameter ρ as well as a global gauge transformation g ∈ SU(2).
The size parameter is the Goldstone mode arising from the break down of conformal
invariance of the instanton equation F = ∗F by choosing a specific solution (4.28).

For the loop space model stringT
�̂
(3), we can simply use categorical equivalence

to translate our solution (3.20). Here, the relevant field content is listed in (4.11) with
the corresponding curvatures (4.12) and equations of motion (4.16).
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Using (4.19) on the skeletal solution (4.28), we obtain the potentials

Aμ(x) = −i
ηi
μν σi (xν − xν

0 )

ρ2 + (x − x0)2
f (τ ),

Bμν(x) =
(

−2 i εi jk σk
ηi
μκ (x − x0)κ η

j
νλ (x − x0)λ

(ρ2 + (x − x0)2)2
( f (τ ) − f 2(τ )) , 0

) ,

(4.31)
where f : [0, 1] → R is again a smooth function with f (0) = 0 and f (1) = 1, as well
as the Higgs field

ϕ(x) =
(

0,
(x − x0)2 + 2ρ2

(
(x − x0)2 + ρ2

)2

)

. (4.32)

These indeed form a solution to Eq. (4.16), as expected. Conversely, we recover the
skeletal case from the inverse morphism of gauge potentials.

5 The global picture: string structures

While our discussion so far is in principle consistent on flat R4, the full geometric
picture has a remaining issue. For simplicity, we shall discuss this problem for the
skeletal string Lie 2-algebra; the corresponding discussion in the strict case follows
rather trivially.

The fact that we consider instantons on R4 suggests that we are working on a
compactification M of R4, e.g., S4. In this case, the first fractional Pontryagin class
1
2 p1 = (F, F) is not trivial in H4(M,Z). This, however, would be a requirement for
our gauge potentials to live on a principal 2-bundle corresponding to a string structure
as defined in [14,21–24], cf. also the discussion in Sect. 3.4.

There are two rather obvious loopholes to this problem. First, we can extend the
structure L∞-algebra stringT

sk(3) in such a way that the additional degrees of freedom
compensate the instanton contribution to the first Pontryagin class. Second, we can
turn on the E8 gauge degrees of freedom available in the moduli stack of supergravity
C-field connections [44], i.e., let a �= 0 in (3.28), to achieve the same.

The first solution is rather natural, as the following argument shows. Recall that
D1-branes ending on D3-branes form a fuzzy funnel, in which points of the world
volume of the D1-branes polarize into fuzzy 2-spheres [42]. The double cover of the
isometry group of the 2-sphere then has an action on the Hilbert space arising from
geometric quantization. The same group is then the gauge group of the world volume
theory on the D1-branes.

In the case of M2-branes ending on M5-branes, one expects a polarization into
fuzzy 3-spheres, which need to be quantized by a categorified version of geometric
quantization, cf. [31]. We then expect the string group of the double cover of the
isometries of S3, namely Spin(4) ∼= SU(2)× SU(2), to act on the categorified Hilbert
space and to underlie the gauge structure on the M2-brane side. That is, we may want
to replace stringsk(3) by stringsk(4) = (

R → su(2)× su(2)
)
, which also brings our

equations closer to the M2-brane models of [18–20].
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The Pontryagin classes with respect to both su(2)-factors add, and we can compen-
sate the instanton FL in the left factor su(2)L with an anti-instanton FR in the right
factor su(2)R to obtain [ 12 p1] = 0 in H4(M,Z). Altogether, we arrive at the equations

FL = ∗FL , FR = − ∗ FR, [ 12 p1] = [(F, F)] = [(FL , FL ) + (FR, FR)] = 0, H = ∗dϕ.
(5.1)

We note that an alternative way of arriving at equivalent data is to flip the sign of the
Killing form on suR(2), leading to an indefinite metric on suL(2) ⊕ suR(2), which
is precisely the gauge algebra underlying the simplest M2-brane model. In this case,
both FL and FR are chosen self-dual.

From our previous results in Sect. 4.5, we readily glean the following extended
solution:

Aμ,L(x) = −i
ηi
μν σi (xν − xν

0,L)

ρ2
L + (x − x0,L)2

, Aμ,R(x) = −i
η̄i
μν σi (xν − xν

0,R)

ρ2
R + (x − x0,R)2

, (5.2)

B(x) = 0, ϕ = (x − x0,L)2 + 2ρ2
L(

(x − x0,L)2 + ρ2
L

)2 − (x − x0,R)2 + 2ρ2
R(

(x − x0,R)2 + ρ2
R

)2 , (5.3)

where the ’t Hooft tensors η̄i
μν form a basis for anti-self-dual 2-forms in four dimen-

sions. Note that the instanton and the anti-instanton do not have to have the same size
ρ nor do they have to be centered at the same point x0. If all the moduli agree, then
evidently ϕ = 0 and thus H = 0.

The above data on R4 = S4\{∞} provide us now with a truly non-trivial and
well-defined string structure on S4. While we cannot present all the details of the
complete picture ( e.g., in terms of non-abelian differential cocycles; this is work in
progress), we can see the non-triviality in the gauge connections. We have a principal
Spin(4)-bundle with connection defined by A = AL + AR over S4 and the projections
onto the two underlying SU(2)-bundles are topologically clearly non-trivial: carrying
an instanton and an anti-instanton, their individual Pontryagin classes do not vanish
and gauge transformations do not mix them. The other characteristic class relevant
here is the 3-form curvature H . This should be understood as the sum of a Dixmier–
Douady class dB of an abelian gerbe (which, by itself, is necessarily trivial on S4) and
a coboundary cs(A) that trivializes a 2-gerbe with 4-form curvature (F, F). Note that
H is gauge invariant and therefore isomorphisms of principal 2-bundles (which are
gauge transformations) will not affect its value. It is thus indeed an invariant of string
structures. As far as we are aware, this is the first explicit example of a non-trivial and
truly non-abelian gerbe relevant to string or M-theory.

6 The 6d superconformal field theory

Having clarified the gauge structure as well as the equations of motion of the non-
abelian self-dual string, it is natural to ask about implications for a classical 6d
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superconformal field theory. In particular, one would like our equations to arise as
the BPS equations of such a theory.

For convenience, we shall restrict ourselves in the following to the Lie 3-algebra
̂stringsk(n) that we constructed in Sect. 3.4 and which underlies our self-dual string
equations; a categorically equivalent treatment of the loop space models should exist.

To formulate an action, we require the appropriate notion of an inner product, which
is given by a cyclic structure on our gauge L∞-algebra. The Lie 3-algebra ̂stringsk(n),
however, does not carry such a structure. Therefore, we first need to minimally extend
̂stringsk(n) to a Lie 3-algebra ̂stringω(n) with cyclic structure. It turns out that this
minimal extension encodes in fact a (1, 0) gauge structure in the sense of [26]. That
is, it is a suitable gauge structure for the N = (1, 0) superconformal field theory in
six dimensions with action that was proposed in [15]. This result is an extension of
the observation made in [26] that the string Lie 2-algebra is a (1, 0) gauge structure.

6.1 Cyclic Lie 3-algebra structure

As briefly explained in “Appendix C”, a cyclic structure on a k-term L∞-algebra or Lie
k-algebra g is most readily constructed from a symplectic form on the corresponding
NQ-manifold g[1]. Note that given the NQ-manifold g[1] of any Lie k-algebra g (in
particular with g[1] not necessarily symplectic), we can double it to T ∗[k + 1]g[1],
which is concentrated in the same degrees and clearly symplectic. A vector field Q
on T ∗[k + 1]g[1] is then found by extending that on g[1] minimally, and the result
corresponds to a doubled and cyclic Lie k-algebra T ∗[k − 1]g.

The NQ-manifold corresponding to ̂stringsk(n) reads as

̂stringsk(n)[1] = g[1] ← Rr [2] ← Rp[3], (6.1)

where15 g = spin(3) and the subscripts will help us distinguish different copies
of the real line and indicate the coordinates we will be using: xa , r and p on the
subspaces g[1], Rr [2] and Rp[3], which are of degree 1, 2 and 3, respectively. In
these coordinates, the vector field Q reads as

Q = −1

2
f a
bcxbxc ∂

∂xa
− 1

3! fabcxa xbxc ∂

∂r
+ p

∂

∂r
. (6.2)

Doubling the NQ-manifold as sketched above, we have

̂stringω(n)[1] := g[1] ⊕ Rq [1] ← Rr [2] ⊕ Rs[2] ← Rp[3] ⊕ g∗[3], (6.3)

where we coordinatize the subspaces g[1],Rq [1],Rr [2],Rs[2],Rp[3], g∗[3] by xa ,
q, r , s, p, ya , which have degrees 1, 1, 2, 2, 3, 3, respectively. The natural symplectic
form of (NQ-)degree 4 reads as

ω = dxa ∧ dya + dq ∧ dp + dr ∧ ds, (6.4)

15 Our construction works for arbitrary metric Lie algebra g.
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which induces the following Poisson bracket on C∞(̂stringω(n)[1]):

{ f , g} := − f
←−−
∂

∂ ya

−−→
∂

∂xa g − f
←−−
∂

∂xa

−−→
∂

∂ ya
g − f

←−
∂

∂ p

−→
∂

∂q
g − f

←−
∂

∂q

−→
∂

∂ p
g + f

←−
∂

∂s

−→
∂

∂r
g − f

←−
∂

∂r

−→
∂

∂s
g.

(6.5)
The Poisson bracket allows us to work with the Hamiltonian functionQ of the vector
field Q = {Q,−}, which is more convenient. The minimal Hamiltonian function
which induces an extension of (6.2) reads as

Q = − 1
2 f a

bcxbxc ya − 1
3! fabcxa xbxcs + sp, (6.6)

where f a
bc are the structure constants of g. The corresponding Hamiltonian vector field

is

Q = −1

2
f a
bcxbxc ∂

∂xa − f b
acxc yb

∂

∂ ya
+ 1

2
fabcxbxcs

∂

∂ ya
− 1

3! fabcxa xbxc ∂

∂r
+ p

∂

∂r
+s

∂

∂q
.

(6.7)
One readily checks {Q,Q} = QQ = 0, which is equivalent to Q2 = 0.
Let us now translate back to the Lie 3-algebra picture. We shall use the same letters

as above to denote elements of the various subspaces, but the grading is as indicated
here:

̂stringω(n) = g ⊕ Rq ← Rr [1] ⊕ Rs[1] ← Rp[2] ⊕ g∗[2]. (6.8)

The cyclic inner product on ̂stringω(n) now reads as

〈x1 + q1 + r1 + s1 + p1 + y1, x2 + q2 + r2 + s2 + p2 + y2〉
= y1(x2) + y2(x1) + p1q2 + q1 p2 + r1s2 + s1r2, (6.9)

and the non-trivial higher products of the Lie 3-algebra are

μ1:Rs[1] → Rq :μ1(s) := s,

μ1:Rp[2] → Rr [1]:μ1(p) := p,

μ2: g ∧ g → g:μ2(x1, x2) := [x1, x2],
μ2: g ∧ g∗[2] → g∗[2]:μ2(x, y) := y([−, x]),
μ3: g ∧ g ∧ g → Rr [1]:μ3(x1, x2, x3) := (x1, [x2, x3]),
μ3: g ∧ g ∧ Rs[1] → g∗[2]:μ3(x1, x2, s) := (−, [x1, x2])s. (6.10)

Next, we observe that the data available to us can be used to refine the Lie 3-algebra
̂stringω(n) to a (1, 0) gauge structure which we also denote by ̂stringω(n) and which
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can be used for the (1,0)-model of [15]. For simplicity, we shall use the conventions
and notation of [26] and abbreviate ̂stringω(n) = a0 ⊕ a1 ⊕ a2. Explicitly, we have
maps

h: a1 → a0, h(r + s) = μ1(r + s) = s,

g: a2 → a1, g(y + p) = μ1(y + p) = p,

f: a0 ∧ a0 → a0, f(x1 + q1, x2 + q2) = μ2(x1, x2) = [x1, x2],
d: a0 � a0 → a1, d(x1 + q1, x2 + q2) = 1

2 (x1, x2) ∈ Rr [1],
b: a1 ⊗ a0 → a2, b(r + s, x + q) = (−, x)s ∈ g∗[2].

(6.11)

It is now easy to verify that these maps satisfy the necessary relations for a (1, 0)
gauge structure admitting an action, which read as

h(g(λ)) = 0,

f(h(χ), γ ) − h(d(h(χ), γ )) = 0,

f(γ[1, f(γ2, γ3])) − 1
3h(d(f(γ[1, γ2), γ3])) = 0,

g(b(χ1,h(χ2))) − 2d(h(χ1),h(χ2)) = 0,
∑

α

(〈
λ,h(d(γ, τα)) − f(γ, τα)

〉)〈g(τα∗ ), χ〉 − 〈g(b(g(λ), γ ))), χ〉 = 0,

〈χ,g(λ)〉 − 〈h(χ), λ〉 = 0,

〈χ,d(γ1, γ2)〉 − 1
2 〈b(χ, γ1), γ2〉 = 0,

〈
d(γ1, γ(2),d(γ3, γ4))

〉 = 0,

2(d(h(d(γ1, γ(2)), γ3)) − d(h(d(γ2, γ3)), γ1)) − 2d(f(γ1, γ(2), γ3))

+ g(b(d(γ2, γ3), γ1)) = 0,
〈
b(χ,h(d(γ1, γ2))) + 2b(d(γ1,h(χ)), γ3) − b(χ, f(γ1, γ3))

− b(g(b(χ, γ1)), γ3), γ2
〉

+ 〈b(χ, γ3),h(d(γ1, γ2)) − f(γ1, γ2)〉 = 0,

where γi , γ ∈ a0, χ ∈ a1 and λ ∈ a2 and τα is some basis of g and τα∗ is the dual
basis of g∗[2].

6.2 Action and BPS equations

We can now proceed and specialize the action of [15] to the (1, 0) gauge structure
̂stringω(n). We shall label all fields as in [15], only suppressing the gauge indices. The
relevant field content is arranged in anN = (1, 0) vector multiplet and anN = (1, 0)
tensor multiplet in six dimensions. The N = (1, 0) vector multiplet (A, λi ,Y i j )

consists of a 1-formpotential A, spinorsλi and (auxiliary) scalar fieldY i j = Y ji taking
values in a0 = g⊕R, where i = 1, 2 are indices for the vector representation of the R-
symmetry group Sp(1). These indices can be raised and lowered by the Sp(1)-invariant
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matrices εi j and εi j . The N = (1, 0) tensor multiplet (ϕ, χ i , B) consists of a 2-form
potential B, a spinor χ and a scalar field ϕ taking values in a1 = Rr [1]⊕Rs[1] and an
(auxiliary) 3-form potentialC , taking values in a2 = g∗[2]⊕R[2]. The corresponding
field strengths are given by

F = dA + 1
2 [A, A] + μ1(B) and H = dB − (A, dA) − 1

3 (A, [A, A]) + μ1(C),

(6.12)
together with the Bianchi identities

∇F = μ1(H) and ∇H = −(F ,F) + μ1(G) (6.13)

for some 4-form field strength G = dC + . . . , where higher terms are suppressed,
cf. [15]. The action then reads as

S =
∫

R1,5

(
− 1

8 〈dϕ, ∗dϕ〉 − ∗ 1
2 〈χ̄i , ∂/ χ

i 〉 + 1
16ϕs

(
(F , ∗F) − ∗4(Yi j , Y i j ) + ∗8(λ̄i ,∇/ λi )

)

− 1
96 〈H, ∗H〉 − 1

48Hs ∧ ∗〈λ̄i , γ(3)λ
i 〉 − 1

4 〈λ̄i ,F〉 ∧ ∗γ(2)χ i
s + ∗〈Yi j , λ̄

i 〉χ j
s

− μ1(C) ∧ Hs + Bs ∧ (F ,F)
)
.

(6.14)
Here, γ(n) := 1

n!γμ1...μndxμ1 ∧ · · · ∧ dxμn and subscripts s denote the components of
the fields taking values inRs[1]. The last line in (6.14) is clearly a purely topological
term, see [15] for details. Self-duality of H is imposed by hand in the form of the
equation

H − ∗H = −(λ̄i , γ(3)λi ). (6.15)

The general action of [15] came with a few undesirable features. First, it was not
clear which (1,0) gauge structures should be chosen. Second, the action generically
contains a cubic interaction term of the scalar fields ϕ, leading to potential instabilities.
Third, if the action is not free, it necessarily comes with an indefinite kinetic term for
these scalar fields.While our choice of (1, 0) gauge structure solves the first two issues,
the problem of the indefinite kinetic term is still present. It can possibly be addressed
analogously to similar terms in M2-brane models based on Lorentzian 3-Lie algebras.

Considering the supersymmetry transformations, it is easy to extract BPS equa-
tions as done in [16,62]. Their results were given for a Lie algebra g together with a
representation R. Choosing R to be the trivial representation R, the BPS equations
contain in particular

�ϕ = ∗(F , ∗F), (6.16)

which is satisfied if our Eqs. (4.4) and (4.6) are fulfilled. The self-duality equation
here follows from the Killing spinor equation in the specific setting of [16,62]. We
thus note that imposing self-duality in (4.6) was the correct requirement for a BPS
state in the (1, 0)-model of [15].
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6.3 Reduction to four-dimensional super Yang–Mills theory

The reduction in our self-dual string Eqs. (4.4) and (4.6) to three dimensionswas rather
straightforward, which motivates an attempt at a corresponding reduction of the (1,0)-
model to lower dimensions. While a reduction to five dimensions is not immediately
obvious, a further reduction to N = 2 super Yang–Mills theory in four dimensions
arises directly: the action contains the term

S =
∫

R1,5

1
16ϕs

(
(F , ∗F) − ∗4(Yi j ,Y i j ) + ∗8(λ̄i ,∇/ λi )

)
, (6.17)

and performing a dimensional reduction along two space-like directions such that ϕs

gets a large expectation value will clearly yield a dominatingN = 2 super Yang–Mills
part in the remaining four-dimensional Lagrangian.

To justify such a large expectation value, recall the corresponding reduction forM2-
branes. To reduce theBLGM2-branemodel to superYang–Mills theory, a dimensional
reduction of one spatial direction transverse to the M2-branes is necessary. In [28],
the authors conjecture that this amounts to the corresponding scalar field developing
a vacuum expectation value proportional to the radius of the circle. A rough analogy
in our case suggests that the expectation value developed by ϕs should equal the area
of the torus, which would satisfy the requirement. This, however, is very preliminary
and we leave a full analysis in the context of M5-branes to future work.

A better string theory inspired picture may come from the NS5-D4 brane configura-
tions studied in [63,64]. Slight generalisations of our theory seem tobe reasonably good
candidates for their description. In this picture, the scalar field ϕs corresponds essen-
tially to the distance of two parallel NS5-branes with D4-branes suspended between
them. Thus, a large expectation value of ϕs amounts to moving the two NS5-branes
far apart, which should indeed lead to a decoupling of the tensor multiplet on the
NS5-branes from the vector multiplet on the D4-branes and therefore produce four-
dimensional super Yang–Mills theory. Clearly, again, much more work is needed to
match our theory to string theory expectations, but what we have seen so far is encour-
aging.
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Appendix

Below, we collect some definitions, results and hopefully helpful references. While
“AppendixA” is a rough overviewover the categorification of themathematical notions
involved in the definition of principal bundles, “Appendices B, C and D” explain in
detail various aspects of categorified gauge algebras. Potentially useful and more
detailed introductions into some of the following material are found in [5,6].
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A Categorified Lie groups, Lie algebras and principal bundles

Let Mfd∞ be the category of smooth spaces with smooth maps between them. A 2-
space (e.g., [2]) is formally a category internal to16Mfd∞. That is, a 2-space consists of
two manifolds M1, M0 with smooth source and target maps s, t: M1 ⇒ M0, a smooth
embedding id: M0↪→M1 and a smooth composition of morphisms ◦: M1 ×M0 M1 →
M1 satisfying the usual axioms of the structuremaps of a category.Morphisms between
2-spaces can be defined as functors internal toMfd∞, which are smoothmaps between
the morphism- and object-manifolds of the 2-spaces.17 Note that any manifold M
gives trivially rise to a 2-space M ⇒ M in which the only morphisms are the identity
morphisms. Also, Lie groupoids are 2-spaces in which each morphism is invertible.

In its simplest, strict form, a Lie 2-group is a category internal to Grp, the cate-
gory of groups. Such strict Lie 2-groups are most conveniently described as crossed
modules of Lie groups [65]. More generally, a Lie 2-group is a Lie groupoid which
is simultaneously a monoidal category and in which morphisms are strictly invertible
and objects are weakly invertible with respect to the monoidal product [65].

There is a higher analogue of Lie differentiation, which takes a Lie 2-group to a
Lie 2-algebra [39]. Strict Lie 2-groups differentiate to strict Lie 2-algebras, which
are conveniently described by crossed modules of Lie algebras. More generally, a
Lie 2-group differentiates to a 2-term L∞-algebra [38], see also [11] for a detailed
discussion of an extremely general case. Since we use these extensively, we present
some more details in “Appendices B, C and D”.

Let us now come to the categorification of principal bundles. As explained in
Sect. 2.1, one can use any of the equivalent definitions of principal bundles and replace
all notions by categorifiedones.Todescribe transition functions of principalG-bundles,
one can use the approach via functors from the Čech groupoid Č (Y ) of a surjective
submersion σ : Y � M over some manifold M to the category BG = G ⇒ ∗. One
may imagine Y to be an open cover Y = �Ui , for concreteness sake. There are now
two obvious projections from the fiber product Y [2] = Y ×M Y (which is the space of
double overlaps in the case Y = �Ui ) to Y as well as a diagonal embedding Y ↪→Y [2],
which, together with the composition (y1, y2)◦(y2, y3) = (y1, y3)we can use to form
the 2-space

Č (Y ) = (Y [2] ⇒ Y ). (A.1)

Since morphisms are invertible with (y1, y2)−1 = (y2, y1), this is in fact a Lie
groupoid. The transition functions of a principal G-bundle for some Lie group G
are given by functors g: Č (Y ) → BG and isomorphism or gauge transformations cor-
respond to natural transformations between functors. This picture readily extends to
categorified groups, where we consider higher functors between the Čech groupoid,
trivially regarded as a higher Lie groupoid, and the delooping BG of a higher Lie group
G . For G = BU(1), we recover abelian gerbes, or principal BU(1)-bundles in the form
of Hitchin–Chatterjee gerbes [66]. These are stably isomorphic to Murray’s more

16 Note thatMfd∞ does not contain all pullbacks which leads to some technicalities which we can ignore.
17 To be precise, one would immediately specialize from 2-spaces to Lie groupoids and regard these as
differentiable stacks or objects in a 2-category with the much more general bibundles as morphisms, see
e.g., the discussion in [40]. This point can safely be ignored.
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general and more useful bundle gerbes [67,68]. Abelian gerbes, or principal BU(1)
bundles are described by a characteristic class, called the Dixmier–Douady class in
H3(M,Z), which is the analogue of the first Chern class of line bundles in H2(M,Z).

To add connections, one can either glue together the local description as derived in
Sect. 3.2 or use insights from Lie differentiation, as done in [10,11].

B L∞-algebras and Lie n-algebras

Strong homotopy Lie algebras or L∞-algebras comprise Lie algebras and are useful
descriptions of all their categorifications. Theyplay important roles inBVquantization,
string field theory and higher geometry in general; the original references are [69–71].

An L∞-algebra is an Z-graded vector space L = ⊕k∈ZLk which is endowed with
a set of totally antisymmetric, multilinear maps μi : ∧i L → L, i ∈ N, of degree i − 2,
which satisfy the higher or homotopy Jacobi relations

∑

r+s=i

∑

σ

(−1)rsχ(σ ; 1, . . . , r+s)μs+1(μr (σ(1), . . . , σ(r)), σ(r+1), . . . , σ(r+s)) = 0

(B.1)
for all 1, . . . , r+s ∈ L, where the second sum runs over all (r , s) unshuffles, i.e., per-
mutations σ of {1, . . . , r + s} with the first r and the last s images of σ ordered:
σ(1) < · · · < σ(r) and σ(r + 1) < · < σ(r + s). Also, χ(σ ; 1, . . . , i ) denotes the
graded Koszul sign defined through the graded antisymmetrized products

1 ∧ · · · ∧ i = χ(σ ; 1, . . . , i ) σ(1) ∧ · · · ∧ σ(i). (B.2)

If an L∞-algebra is non-trivial in degrees 0, . . . , n − 1, we call it an n-term L∞-
algebra. This is a useful and very general notion of a Lie n-algebra. We therefore often
use the term Lie n-algebra, when we actually mean an n-term L∞-algebra.

A cyclic structure on an L∞-algebra overR is a graded symmetric, non-degenerate
bilinear form

〈−,−〉: L � L → R, (B.3)

such that

〈1, μi (2, . . . , i+1)〉 = (−1)i+|i+1|(|1|+···+|i |)〈i+1, μi (1, . . . , i )〉 (B.4)

for 1, . . . , i+1 ∈ L.
We are particularly interested in Lie 2- and 3-algebras. The lowest homotopy Jacobi

relations are equivalent to the following ones:

μ1(μ1(1)) = 0,

μ1(μ2(1, 2)) = μ2(μ1(1), 2) + (−1)|1|μ2(1, μ1(2)),

μ1(μ3(1, 2, 3)) = −μ3(μ1(1), 2, 3) − (−1)|1|μ3(1, μ1(2), 3)

− (−1)(|1|+|2|)μ3(1, 2, μ1(3)) + μ2(1, μ2(2, 3))
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−μ2(μ2(1, 2), 3) − (−1)|1| |2|μ2(2, μ2(1, 3)).

(B.5)

The first two identities are the same as for a differential graded Lie algebra, but the
third identity is a controlled lifting of the Jacobi identity.

A cyclic structure on a Lie 3-algebra satisfies

〈1, μ1(2)〉 = (−1)1+|2| |1|〈2, μ1(1)〉,
〈1, μ2(2, 3)〉 = (−1)1+|3|(|1|+|2|)+|1| |2|〈3, μ2(2, 1)〉,

〈1, μ3(2, 3, 4)〉 = (−1)1+|4|(|1|+|2|+3)+|3|(|1|+|2|)〈4, μ3(2, 3, 1)〉,
〈1, μ4(2, 3, 4, 5)〉 = (−1)1+|5|(|1|+|2|+3+4)+|4|(|1|+|2|+|3|)〈5, μ4(2, 3, 4, 1)〉

(B.6)
for all 1, . . . , 5 ∈ L.

C Lie n-algebras as NQ-manifolds

A very useful and elegant definition of L∞-algebras can be given in terms of NQ-
manifolds, which are known to physicists from BRST quantization and string field
theory. In this picture, the cyclic structure arises from a symplectic form. Below, we
briefly explain this point of view.

An NQ-manifold (M, Q) is an N0-graded manifold M endowed with a vector
field Q which is of degree 1 and nilquadratic: Q2 = 0. Due to a similar argument as
that for smooth (real) supermanifolds, NQ-manifolds can be regarded as N-graded
vector bundles over the body M0 of the manifold M.

Archetypical examples of NQ-manifolds are (T [1]M, d), the grade-shifted tangent
bundle together with the de Rham differential as well as the grade-shifted Lie algebra
(g[1], Q) with Q = − 1

2 f γαβξ
αξβ ∂

∂ξγ
a vector field of degree 1 in some coordinates

ξα on g[1], which are necessarily of degree 1. Note that Q2 = 0 is equivalent to the
Jacobi identity in the latter case.

The latter example indicates the relation of NQ-manifolds to Lie n-algebras: Given
a Lie n-algebra L, we should first grade-shift the underlying graded vector space:

L = (L0 ← · · · ← Ln−1) → L[1] = (∗ ← L0[1] ← · · · ← Ln−1[1]). (C.1)

Correspondingly, the degree of the maps μi changes from i − 2 to −1. The sum of
these maps forms a codifferential

D = μ1 + μ2 + μ3 + · · · , (C.2)

which acts on the coalgebra ∧•L[1]. If we now dualize to the algebra of functions on
L[1], the corresponding differential is a vector field of degree 1 on the NQ-manifold

∗ ← L0[1] ← · · · ← Ln−1[1]. (C.3)
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The condition Q2 = 0 translates to (B.1).
Altogether, we arrived at a description of a Lie n-algebra L as a differential graded

algebra
(C∞(L[1]), Q

)
. This differential graded algebra is also called the Chevalley–

Eilenberg algebra CE(L) of L.
It is not hard to see that a cyclic structure on a Lie n-algebra L corresponds to a

symplectic form on L[1] of degree n +1, and we use this in Sect. 6.1. For example, the
inner product (x1, x2) = gαβξα1 ξ

β
2 on a Lie algebra g is described by the symplectic

form ω = 1
2gαβdξα ∧ dξβ of degree 2 on g[1].

D Morphisms and equivalences of Lie n-algebras

Let us now come to categorical equivalence between Lie n-algebras. For simplicity, we
first restrict ourselves to Lie 2-algebras L = W ← V . A morphism of Lie n-algebras,
being amorphism of graded spaces, ismost readily derived in the Chevalley–Eilenberg
picture. There, a morphism �: L → L̃ between Lie 2-algebras L = (W ← V ) and
L̃ = W̃ ← Ṽ ) is given by a morphism of differential graded algebras �∗. That is,

�∗: C∞(L̃[1]) → C∞(L[1]), Q̃ ◦ �∗ = �∗ ◦ Q. (D.1)

Since L[1] is a graded vector space, this morphism is determined by its image on coor-
dinate functions. Because degrees have to be preserved, �∗ (and thus �) is encoded
in maps

φ0: W → W̃ , φ0: V → Ṽ , φ1: W ∧ W → Ṽ . (D.2)

The fact that �∗ is a morphism of differential graded algebras implies that

φ0 (μ2(w1, w2)) = μ̃2 (φ0(w1), φ0(w2)) + μ̃1(φ1(w1, w2)),

φ0 (μ2(w, v)) = μ̃2(φ0(w), φ0(v)) + φ1(w,μ1(v)),

φ0 (μ3(w1, w2, w3)) = μ̃3(φ0(w1), φ0(w2), φ0(w3)) + [φ1(w1, μ2(w2, w3))

+ μ̃2 (φ0(w1), φ1(w2, w3)) + cyclic (w1, w2, w3)
]

(D.3)
for all w,w1,2 ∈ W and v ∈ V . This reproduces the definition of a morphism of Lie
2-algebra from [39].

Two morphisms � = (φ0, φ1) and � = (ψ0, ψ1) compose as follows:

(�◦�)0() = ψ0(φ0()), (�◦�)1(w1, w2) = ψ0(φ1(w1, w2))+ψ1(φ0(w1), φ0(w2))

(D.4)
for all  ∈ L andw1,2 ∈ W . The identity morphism reads as idL = (idL, 0). The above
data of 2-term L∞-algebras and their morphisms, together with the identity morphism
and composition combines to a category of Lie 2-algebras, Lie2alg.

Note that the inverse of a morphism � = (φ0, φ1) is defined if and only if φ0 is
invertible:

(�−1)0() = φ−1
0 (), (�−1)−1(w1, w2) = −φ−1

0 (φ1(φ
−1
0 (w1), φ

−1
0 (w2))),

(D.5)

123
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again for  ∈ L and w1,2 ∈ W .
A 2-morphism between twomorphisms�,�: L → L̃ is a chain homotopy χ : W →

Ṽ such that

φ1(w1, w2)−ψ1(w1, w2) = μ2(w1, χ(w2))+μ2(χ(w1), ψ0(w2))−χ(μ2(w1, w2))

(D.6)
for all w1, w2.

Finally, an equivalence or a quasi-isomorphism of Lie 2-algebras between Lie 2-

algebras L = W
μ1←−− V and L̃ = W̃

μ̃1←−− Ṽ is a morphism �1: L → L̃ and a
morphism �2: L̃ → L such that �1 ◦ �2 ∼= 1 ˜f rg and �2 ◦ �1 ∼= 1L. An explicit
example of an equivalence between Lie 2-algebras is found in Sect. 2.3.

The above discussion readily generalizes to morphisms� between Lie n-algebras L
and L̃. These are given by totally antisymmetric maps φi : L∧i+1 → L, i = 0, . . . , n−1,
of degree −i such that appropriate extensions of (D.3) hold, see [72] for details.
An isomorphism of Lie n-algebras is a morphism of Lie n-algebras with φ0 an iso-
morphisms. Equivalences between L∞-algebras are then captured by Lie n-algebra
quasi-isomorphisms which are morphisms of Lie n-algebras which induce an isomor-
phism on the cohomology of the complex underlying the Lie n-algebras.
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