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Abstract
The Bannai–Ito algebra BI (n) is viewed as the centralizer of the action of osp(1|2)
in the n-fold tensor product of the universal algebra of this Lie superalgebra. The
generators of this centralizer are constructed with the help of the universal R-matrix of
osp(1|2). The specific structure of the osp(1|2) embeddings to which the centralizing
elements are attached as Casimir elements is explained. With the generators defined,
the structure relations of BI (n) are derived from those of BI (3) by repeated action
of the coproduct and using properties of the R-matrix and of the generators of the
symmetric group Sn .
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1 Introduction

This paper explains the essential role that the universal R-matrix of osp(1|2) plays
in the algebraic underpinnings of the Bannai–Ito algebra BI (3) and its higher-rank
generalization BI (n).

The universal Bannai–Ito algebra BI (3) is generated by the central elements C1,
C2, C3 and C123 and three generators C12, C23 and C13 satisfying the defining relations
[4]

{C12, C23} = 2(−C13 + C1C3 + C2C123), (1a)

{C12, C13} = 2(−C23 + C2C3 + C1C123), (1b)
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{C23, C13} = 2(−C12 + C1C2 + C3C123), (1c)

where {X ,Y } = XY + Y X .
The algebra BI (3)was first introduced in [15] as an encoding of the bispectral prop-

erties of the eponymorthogonal polynomials [1]. In this context, the generators C12 and
C23 are realized by the Dunkl shift operators of which the Bannai–Ito polynomials are
eigenfunctions and the operator multiplication by the argument of those polynomials.
In this representation, the central terms (C1, C2, C3, C123) become constants related to
the four parameters of the polynomials.

The centrally extended BI (3) was subsequently defined in [9] following the obser-
vation that the Bannai–Ito polynomials are essentially the Racah coefficients of the
Lie superalgebra osp(1|2). This casts BI (3) as the centralizer of the action of osp(1|2)
in the threefold tensor product U (osp(1|2))⊗3 where U (osp(1|2)) stands for the uni-
versal enveloping algebra of osp(1|2). The generators C12, C23, C13 are then mapped
to the Casimir elements attached to embeddings of osp(1|2) into osp(1|2)⊗3 which
are indexed by the 2-element subsets of {1, 2, 3}. This paved the way to the con-
struction of the extension BI (n) of arbitrary rank as the centralizer of the action of
osp(1|2) in the n-fold product U (osp(1|2))⊗n with the generators identified as the
Casimir elements associated with osp(1|2) embeddings now labelled by subsets A of
[n] = {1, 2, . . . , n}. This was actually achieved using models of osp(1|2) given in
terms of Dirac–Dunkl operators [6,7]. For reviews of these algebras and some of their
applications, see [4,5].

A notable feature of these tensorial constructs is the fact that the embeddings
involved do not all correspond to the simple ones where only the factors of the n-
fold product that are enumerated by the elements the sets A enter non-trivially. The
proper Casimir elements are in some cases associated with modified embeddings.
Sorting this out is addressed here. It will be shown that conjugations of the simple
embeddings by the universal R-matrix will in general be required to ensure that the
attached Casimir elements belong to the centralizer.

Throughout this paper, we shall use a presentation of osp(1|2) that calls upon a
grading involution P . This P is group-like under the coproduct, and when this frame-
work is used, it enters in the formula for the universal R-matrix. In a separate study
[8], expressions for the centralizing elements of osp(1|2) have been provided in situ-
ations where the grade involution admits a refinement as a product of supplementary
involutions. This is manifestly the case under embeddings in tensor products. The cen-
tralizing elements thus given have been shown in [8] to coincide with the Casimir’s of
the modified embeddings. That this should be so will be made clear in the following.

The description of the Bannai–Ito algebra in the framework of the universal R-
matrix of osp(1|2) has the striking benefit of allowing to fully characterize abstractly
BI (n) for arbitrary n (in the centralizer view) without recourse to any model. As shall
be shown, the centralizing elements associated with subsets A of [n] = {1, 2, . . . , n}
are given through repeated action of the coproduct on osp(1|2) Casimir elements and
conjugation by products of braided universal R-matrices. With these generators in
hand, the structure relations that they verify can be inferred consistently from those of
BI (3) (i.e. (1a)–(1c)) by exploiting properties of the R-matrix and of the permutations
of the symmetric groupSn . A definite picture for the generalized Bannai–Ito algebra
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BI (n) as the centralizer of osp(1|2) inU (osp(1|2))⊗n is thus obtained. This approach
based on the universal R-matrix has already contributed to the understanding of the
Askey–Wilson algebra of rank 1 [2], and the advances presented here in the description
of the Bannai–Ito algebra for n > 3 should show the way towards a complete picture
of the higher-rank Askey–Wilson algebras.

This paper will proceed as follows. Section 2 will offer a short review of osp(1|2)
and will focus on the universal R-matrix of this Lie superalgebra. In Sect. 3, the
centralizing elements of osp(1|2) inU (osp(1|2))⊗3 will be given in terms of Casimir
elements and the universal R-matrix will be shown to play a key role. The connection
between that centralizer and BI (3) will moreover be made. Section 4 will extend the
results to n > 3 and derive the algebra homomorphism BI (n) → U (osp(1|2))⊗n

making essential use of the universal R-matrix formalism. Short concluding remarks
will follow in Sect. 5.

2 Properties of the Lie superalgebra osposposp(1|2)
2.1 The Lie superalgebraosposposp(1|2)

The superalgebra osp(1|2) has two odd generators F± and three even generators H ,
E± satisfying the following (anti-)commutation relations [11]

[H , E±] = ±E±, [E+, E−] = 2H , (2)

[H , F±] = ±1

2
F±, {F+, F−} = 1

2
H , (3)

[E±, F∓] = −F±, {F±, F±} = ±1

2
E±. (4)

The Z2-grading of osp(1|2) can be encoded by the grading involution P satisfying

[P, E±] = 0, [P, H ] = 0, {P, F±} = 0 and P2 = 1. (5)

One defines the central element C of U (osp(1|2)) by [12,13]

C = 8[F+, F−]P + P. (6)

TheU (osp(1|2)) algebra is endowed with a coproduct� defined as the algebra homo-
morphism satisfying

�(E±) = E± ⊗ 1 + 1 ⊗ E±, �(H) = H ⊗ 1 + 1 ⊗ H , (7)

�(F±) = F± ⊗ P + 1 ⊗ F±, �(P) = P ⊗ P. (8)

We recall that this comultiplication is coassociative

(� ⊗ id)� = (id ⊗ �)� . (9)
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1046 N.Crampé et al.

2.2 The universal R-matrix ofosposposp(1|2)

The universal R-matrix of osp(1|2) is given by

R = 1

2
(1 ⊗ 1 + P ⊗ 1 + 1 ⊗ P − P ⊗ P). (10)

For x ∈ U (osp(1|2)), it satisfies

�(x)R = R�op(x), (11)

where the opposite comultiplication �op(x) = x (2) ⊗ x (1) if �(x) = x (1) ⊗ x (2) in
the Sweedler’s notation. Let us note that

R2 = 1 ⊗ 1, R21 = R. (12)

The universal R-matrix (10) satisfies

(id ⊗ �)R = R12R13 and (� ⊗ id)R = R23R13. (13)

It also satisfies the Yang–Baxter equation

R12R13R23 = R23R13R12. (14)

We remark that in the case of osp(1|2), the universal R-matrix satisfies [R12,R13] =
0. However, we shall not use this property in the following so as to keep the com-
putations performed in this paper more generic and applicable to situations involving
algebras other than osp(1|2).

3 The Bannai–Ito algebra as the centralizer of osposposp(1|2) in
U(osposposp(1|2))⊗3

3.1 Centralizer of the diagonal action ofosposposp(1|2) in U(osposposp(1|2))⊗3

To identify BI (3) as the centralizer of osp(1|2) inU (osp(1|2))⊗3, it is appropriate to
first look for the centralizing elements X ∈ U (osp(1|2))⊗3 such that

[(� ⊗ id)�(x), X ] = 0 for x ∈ osp(1|2). (15)

It is straightforward to observe that the elements

C1 = C ⊗ 1 ⊗ 1, C2 = 1 ⊗ C ⊗ 1, C3 = 1 ⊗ 1 ⊗ C (16)

C12 = �(C) ⊗ 1, C23 = 1 ⊗ �(C), C123 = (� ⊗ id)�(C). (17)
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will be centralizing. Now let�(C) = C (1)⊗C (2) in the Sweedler’s notation and write

C13 = C (1) ⊗ 1 ⊗ C (2). (18)

At first glance, onemight think thatC13 also belongs to the centralizer. It is the Casimir
element corresponding to the simple homomorphism

osp(1|2) → osp(1|2)⊗3

x �→ x (1) ⊗ 1 ⊗ x (2)

with�(x) = x (1)⊗x (2). This, however, is not true and is where the universal R-matrix
comes in.

Proposition 3.1 The element1

C13 = R−1
32 C13R32 (19)

belongs to the centralizer of osp(1|2) in U (osp(1|2))⊗3.

Proof Since the Casimir element is central, we have for x ∈ osp(1|2),

[(� ⊗ id)�(x),�(C) ⊗ 1] = 0. (20)

Using the coassociativity of the comultiplication (9) and conjugating by R23 trans-
forms the previous relation into

[(id ⊗ �op)�(x),R−1
23 (�(C) ⊗ 1)R23] = 0. (21)

Finally, exchanging the spaces 2 and 3, one gets that C13 is in the centralizer

[(id ⊗ �)�(x),R−1
32 C13R32] = [(id ⊗ �)�(x),C13] = 0. (22)

��
Let us emphasize that C13 is in the centralizer, whereas C13 is not. In particular, for
x = C in the previous relation, we get

[C123,C13] = 0. (23)

There is the following alternative formula for C13.

Proposition 3.2 The element C13 is also given by

C13 = R12C13R−1
12 . (24)

1 In what follows we shall keep using the inverse ofR even thoughR−1 = R (for osp(1|2)) to make clear
that conjugations are involved.
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Proof From property (11), one gets

C13 = R−1
23 R13

(
C (2) ⊗ 1 ⊗ C (1)

)
R−1

13 R23. (25)

Using the Yang–Baxter equation (14) and equality (12), this relation becomes

C13 = R12R13R−1
23 R−1

12

(
C (2) ⊗ 1 ⊗ C (1)

)
R12R23R−1

13 R−1
12 . (26)

Now, from (13), one deduces that [�(C)⊗1, (�⊗id)(R)] = [�(C)⊗1,R23R13] = 0
and that [(C (2) ⊗ 1 ⊗ C (1)

)
,R12R23] = 0. One then obtains

C13 = R12R13

(
C (2) ⊗ 1 ⊗ C (1)

)
R−1

13 R−1
12 (27)

which after using (11) again yields the desired result. ��
At this point, we can introduce two maps τ̂ and τ̌ from U (osp(1|2)) to

U (osp(1|2))⊗2 by

τ̂ (x) = R−1(1 ⊗ x)R and τ̌ (x) = R−1(x ⊗ 1)R. (28)

Corollary 3.1 The following relations hold in U (osp(1|2))⊗3

(id ⊗ τ̂ )�(C) = C13 and (τ̌ ⊗ id)�(C) = C13. (29)

Proof These results follow directly from Propositions 3.1 and 3.2 and the fact that
R = R−1. ��

Using the definitions (28) and the universal R-matrix (10), one gets

τ̂ (P) = 1 ⊗ P, τ̂ (F±) = P ⊗ F±, τ̂ (E±) = I ⊗ E±, τ̂ (H) = I ⊗ H (30)

τ̌ (P) = P ⊗ 1, τ̌ (F±) = F± ⊗ P, τ̌ (E±) = E± ⊗ I , τ̌ (H) = H ⊗ I . (31)

Either more abstractly with the help of Eqs. (13) or using the formulas above, one
readily observes that τ̂ and τ̌ define coactions, that is verify

(id ⊗ τ̂ )τ̂ = (� ⊗ id)τ̂ (τ̌ ⊗ id)τ̌ = (id ⊗ �)τ̌ . (32)

It hence follows that (id ⊗ τ̂ )� and (τ̌ ⊗ id)� define two different homomorphisms
of U (osp(1|2)) into U (osp(1|2))⊗3 which yield for C the same image, namely:

C13 = (
8[F+ ⊗ P ⊗ P + 1 ⊗ 1 ⊗ F+, F− ⊗ P ⊗ P + 1 ⊗ 1 ⊗ F−] + 1

)

P ⊗ 1 ⊗ P. (33)

123



Bannai–Ito algebras and the universal R-matrix of osp(1|2) 1049

This can be checked directly by applying both (id ⊗ τ̂ ) and (τ̌ ⊗ id) to

�(C) = 8
([F+ ⊗ P + 1 ⊗ F+, F− ⊗ P + 1 ⊗ F−] + 1

)
P ⊗ P (34)

= 16
(
F− ⊗ F+ − F+ ⊗ F−)

(P ⊗ 1) + 8C ⊗ P + P ⊗ C − P ⊗ P. (35)

Note that

τ̂ (C) = 1 ⊗ C and τ̌ (C) = C ⊗ 1. (36)

We may hence pick the homomorphism given by (τ̌ ⊗ id)� and identify the three
embeddings labelled by the pairs (1, 2), (2, 3) and (1, 3) (see also [8]):

Hi j = Hi + Hj , E±
i j = E±

i + E±
j , i, j = 1, 2, 3,

F±
12 = F±

1 P2 + F±
2 , F±

23 = F±
2 P3 + F±

3 , F±
13 = F±

1 P2P3 + F±
3 ,

P12 = P1P2, P23 = P2P3, P13 = P1P3, (37)

with the subscripts denoting (as on the R-matrix) the factor in the tensor product
where the element appears. The centralizing elements Ci j are then simply the Casimir
element given by

Ci j =
(
8[F+

i j , F
−
i j ] + 1

)
Pi j (38)

as is manifested in particular from (33) and we now understand the reasons for the
choice of the (13) embedding. In this notation, we have

Ci =
(
8[F+

i , F−
i ] + 1

)
Pi , i = 1, 2, 3 (39)

and C123 =
(
8[F+

123, F
−
123] + 1

)
P1P2P3 (40)

with F±
123 = F±

1 P2P3 + F±
2 P3 + F±

3 . (41)

3.2 The image of BI(3) in U(osposposp(1|2))⊗3

Wewish to identify the Bannai–Ito algebra BI (3)with relations (1a)–(1c) bymapping
its generators C with one, two and three indices onto the correspondingC . To that end,
we need to obtain the relations between the Casimir elements C . Using the formulas
(38), (39), (40), relation (1a) is readily verified under C → C .

Note thatC13 could have been taken to be defined by (1a) assuming that the Bannai–
Ito relations will be realized. (This is typically the approach.) Given that C12 and
C23 are centralizing osp(1|2) in U (osp(1|2))⊗3, it then follows that C13 must also
be in the centralizer. We have here adopted the view point of first identifying the
centralizing elements and hence of first defining C13, before obtaining the relations
between the generators of the centralizers. Since the tensorial embedding is so far
the only approach that has been designed to obtain the higher-rank generalization of
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the Bannai–Ito algebra, having these definitions of the centralizing elements proves
essential in this respect.

Given the definitions of C12, C23 and C13, as already said, one directly checks that
(1a) is satisfied. It is then seen, remarkably, that the remaining defining relations of
the Bannai–Ito algebra are implied. One has

{C12,C23} = 2(−R12C13R−1
12 + C1C3 + C2C123). (42)

Interchanging the factors 1 and 2 yields

{C21,C13} = 2(−R21C23R−1
21 + C2C3 + C1C213). (43)

Mindful that C21 = �op(C) ⊗ 1 and that C213 = (�op ⊗ 1)�(C), upon conjugating
withR−1

21 = R12, we find

{C12,R12C13R−1
12 } = 2(−C23 + C2C3 + C1C123) (44)

given thatR�op = �R. We thus recover (1b) from (1a). The defining relation (1c) is
also obtained from (1a) in a similar fashion. In this case, one interchanges the factors
2 and 3 and makes use of the other expression for C13, namely C13 = R−1

23 C13R23.
In conclusion, given C12, C23 and once C13 has been defined with the help of the

universal R-matrix, it is a matter of calculation to obtain one relation between these
centralizing elements and one sees thereafter that the other two defining relations of
the Bannai–Ito algebra follow simply from the first one in the light of the properties
of the generators and their connection to the R-matrix.

4 The higher-rank Bannai–Ito algebras

In this section, we shall take n be any positive integer and [n] = {1, 2, . . . , n}. The
higher-rank universal Bannai–Ito algebra BI (n) is generated by CA for A ⊂ [n] (by
convention C∅ = 1) and the following defining relations [7], for A, B ⊂ [n],

{CA, CB} = 2(−C(A∪B)\(A∩B) + CA\(A∩B)CB\(A∩B) + CA∩BCA∪B) . (45)

Let us remark that there is a factor (−2) between the generators used here and the
ones of [7] which explains the apparent discrepancy between the defining relations.
We shall give an image of BI (n) inU (osp(1|2))⊗n . For that, we follow the same logic
as before and study the centralizer of osp(1|2) in U (osp(1|2))⊗n .

We define by induction �(k) = (id ⊗ �(k−1))� with �(0) = id which allows to
define, for 1 ≤ k ≤ � ≤ n,

Ck,k+1,...� = 1⊗(k−1) ⊗ �(�−k)(C) ⊗ 1⊗(n−�). (46)

These elements commute with �(n−1)(x) for x ∈ osp(1|2). We thus obtain elements
of the centralizer associated with each subset K ⊂ [n] with successive integers. We
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want to find centralizing elements associated with each subset A ⊂ [n]without restric-
tion. Let Sn be the permutation group of n objects generated by the transpositions
s1, s2, . . . , sn−1. For s = si1si2 . . . si p some permutation of Sn (we recall that any
permutation can be written as a product of transpositions), we define the action γs on
X ∈ U (osp(1|2))⊗n by

γs(X) = Ři1Ři2 . . . Ři p X(Ři1Ři2 . . . Ři p )
−1, (47)

where

Ři = Ri,i+1σi,i+1 (48)

and σi,i+1(x1 ⊗· · ·⊗ xi ⊗ xi+1 ⊗· · ·⊗ xn) = (x1 ⊗· · ·⊗ xi+1 ⊗ xi ⊗· · ·⊗ xn)σi,i+1.
Such a Ři is called braided universal R-matrix. It satisfies

�(x)Ř = Ř�(x), (49)

and the braided Yang–Baxter equation

ŘiŘi+1Ři = Ři+1ŘiŘi+1. (50)

Let us emphasize that the definition of γs does not depend on the choice of the decom-
position of the permutation s in terms of the transpositions since the Ři and the si
satisfy the same algebra.

We define the intermediate Casimir element associated with any subset A ⊂ [n] as
follows

CA = Cs(K ) = γs(CK ) (51)

where K ⊂ [n] with successive integers, CK is defined by (46), and s ∈ Sn is chosen
such that

s(K ) = s({K1, K2, . . . , Kk}) = {s(K1), s(K2), . . . , s(Kk)} = A. (52)

We remark that if the permutation s leaves the subset K invariant one gets γs(CK ) =
CK . It is easy to show using (49) that CA is in the centralizer given that CK is in the
centralizer as already proved.

The following example shows that there are different ways to compute CA depend-
ing on the set K we start with.

Example 4.1 From s1({2, 3}) = {1, 3} or s2({1, 2}) = {1, 3}, the definition (51) gives
for C13

C13 = γs1(C23) = Ř1C23Ř−1
1 = R12σ12C23σ

−1
12 R−1

12 = R12C13R−1
12 (53)

= γs2(C12) = Ř2C12Ř−1
2 = R23σ23C12σ

−1
23 R−1

23 = R23C13R−1
23 . (54)
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We recover the equivalent expressions (19) or (24) ofC13 given in the previous section
(we recall that R12 = R21 = R−1

12 ).

To have a well-posed definition of CA, such different paths must lead to the same
result. To confirm that, we must prove that for two subsets K , L ⊂ [n] of successive
integers defined by (46) the following relation holds

CK = γs(CL) (55)

where s(L) = K . It is sufficient to prove (55) for the sets L = {1, 2, . . . , �} and
K = {k + 1, . . . , k + �} to prove it in general. The following permutation

s = (sksk+1 . . . sk+�−1) . . . (s2s3 . . . s�+1)(s1s2 . . . s�) (56)

satisfies s(L) = K . Then, from definition (47), one gets

γs(CL) = (ŘkŘk+1 . . . Řk+�−1) . . . (Ř1Ř2

. . . Ř�)CL(Ř� . . . Ř2Ř1) . . . (Řk+�−1 . . . Řk+1Řk) (57)

= (Rk,k+1Rk,k+2 . . .Rk,k+�) . . . (R1,k+1R1,k+2 . . .R1,k+�)

CK (R1,k+� . . .R1,k+2R1,k+1) . . . (Rk,k+� . . .Rk,k+2Rk,k+1). (58)

The last relation has been obtained using the definition of Ř and the properties of
σi,i+1. Then, noticing that from relation (13) one gets (id⊗k ⊗ �(�−1))(Ri,k+1) =
Ri,k+1Ri,k+2 . . .Ri,k+� (for 1 ≤ i ≤ k) and (id⊗k ⊗ �(�−1))(Ck+1) = CK , one
obtains [Ri,k+1Ri,k+2 . . .Ri,k+�,CK ] = 0 which proves (55) in view of (58).

We are now ready to present the main result of this section.

Proposition 4.1 The map

BI (n) → U (osp(1|2))⊗n

CA �→ CA (59)

is an algebra homomorphism.

Proof We must prove that the centralizing elements CA satisfy the relations (45). We
know from the previous section that one has

{C12,C23} = 2(−R23C13R−1
23 + C1C3 + C2C123) (60)

which can be transformed as

{C12,C23} = 2(−γs(C12) + C1C3 + C2C123) with s({1, 2}) = {1, 3}. (61)

By acting with the coproduct on the second space in relation (60), one gets

{C123,C234} = 2(−R34R24C14R−1
24 R−1

34 + C1C4 + C23C1234) (62)
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which becomes

{C123,C234} = 2(−γs(C12) + C1C4 + C23C1234) with s({1, 2}) = {1, 4}. (63)

Similarly, by acting with the coproduct successively on the second space in relation
(60), one gets, for L = {2, . . . , � + 1},

{C1,L ,CL,�+2} = 2(−R�+1,�+2 . . .R2,�+2C1,�+2R−1
2,�+2 . . .R−1

�+1,�+2

+C1C�+2 + CLC1,L,�+2) (64)

which becomes

{C1,L ,CL,�+2} = 2(−γs(C12) + C1C�+2 + CLC1,L,�+2)

with s({1, 2}) = {1, � + 2}. (65)

Finally, by acting with the coproduct successively on the first and third spaces in
relation (60), one can prove

{CKL ,CLM } = 2(−γs(CK ,k+1,k+2,...,k+m) + CKCM + CLCKLM ) (66)

where s(K , k+1, k+2, . . . , k+m) = KM and K = {1, . . . k}, L = {k+1, . . . k+�}
andM = {k+�+1, . . . k+�+m}. This proves that for the sets K , L andM given above,
the BI (n) relations (45) are satisfied by the corresponding centralizing elements. We
can similarly see relation (45) to hold when K , L or M are chosen empty. Let s ∈ Sn .
Using the definition (47), one gets

γs(XX ′) = γs(X)γs(X
′). (67)

Then, we have

{Cs(K L),Cs(LM)} = 2(−Cs(KM) + Cs(K )Cs(M) + Cs(L)Cs(K LM)). (68)

We conclude the proof by remarking that s(KM) = (s(K L) ∪ s(LM))\(s(K L) ∩
s(LM)), s(K ) = s(K L)\(s(K L) ∩ s(LM)), s(M) = s(LM)\(s(K L) ∩ s(LM)),
s(L) = s(K L) ∩ s(LM) and s(K LM) = s(K L) ∪ s(LM) and by noting that there
exist K , L and M and s such that s(K L) = A and s(LM) = B for any A, B ⊂ [n]. ��

5 Conclusions

This paper has offered a complete description of theBannai–Ito algebras as centralizers
of the diagonal action of osp(1|2) inU (osp(1|2))⊗n by bringing the universal R-matrix
to bear on the topic. This has proved most appropriate. In addition to the elegance it
confers to the presentation, this approach gave answers to questions that had so far
been unsettled. It provided an intrinsic algebraic definition of all centralizing elements
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independently of the defining relations. It also shed light on the specific form of the
intermediate embeddings of osp(1|2) in osp(1|2)⊗n that yield the generators through
the associated Casimir elements. Importantly, it has entailed a simple constructive
derivation of the structure relations of BI (n) satisfied by these generators through
bootstrapping from the relations of BI (3). Another possible merit is that casting
Bannai–Ito algebras in this framework might bring experts familiar with universal
R-matrices to contribute further to the field and its applications.

This universal R-matrix approach has already been applied to the study of the
Askey–Wilson algebra AW (3) [10] as the centralizer of the diagonal action of
Uq(sl(2)) into its threefold product and has also been seen to hold promises for advanc-
ing the understanding of the higher-rank AW (n)where one is looking at the centralizer
of Uq(sl(2)) in Uq(sl(2))⊗n [2]. While advances have been made on this last front
[3,14], a complete description of AW (n) is still lacking. We trust that the treatment
given here of the Bannai–Ito algebra BI (n) using the universal R-matrix might hold
the clues towards bringing this quest to a satisfactory conclusion. We hope to report
on this in the near future.
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