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Abstract
We discuss the Kähler quantization of moduli spaces of vortices in line bundles
over compact surfaces �. This furnishes a semiclassical framework for the study
of quantum vortex dynamics in the Schrödinger–Chern–Simons model. We employ
Deligne’s approach to Quillen’s metric in determinants of cohomology to construct all
the quantum Hilbert spaces in this context. An alternative description of the quantum
wavesections, in terms of multiparticle states of spinors on � itself (valued in a pre-
quantization of a multiple of its area form), is also obtained. This viewpoint sheds light
on the nature of the quantum solitonic particles that emerge from the gauge theory. We
find that in some cases (where the area of� is small enough in relation to its genus) the
dimensions of the quantum Hilbert spaces may be sensitive to the input data required
by the quantization scheme, and also address the issue of relating different choices of
such data geometrically.
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1 Introduction

This article is concerned with an application of geometric quantization to a gauge-
theoretic setting, in a similar spirit to the study of moduli of flat connections in relation
to Chern–Simons and conformal field theory [5,30]. As phase spaces, we consider
moduli spaces of gauged vortices on a compact Riemann surface �. Thus we go
beyond the setting of pure gauge theory and incorporate the coupling of the gauge field
A (a connection in a principal G-bundle P → �) to a matter field φ : � → P ×G X
(a section of an associated bundle with typical Kähler fibre X ). We shall simplify the
problem drastically by restricting ourselves to Abelian gauge theory and line bundles,
settingG = U(1) and X = C. One of our goals is to highlight how this problem draws
in some novel aspects that can be perceived as orthogonal to the mainstream research
on quantization of the moduli of flat connections.

In principle, a study of geometric quantization like the one we propose to take
on is expected to provide at least two outputs. The first one is a description of the
quantum Hilbert spaces that result from the quantization, starting from classical data
that may need to be supplemented by extra structures, required as ancillary ingredients
in the construction (such as Bohm–Aharonov or statistical phases, polarizations, and
metaplectic structures). The second one is a framework to describe (geometrically, if
possible) how the quantumHilbert space depends on the choice of such extra structures.
In this paper, we cater for both of these expected outputs, in the following sense:

(i) We give a description of the quantum Hilbert spaces as vector spaces directly
associated with the algebraic geometry of �, admitting a clean interpretation as
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Kähler quantization of vortex moduli 661

spaces of multiparticle states in standard nonrelativistic quantum mechanics; see
Theorem 7.1. The resulting picture, as we shall see, has the attractive feature of
being consistent with the spin-statistics theorem.

(ii) We show how the various choices of extra structures can be fitted into a geomet-
ric family (see Eq. (61)), in the sense of moduli. In addition, we will argue in
Theorem 8.1 that the main route used to show independence of choices in the
geometric quantization of moduli of flat connections, by means of a projectively
flat connection over the space of choices (also known as Hitchin’s connection), is
unsuitable for the general quantization problem at hand.

To be more precise, the classical phase space we deal with is the moduli space
(Md , ωL2) of solutions of the vortex equations in a Hermitian line bundle L → � of
degree d, equipped with the symplectic form associated with its Kähler L2-geometry.
The definition of ωL2 involves the Hermitian metric in L → �, a Riemannian metric
on �, and a real parameter τ ; we refer the reader to Sect. 2 for background. Under the
assumption τ ∈ ] 4πd

Vol(�)
,∞[, where Vol(�) := ∫

�
ω� and ω� is the area form, the

moduli space Md is the symmetric product

Md ∼= Sd� := �d/Sd (1)

with its natural complex structure J j� , induced from the complex structure j� of �.
However, the symplectic structure ωL2 (or equivalently, the associated Kähler metric
gL2 ) is much harder to describe. In the limit τ → 4πd

Vol(�)
(referred to as the regime

of dissolving vortices [41], corresponding to an asymptotically vanishing section φ

and a connection dA of constant curvature with respect to ω�), the complex structure
asymptotically determines ωL2 as the Kähler form of a generalization of the Bergman
geometry [32] on �; but in general we must start from classical data that are not
explicitly accessible, in contrast with the problem of quantization of moduli of flat
connections. We shall show how, for most of our purposes, this difficulty can be
surmounted in a satisfactory way through a description of the L2-geometry by means
of Quillen’s metrics on determinants of cohomology, extending a discussion that was
initiated by [21] borrowing inspiration from [12].

Themost natural polarizations to consider in the geometric quantization of a Kähler
phase space are the complex polarizations compatible with the Kähler form. In our
context, there are both (a) a natural family of such polarizations on Sd�, namely, those
determined by compatible complex structures J j̃� induced from complex structures
j̃� on the surface �; and (b) a preferred polarization in this family, namely, the one
corresponding to the J j� determined by the particular complex structure j� featuring
in one of the vortex equations (see (4) and (6)), and which can therefore be regarded
as part of the classical data. Once one takes heed of this preferred choice of complex
structure J j� , the discussion of dependence of the quantization on complex polariza-
tions is secondary, and perhaps even pointless. What is physically more relevant is
understanding the dependence on other type of input, such as metaplectic data that
must be fed into the quantization process. As we shall see, a natural parametrization
of the relevant metaplectic corrections is absorbed by the other choice required in our
construction: the prequantization of a particular rescaling of the area form ω� .
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662 D. Eriksson, N. M. Romão

Before we lay out the contents of this paper, we want to provide a broader panorama
of the gauge theory context in which our problem naturally fits. The vortex equa-
tions (4)–(5) that we will work with are self-duality equations for a Ginzburg–Landau
energy functional of the type

Eξ (A, φ) = 1

2

∫

�

(

|FA|2 + |dAφ|2 + ξ

4

(
|φ|2 − τ

)2)

(2)

at critical coupling ξ = 1, and describe minima of this functional in section homo-
topy classes associated with degrees d > 0. There are several field theory models for
vortex dynamics incorporating this functional as a potential energy, the most familiar
being the Abelian Higgs model in 1+2 dimensions [31]. This is a Lorentzian gauged
sigma-model, and for slow velocities its dynamics has been shown to be approximated
by the geodesic flow of the L2-metric on Md (see [59] for the analysis of the case
� = C and d = 2), following an idea sketched by Manton [42,60]. Another model
of vortex dynamics, including a linear combination of the Chern–Simons functional
with a gauged Schrödinger term as kinetic energy, was introduced in [39] and stud-
ied further in [36,54]. Its kinetic term is closely related to the Chern–Simons–Dirac
functional used by Kronheimer and Mrowka in the study of Seiberg–Witten theory
on 3-manifolds [35]. For values of the coupling constant ξ close, but not equal to 1,
the functional (2) induces [52] a Hamiltonian dynamical system on the moduli space
Md , where now the Kähler L2-geometry supplies the symplectic structureωL2 (rather
than the Riemannian structure gL2 for canonical dynamics in T∗Md as in the Abelian
Higgs model); the hope [39,52] that this Hamiltonian system should approximate slow
Schrödinger–Chern–Simons vortex dynamics has been substantiated in reference [19].
For applications of this model in condensed matter physics, see e.g. [61].

The geometric quantization of (Md , ωL2) is to be interpreted as a semiclassical
approximation (involving a truncation to low energies) of the quantum Hilbert space
associatedwith the quantum version of the Schrödinger–Chern–Simonsmodel of [39];
this viewpoint was discussed in [53] in the case� = S2. From a functorial field theory
perspective, the underlying quantization is dealing strictly with product spacetimes
of the form I × �, where I ⊂ R is a time interval; but it could in principle be
extended to more general bordisms, taking advantage of the interpretation of Seiberg–
Witten moduli spaces as canonical relations [8] between vortex moduli spaces (see
[23,47]). Upgrading the quantization produced in this paper to a quantum field theory
in Lagrangian formulation would require the construction of an Atiyah–Segal functor
on (a suitable class of) Riemannian bordisms with necks, so as to satisfy the Atiyah–
Segal axioms [4,56]. At the moment, this remains a considerable challenge.

Let us now briefly summarize the organization of this paper. In Sect. 2, we provide
information about the moduli spaces of vortices in line bundles on a compact surface,
seen as a family of Kähler manifolds. Section 3 is a short review of Kähler quantization
with the purpose of fixing our basic terminology. In Sect. 4, we describe how the L2-
geometry on the spacesMd is captured by fibre integration formulas; ultimately, this
viewpoint justifies the relevance of Quillen’s metrics to our context. Section 5 is a
summary of definitions and basic techniques related to determinants of cohomology
in families of curves and the associated natural metrics; our perspective focuses on
the pairing of line bundles introduced by Deligne [20], and is geared towards the
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application in this article. Using these tools, we construct all Kähler quantizations
of the L2-geometry of Md in Sect. 6, formalizing the input data required in terms
of the geometry given on the surface � at the classical level. Section 7 furnishes a
description of the quantum wavesections in terms of objects defined on the surface �;
the main outcome is that vortices in line bundles of degree d quantize as states of d
fermionic particles on the surface—each individual fermion being a spinor valued in a
prequantization of τ

2ω� , where the real parameter τ defines the vacuum of the Higgs
field φ in the field theory model. Finally, in Sect. 8 we address the problem of relating
different quantizations in our scheme, showing that the main tool used in the Kähler
quantization of moduli spaces of flat connections does not apply to our problem in
nontrivial cases of genus g > 1.

2 Vortices in line bundles

Throughout, � will always denote a compact orientable surface of genus g. We recall
how the symmetric products Sd� in (1) realize moduli spaces for the vortex equations
in Hermitian line bundles L → � of degree d, and how to portray their Kähler
L2-geometry.

2.1 The vortex equations

We fix a Kähler structure (�, j�,ω�) on the surface �. The Hodge star-operator of
the underlying metric g� := ω�(·, j� ·), acting on differential forms, will be denoted
by ∗.

Let L → � be a complex line bundle of degree d > 0, endowed with a Hermitian
metric 〈·, ·〉 which we take to be C-linear in the first argument. The notation we shall
follow throughout is that V → M stands for a vector bundle V → M which has
been given a Hermitian structure, so we could as well write L → � for emphasis.
Sometimes, our vector bundles will also carry holomorphic structures, but these will
not be written explicitly.

A moment map C → u(1)∗ ∼= R for the usual Hamiltonian U(1)-action on C is
prescribed by choosing a real constant τ ∈ R, and it gives rise to a global map L → R

pulling back to � as

μ ◦ φ = 1

2
(〈φ, φ〉 − τ), φ ∈ 	 := 	(�, L). (3)

Definition 2.1 Given the data ( j�,ω�, 〈·, ·〉, τ ), vortices in L → � are pairs
(dA, φ) consisting of a smooth unitary connection dA in L → � with curvature
FA ∈ 
2(�;R), and a smooth section φ ∈ 	(�, L), called the Higgs field, satisfying
the vortex equations [14]

∂̄Aφ = 0, (4)

FA + (μ ◦ φ)ω� = 0. (5)
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664 D. Eriksson, N. M. Romão

The differential operator

∂̄A := 1

2
(dA + i dA ◦ j�) , (6)

which satisfies (∂̄A)2 = 0, is the holomorphic structure on L → � determined by
dA and the complex structure j� on the base [24]. Both Eqs. (4) and (5) are invariant
under the group of unitary gauge transformations Aut�(L) ∼= C∞(�,U(1)), acting
by

(dA, φ) �→ (dA − iu−1du, uφ), u ∈ Aut�(L), (7)

and one is usually interested in solutions only up to this action. Infinitesimal gauge
transformations are describedby the induced actionof the infinite-dimensionalAbelian
Lie algebra

Lie(Aut�(L)) ∼= C∞(�, u(1)) ∼= C∞(�, R).

Equation (4) expresses that φ is a holomorphic section with respect to the holomor-
phic structure ∂̄A. Therefore, to each solution (dA, φ) we can associate an effective
divisor (φ) ∈ Div+(�) of zeroes of φ, whose degree coincides with the first Chern
number

d = 1

2π

∫

�

FA = c1(L)[�] = deg L.

This integer can be thought of as a quantized magnetic flux in units of 2π (i.e. the total
number of vortices in the field configuration), while the zeroes of φ specify precise
locations for d individual vortex cores on �, counted with multiplicity. For emphasis,
we will sometimes speak of a d-vortex, and of a multivortex if d > 1.

From integrating (5), it follows using (3) that

||φ||2L2 :=
∫

�

〈φ, φ〉ω� = τVol(�) − 4πd, (8)

thus we learn that (�, ω�) can only support a d-vortex (with isolated cores) provided

τVol(�) > 4πd. (9)

The equality corresponding to the closure of condition (9) defines a critical value
τ = 4πd

Vol(�)
. In this degenerate situation, solutions of the vortex equations consist of a

constant curvature connection with zero Higgs field, as implied by (8) and (5); they
are called dissolved vortices in [41]. Then the moduli space, with its L2-geometry,
reduces to the Jacobian of � with its usual flat geometry—irrespective of the degree
d—as suggested by the formula (14) below.
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2.2 Vortexmoduli spaces

Conversely, one can prove the following result [17,26,27,48]:

Theorem 2.2 Consider a line bundle L → � of degree d, equipped with the geometric
data introduced above. Assume that the strict inequality

τVol(�) > 4πd (10)

is satisfied. Then, given any effective divisor D of degree d on �, one can construct a
solution (dA, φ) to Eqs. (4) and (5) such that (φ) = D, and this solution is unique up
to the gauge action (7).

Thus once the assumption (10) is made, which we shall do from now on, there is a
moduli space Md of d-vortices up to gauge transformations, and it can be identified
with the symmetric product (1)—which plays a prominent role in classical algebraic
geometry of curves as the space of effective divisors of degree d (see [3]).

A well-known fact from two-dimensional topology (see e.g. [3, p. 18]) is that the
quotient on the right-hand side of (1) (where the symmetric groupSd acts by permuting
the d copies of �) is smooth, even though the Sd -action is not free.

It can be verified [55,59] that the complex structure J j� on Sd� induced by j�
(see [3]) coincides with a natural complex structure on Md induced by the (almost)
complex structure described as

J : ( Ȧ, φ̇) �→ (∗ Ȧ, iφ̇), (11)

on each tangent space T(dA,φ)(A × 	) of the space of all pairs (or “fields”) (dA, φ).
Here, each tangent space is interpreted as an affine space modelled on the vector space

1(�;R) × 	(�, L) � ( Ȧ, φ̇). The fact that the complex structure (11) descends to
Md follows immediately from the realization of themoduli space as aKähler quotient,
which we explain next.

2.3 L2-geometry

Given the metric structures on � and L , each infinite-dimensional tangent space
T(dA,φ)(A × 	) is equipped with an L2-inner product which we normalize in such a
way that

||( Ȧ, φ̇)||2L2 := 1

4π

∫

�

(
Ȧ ∧ ∗ Ȧ + 〈φ̇, φ̇〉ω�

)
. (12)

This is just a particular case of the L2-inner product on the space of sections of a
(tensor product of a) Hermitian vector bundle over a base endowed with a volume
form (coming from a Riemannian structure or a symplectic structure, say), which is
familiar from Hodge theory and will be employed in other sections of this paper; its
name is meant to emphasize that it provides a generalization of the usual L2-inner
product of functions in real analysis. Since this inner product is independent of the
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666 D. Eriksson, N. M. Romão

fields (dA, φ), (12) can be regarded as defining a flat Riemannianmetric on the infinite-
dimensional space A × 	; it is a Kähler metric, as it is (pointwise) compatible with
the complex structure (11).

To see that this Kähler structure induces aKähler structure on the finite-dimensional
manifold Md , one can argue as follows [26]. Observe that the first vortex Eq. (4) is
invariant under the complex structure (11), and so it defines a Kähler submanifold
Nd ⊂ A × 	 on which the gauge group Aut�(L) acts. Moreover, this action is
Hamiltonian, with a moment map for it being given by the left-hand side of the second
vortex Eq. (5)—more precisely, by its image under the Hodge star-operator ∗. We
can therefore interpret the moduli space Md as an infinite-dimensional version of a
symplectic quotient

Md = Nd//Aut�(L). (13)

An alternative interpretation for the quotient (13) is the following. The fact thatNd

is Kähler and that the action of Aut�(L) is holomorphic and Hamiltonian implies that
this action extends uniquely to an action of the complexification

Aut�(L)C ∼= Aut�(L) × i Lie(Aut�(L)).

It is then interesting to consider the corresponding space of orbitsNd/Aut�(L)C, but
this space is not well behaved; instead, one should replace it by a geometric quotient,
retaining only orbits that are stable in an appropriate sense. In our setting, this means
that one should remove the orbit of the zero section φ = 0, and under this prescription
there is an identification of the geometric quotient with the symplectic quotient (13).
Such an identification is sometimes called a Hitchin–Kobayashi correspondence; it
amounts to the existence and uniqueness, inside any orbit of the complexified group
through a stable point, of a unique orbit of the original Lie group where the moment
map vanishes (see e.g. [46]).

The quotient (13) receives a symplectic structure which is compatible with the
complex structure (11); hence the moduli space Md is a Kähler manifold. In fact,
we obtain in this way a family ωL2,τ of Kähler structures for each d, parametrized by
τ ∈ ] 4πd

Vol(�)
,∞[, reflecting the choice ofmoment map, but wewill henceforth suppress

the explicit τ -dependence from our notation and write simply ωL2 .
There are other ways of describing the L2-Kähler structure on Md(�). One way,

which is useful to obtain a localization formula for the L2-metric [55], is based on
the inclusion T(dA,φ)Md ⊂ T(dA,φ)A× 	 provided by linearizing Eqs. (4)–(5) about
a solution (dA, φ), and resorting to the Coulomb gauge; see [59]. Another descrip-
tion [49], which gives a more useful vantage point to our considerations in this paper,
uses a universal bundle over the product Md × � (the line bundle corresponding to
the universal effective divisor of degree d, see [3, p .164]); we shall come back to this
in Sect. 4.

2.4 The Kähler classes [!L2]

The following description of the Kähler class [ωL2 ] ∈ H2(Sd�;R) was put forward
by Manton and Nasir [40] (but see also [49]):pg
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Kähler quantization of vortex moduli 667

[ωL2 ] = 2π θ +
(τ

2
Vol(�) − 2πd

)
η. (14)

Here we conform to the normalization (12), and θ, η ∈ H2(Sd�;Z) are integral
cohomology classes on the symmetric product spanning the whole Kähler cone. To
describe these generators, one can resort to the isomorphism

� : H0(�;Z) ⊕
∧

2H1(�;Z)
∼=−→ H2(Sd�;Z) (15)

established in Lemma 2.3 of [49] for d > 1. One has η = �([pt]), the image of
the obvious generator of the first summand, and θ = �

(∑g
i=1 ai ∧ ai+g

)
, where

{ai , ai+g}gi=1 is a symplectic basis for H1(�;Z) and g the genus of �. An alternative
interpretation for θ is the following (see Proposition (2.1)(ii) in [9]): it is the pullback
θ = (AJd)∗� by the Abel–Jacobi map AJd : Sd� → Jac(�) of the theta-class� (the
latter being the first Chern class of the line bundle defined by the theta-divisor on the
Jacobian Jac(�)). It is a well-known fact that �g = g!PD([pt]) ∈ H2g(Jac(�);Z)

(see e.g. [3, §I.5]), where PD denotes the map taking the Poincaré dual of a cycle,
leading to the relation

θ g = g! (AJd)∗PD([pt]) ∈ H2g(Sd�;Z) whenever d ≥ g (16)

in the singular cohomology ring of Sd�.
The formula (14) is consistent with an interpretation [41] of the L2-geometry on

the vortex moduli space Md as a deformation of the geometry of line bundles on
(�, j�) (encoded by the natural flat Kähler metric on the Jacobian) as τ runs away
from the critical value 4πd

Vol(�)
. It also implies that Kähler structures ωL2 correspond-

ing to different values of τ (with all the geometric data on L and � fixed) are not
symplectomorphic, and hence also not isometric.

A question that is in a sense complementary to this dependence on τ becomes
relevant in the context of Kähler quantization. Suppose that we fix a compact oriented
surface � with area form ω� ∈ 
2(�;R), a Hermitian line bundle L → � of
degree d ∈ N, and τ ∈ R such that (10) holds. Then, for each choice of complex
structure j� compatible with ω� , one may define the operator (6), write down the
vortex equations (4)–(5) and consider the corresponding moduli space of vortices, i.e.
the Kähler manifolds

Md =
(
Sd�, J j� , ω

j�
L2

)
, (17)

where we nowmade the dependence ofωL2 on j� explicit—recall thatωL2 is obtained
by symplectic reduction (13) of a symplectic space Nd depending on j� . Are the

resulting symplectic manifolds
(
Sd�,ω

j�
L2

)
symplectomorphic?

Moser’s theorem yields a positive answer to this question, which we may rephrase
in a slightly stronger version:

Lemma 2.3 Any two complex structures j0�, j1� on � compatible with a given area

form ω� ∈ 
2(�;R) give rise to strongly isotopic symplectic structures ω
j0�
L2 , ω

j1�
L2 on

the manifold Sd�.
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Proof For the benefit of the reader, we spell out what we mean (see Definition 7.1 in

[18]) by the two symplectic structures ω
j0�
L2 , ω

j1�
L2 being strongly isotopic: there exists

a differentiable map � : [0, 1] × Sd� → Sd�, interpreted as a path t �→ �t of
diffeomorphisms of Sd�, such that

�0 = idSd� and �∗
1

(

ω
j1�
L2

)

= ω
j0�
L2

hold.
For a givenω� , we know [44, Proposition 4.1(i)] that the spaceJ (�, ω�) of almost

complex structures on � compatible with ω� is contractible, hence path-connected;
and that on a surface any almost complex structure is automatically integrable [44, The-
orem 4.16]. So we may choose a path of complex structures j : [0, 1] → J (�, ω�)

with endpoints j(0) = j0� and j(1) = j1� . For any 0 ≤ t ≤ 1, we can follow the

recipe in Sect. 2.3 with j� = j(t) to obtain a symplectic form ω
j(t)
L2 ∈ 
2(Sd�;R)

(keeping all the data other than j� the same). In particular, {ω j(t)
L2 }t∈[0,1] is a family of

nondegenerate 2-forms in Sd�. Moreover, the formula (14) shows [ω j(t)
L2 ] is indepen-

dent of t . These last two facts show that the assumptions of Moser’s theorem, as stated
in [18, Theorem 7.3], are satisfied, and we infer the existence of maps � as above. ��

This lemma implies that making a j�-dependence explicit in the notation for
ωL2 as in (17) is “superfluous up to strong isotopy equivalence”. However, it is
not guaranteed that any of the diffeomorphisms ρ1 furnished by Moser’s trick are
(J j0� , J j1� )-holomorphic in the sense that J j1� ◦ d�1 = d�1 ◦ J j0� ; in particular, they
certainly cannot be ifd = 1.With this caveat,wewill adhere to our previous convention

Md =
(
Sd�, J j� , ωL2

)
(18)

from now on.

3 Kähler quantization

To set up more of our notation, we briefly recall the steps involved in Kähler quan-
tization, understood as geometric quantization in a complex polarization [8,62], and
then guide the reader through a few illustrative examples that provide a foretaste of
the main results in this paper.

3.1 Prequantization data

The starting point is a symplectic manifold (M, ω), the classical phase space. The aim
of geometric quantization is to upgrade classical observables f ∈ C∞(M) (whichmul-
tiply through the Poisson bracket ofω) byHermitian operators acting on an appropriate
Hilbert space. As a first step, one seeks to construct a Hermitian line bundle L → M ,
equipped with a unitary connection ∇ such that its curvature 2-form F∇ ∈ 
2(M;R)

satisfies the condition
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F∇ = 1

�
ω (19)

for a fixed parameter � ∈ R>0. The data (L,∇) with the properties above are referred
to as a prequantum bundle and a prequantum connection, respectively.

Once the prequantization data (L,∇) have been fixed, we can consider the pre-
quantum Hilbert space of smooth wavesectionsH = {ψ ∈ 	(M,L) : ‖ψ‖L2 < ∞},
with its L2-inner product determined by the Hermitian and symplectic structures. If
f ∈ C∞(M), we can define an operator f̂ ∈ End(H) by f̂ ψ := −i�∇X f ψ + f ψ ,
where X f denotes the Hamiltonian vector field of f with respect to ω.

It is evident that (19) requires the cohomology class
[ 1
2π�

ω
] ∈ H2(M;R) to be

integral, i.e. its pairing with any 2-homology class should yield integer values:

〈[
1

2π�
ω

]

, σ

〉

∈ Z for all σ ∈ H2(M;Z). (20)

The requirement (20) is known as the Weil (pre)-quantization condition. In fact, the
constraint (20) is also sufficient for at least one Hermitian line bundle L → M with
connection ∇ to exist (cf. [62], Proposition 8.3.1), but there may be many possible
choices. The ambiguity is parametrized by the space of flat line bundles on M , which
can be interpreted as possible Aharonov–Bohm phases in the quantization and may
be modelled more concretely as

H1(M,U(1)) ∼= Hom(H1(M;Z),U(1)). (21)

We shall henceforth set � = 1; then (20) simply requires 1
2π ω to represent an

integral class. The situation � → 0 plays an important role and is usually referred to
as a “semiclassical limit”, but this can still be simulated by considering the sequence
of prequantizations (L⊗n

,∇(n))n∈N of (M, nω), and then letting n → ∞.

3.2 Kähler polarizations

The next step is to introduce polarizations P of (M, ω); see [8,62] for the general
definition. By means of this gadget, one truncates the prequantum Hilbert space to
subspacesHP ⊂ H consisting of sections which are constant in half of the variables;
this step is meant to implement the choice of representation in ordinary quantum
mechanics.

In the situation where M has a complex structure J for which ω is a Kähler form,
there is a natural Kähler polarization PJ , which singles out polarized wavesections ψ

satisfying ∇Xψ = 0 for all X ∈ 	(M,T0,1
J (M)) in the splitting of the complexified

tangent bundle associated with J . This leads to the quantum Hilbert space of all
J -holomorphic, square-integrable sections

HPJ := H0
J (M,L) ∩H.
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Here, L → M is given a holomorphic structure by the operator ∂∇ := ∇(0,1)
J defined

by composing∇ with the projection onto (0, 1)-forms with respect to J (for short, one

says that L is polarized by J ). Indeed, since ω is a (1, 1)-form, ∂
2
∇ = 0 and then ∂̄∇

defines an holomorphic structure by theNewlander–Nirenberg theorem.Conversely, in
this setting we can recover the prequantum connection from a Hermitian holomorphic
line bundle L as its Chern connection, i.e. the unique unitary connection ∇ on L such
that ∇(0,1) is the holomorphic structure operator [28, p. 73].

In the case where (M, J , ω) is both Kähler and compact, and we are given a
prequantum bundle L → M , there is a distinguished holomorphic quantization for
which

HPJ = H0
J (M,L) (22)

is a finite-dimensional vector space.Not all classical observables operate on H0
J (M,L)

via the prequantum operator recipe given above, but only those f ∈ C∞(M) for
which £X f J = 0; otherwise, one needs to add certain corrections to obtain a quantum
operator [62, p. 202]. When J has been fixed, as in the main context of this paper, we
will drop the subscript from H0

J , e.g. in (22).
The mathematical formulation of the principle of superposition (see [22, p. 17])

dictates that quantum states correspond precisely to complex rays in the quantum
Hilbert space; in our setting, these are parametrized by points of the projective space
P(H0(M,L)) associated with (22).

3.3 Metaplectic corrections

So far we have equipped the quantumHilbert space with a L2-structure that makes use
of the Liouville volume form 1

n!ω
n on the base M , where n = 1

2dimR M . However, in
many examples it is more convenient (in addition to leading to more sensible results)
to promote polarized sections to polarized half-forms or 1

2 -densities (see Appendix
A in [8]). These pair without reference to further geometry on the base M—or, more
generally, on the space of leaves of the polarization.

In the setting of Kähler quantization over a compact manifold, this modification
is conveniently recast as an upgrade of (22) to the corrected quantum Hilbert space

H0
J (M,L ⊗ K

1/2
M ) where K 1/2

M denotes a choice of square root (or spin structure)
of the J -canonical bundle, assuming it exists, and the inner product incorporates
the obvious (induced) Hermitian metric. Thus the upgrade to half-forms in Kähler
quantization is tantamount to introducing ametaplectic structure—we refer the reader
to the discussion in Section 2 of [1].

3.4 A handful of examples

At this point, we would like to discuss some prototypical examples, all based on the
ingredients of Sect. 2.
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Example 3.1 Let (�, ω�) be a connected compact orientable surface equipped with an
area form ω� ∈ 
2(�;R), which is necessarily symplectic. In this case, H2(�;Z) ∼=
Z is generated by the fundamental class [�] and the Weil prequantization conditions
(20) amount to

Vol(�) :=
∫

�

ω� ∈ 2πN. (23)

This guarantees that prequantizations will exist, but there will be infinitely many
whenever the genus g of � is positive. The space of possible prequantizations is the
2g-dimensional torus

Hom(π1(�),U(1)) ∼= Hom(H1(�;Z),U(1)) ∼= T 2g. (24)

This space parametrizes holonomies of unitary flat connections on a degree zero bundle
over�, when reference is made to a particular prequantization (Q,∇)with first Chern
class c1(Q) = [ 1

2π ω�

] = k PD([pt]), where k is an integer.
In this example, Kähler polarizations are prescribed by the choice of a complex

structure j� on � compatible with ω� . Then the phase space becomes a Kähler
manifold (�, ω�, j�). As above, we can also identify the prequantum connections ∇
with holomorphic structures on Q → �. In this way, the torus (24) is identified with
the component Pick(�) of the Picard group of (�, j�) parametrizing holomorphic
line bundles of the same degree k as Q, or (noncanonically) with the Jacobian variety
Jac(�) parametrizing ambiguitieswith respect to a holomorphic structure of reference.

Example 3.2 In this paper, the primary focus will be on the Kähler quantization of
Md = (Sd�,ωL2). The case d = 1, whereM1 ∼= S1� ∼= �, reduces to the example
we have just discussed—with the slight difference that one replaces ω� by the Kähler
structure ωL2 (which itself depends on the choice of an area form ω�), leading to a
rescaling of the prequantization condition (23) to

τ

2
Vol(�) ∈ 2πN, (25)

as can be read off from (14).

Example 3.3 It may seem less obvious at first that Example 3.1 relates to our problem
of quantization ofMd for arbitrary d ∈ N and τ > 4πd

Vol(�)
, but this turns out to be the

case.
There are a few immediate assertions one can make relating the two classes of

examples. To start with, it follows from (14) that the existence of prequantizations is
still expressed by the rescaled condition (25) for any d. This was already observed
in [53] in the case where � is a 2-sphere, but it appears nowhere in the paper [21]
or its erratum. Moreover, it is also true that ambiguities in the choice of prequan-
tum data are still parametrized by the Jacobian Jac(�) (a consequence of the fact
Pic0(Sd�) ∼= Jac(�) ∼= Pic0(�), cf. [50]). Another easy observation (already made
in the Introduction) is that Sd� has a natural set of complex structures J j� which are
in one-to-one correspondence with complex structures j� on �; but since a particular
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j� enters the classical data via ∂̄A, it also provides a canonical choice of complex
polarization PJ j� .

The main results of this paper yield a much less obvious relationship between
this example and the very basic Example 3.1. At this stage, we can formulate it in
the following terms. The first statement (to be justified in Sect. 6) is that one can
set up Kähler quantization ofMd efficiently in terms of prequantization data for (the
multiple τ

2ω� of) the area formused in the vortex equation (5). A second, and in a sense
converse statement (which is the main content of Sect. 7), is that the wavesections we
shall obtain can be recast (in a precise sense) as quantum d-particle states defined on
� itself and valued in a prequantization of τ

2ω� ; they also have an automatic spinorial
component that amounts to a metaplectic correction for Kähler quantization on �.

4 Universal bundles and L2-geometry

A useful viewpoint on the L2-geometry of the moduli space of d-vortices is got by
considering the product space Md × �, which supports a universal line bundle Pd

carrying certain geometric data.

4.1 A general observation

Let G be a Lie group with complexification GC and Lie algebra g. Suppose L̄ → V
is a holomorphic Hermitian line bundle on a Kähler manifold V , that G acts freely
on L preserving the metric, and that this action extends as a holomorphic action
of GC. Suppose furthermore that the induced G-action on V is Hamiltonian with
moment map μ : V → g∗. Assume that there is a globally stable Hitchin–Kobayashi
correspondence, in the sense that M := μ−1(0)/G ∼= V /GC holds. Denote by ∇V

the Chern connection of L on V , and let ∇μ−1(0) := i∗∇V for the inclusion i :
μ−1(0) ↪→ V . Then we can descend L to M in two ways. In the first case, the descent
Ľ of L inherits a Hermitian metric and a connection ∇. In the second case, it inherits
a holomorphic structure.

The following fact seems to be standard, but we include a proof (in the simplest
possible setting) for the convenience of our readers.

Lemma 4.1 In the situation above, the inherited connection∇ is theChern connection,
i.e. the unique unitary connection respecting the holomorphic structure.

Proof Unitarity of ∇ follows from the definition. We need to prove that it respects the
holomorphic structure. Let π : V → M and π0 : μ−1(0) → M denote the projec-
tions. Also let s be a local holomorphic frame on Ľ → M , and ω the corresponding
connection 1-form. This is the form whose value at v ∈ T[D]M := 0 ⊕ T[D]M ⊆
TDμ−1(0) = g ⊕ T[D]M is given by ∇vπ

∗
0 s/π

∗
0 s. We need to prove that, for the

almost complex structure I on M and any v ∈ TDM , we have Iω(Iv) = iω(v). It
follows basically from definition that ∇μ−1(0)π∗

0 s/π
∗
0 s = i∗∇Vπ∗s/π∗s evaluated

on T[D]M . Set ∇Vπ∗s/π∗s =: ω̃. Also essentially by definition, ω̃(Iv) = iω̃(v) for
any v ∈ TDV = gC ⊕ T[D]M . Hence it is enough to prove that T[D]M ⊂ TDV is
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invariant under the complex structure on V . But this is ensured by the definition of the
Kähler structure on M . ��

4.2 The universal degree-d line bundle

First of all, Md × � ∼= Sd� × � possesses a natural complex structure (J j� , j�),
specified by the complex structure j� on the Riemann surface� alone. For an effective
divisor D of degree d, denote by [D] the corresponding analytic subset of � (with
multiplicities). Then Sd� × � comes equipped with a universal divisor

Dd :=
⋃

D∈Sd�

{D} × [D] ⊆ Sd� × � (26)

which in turn determines a universal holomorphic line bundle Pd = O(Dd) over
Sd� ×�. An alternative description of this line bundle (see the discussion following
(29) for a justification) is got by considering the product V × L , where V ⊂ A×	 is
the complex submanifold of pairs (dA, φ) solving the vortex equations (4)–(5) in a line
bundle L → � of degree d. In Sect. 4.3, we shall use the notation pr2 : (A×	)×L →
L to denote the projection onto the second factor. The gauge group G = Aut�(L) acts
on both factors, and one can take the space of orbits

(V × L)/G = Pd (27)

as the total space of the universal bundle. Note that the restriction ofPd to each curve
of the form {[dA, φ]}×� ⊂ Md ×� yields a holomorphic line bundle over�, which
is isomorphic to L → � equipped with the holomorphic structure associated with the
degree d divisor (φ) in �:

Pd |{[dA,φ]}×�
∼= L. (28)

This description has the advantage of endowingPd with a Hermitian structure, which
is obtained by using these isomorphisms to pull back to the universal bundle the
Hermitian structure that has been fixed in L → �.

4.3 Canonical connection and section

Since our moduli spaces parametrize pairs of connections and sections, there are two
objects naturally attached toPd → Md × �:

• a canonical unitary connection dA inPd , with curvature denoted FA;
• a canonical holomorphic section � ∈ H0(Md × �,Pd).

The various descriptions of the L2-geometry of Md proposed in the literature have
resorted (more directly or less directly) to at least one of these two gadgets in a crucial
way.

Canonical connections such as dA are familiar from other moduli constructions
in gauge theory [24]. In our setting, dA is the restriction to Md × � of a unitary
connection in the bundle pr∗2L/G mentioned above, which was described by Perutz
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in [49, Sec. 2.2.2] in terms of two other auxiliary connections: a tautological, G-
invariant unitary connection on pr∗2L → (A×	(�, L))×�, and a certain connection
1-form onA×	(�, L) related to gauge fixing. Note that we can employ Lemma 4.1
to our situation by taking V = Nd , and conclude that the canonical connection is the
Chern connection of the universal bundle Pd → Md × �.

The canonical section� : Md×� → Pd ismost conveniently described bymeans
of the model (27) as the projection to G-orbits of the G-equivariant and holomorphic
map V × � → V × L given by

� : ((dA, φ), x) �→ ((dA, φ), φ(x)). (29)

In analogy to the canonical connection, it follows that � restricts to each curve
{[dA, φ]} × � to yield the section φ, making use of (28), and also that its divisor
of zeroes is (�) = Dd by virtue of Theorem 2.2. Note that this second property
encapsulates the equivalence between the direct construction (27) ofPd and its alter-
native description through (26) via algebraic geometry.

4.4 Fibre integration formulas

One point of view on how the universal/canonical objects we have introduced deter-
mine geometry on Mg uses the operation of fibre integration with respect to the
projection Md × � → Md onto the first factor. At the topological level, this corre-
sponds to the slant product [29, p. 280]

· \· : H4(Md × �;R) × H2(�;R) → H2(Md;R) (30)

by the fundamental class [�] ∈ H2(�;Z). This viewpoint leads to the description of
the Kähler class [ωL2 ] obtained by Perutz [49], from which one recovers the formula
(14) propounded by Manton and Nasir.

Remarkably, a refinement of this description of the Kähler class associated with the
L2-geometry has also been argued to hold at the level of 2-forms (see Theorem 1 and
Equation (27) in [49], Proposition 3.2 in [7], as well as Proposition 7.1 of [13] for a
generalization):

ωL2 = 1

4π

∫

�

(
τ p∗ω� ∧ FA − FA ∧ FA

)
, (31)

where p : Md × � → � is the projection onto the second factor. In the following
section, we make a short interlude to discuss in more detail the algebraic-geometric
setting where formulas such as (31) emerge.

5 Deligne’s formalism of the Quillenmetric

In this section, we review the metric originally introduced by Quillen [51] in deter-
minants of cohomology, and the related natural metric on Deligne’s parings. General
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references are [20,57], and we refer the reader to these for further details. All the
vector bundles we consider in this section carry holomorphic structures.

5.1 The determinant of the cohomology

Let π : C → S be a submersive holomorphic map of quasi-projective complex
manifolds, with connected fibres Cs (for s ∈ S) of complex dimension one. We will
call such a map a family of curves, and sometimes will abbreviate it as C /S.

By a relative divisor on C /S, we mean a (Cartier) divisor on C whose intersection
with each fibre yields a divisor of that fibre. We let KC /S := KC ⊗ π∗(K−1

S ) denote
the relative canonical bundle on C associated with π . It is equipped with a Hermitian
metric whenever (the tangent bundles of)C and S carry Hermitianmetrics themselves,
which we shall assume from now on.

A vector bundle E on C restricts to each fibre as a vector bundle Es → Cs of the
same rank. Then we define a line bundle λ(E) → S whose fibres at every point s ∈ S
are constructed from sheaf cohomology groups as follows:

λ(E)s := det H0(Cs, Es) ⊗ det H1(Cs, Es)
∨, (32)

where det stands for the top exterior power of a vector space, and (·)∨ for the dual.
This bundle is called the determinant of the cohomology of E → C /S. The fact
that the complex lines (32) glue together to form a line bundle λ(E) over S is the
Knudsen–Mumford determinant construction (see [34]).

Whenever E → C carries a Hermitian metric, thenQuillen’s metric on λ(E) → S
is defined as follows. First of all, for every fibre Cs the groups Hi (Cs, Es) can, by
Hodge theory, be represented by Es-valued harmonic forms, furnishing these spaces
with the natural metric on these forms, the L2-metric. Taking determinants induces a
metric on λ(E) → S (as in our discussion in Sect. 2.3) that we shall denote as hL2 |s .
Consider the spectral zeta-function defined by

t �→ ζ�∂̄
(t) :=

∑

λ∈Spec+(�∂̄ )

1

λt
, (33)

where the sum is over all positive eigenvalues λ of the Kodaira–Laplace operator
�∂̄ = ∂̄ ∂̄∗ + ∂̄∗∂̄ , acting on Ēs-valued smooth functions on the fibre Cs , and the
adjoints are taken with respect to the L2-metric on these spaces. For Re(t) � 0, the
sum in (33) converges absolutely, and it defines a holomorphic function which can be
analytically continued to t = 0. Then Quillen’s metric hQ on λ(E) is defined fibrewise
as

hQ |s := exp
(
ζ ′
�∂̄

(0)
)
hL2 |s . (34)

We use the notation λ(Ē)Q when we need to emphasize that we equip λ(E) with the
Hermitian metric (34), rather than the L2-metric implied by writing λ(E).
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5.2 Deligne’s pairing on families of curves and the norm functor

We now introduce two constructions that will appear in computations of Quillen’s
metric via the Riemann–Roch formula for the curvature.

Given two line bundles L and M on C for a family of curves C /S over a complex
manifold S, we recall that there is a natural line bundle on S, namely their Deligne
pairing

〈L, M〉 := λ((L −OC ) ⊗ (M −OC ))

:= λ(L ⊗ M) ⊗ λ(L)−1 ⊗ λ(M)−1 ⊗ λ(OC ). (35)

Moreover, given two smoothHermitianmetrics in L andM , the line bundle 〈L, M〉 →
S carries a natural metric, induced by Quillen’s metrics on the different terms in (35).
More concretely, we have (see also [20, section 6], and [25] for higher-dimensional
analogues):

Definition 5.1 Let the notation be as above.

(1) The line bundle 〈L, M〉 → S is defined in terms of generators and relations as
follows:

• Whenever � and m are meromorphic sections of L and M such that div(�) and
div(m) are relative divisors whose supports have empty intersection, we have
a nonzero section 〈�,m〉 of 〈L, M〉.

• If �′ is another rational section of L , then f := �/�′ ∈ C(C ) satisfies

〈�,m〉(s) = f ((divm)|Cs )〈�′,m〉(s) for s ∈ S,

where f (
∑

i nixi ) = ∏
i f (xi )ni ; and the corresponding statement on the

second factor also holds.

(2) If L andM carryHermitianmetrics, we define aHermitianmetric on 〈L, M〉 → S
(referred to as the natural metric) fibrewise by the formula

log |〈�,m〉|2 := log |�|2(divm) + log |m|2(div �)

+ 1

2π i

∫

C /S
∂∂̄ (log |�|)2 log |m|2

= log |�|2(divm) +
∫

C /S
c(L) log |m|2.

Let us make some comments to make the notation more explicit. The equations
above should be interpreted fibrewise: by

∫
C /S we mean fibre integration, that is, the

integral
∫
Cs

for each s ∈ S; this is precisely what is meant by the integral
∫
�
in the

formula (31). Besides (and more generally), we will always write

c(L) := 1

2π
FAChern ∈ 
1,1(X;R)
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for the first Chern form of a Hermitian holomorphic line bundle L → X on a com-
plex manifold X , where FAChern denotes the curvature of its Chern connection1. Thus
[c(L)] = c1(L) ∈ H2(X;Z) is the first Chern class of L → X (an integral 2-
cohomology class defined independently of the geometry on the bundle).

We remark that the isomorphism 〈L, M〉 � 〈M, L〉 given by 〈�,m〉 �→ 〈m, �〉 is
an isometry whenever M and L have Hermitian metrics, even though this might not
be obvious from the formulas above. The pairing is clearly also bimultiplicative, and
this respects the metrics.

In this article, we will make use of the following two properties of the natural
Hermitian metric on Deligne’s pairings:

Proposition 5.2 Let L, M be two Hermitian line bundles on C . If a family of curves
C /S is given, then we have that:

(1) The following formula for the curvature holds:

c(〈L, M〉) =
∫

C /S
c(L) ∧ c(M).

(2) If L � L ′ is an isomorphism of holomorphic line bundles over C endowed with
Hermitian metrics h and h′, then the squared norm of the induced isomorphism

〈L, M〉 � 〈L ′
, M〉

is fibrewise given by the function a : S → R>0 with

a(s) := exp
∫

Cs

log(h|s/h′|s) c1(M). (36)

The second construction we will need is the norm. For a relative divisor D in C /S,
this is a multiplicative functor

ND/S : Pic(D) −→ Pic(S). (37)

Here, Pic(X) denotes the category of line bundles on the variety X , whose objects are
line bundles while its morphisms are isomorphisms. The definition is straightforward
whenever the restriction p := π |D : D → S is a topological cover, whose definition
we recall for the convenience of the reader: for a small enough open neighbourhood
U ⊂ S of any point, p−1(U ) = ∐

j D j and there exist holomorphic maps s j :
U

�−→ Dj with p ◦ s j = idU . Now for each line bundle L ∈ Pic(D) we construct
ND/S(L ) ∈ Pic(S) by gluing together local trivializations over such trivializing open
sets U :

ND/S(L )|U :=
⊗

j

s∗j (L ). (38)

1 Note that the factor of i that is standard in this definition is absent, as we follow the convention of
identifying curvatures with real forms, i.e. valued in a copy of R that is identified with the Lie algebra u(1).
See also Eq. (19), where both curvature and symplectic form are real, as in [62].

123



678 D. Eriksson, N. M. Romão

If L → D comes endowed with a Hermitian metric, (38) produces an induced
Hermitian metric on ND/S(L ) → S.

The two constructions introduced in this section are related as follows: for a relative
divisor D in C /S, there is a canonical isomorphism

〈O(D),L 〉 � ND/S(L |D). (39)

If sD denotes the canonical section of O(D) with zero locus D, the isomorphism
is defined by the map 〈sD, �〉 �→ ND/S(�|D). If O(D) and L are equipped with
Hermitian metrics, then the norm of the isomorphism in (39) is given by

exp

(

−1

2

∫

C /S
log |sD|2c(L )

)

. (40)

5.3 Riemann–Roch isomorphism and the curvature formula

The Riemann–Roch isomorphism and the curvature formula relate the bundles and
metrics introduced in the previous two sections. To be more precise, the following
result expresses a nontrivial relationship between determinants of the cohomology
and Deligne’s pairings on families of curves.

Theorem 5.3 ([20], Théorème 9.9). Let L ∈ Pic(C ). There are canonical isomor-
phisms

λ(L )2 ⊗ λ(OC )−2 � 〈L ,L ⊗ K−1
C /S〉 (41)

and
λ(L )12 � 〈KC /S, KC /S〉 ⊗ 〈L ,L ⊗ K−1

C /S〉6. (42)

Deligne also proves that when these line bundles are endowed with Quillen’s metrics
and the natural metrics on Deligne’s pairings in item (2) of Definition 5.1, (41) is an
isometry, whereas (42) is an isometry up to a topological constant that only depends
on the genus of any fibre of the family. This implies the corollary that we shall state
next, and which can be found in [10,11], though it is in fact used in the original proof
of Theorem 5.3.

For the convenience of the reader, we make the following recollection. For a Kähler
(1,1)-form ωM on a complex n-manifold (M, jM ), one writes gM (·, ·) = ωM (·, jM ·)
for the underlyingRiemannianmetric.We denote its Ricci curvature formbyRic(ωM );

this is the real (1,1)-form given by −i∂∂̄ log det
[
gM

(
∂

∂zi
, ∂

∂ z̄ j

)]n

i, j=1
in terms of any

local chart of holomorphic coordinates z1, . . . , zn of M . A basic fact in Kähler geom-
etry is that 1

2π Ric(ωM ) always represents the first Chern class of (the tangent bundle

of) M , or of the anti-canonical bundle K−1
M , irrespective of the Kähler structure taken.

Corollary 5.4 Suppose S is Kähler. LetL be a Hermitian line bundle on the family of
curves C := S × � → S, p : C → � the projection onto the second factor, and ω�

a Kähler form on �. Then
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c
(
λ(L )Q

)
= 1

2

∫

C /S
c(L ) ∧

(

c(L ) + 1

2π
p∗ Ric(ω�)

)

. (43)

Here we are using that λ(OC ) → S is a trivial line bundle with constant metric,
which has zero curvature. We have implicitly endowed (the tangent bundle of) S×�

with a product Kähler metric for the construction of Quillen’s metric featuring in the
formula (43).

6 The Kähler quantizations ofMd

In this section, we determine all possible Kähler quantizations of the Kähler mani-
fold (18), where ωL2 is obtained from an area form ω� assumed to satisfy the Weil
integrality condition (25). Recall from Sect. 4 that we denote by Pd the line bundle
corresponding to the (relative) universal degree-d divisor Dd on a family of curves

π : S × � → S

determined by the first projection, where we take S = Sd� ∼= Md equipped with the
induced complex structure J j� . In what follows, we shall consider the constructions
reviewed in Sect. 5 as applied to this π while keeping the degree d fixed.

6.1 Relation between the Picard groups of 6 and Sd6

Let q : �d → Sd� be the quotient map, pi : �d → � the i-th projection map, and
p̃ : �d × � → �, p : Sd� × � → � the projections onto the second factor. For
a line bundle L on �, we can consider the line bundle L�d := ⊗d

i=1 p
∗
i L → �d .

Since this bundle is Sd -invariant, it naturally descends to Sd�; we shall still denote
this quotient by L�d , as no confusion will arise when the base is specified.

Proposition 6.1 The map L �→ L�d just defined also admits the description

Pic (�) → Pic (Sd�), L �→ 〈Pd , p
∗L〉. (44)

It induces an isomorphism

Pic0 (�)
∼=−→ Pic0 (Sd�)

between moduli spaces of flat line bundles.

Proof By construction, it is enough to verify that q∗〈Pd , p∗L〉 = L�d → �d . Let
Di be the divisor in �d × � determined by image of the section σi : �d → �d × �

(to the projection onto the first factor) given by σi : (z1, . . . , zd) �→ (z1, . . . , zd , zi );
then q∗Pd = O(

∑d
i=1 Di ). It follows from (38) and (39) that q∗〈Pd , p∗L〉 �

⊗d
i=1 σ ∗

i p̃
∗L . The first part of the proposition follows, since p̃ ◦ σi = pi . That

L �→ L�d indeed restricts to a map Pic0 (�) → Pic0 (Sd�) is clear.
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680 D. Eriksson, N. M. Romão

Now fix a point x ∈ �. We claim the map α : � → Sd� given by z �→
q(z, x, . . . , x) = z+ (d − 1)x induces an isomorphism α∗ : Pic0 (Sd�) → Pic0 (�).
Since L = α∗L�d , it would then follow immediately that the map L �→ L�d is an
isomorphism.

To justify the claim, notice that we have a commutative diagram

�
α

AJ1

Sd�

AJd

Jac(�)

where the downward arrows represent the Abel–Jacobi maps given by AJ1(z) = ∫ z
x

and AJd(D) = ∫ D
dx modulo periods, respectively. It is a well-known fact that the

induced map Pic0 (Jac(�)) → Pic0 (�) is an isomorphism, so it follows that the
claim amounts to the statement that the induced map Pic0 (Jac(�)) → Pic0 (Sd�) is
an isomorphism. To show this, it suffices to establish injectivity, since we are dealing
with a map of Abelian varieties. But this is part of the result expressed in Theorem
19.7 of reference [50]. ��

If L → � is a unitary flat line bundle, the isomorphism L
�d � 〈Pd , p∗L〉 → Sd�

exhibited in Proposition 6.1 can be seen to be an isometry up to a constant, where
the Deligne product is equipped with the natural metric as explained in part (2) of

Definition 5.1, and L
�d

is equipped with the metric induced by the sum of pullback
metrics. Hence, from the point of view of Chern connections, these two bundles are
interchangeable.

The significance of the rather general result above, in the context of our article, can
be stated as follows.

Corollary 6.2 Any Hermitian line bundle M → Sd� equipped with a unitary flat
connection ∇ is isomorphic to a Deligne pairing 〈Pd , p∗L〉 with the natural metric
and its Chern connection, for some Hermitian holomorphic line bundle L → �.

Proof Consider more generally a holomorphic line bundle L → Y on a compact com-
plexmanifold, equipped with twoHermitian metrics ‖−‖1 and ‖−‖2, with associated
Chern connections ∇1,∇2. Suppose that they define gauge-equivalent Chern connec-
tions, i.e. ∇1 = ∇2 + dη for a smooth function η : Y → R. If � : U → L is a local
holomorphic frame for L , we can write∇i = d−∂ log ‖�‖2i for i = 1, 2, and conclude
that ∇1 − ∇2 = ∂ϕ where ‖ − ‖2 = ‖ − ‖1e−ϕ for a smooth function ϕ : Y → R.
Hence ∂η = 0, so η is holomorphic and necessarily constant since Y is compact. It
follows that the underlying Hermitian metric of the Chern connection is unique up to
a multiplicative constant.

The particular Hermitian metric onM → Sd� in the statement of the corollary is
thus unique up to a constant. We can infer from Proposition 6.1 that (M ,∇) is of the
shape (〈Pd , p∗L〉,∇Chern), where ∇Chern is the Chern connection for some metric
on Deligne pairings. The metric inducing the Chern connection can be assumed to
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Kähler quantization of vortex moduli 681

be a metric on the Deligne pairing induced from a Hermitian line bundle L and any
metric on Pd → Sd�. This follows from the fact that this pairing not only maps
isomorphically between moduli spaces of flat line bundles, but is moreover seen to
map unitary flat bundles to unitary flat bundles, by Proposition 5.2 together with the
uniqueness statement just discussed.

If we modify the metric on L by a constant e−C , then, according to (36), the metric
on the pairings will change by eC ·d ; so we also obtain all scalar multiples in this way,
and we conclude the proof. ��

6.2 General construction of the Kähler quantizations

Now we can turn directly to our main goal. Recall that, by (31),

ωL2 = −
∫

�

c(Pd) ∧
(
π c(Pd) − τ

2
p∗ω�

)
,

which we rewrite as

−
∫

�

{

c(Pd) ∧
(

π c(Pd) + 1

2
p∗ Ric(ω�)

)

−1

2
c(Pd) ∧ p∗ (Ric(ω�) + τ ω�)

}

.

Making use of Corollary 5.4, we obtain

ωL2 = 2π c(λ(Pd)
−1) + 1

2

∫

�

c(Pd) ∧ p∗ (Ric(ω�) + τ ω�) . (45)

This last equation motivates the following definition.

Definition 6.3 Suppose that a Kähler (area) form ω� ∈ 
(1,1)(�;R) is given such
that (25) holds for a fixed τ satisfying (10).

(i) We will denote (as in Example 3.1)

k := τ

4π
Vol(�) = τ

4π

∫

�

ω� ∈ N. (46)

(ii) Let Q → � be any prequantization of
(
�, τ

2ω�

)
, with holomorphic structure

induced by the Kähler polarization of j� (as in Example 3.1 but with a different
normalization of the area form). Let also K±1/2

� → � denote the spin bundle of
j� (and its dual, respectively) determined by a choice of metaplectic structure on
�, together with the (spin) Chern connection induced by the Kähler metric g� of
ω� . Then we write

M := Q ⊗ K−1/2
� → � (47)

for the tensor product bundle equipped with the product Hermitian structure and
the product connection.
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682 D. Eriksson, N. M. Romão

We are now ready to state the main result of this section, which describes all the
prequantizations of the Kähler form ωL2 on Sd�, polarized by the complex structure
J j� . Our formulation will take as input geometric data on � encapsuled by the line
bundle (47). We take advantage of the universal degree-d bundle Pd → Sd� × �,
equipped with the Hermitian structure induced from the line bundle L → � where our
vortices live (see Sect. 4.2), to capture the L2-geometry as suggested by the formula
(45).

Theorem 6.4 (Kähler quantization of vortices). Under the assumptions in Defini-
tion 6.3, the Hermitian holomorphic line bundle

L M := λ(Pd)
−1 ⊗ 〈Pd , p

∗M〉 −→ Sd�, (48)

constructed from a line bundle M → � of the kind specified in Definition 6.3(ii), pro-
vides a J j� -polarized prequantization (L ,∇) of (Sd�,ωL2). Conversely, all Kähler
quantizations of (Sd�, J j� , ωL2) can be obtained in this way up to isomorphism of
Hermitian holomorphic line bundles.

Proof The bundle (47) clearly has curvature

1

2
(Ric(ω�) + τ ω�) ; (49)

thus, referring to Eq. (45), it follows that L M → Sd� does indeed determine a
prequantum bundle for ωL2 . If L → Sd� denotes any other prequantum bundle to

ωL2 , then L M ⊗ L
−1

is unitary flat, and hence by Corollary 6.2 it is of the form
〈Pd , p∗L〉 for a unitary flat line bundle L on �. But then L = L

M⊗L
−1 since the

Deligne pairing is clearly multiplicative in each argument, and M⊗ L
−1

is also of the
form Q′ ⊗ K−1/2

� for a prequantum bundle Q′ → � of
(
�, τ

2ω�

)
. ��

Since Sd� is compact when � is taken compact, we automatically obtain:

Corollary 6.5 AquantumHilbert space for the prequantization determined by M → �

is provided by the finite-dimensional vector space

HM
P
J j�

:= H0
(
Sd�,L M

)
, (50)

equipped with the restriction of the Hermitian metric on 	
(
Sd�,L M

)
determined

by the Kähler form ωL2 on Sd� and the Hermitian structure on (48).

6.3 The case of Kähler–Einsteinmetrics on 6

We shall now consider in more detail the particular situation where ω� determines a
metric g� of constant (scalar) curvature. In this case, there is a natural quantization
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Kähler quantization of vortex moduli 683

of Md (for each d) which dispenses the input data from Definition 6.3(ii). Indeed,
suppose that the Kähler–Einstein equation

Ric(ω�) = −τ ω� (51)

is satisfied. Then by (45) the curvature of Quillen’s metric on λ(Pd)
−1 is 2π ωL2 . In

this case, integrating (51) over � and applying the theorem of Gauß–Bonnet, we infer
that τ Vol(�) = 2π(2g − 2). By assumption (9) we must then have g − 1 ≥ d > 0;
thus � is necessarily hyperbolic, and equation (51) can be rewritten as

Ric(ω�) = −4π(g − 1)

Vol(�)
ω�. (52)

Referring back to Theorem 6.4 (for which we need to use the open condition (10)),
we have established the following:

Corollary 6.6 Suppose that g−1 > d and that theKähler–Einstein equation (52) holds
on �. Then the determinant of the cohomology with its Quillen’s metric, λ(Pd)

−1 →
Sd�, canonically provides a Kähler quantization of (Sd�,ωL2).

In fact, the special geometry of the situation allows us to say a little more about this
particular choice of metric. We phrase such statements as an informal remark.

Remark 6.7 There is an exact sequence of line bundles on Sd� × �

0 → O → Pd → ODd (Dd) → 0,

induced by the tautological section � ofPd = O(Dd). The determinant of cohomol-
ogy for the family of curves π : Sd� × � → Sd� is multiplicative on short exact
sequences, and so we have an isomorphism

λ(Pd) � λ(O) ⊗ det π∗ODd (Dd).

It turns out that the direct image bundle π∗ODd (Dd) is the tangent bundle of Sd�
(see [3, IV, Lemma 2.3]). Also, it is easy to see that the bundle λ(O) is trivial, for the
current family of curves is a product family. Since det TSd� = K−1

Sd�
, we deduce that

λ(Pd)
−1 is the canonical bundle on Sd�, whose first Chern class can be represented

by − 1
2π Ric(ω) for any Kähler metric ω on Sd�. In particular, whenever the Kähler–

Einstein equation (52) is satisfied, we have an equality of cohomology classes

[
1

2π
Ric(ωL2)

]

= − [ωL2
]
.

May it be true that this equation holds at the level of 2-forms? In other words, given
the hyperbolic metric on �, is the associated Kähler L2-metric on the vortex moduli
space Sd� also of constant scalar curvature? Notice that if d = 1, then S1� = � and,
by uniqueness of the solutions to the Kähler–Einstein equation, we would necessarily
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684 D. Eriksson, N. M. Romão

need ωL2 to be the hyperbolic metric itself. Though the corresponding statement does
hold for one vortex on the hyperbolic disc [58], the extension to a compact hyperbolic
surface is nontrivial and would even provide a surprising twist to recent results on
solutions of the vortex equations in integrable situations (which do require (52) as an
assumption [38], but yield no information about the metrics on the moduli space).

7 Holomorphic wavesections as multi-spinors on 6

In this section, we shall establish a quantum equivalent, within the geometric quanti-
zation framework developed in Sect. 6, of the picture (provided by Theorem 2.2) of
the moduli space Md ∼= Sd� as a classical phase space of indistinguishable point
particles on the surface �.

Again, we shall work under the assumptions stated in Definition 6.3, and comply

with the conventions for k, K
1/2
� → � and Q → � stated there. As before, the genus

of � will be denoted by g.

7.1 Main result and its first consequences

Themain result of this section is the following theoremwhich, in addition to providing
a direct way of computing the dimensions of the quantumHilbert spaces (50), supplies
a tie between our quantization scheme and the standardway of describingmultiparticle
states in elementary nonrelativistic quantum mechanics.

Theorem 7.1 There is a natural isomorphism of spaces of holomorphic sections

H0(Sd�,LM ) ∼=
∧

d H0
(
�, Q ⊗ K 1/2

�

)
. (53)

Moreover, we always have

dim H0
(
�, Q ⊗ K 1/2

�

)
≥ k,

with equality (leading to dim H0(Sd�,LM ) = (k
d

)
) whenever k > g − 1.

NB: Note the important difference of sign in the exponent of K� in the tensor product
on the right-hand side of (53), when compared to the definition (47).

Proof We first remark that it follows from Lemma 6.1 and Remark 6.7 that our pre-
quantum bundleLM → Sd� is of the form KSd�⊗M�d , for the line bundleM → �

in (47). By Serre duality, H0(Sd�, KSd� ⊗ M�d) ∼= Hd(Sd�, (M−1)�d)∨. Now
observe that, since the complex dimension of � is 1, the groups Hi (�,F ) with
i > 1 vanish for any sheaf F on �. Then we infer from Künneth formula for sheaf
cohomology [33, p. 114] that the cup product induces an isomorphism

H1(�, M)⊗d ∼=−→ Hd(�d , M�d).
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Note that the bundle M�d → �d isSd -equivariant. By a Hochschild–Serre spectral
sequence argument, the cohomology group Hd(Sd�, (M−1)�d) identifies with the
Sd -invariant part of Hd(�d , (M−1)�d). Since the cup product is anti-commutative,
thisSd -invariant part is generated by the alternating vectors in H1(�, M−1)⊗d , which
we can identify with

∧d H1(�, M−1). Hence, again by Serre duality, we obtain

H0
(
Sd�, KSd� ⊗ M�d

) ∼=
(∧

d H0(�, K� ⊗ M)∨
)∨

∼=
∧

d H0(�, K� ⊗ M).

Since M = Q ⊗ K−1/2
� , we infer that

H0(Sd�, KSd� ⊗ M�d) ∼=
d∧

H0
(
�, Q ⊗ K 1/2

�

)
.

Our choice of isomorphism (
∧d

(V∨)∨ ∼= ∧d V is induced by the pairing given by
linearly extending the assignment

(e1 ∧ e2 ∧ . . . ∧ ed) ⊗ ( f1 ∧ f2 ∧ . . . ∧ fd) �→
∑

σ∈Sd

(−1)σ
d∏

i=1

fi (eσ(i)).

It follows from Definition 6.3 the degree of the bundle Q ⊗ K 1/2
� is k + g − 1. By

Riemann–Roch, we then have

h0
(
�, Q ⊗ K 1/2

�

)
≥ h0

(
�, Q ⊗ K 1/2

�

)
− h1

(
�, Q ⊗ K 1/2

�

)

= (k + g − 1) + (1− g) = k.

Whenever k > g − 1, we have h1(�, Q ⊗ K 1/2
� ) = 0, thus in that case we obtain an

equality

h0
(
�, Q ⊗ K 1/2

�

)
= k

from this Riemann–Roch argument. ��
Remark 7.2 Recall that k > d by assumption (10). Hence Theorem 7.1 implies that
there always exist nontrivial wavesections in our Kähler quantization problem.

Remark 7.3 The spaces of holomorphic sections on either side of (53) come naturally
equipped with Hermitian inner products (induced from L2-metrics on sections and
Quillen’s construction). Our statement in Theorem 7.1 ignores whether the isomor-
phism (53) is isometric—and we do not even expect this to be the case. Note that
the inner product that is physically significant is the one on the left-hand side, but
expressing it in terms of a basis of the right-hand side is a highly nontrivial task.
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Thegist ofTheorem7.1 is that there exists a canonical fashion to effectively interpret
any wavesection

ψ : Sd� → LM for any M = M
(
Q, K 1/2

�

)

in our Kähler quantization scheme as the sum of alternating products ψ1∧· · ·∧ψd of
d holomorphic spinors ψi : � → Q ⊗ K 1/2

� on the original surface �, taking values
in the prequantum bundle Q → � to (�, τ

2ω�) used as an ingredient to construct M .
This result has two immediate consequences:

(1) It signifies that the quantum multivortex states represented by our quantization
schemehave fermionic character, since anywavesectionψ ismultiplied by the sign
(−1)σ of a permutation σ ∈ Sd acting on the effective (and indistinguishable)
one-particle states ψi coming from each of the d copies of H0(�, Q ⊗ K 1/2

� ).
(2) The Q-valued j�-spinorsψi are automatically half-forms on�, so the alternative

description of the quantization supplied by the isomorphism (53) is a multiparticle
half-formquantizationon the surface�. And thismay sound somewhat surprising,
since we did not start from a half-form quantization scheme to construct the
wavesections ψ .

Further to (2), the next result shows that half-form Kähler quantization does not
even apply to moduli spaces Sd� of multivortices, unless g = 0 and d is odd.

Proposition 7.4 Given a compact Riemann surface � of genus g, the manifold Sd�
admits a metaplectic structure if and only if d = 1, or if g = 0 and d is odd.

Proof Recall that a manifold X admits a spin structure if and only if the second
Stieffel–Whitney class w2(TX) ∈ H2(X;Z/2Z) vanishes [16]. Since Sd� is a com-
plex manifold, one has that

w2(TS
d�) ≡ c1(TS

d�) (mod 2); (54)

on the other hand, a result of [37, p. 334] is that

c1(TS
d�) = (d + 1− g)η − θ ∈ H2(Sd�;Z), (55)

with η and θ as defined after Eq. (14). The case d = 1 is classical, and to deal with the
d > 1 case, we start by observing that the isomorphism (15) is also valid by changing
coefficients to Z/2Z, since all the groups involved are torsion free (see (12.3) in [37]).
Then we read off from (55) that the vanishing of (54) is equivalent to

(d + 1− g) η ≡ 0 (mod 2) in H0(�;Z/2Z), (56)

together with
θ ≡ 0 (mod 2) in

∧
2 H1(�;Z/2Z). (57)

The condition (56) is equivalent to d+1−g being even, and we claim that this cannot
be true together with (57), unless g = 0.
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To justify our claim, we first observe that if θ = 2θ ′ for some other class θ ′ ∈
H2(Sd�;Z), then the corresponding statement would also be true in Sd

′
� for any

d ′ > 1; this is because (15) provides an intrinsic description of H2(Sd�;Z) in terms
of the homology of�, which is independent of d. Thus we can complete the argument
by reducing it to a fixed d, which we set to be d = g for convenience. Now if we insert
θ = 2θ ′ in the relation (16), we obtain the implication 2g | g!. By Legendre’s formula
in number theory [45, p. 77], this assertion only holds for g = 0; and if g = 0, we
have θ = 0 by definition. ��

In addition to the basic consequences (1) and (2) above, the fact that they occur
simultaneously is significant from the point of view of quantum mechanics. It can be
interpreted as a manifestation of the “spin-statistics theorem”—a general principle
postulating that particles associated with fundamental spinors should be assigned
fermionic statistics. Rather than imposing it as an independent axiom, in quantum
theory one strives for a derivation of this principle as a consistency condition on more
foundational assumptions, and our results for quantization of vortices are in this spirit.

Remark 7.5 A fermionic character to quantized vortices has been inferred also in a
semiclassical approach to the canonical quantization of an A-twisted version of a
supersymmetric extension of the Abelian Higgs model on compact surfaces (see [15]
for a discussion). The relation of that work to the interpretation in item (1) above
remains obscure.

Remark 7.6 The case g = 0, already considered in [53], is very particular, for then one
can interpret Kähler quantization alternatively as yielding bosonic quantum effective
particles on � ∼= P

1. This is essentially because Sd(P1) ∼= P
d , for which Pic(Pd)

is cyclic with generator OPd (1). The prequantum line bundle to a Kähler form with
Kähler class (14) will necessarily be of the form OPd (�) := OPd (1)⊗� for � = k −
d ∈ N, and furthermore H0(Pd ,OPd (1)) ∼= Sd(H0(P1,OP1(1))). This leads to a
description of the quantum Hilbert space in Kähler quantization

H0(Pd ,OPd (�)) ∼= Sd
(
H0(P1,OP1(�))

)
.

The alternative between a bosonic and a fermionic interpretation was already pointed
out in [53, p. 3465] (where the fermionic alternative required a particular level in
Chern–Simons theory, and was disfavoured for this reason). We should emphasize
here that the bosonic alternative is no longer available for g > 0.

7.2 Special divisors and change of complex structure

Even though the assumption k > g − 1 simplifies (and stabilizes) the calculation of
the dimension of the Hilbert spaces (50), as stated in Theorem 7.1, it is instructive to
consider the effect of

h1
(
�, Q ⊗ K 1/2

�

)
 = 0, (58)
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i.e. the situation where our Q-valued spinors ψi : � → Q ⊗ K 1/2
� define special

divisors on �. This is the subject of Brill–Noether theory in the classical geometry of
curves; see [3].

Recall that (10) forces k in (46) to satisfy

deg
(
Q ⊗ K 1/2

�

)
= k + g − 1 > g, (59)

which means that the condition (58) is nongeneric among line bundles of degree
k + g − 1 on �. Moreover, it can only hold for degrees k + g − 1 ≤ 2g − 2. i.e. for
positive genus g > 0 and metrics on � whose total area is sufficiently small:

Vol(�) ≤ 4π(g − 1)

τ
. (60)

The nonvanishing (58) leads to an enhancement of the dimension of the quantum
Hilbert space to

dimHM
P
J j�

=
(
k + h1

(
�, Q ⊗ K 1/2

�

)

d

)

>

(
k

d

)

,

where the right-hand side corresponds to the generic dimension. The simplest example
of jumping dimensions occurs when the degree (59) is 2g−2, i.e. the total area in (60)
is precisely 4π

τ
(g− 1). Then there is exactly one line bundle in Pic2−2g(�) satisfying

(58), namely the canonical bundle (which is attained when Q = K 1/2
� ), on which

h1(�, Q ⊗ K 1/2
� ) = 1. For lower degrees, i.e. 1 < k < g − 1, the situation is more

complicated, and in general the pattern of jumping dimensions is even sensitive to the
complex structure j� chosen, for a fixed genus g.

The occurrence of jumps in the dimensions of the quantum Hilbert spaces heralds
the fact that different choices of M → �, as in Definition 6.3(ii), cannot just corre-
spond to different representations (in the sense of quantum mechanics) of the same
quantum system, since the Hilbert spaces are not isomorphic in general—not even
through nonunitary isomorphisms. At the very best, one could ask whether quantum
Hilbert spacesHM

P
J j�

corresponding toM → � within different strata in Pick+g−1(�)

(according to the value of h1) could be related through unitary isomorphism. We shall
return to this question in the next section.

The fact that the pattern of jumps may depend on j� shows a posteriori that,
in the quantization of the moduli space of vortices, the variation of the preferred
polarization on Sd� (i.e. of the complex structure J j� determined by j�) has a very
different flavour to the one that is familiar from Kähler quantization of a Kähler
manifold with symplectic structure independent of the choice of adapted complex
structure. The Kähler quantization of the family of Kähler manifolds (18) obtained
by variation of j� should be treated as separate quantization problems altogether, in
which there is a preferred complex structure induced by j� that is part of the classical
data.
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8 On relating choices via projectively flat connections

For a vector bundle E with connection ∇, we say that ∇ is projectively flat if its
curvature F∇ is a 2-form valued in the centre of End(E). In this situation, parallel
transport of vectors allows us to identify the fibres of P(E). In geometric quantization
of the moduli space of flat connections, a projectively flat connection over the space
parametrizing complex polarizations is a useful device to identify projectivizations of
quantum Hilbert spaces corresponding to different polarizations [30]; for an account
of the latest refurbishment of this technique (which goes under the name of Hitchin’s
connection), we refer the reader to [2].

Our considerations in Sect. 7 have shown that, once a prequantization of (�, τ
2ω�)

together with a metaplectic correction is fixed, we can model the quantum Hilbert
space in the Kähler quantization of (18) by the vector space

∧d H0(�, Q⊗K 1/2
� ). All

choices involved are obtained by fixing one single metaplectic structure on the surface
�, and varying the prequantum bundle Q ∈ Pick(�) of (�, τ

4π ω�). In Sect. 7.2, we
emphasized that, in general, theremaywell be jumps in the dimensions of the quantum
Hilbert spaces, which are therefore manifestly not isomorphic. But can one at least
identify projectively the Hilbert spaces within strata where the dimensions are kept
constant? In what follows, we want to look at this problem in the simplest situation
where there is a single stratum, by assuming that k > g− 1. Then by Theorem 7.1 all
the Kähler quantizations in our scheme glue together to form a vector bundle of rank(k
d

)
on Pick+g−1(�), and one may ask whether one can construct a projectively flat

connection on this bundle.
To be more precise, let Pk+g−1 be any Poincaré line bundle (of degree k + g − 1)

on the family of curves pr1 : Pick+g−1(�) × � → Pick+g−1(�) (see [3, p. 166]).
Then pr1∗Pk+g−1 → Pick+g−1(�) is a vector bundle whose fibres are of the form

H0(Q ⊗ K 1/2
� ), by Grauert’s theorem on direct images of coherent sheaves. The

conclusion is that, for k > g − 1, there is a vector bundle

∧
d pr1∗Pk+g−1 −→ Pick+g−1(�) (61)

whose base parametrizes the different choices of quantization data, and whose fibres
model the corresponding quantum Hilbert spaces (50).

In the following theorem, we answer negatively, using topological obstructions,
the question of existence of a projective flat connection in the vector bundle (61) in
nontrivial cases for genus g > 1. Note that this issue only arises for g > 0, since the
Picard variety of � = P

1 in a given degree is a point.

Theorem 8.1 Suppose that g > 1, k > g − 1 and k ≥ d > 0. Then there exists
a projectively flat connection in the vector bundle (61) if and only if we are in the
degenerate situation of dissolved vortices, i.e. when k = d.

Proof Suppose Ẽ is any vector bundle of rank r̃ admitting a connection which is
projectively flat. Then, using the definition of Chern forms in terms of the curvature
matrix, we deduce the relationship of Chern classes

(r̃ − 1)c1(Ẽ)2 = 2r̃ c2(Ẽ). (62)
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The Chern classes of E := pr1∗Pk+g−1 have been computed by Mattuck [43,
Theorem 4]. For the statement, fix a point in � and consider the associated Abel
embedding � ↪→ Jac(�). We denote by Wi the Poincaré dual to the image of
Sg−i� → Picg−i (�) → Jac(�), where we make use of the additive structure on
the Jacobian. Then it is shown in [43] that we have equalities

c1(E) = −W1, c2(E) = W 2
1 −W2

in the Chow ring, hence also in de Rham cohomology. Moreover, if � ∈
H2g(Jac(�);Z) denotes the theta-class as before, in de Rham cohomology a for-
mula of Poincaré (see [28], p. 350) states that W2 = 1

2!�
2. Since � is defined as W1,

we deduce that c1(E) = −� and c2(E) = 1
2�

2.
It is not hard to show, using expressions for Chern classes in terms of Chern roots,

that for a general vector bundle E of rank r we have

c1
(∧

d E
)
=
(
r − 1

d − 1

)

c1(E)

and

c2
(∧

d E
)
=
(
r − 2

d − 1

)

c2(E) +
(r−1
d−1

)2 − (r−1
d−1

)

2
c1(E)2.

Thus the necessary relation (62) for the bundle Ẽ = ∧d E of rank r̃ = (r
d

)
, where

r = rk (pr1∗Pk+g−1) = k, becomes

((
k

d

)

− 1

)(
k − 1

d − 1

)2

�2 =
(
k

d

)((
k − 1

d − 1

)2

− d − 1

k − 1

(
k − 1

d − 1

))

�2. (63)

This condition is satisfied for k = d. Suppose now that k > d. Since we are assuming
that g > 1, and �g  = 0 (see the discussion preceding (16)), �2 cannot be a torsion
element, so (63) simplifies to

(
k − 1

d − 1

)

= d − 1

k − 1

(
k

d

)

.

But this is equivalent to k = d, which we had already considered.
Hence Ẽ = ∧d E satisfies condition (62) if and only if k = d, in which case this

bundle is a line bundle, and so any connection in it is (trivially) projectively flat. ��

Geometric quantization in the context of dissolved vortices (see e.g. [6]) simplifies
drastically and has a different flavour to the discussion in this paper.
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