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Abstract
Our goal is to develop spectral and scattering theories for the one-dimensional
Schrödinger operator with a long-range potential q(x), x ≥ 0. Traditionally, this
problem is studied with a help of the Green–Liouville approximation. This requires
conditions on the first two derivatives q ′(x) and q ′′(x). We suggest a new Ansatz that
allows us to develop a consistent theory under the only assumption q ′ ∈ L1.
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1 Introduction

1.1 Short- and long-range potentials

The classical result of Weyl [16,17] (see also the book [14]) states that under very
general circumstances a differential equation

− f ′′(x, z) + q(x) f (x, z) = z f (x, z), x ≥ 0, q(x) = q(x), (1.1)

where Im z �= 0, has a solution f (·, z) ∈ L2(R+). This fact, however, has no direct
spectral consequences for the Schrödinger operator H = −d2/dx2+q(x) (with some
boundary condition at the point x = 0) in the space L2(R+), except that its spectrum
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is simple. An advanced spectral analysis of the operator H and scattering theory for
the pair H0 = −d2/dx2, H require the continuity of the solutions f (·, z) as Im z → 0
which can be verified only under some specific assumptions on the potential q(x).

We suppose that q(x) → 0 as x → ∞ and distinguish the short- and long-range
cases. In the short-range case, it is assumed that q ∈ L1(R+). This allows one to
construct a solution ϑ(x, z), known as the Jost solution, of Eq. (1.1) with asymptotics
ϑ(x, z) ∼ e−√−zx as x → ∞; it is supposed here that Re

√−z > 0 so that ϑ(·, z) ∈
L2(R+). It turns out that the function ϑ(x, z) is continuous in z as Im z → 0 (with
a possible exception of the point z = 0). This result is crucial for the analysis of the
operator H . It permits (see, e.g., Sects. 3.1 and 3.2 of the book [20]) to show that the
structure of its positive spectrum is essentially the same as that of the “free” operator
H0. In particular, the positive spectrum of the operator H is absolutely continuous.
This fact follows from the continuity in an appropriate topology of the resolvent
R(z) = (H − z)−1 as z approaches the positive spectrum of H . The last result is
known as the limiting absorption principle. Note that the Jost solutions first appeared
in the papers [6] by Jost and [7] by Levinson. They are widely discussed in the physics
literature (see, e.g., §1 and §2 in Chapter 12 of the book [11]).

In the long-range casewhen q /∈ L1(R+), the definition of the Jost solution has to be
modified. It was shown byMatveev and Skriganov in [8] that, under some assumptions
on the first two derivatives q ′(x) and q ′′(x), Eq. (1.1) has a solution θ(x, z) described
by the Green–Liouville Ansatz:

θ(x, z) ∼ (q(x) − z)−1/4 exp
(

−
∫ x

0
(q(y) − z)1/2dy

)
, x → ∞; (1.2)

it is supposed here that Re (q(y)− z)1/2 > 0 so that again θ(·, z) ∈ L2(R+). We refer
to the book [12], Chapter 6, for a careful presentation of the Green-Liouville method.
Given the existence of the solutions θ(x, z) and their continuity in z up to the positive
half-line, the spectral analysis of the operator H is performed in [8] essentially in the
same way as in the short-range case. The best possible conditions on q(x) required by
this method are probably q ′ ∈ L2 and q ′′ ∈ L1 (see [19]).

1.2 Modified Green–Liouville Ansatz

Our goal is to develop spectral and stationary scattering theories for the Schrödinger
operator H with a long-range potential q(x) under the only assumption q ′ ∈ L1(R+).
Note that, for functions q(x) not satisfying the short-range assumption q ∈ L1(R+),
some conditions on their derivatives are inavoidable. Indeed, theWigner-vonNeumann
potential (see, e.g., SectionXIII.13 of the book [13]) has asymptotics q(x) ∼ x−1 sin x
as x → ∞ and the corresponding operator H has a positive eigenvalue. Thus, the pos-
itive spectrum of H is not absolutely continuous. More than that, Naboko constructed
in [10] examples of Schrödinger operators with dense in [0,∞) point spectrum whose
potentials decay only slightly slower than x−1.

From analytic point of view, the present paper relies on a modification of the classi-
cal Green–Liouville Ansatz. Actually, removing the factor in front of the exponential,
we replace the formula (1.2) by a simpler one
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θ(x, z) ∼ exp
(

−
∫ x

0
(q(y) − z)1/2dy

)
, x → ∞. (1.3)

The construction of solutions θ(x, z) of Eq. (1.1) with such asymptotic behavior under
the only assumption q ′ ∈ L1(R+) is themain new point of the paper. Then spectral and
stationary scattering theories for the operator H can be developed along essentially
the same lines as in the short-range case.

In the problem we consider, the Ansatz (1.3) is more efficient (and is much sim-
pler) than the Green–Liouville one. However, the classical Ansatz also has numerous
advantages. For example, it was used in [19] to study low energy (as z → 0) asymp-
totics of spectral and scattering data for potentials q(x) decaying slower than x−2 as
x → ∞. Another important application of the Green–Liouville method is to differen-
tial equations (1.1) with coefficients q(x) tending to +∞ or to −∞ as x → ∞ (see
[12], Chapter 6) as well as to some slowly oscillating q(x).

The approach we use works equally well for more general, than Schrödinger, dif-
ferential operators. In the paper, we consider the operator

H = − d

dx
p(x)

d

dx
+ q(x), p(x) > 0, q(x) = q(x), (1.4)

with some boundary condition at the point x = 0 in the space L2(R+). We choose the
condition f (0) = 0.

1.3 Other methods

The limiting absorption principle under assumptions very close to q ′ ∈ L1 was
obtained long ago by the powerful Mourre method [9]; we refer to §6.9 of [20] where
the conditions on q were stated explicitly. The Mourre method works for very gen-
eral operators (for example, for the Schrödinger operator in all dimensions), but the
only spectral information it gives is the absence of the singular continuous spectrum.
For example, it says nothing about multiplicity of the spectrum and does not exclude
positive eigenvalues of H .

There are also specific one-dimensional methods for a proof of the absolute conti-
nuity of the positive spectrum. ThusWeidmann in [15], see Theorem14.25, proved this
fact by the Gilbert–Pearson method [4] under somewhat more general assumptions on
q(x) than q ′ ∈ L1.

One could probably also study asymptotics of eigenfunctions of H as x → ∞
using Levinson’s results (see §III.8 of the book [3]). However, the scattering theory
approach we use here seems to be better adapted for a detailed spectral analysis of the
operator H .

1.4 Structure of the paper

Section 2 is central. Here we construct modified Jost solutions, introduce a multiplica-
tive change of variables and reduce differential equation (1.1) to a Volterra integral
equation.
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We study a regular solution ϕ(x, z) of Eq. (1.1) in Sect. 3. In particular, we find its
asymptotic behavior as x → ∞. Of course, the answers are quite different for z > 0
and z /∈ [0,∞). The result for z /∈ [0,∞) seems not to be well known even in the
short-range case.

Given the results of Sects. 2 and 3, we follow the standard approach to spectral
analysis of the operator H in Sect. 4. First, we define H as a self-adjoint operator.
Thenwebuild its eigenfunctions of the continuous spectrumand establish an expansion
theorem over these eigenfunctions. The limiting absorption principle is a by-product
of these considerations.

Here is the list of miscellaneous results of Sect. 5: inclusion of an additional short-
range term qsr ∈ L1, a general boundary condition at the point x = 0, the problem on
the whole line.

Occasionally, the dependence of various functions on x and z is omitted in notation;
c and C are different constants whose precise values are of no importance. We also
use notation: (A)+ = (|A| + A)/2 for A ∈ R.

2 Modified Jost solutions

2.1 Ansatz

Let us consider a more general than (1.1) differential equation

− (p(x) f ′(x, z))′ + q(x) f (x, z) = z f (x, z) (2.1)

for z ∈ C\R =: �. We admit also that the spectral parameter z belongs to the closure
clos� of �, that is, z = λ ± i0 where λ ∈ R\{0}. With respect to the functions
p(x) > 0 and q(x) = q(x), we accept the following

Assumption 2.1 (i) The function p(x) is absolutely continuous onR+. The function
q(x) is absolutely continuous for x ≥ x0 where x0 may be arbitrary large and
q ∈ L1(0, x0).

(ii) The derivatives

p′ ∈ L1(R+), q ′ ∈ L1(x0,∞)

(iii) The limits
lim
x→∞ p(x) =: p0 > 0, lim

x→∞ q(x) = 0. (2.2)

It is sufficient to construct solutions of the differential equation (2.1) for large x .
Then they can be standardly extended to all x ≥ 0. A more general situation of this
type is discussed in Sect. 5.1.

Our goal in this section is to distinguish a solution θ(x, z) of Eq. (2.1) by its
behavior as x → ∞. To define it, we first exhibit an explicit function a(x, z) such that
the (relative) remainder

r(x, z) := −a(x, z)−1(p(x)a′(x, z))′ + q(x) − z (2.3)
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in Eq. (2.1) is in L1 (at infinity). Let us seek the Ansatz a(x, z) in the form

a(x, z) = e−�(x,z) (2.4)

and put ω(x, z) = �′(x, z). Since

a(x, z)−1a′(x, z) = −ω(x, z), (2.5)

we can rewrite (2.3) as

r(x, z) = a(x, z)−1(p(x)ω(x, z)a(x, z))′ + q(x) − z

= (p(x)ω(x, z))′ − p(x)ω(x, z)2 + q(x) − z. (2.6)

Let us set

ω(x, z) =
√
q(x) − z

p(x)
, (2.7)

where we suppose that Reω(x, z) > 0 for all z ∈ �. Clearly, the function ω(x, z)
is analytic in z ∈ � and continuous up to the cut along R. For z �= 0, we choose
x1 = x1(z) such that |q(x)| ≤ |z|/2 for all x ≥ x1. Then estimates

0 < c ≤ |ω(x, z)| ≤ C < ∞ (2.8)

and
|ω′(x, z)| ≤ C(|p′(x)| + |q ′(x)|) (2.9)

are true for all x ≥ x1, and hence ω′(·, z) ∈ L1(x1,∞) under Assumption 2.1. Here
and below all estimates are uniform in z from compact subsets of clos�\{0} (including
the values of z = λ ± i0 on the cut).

For the choice (2.7), the remainder (2.6) equals

r(x, z) = (p(x)ω(x, z))′. (2.10)

In view (2.8), (2.9), this yields the following result.

Lemma 2.2 Define the functions �(x, z) and a(x, z) by the formulas

�(x, z) =
∫ x

0

√
q(y) − z

p(y)
dy (2.11)

and (2.4). Then the remainder (2.3) is given by formula (2.10) and r ∈ L1(x1(z),∞).

We emphasize that the classical Green–Liouville Ansatz differs from (2.4) by the
additional factor ω(x, z)−1/2 in the right-hand side.
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Since Reω(x, z) ≥ 0, it follows from (2.4), (2.11) that

∣∣∣a(y, z)

a(x, z)

∣∣∣ ≤ 1, y ≥ x . (2.12)

Moreover, Reω(x, z) ≥ c(z) > 0 for Im z �= 0, so that we have a stronger estimate

∣∣∣a(y, z)

a(x, z)

∣∣∣ ≤ e−c(z)(y−x), y ≥ x, c(z) > 0, Im z �= 0. (2.13)

2.2 Multiplicative substitution

Instead of a solution θ(x, z) of Eq. (2.1), we introduce a function

u(x, z) = a(x, z)−1θ(x, z). (2.14)

Lemma 2.3 Let r(x, z) be given by formula (2.10). Then Eq. (2.1) for θ(x, z) is equiv-
alent to the equation

(p(x)u′(x, z))′ − 2ω(x, z)p(x)u′(x, z) = r(x, z)u(x, z) (2.15)

for the function (2.14).

Proof A direct differentiation of the relation θ = au shows that

(pθ ′)′ = (pa′u)′ + (pau′)′ = (pa′)′u + (pu′)′a − 2ωpau′

where we have taken (2.5) into account. It follows that

−(pθ ′)′ + (q − z)θ = ( − (pa′)′ + (q − z)a
)
u + ( − (pu′)′ + 2ωpu′)a.

Since the first term on the right equals rau, we see that

−(pθ ′)′ + (q − z)θ = ( − (pu′)′ + 2ωpu′ + ru
)
a.

Thus Eq. (2.1) for θ and (2.15) coincide. ��
Next, we reduce differential equation (2.15) to an integral equation.

Lemma 2.4 Let z ∈ �, and let u(x, z) be a solution of differential equation (2.15)
such that

lim
x→∞ u(x, z) = 1. (2.16)

Then

u(x, z) = 1 +
∫ ∞

x
G(x, y, z)r(y, z)u(y, z)dy (2.17)
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where

G(x, y, z) = a(y, z)2
∫ y

x
p(s)−1a(s, z)−2ds. (2.18)

Proof Set
v(x, z) = p(x)u′(x, z) and ρ(x, z) = r(x, z)u(x, z). (2.19)

Then (2.15) yields a differential equation

v′(x, z) − 2ω(x, z)v(x, z) = ρ(x, z)

of first order for the function v(x, z). In view of (2.5), its solution is given by the
equality

v(x, z) = −a(x, z)−2
( ∫ ∞

x
a(y, z)2ρ(y, z)dy + c

)

where we have to choose c = 0 because a(x, z)−2 exponentially grows as x → ∞.
Therefore the function u(x, z) satisfying (2.16) and (2.19) can be recovered by the
formula

u(x, z) = 1 −
∫ ∞

x
p(s)−1v(s, z)ds = 1

+
∫ ∞

x
p(s)−1a(s, z)−2

( ∫ ∞

s
a(y, z)2ρ(y, z)dy

)
ds.

By virtue of (2.13), Fubini’s theorem allows us to interchange the order of integrations
here. This yields Eq. (2.17). ��

2.3 Integral equation

The following assertion plays the crucial role in the analysis of Eq. (2.17) as z
approaches the half-axis (0,∞) (the continuous spectrum of H ).

Lemma 2.5 For z ∈ clos�\{0} and y ≥ x ≥ x1(z), kernel (2.18) is uniformly
bounded:

|G(x, y, z)| ≤ C < ∞. (2.20)

Proof Set τ = (pω)−1. According to (2.8) and (2.9), we have

τ ∈ L∞ and τ ′ ∈ L1 (2.21)

Integrating by parts, we see that

2
∫ y

x
p(s)−1a(s)−2ds =

∫ y

x
τ(s)da(s)−2

= τ(y)a(y)−2 − τ(x)a(x)−2 −
∫ y

x
τ ′(s)a(s)−2ds.

123



2632 D. R. Yafaev

Multiplying this equality by a(y)2 and using estimate (2.12) and relations (2.21), we
get bound (2.20). ��

Lemmas 2.2 and 2.5 allow us to solve the Volterra equation (2.17) by iterations.
Let us state the corresponding result.

Lemma 2.6 For z ∈ clos�\{0}, equation (2.17) has a (unique) bounded solution
u(x, z). For every x ≥ 0, this function is analytic in z ∈ � and is continuous up to
the cut along R with possible exception of the point z = 0. The function u(x, z) obeys
an estimate

|u(x, z) − 1| ≤ Cε(x) (2.22)

where

ε(x) =
∫ ∞

x

(|p′(y)| + |q ′(y)|)dy

and the constant C does not depend on z in compact subsets of the set clos�\{0}.
The next assertion is converse to Lemma 2.4.

Lemma 2.7 For z ∈ clos�\{0}, a solution u(x, z) of integral equation (2.17) satisfies
also differential equation (2.15).

Proof According to (2.18), we have

G(x, x) = 0 and G ′
x (x, y) = −p(x)−1a(x)−2a(y)2.

Therefore it follows from (2.17) that

u′(x) = −p(x)−1a(x)−2
∫ ∞

x
a(y)2r(y)u(y)dy (2.23)

and hence, by (2.5),

(p(x)u′(x))′ = −2a(x)−2ω(x)
∫ ∞

x
a(y)2r(y)u(y)dy + r(x)u(x). (2.24)

Substituting expressions (2.23) and (2.24) into the left-hand side of (2.15), we see that
it equals r(x)u(x). ��

Now we are in a position to give a precise

Definition 2.8 For z ∈ clos�\{0}, define the function a(x, z) by formulas (2.4) and
(2.11). Denote by u(x, z) the function constructed in Lemma 2.6. The (modified) Jost
solution of equation (2.1) is defined by the formula

θ(x, z) = a(x, z)u(x, z) (2.25)

for x ≥ x1(z), and then θ(x, z) is extended to all x ≥ 0 as a solution of Eq. (2.1).
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It follows from (2.22) that

θ(x, z) = a(x, z)
(
1 + O(ε(x))

)
, x → ∞. (2.26)

Note also that

θ(x, z̄) = θ(x, z)

and, in particular,

θ(x, λ − i0) = θ(x, λ + i0), λ ∈ R\{0}. (2.27)

Let us summarize the results obtained.

Theorem 2.9 Let Assumption 2.1 be satisfied, and let z ∈ clos�\{0}. Denote by
u(x, z) the function constructed in Lemma 2.6. Then the function θ(x, z) defined by
equality (2.14) satisfies Eq. (2.1), and it has asymptotics (2.26). For every x ≥ 0, the
function θ(x, z) is analytic in z ∈ � and is continuous up to the cut along R with
possible exception of the point z = 0. Asymptotics (2.26) is uniform in z from compact
subsets of the set clos�\{0}.
Corollary 2.10 For λ > 0, set

�(x, λ) =
∫ x

0

√(λ − q(y)

p(y)

)
+dy, K (λ) = exp

(
−

∫ ∞

0

√(q(y) − λ

p(y)

)
+dy

)
.

(2.28)
Then

θ(x, λ ± i0) = K (λ) exp
(

± i�(x, λ)
)
(1 + O(ε(x))) as x → ∞.

Let us make several additional observations.

Remark 2.11 (i) Unlike the Jost solution in the short-range case, the function θ(x, z)
is not analytic in the whole half-plane Re z < 0 because, in general, θ(x, λ −
i0) �= θ(x, λ + i0) even for λ < 0. This circumstance is, however, inessential. In
particular, it follows from (2.27) that θ(x, λ− i0) = 0 if and only if θ(x, λ+ i0) =
0. This subject is further discussed in Sect. 4.2.

(ii) For z ∈ �, relation (2.26) distinguishes a unique solution of equation (2.1). Indeed,
the differential equations (2.1) and the integral equation (2.17) are equivalent, and
Lemma 2.6 ensures that the solution of (2.17) satisfying (2.22) is unique.

(iii) According to (2.23), u′(x) = O(ε(x)) as x → ∞, and hence the derivative
θ ′ = a(−ωu + u′) has asymptotics

θ ′(x, z) = −√−z/p0 a(x, z)
(
1 + O(ε(x))

)
, x → ∞. (2.29)
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(iv) It follows from definition (2.7) that

ω(x, z) = √−z/p0 + o(1) whence �(x, z) = x
√−z/p0 + o(x)

as x → ∞. In particular,

θ(·, z) ∈ L2(R+) for z ∈ �.

2.4 Non-uniqueness of Jost solutions

For long-range perturbations, there is no canonical choice of the Jost solution θ(x, z):
one can replace θ(x, z) by

θ̃ (x, z) = θ(x, z)b(z), b(z̄) = b(z), (2.30)

where b(z) is some function analytic in � and continuous up to the cut along R.
Thus the function �(x, z) can be replaced in (2.4) by a function �̃(x, z) provided the
difference �(x, z) − �̃(x, z) has a finite limit as x → ∞.

This observation allows one to simplify expression (2.11) if additional information
on decay of p1(x) = p(x) − p0 and of q(x) is available. Note, first, that in the short-
range case when p1 ∈ L1 and q ∈ L1 one can choose �0(x, z) = x

√−z/p0 instead
of �(x, z). Indeed, in this case we have

lim
x→∞

(
�(x, z) − �0(x, z)

) =
∫ ∞

0

p0q(x) + zp1(x)

p0
√

(q(x) − z)p(x) + p(x)
√−zp0

dx =: β(z).

Recall that in the short-range case the standard (non-modified) Jost solution ϑ(x, z)
is distinguished by the asymptotics ϑ(x, z) ∼ e−x

√−z/p0 as x → ∞. Therefore we
have θ(x, z) = e−β(z)ϑ(x, z).

If p1 ∈ L2 and q ∈ L2 (but p1 /∈ L1, q /∈ L1), we set

�1(x, z) = √−z/p0
(
x − (2z)−1

∫ x

0
q(y)dy − (2p0)

−1
∫ x

0
p1(y)dy

)
. (2.31)

Then �(x, z) − �1(x, z) has a finite limit as x → ∞ so that function (2.11) can be
replaced by (2.31). Similarly, in the case p1 ∈ L3 and q ∈ L3 (but p1 /∈ L2, q /∈ L2),
we set

�2(x, z) = �1(x, z) + 8−1
√−z/p0

(
z−2

∫ x

0
q(y)2dy + 3p−2

0

∫ x

0
p1(y)

2dy
)

(2.32)
where�1(x, z) is given by (2.31). Then�(x, z)−�2(x, z) has a finite limit as x → ∞
so that function (2.11) can be replaced by (2.32). This procedure can be continued to
treat a general case where p1 ∈ Ln and q ∈ Ln for some integer n.
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3 Regular solution

3.1 Uniform estimates

In addition to θ(x, z), we introduce a regular solutionϕ(x, z) of Eq. (2.1) distinguished
by conditions at the point x = 0:

ϕ(0, z) = 0, ϕ′(0, z) = 1. (3.1)

For every x ≥ 0, the function ϕ(x, z) is analytic in z ∈ C.
Let us obtain estimates on ϕ(x, z) for large x . These estimates will be uniform

in z from compact subsets of C\{0}. Define again the functions �(x, z), a(x, z) by
formulas (2.11), (2.4), but instead of (2.14) we now set

u(x, z) = a(x, z)ϕ(x, z). (3.2)

Similarly to Lemma 2.3, it is straightforward to check that Eq. (2.1) for ϕ(x, z) is
equivalent to the equation

(p(x)u′(x, z))′ + 2ω(x, z)p(x)u′(x, z) = −r(x, z)u(x, z)

for the function (3.2) with the remainder r(x, z) given by formula (2.10). The initial
conditions (3.1) for the functions ϕ(x, z) and u(x, z) coincide. Suppose that |z| ≥ c >

0 and choose x0 such that |q(x)| ≤ c/2 for x ≥ x0. Similarly to Lemma 2.4, it is easy
to derive a Volterra integral equation for the function u(x, z):

u(x, z) = u(0)(x, z) −
∫ x

x0
K (x, y, z)r(y, z)u(y, z)dy (3.3)

where

u(0)(x, z) = p(x0)
∫ x

x0
p(y)−1a(y, z)2dy and

K (x, y, z) = a(y, z)−2
∫ x

y
p(s)−1a(s, z)2ds.

If x ≥ y ≥ x0(z), we can integrate here by parts which shows that the functions
u0(x, z) and K (x, y, z) are uniformly bounded. Therefore solving Eq. (3.3) by itera-
tions, we see that its solution u(x, z) is also bounded. Coming back to relation (3.2),
we can state the following result.

Theorem 3.1 Let Assumption 2.1 be satisfied. Then for z in compact subsets ofC\{0},
the regular solution ϕ(x, z) of Eq. (2.1) obeys an estimate

|ϕ(x, z)| ≤ C exp

(
Re

∫ x

0

√
q(y) − z

p(y)
dy

)
, ∀x ∈ R+.
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3.2 Asymptotics at infinity

For z ∈ clos�\{0}, let us consider the Wronskian

w(z) = {ϕ(·, z), θ(·, z)} := p(x)(ϕ′(x, z)θ(x, z) − ϕ(x, z)θ ′(x, z)) (3.4)

of the regular ϕ(x, z) and Jost θ(x, z) solutions of Eq. (2.1). Since the right-hand side
of (3.4) does not depend on x ≥ 0, we can set x = 0 whence

w(z) = p(0)θ(0, z). (3.5)

Let us now consider the Jost solutions θ(x, λ ± i0) on the cut along (0,∞). Using
Corollary 2.10 and calculating the Wronskian of θ(x, λ + i0) and θ(x, λ − i0) for
x → ∞, we find that

w0(λ) := {θ(·, λ + i0), θ(·, λ − i0)} = 2i
√
p0λK (λ)2.

In particular, the Jost solutions are linearly independent. It is easy to see that

ϕ(x, λ) = θ(x, λ + i0)w(λ − i0) − θ(x, λ − i0)w(λ + i0)

{θ(·, λ + i0), θ(·, λ − i0)} . (3.6)

Indeed, by (3.5), the right-hand side of (3.6) equals 0 for x = 0 and its derivative in
x equals 1 for x = 0. Thus the right-hand side of (3.6) satisfies equation (2.1) where
z = λ and conditions (3.1). It follows from (3.6) that

w(λ ± i0) �= 0, λ > 0,

since otherwise we would have ϕ(x, λ) = 0 for all x ≥ 0.
Now we set

κ(λ) = |w(λ ± i0)| and w(λ + i0) = κ(λ)eiη(λ). (3.7)

By analogy with the short-range case, we use the terms “limit amplitude” for κ(λ) and
“limit phase” (or scattering phase, or phase shift) for η(λ). According to Theorem 2.9
the amplitude κ(λ) is a continuous function of λ > 0. The phase η(λ) is defined by
equations (3.7) up to a term 2πn where n is an integer. Since κ(λ) > 0, the function
η(λ) can also be chosen continuous in λ > 0.

The next result is a direct consequence of Corollary 2.10 and representation (3.6).

Theorem 3.2 Let Assumption 2.1 be satisfied. For each λ > 0, the regular solution
ϕ(x, λ) of Eq. (2.1) has asymptotics

ϕ(x, λ) = κ(λ)√
p0λ K (λ)

sin
(
�(x, λ) − η(λ)

) + O(ε(x)) (3.8)

as x → ∞. In particular, the operator H has no positive eigenvalues.
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Remark 3.3 In the short-range case, the Jost solution ϑ(x, λ ± i0) is distinguished by
the asymptotics ϑ(x, λ ± i0) ∼ e±i x

√
λ/p0 as x → ∞. Then the limit amplitude κ(λ)

and the limit phase η(λ) are defined by relations (3.7) wherew(λ) = {ϕ(·, λ), ϑ(·, λ+
i0)}.
Remark 3.4 Expressions (3.6) and hence (3.8) are of course invariant with respect to
the change (2.30) of the Jost solution. This means that the amplitude factor and the
phase �(x, λ)−η(λ) in (3.8) do not depend on the regularization of the Jost solution.
However, we emphasize that, separately, the terms �(x, λ) and η(λ) do depend on
it. Hence, in the long-range case, the definition of the scattering phase η(λ) is not
intrinsic.

3.3 Exponentially growing solutions

Generically, for z /∈ [0,∞), the regular solution ϕ(x, z) grows exponentially as x →
∞. Here we find its asymptotics. The method below was used in the short-range case
in §4.1 of the book [20] but seems not to be commonly known.

Let θ(x, z) be the Jost solution of Eq. (2.1). For z = λ < 0, we can pick either
θ(x, λ+ i0) or θ(x, λ− i0). We choose � = �(z) in such a way that θ(x, z) �= 0 for all
x ≥ �(z). If Im z �= 0, we can set �(z) = 0 because the equality θ(x0, z) = 0 would
imply that the self-adjoint operator (1.4) in the space L2(x0,∞) with the boundary
condition f (x0) = 0 has complex eigenvalue z. Let us introduce an exponentially
growing solution ξ(x, z) of Eq. (2.1).

Theorem 3.5 Let Assumption 2.1 be satisfied, and let z ∈ C\[0,∞). Then the function

ξ(x, z) = θ(x, z)
∫ x

�(z)
θ(y, z)−2 p(y)−1dy, x ≥ �(z), (3.9)

satisfies Eq. (2.1) and

ξ(x, z) =
(
2
√−p0z a(x, z)

)−1
(1 + o(1)), ξ ′(x, z) =

(
2p0a(x, z)

)−1
(1 + o(1))

(3.10)
as x → ∞.

Proof Differentiating (3.9), we find that

−(p(x)ξ ′(x))′ + (q(x) − z)ξ(x)

=
(

− (p(x)θ ′(x))′ + (q(x) − z)θ(x)
) ∫ x

�

θ(y)−2 p(y)−1dy

which implies Eq. (2.1) for ξ(x).
Integrating by parts, we see that

2
∫ x

�

θ(y)−2 p(y)−1dy = t(x)a(x)−2 − t(�)a(�)−2 −
∫ x

�

t ′(y)a(y)−2dy (3.11)
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where t = (pωu2)−1. Let us multiply this equality by a(x)θ(x) and consider the limit
x → ∞. It follows from Lemma 2.6 and Theorem 2.9 that the first term on the right

t(x)θ(x)a(x)−1 = (−p0z)
−1/2 + O(ε(x)). (3.12)

The second term tends to 0 exponentially. Finally, using estimate (2.13), we find that

∣∣∣a(x)θ(x)
∫ x

�

t ′(y)a(y)−2dy
∣∣∣ ≤ C

∫ x

0
e−c(z)(x−y)|t ′(y)|dy. (3.13)

Since according to Lemma 2.6 (see also equality (2.23)) t ′(x) → 0 as x → ∞,
the same is true for expression (3.13). Therefore relations (3.11) and (3.12) imply
asymptotic formulas (3.10). ��

Using asymptotics (2.26), (2.29) and (3.10), we can calculate the Wronskian of the
solutions θ(x, z) and ξ(x, z):

{θ(·, z), ξ(·, z)} = −1.

It follows that

ϕ(x, z) = {ϕ(·, z), θ(·, z)}ξ(x, z) − {ϕ(·, z), ξ(·, z)}θ(x, z) (3.14)

where {ϕ(·, z), ξ(·, z)} = p(0)ξ(0, z). In view of Theorems 2.9 and 3.5, relation (3.14)
yields the asymptotic behavior of the regular solution.

Theorem 3.6 Let Assumption 2.1 be satisfied, and let z ∈ C\[0,∞). Then

ϕ(x, z) = w(z)

2
√−p0z

exp

( ∫ x

0

√
q(y) − z

p(y)
dy

)
(1 + o(1)), x → ∞, (3.15)

if w(z) = {ϕ(·, z), θ(·, z)} �= 0 and

ϕ(x, z) = −{ϕ(·, z), ξ(·, z)} exp
(

−
∫ x

0

√
q(y) − z

p(y)
dy

)
(1 + o(1)), x → ∞,

if w(z) = 0.

Thus ϕ(x, z) exponentially grows if z is not an eigenvalue of H , and it exponentially
decays in the opposite case.

Remark 3.7 Estimates of the remainders in (3.10) and (3.15) are not uniform in z as
it approaches the half-axis (0,∞). As a consequence, we cannot put z = λ ∈ R+ in
(3.15). Such a relation would contradict (3.8). On the contrary, the estimate on ϕ(x, z)
of Theorem 3.1 is uniform in z.
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4 Spectral results

4.1 Differential operator

First, we define differential operator (1.4) as a self-adjoint operator. We choose the
boundary condition f (0) = 0; see Sect. 5.2 for other conditions.

The simplest possibility is to define H via the quadratic form

h[ f , f ] =
∫ ∞

0

(
p(x)| f ′(x)|2 + q(x)| f (x)|2)dx . (4.1)

As is well known, this form is closed on the Sobolev space H1
0(R+) =: D[h] of

functions satisfying the condition f (0) = 0 provided

0 < p0 ≤ p(x) ≤ p1 < ∞ and sup
x∈R+

∫ x+1

x
|q(y)|dy < ∞. (4.2)

Therefore H may be defined as a self-adjoint operator with domain D(H) ⊂ D[h]
corresponding to this form (see Chapter 10 of the book [1]). This operator satisfies the
relation

(H f , g) = h[ f , g] (4.3)

for all f ∈ D(H) and all g ∈ D[h].
It turns out that its domain D(H) can be described explicitly.

Lemma 4.1 In addition to (4.2), assume that the function p(x) is absolutely continuous
on R+. Then f ∈ D(H) if and only if f ∈ H1

0(R+), the function p(x) f ′(x) is
absolutely continuous and

(H f )(x) := −(p(x) f ′(x))′ + q(x) f (x) ∈ L2(R+). (4.4)

Proof Suppose that f (x) satisfies these conditions. Using that the function p(x) f ′(x)
is absolutely continuous and integrating by parts, we see that

∫ ∞

0

( − (p(x) f ′(x))′ + q(x) f (x)
)
g(x)dx

=
∫ ∞

0

(
p(x) f ′(x)g′(x) + q(x) f (x)g(x)

)
dx (4.5)

at least for all g ∈ C∞
0 (R+). An arbitrary g ∈ H1

0(R+) can be approximated by
functions gn ∈ C∞

0 (R+) in the norm of H1(R+). Passing to the limit n → ∞ in the
equality (4.5) for gn and using (4.4), we obtain relation (4.3) whence f ∈ D(H).

Conversely, suppose that f ∈ D(H). It follows from (4.3) that

|h[ f , g]| ≤ C‖g‖, ∀g ∈ D[h],
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and hence there exists t ∈ L2(R+) such that

h[ f , g] =
∫ ∞

0
t(x)g(x)dx .

Comparing this expression with (4.1), we see that

∫ ∞

0
p(x) f ′(x)g′(x)dx =

∫ ∞

0

(
t(x) − q(x) f (x)

)
g(x)dx . (4.6)

If g ∈ C∞
0 (R+), then (4.6) is the definition of the distributional derivative of the

function p f ′. This derivative equals q f − t where q f ∈ L1
loc(R+) because f ∈

C(R+) ⊂ H1(R+). Therefore the function p f ′ is absolutely continuous and−(p f ′)′+
q f = t ∈ L2(R+). ��

4.2 Resolvent

Theorem 2.9 allows us to perform spectral analysis of the operator H in a sufficiently
standard way. We start with a construction of its resolvent. Let R(z), Im z �= 0, be an
integral operator defined by the formula

(R(z)g)(x) = ϕ(x, z)

w(z)

∫ ∞

x
θ(y, z)g(y)dy + θ(x, z)

w(z)

∫ x

0
ϕ(y, z)g(y)dy. (4.7)

Using that the functions ϕ and θ satisfy the Eq. (2.1), one easily verifies that, for
example, for g ∈ C∞

0 (R+), the function f (x) = (R(z)g)(x) belongs to the domain
D(H) of the operator H and (H − z) f = g whence R(z)g = (H − z)−1g. It follows
that R(z) = (H − z)−1 is the resolvent of the operator H . In particular, the operator
R(z) is bounded. Relation (4.7) means that the integral kernel of R(z) equals

R(x, y; z) = w(z)−1ϕ(x, z)θ(y, z) for x ≤ y and R(y, x; z) = R(x, y; z).
(4.8)

Recall that, for λ < 0, the values w(λ ± i0) and, more generally, θ(x, λ ± i0) are
different, but satisfy (2.27). In particular, w(λ+ i0) = 0 if and only if w(λ− i0) = 0.
Nevertheless, the function θ(x, z)/w(z) is analytic in C\[0,∞) because

θ(x, λ + i0)

w(λ + i0)
= θ(x, λ − i0)

w(λ − i0)
, λ < 0. (4.9)

Indeed, consider an auxiliary function

�(x, λ) = θ(x, λ + i0)w(λ − i0) − θ(x, λ − i0)w(λ + i0).

It satisfies Eq. (2.1), �(0, λ) = 0 and

p(0)�′(0, λ) = {θ(λ + i0), θ(λ − i0)}.
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Using asymptotics (2.26) and (2.29), we find that �′(0, λ) = 0 if λ < 0 and hence
�(x, λ) = 0 for all x ≥ 0. This proves equality (4.9).

Formula (4.8) (as well as (3.5)) implies that w(z) = 0 if and only if z is an
eigenvalues of the operator H . In particular, zeros of the function w(z) are negative
(it is also not excluded that w(0) = 0). Recall also that w(λ ± i0) �= 0 for λ > 0.

Let us summarize these results.

Theorem 4.2 Let Assumption 2.1 be satisfied. Then

(i) The resolvent R(z) = (H − z)−1 of the operator H is an integral operator
with kernel (4.8). For all x, y ≥ 0, it is an analytic function of z ∈ C\[0,∞)

with simple poles at eigenvalues of the operator H. A point z ∈ C\[0,∞) is an
eigenvalue of H if and only if w(z) = 0.

(ii) For all x, y ≥ 0, the integral kernel R(x, y; z) is a continuous function of z up
to the cut along [0,∞) with possible exception of the point z = 0.

(iii) The integral kernel of R(z) satisfies an estimate

|R(x, y; z)| ≤ C |w(z)|−1 exp

(
− 2Re

∫ y

x

√
q(s) − z

p(s)
ds

)
, x ≤ y,

where C does not depend on x, y ≥ 0 and on z in compact subsets of the closed
set clos

(
C\[0,∞)

)
as long as z is separated from the point 0. In particular,

R(x, y; z) is a bounded function of z away from eigenvalues of the operator H
and the point 0.

This statement (ii) is known as the limiting absorption principle. It implies

Corollary 4.3 The spectrum of the operator H on the half-axis (0,∞) is absolutely
continuous.

Let us now consider the spectral projector E(λ) of the operator H . It is also an
integral operator with kernel E(x, y; λ) related to the resolvent kernel of H by the
Cauchy-Stieltjes formula

2π idE(x, y; λ)/dλ = R(x, y; λ + i0) − R(x, y; λ − i0). (4.10)

The following assertion is a direct consequence of Theorem 4.2, part (ii).

Corollary 4.4 For all x, y ≥ 0, the integral kernel E(x, y; λ) is continuously differen-
tiable in λ > 0.
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4.3 Eigenfunction expansion

Putting together formulas (4.8) and (4.10) for z = λ ± i0, λ > 0, and taking into
account relation (3.6), we see that

dE(x, y; λ)/dλ = (2π i)−1ϕ(x, λ)
(θ(y, λ + i0)

w(λ + i0)
− θ(y, λ − i0)

w(λ − i0)

)

= √
p0λ K (λ)2

ϕ(x, λ)ϕ(y, λ)

π |w(λ ± i0)|2 , λ > 0. (4.11)

Of course this representation extends to all x, y ≥ 0.
Relation (4.11) allows us to diagonalize the operator H in the same way as in the

short-range case (see, for example, §4.2 of the book [20]). Keeping in mind scattering
theory framework, we introduce two sets of eigenfunctions ψ± and two diagonaliza-
tions �± of the absolutely continuous part HE(R+) of H . Let us set

ψ±(x, λ) =
4
√
p0λ K (λ)√

πw(λ ∓ i0)
ϕ(x, λ) (4.12)

and

(�± f )(λ) =
∫ ∞

0
ψ±(x, λ) f (x)dx, f ∈ L2(R+) ∩ L1(R+). (4.13)

It follows from (4.11) that

‖E(�) f ‖2 =
∫

�

|(�± f )(λ)|2dλ (4.14)

for every interval � such that clos� ⊂ R+ and hence

�∗±�± = E(R+). (4.15)

In particular, �± extends to a bounded operator on L2(R+).
LetA be the operator ofmultiplication byλ in the space L2(R+). Since the functions

ψ±(x, λ) satisfy Eq. (2.1), the intertwining property

�±H = A�± (4.16)

holds.
Relation (4.15) is naturally interpreted as the completeness of the eigenfunctions

ψ±(x, λ) of the operator H . Their orthogonality means that the adjoint operator �∗±
is isometric:

�±�∗± = I . (4.17)

This relation can be checked exactly as in the short-range case.
Let us summarize these results.
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Theorem 4.5 Let Assumption 2.1 be satisfied. Then the operators �± : L2(R+) →
L2(R+) defined by formulas (4.12), (4.13) are bounded and relations (4.15)–(4.17)
hold true.

Corollary 4.6 The positive spectrum of the operator H covers R+. It is absolutely
continuous and simple.

4.4 Wave operators

Let us now consider the differential operator

H0 = −p0d
2/dx2

with the same boundary condition f (0) = 0 in the space L2(R+). In this case, the
two operators �± defined by (4.12), (4.13) reduce to the single operator (the Fourier
sine transform)

(�0 f )(λ) = 1√
π 4

√
p0λ

∫ ∞

0
sin

(√
λ/p0 x

)
f (x)dx .

This operator possesses of course all properties enumerated in Theorem 4.5.
Stationary wave operators U± for the pair H0, H are defined by the relation

U± = �∗±�0.

The following result is a direct consequence of Theorem 4.5.

Theorem 4.7 Under Assumption 2.1, the wave operators U± are isometric, U∗±U± =
I , complete, i.e., U±U∗± = E(R+), and enjoy the intertwining property HU± =
U±H0.

It follows from relations (4.12), (4.13) that, for all f ∈ L2(R+),

(�+ f )(λ) = S(λ)(�− f )(λ) (4.18)

where the coefficient

S(λ) = w(λ − i0)

w(λ + i0)

is known as the stationary scattering matrix.
Time-dependent wave operators W± are defined as strong limits

W± = s-limt→±∞ eiHtU0(t) (4.19)

where U0(t) is a suitable (see, for example, [2] or [5,18]) unitary regularization of
e−i H0t . If the limits (4.19) exist, then the operators W± are automatically isometric
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and enjoy the intertwining property.Moreover, the operatorsW± are complete because
the spectrum of the operator H is simple according to the classical Weyl result.

Consideration of the operatorsW± is out of the scope of the present article.We note,
however, that various proofs of the existence of limits in (4.19) require somewhat more
stringent conditions on p and q compared to Assumption 2.1. Under such conditions,
the equality W± = U± also holds.

5 Miscellaneous

5.1 Short-range perturbations

Let us now consider a more general case where q(x) is replaced by a function

q(x) + qsr(x)

with a short-range term qsr ∈ L1(R+).We suppose that p and q satisfyAssumption 2.1
and define the functions � and θ , etc., by formulas of Sect. 2 neglecting qsr. Then for
the remainder (2.3), we have the expression

r(x, z) = (p(x)ω(x, z))′ + qsr(x) (5.1)

instead of (2.10); as before, r(·, z) ∈ L1(R+). Therefore the integral equation (2.17)
with kernel (2.18) and remainder (5.1) has a solution u(x, z) satisfying estimate (2.22).
Then the Jost solution of the differential equation (2.1) with q replaced by q + qsr is
again defined by equality (2.25). Thus all the results obtained in the previous sections
for the particular case qsr = 0 remain true.

5.2 General boundary conditions

Here, we briefly discuss the differential operator (1.4) in L2(R+) with a boundary
condition

f ′(0) = h f (0), h = h̄. (5.2)

As before, θ(x, z) is the Jost solution of Eq. (2.1) constructed in Theorem 2.9. Instead
of (3.1), the regular solution ϕ(x, z) of this equation will now be distinguished by the
conditions

ϕ(0, z) = 1, ϕ′(0, z) = h. (5.3)

This is again an analytic function of z ∈ C. Formula (3.6) remains truewhere according
to (5.3) the Wronskian

w(z) = {ϕ(·, z), θ(·, z)} = p(0)(hθ(0, z) − θ ′(0, z)). (5.4)

The resolvent kernel is still given by the relation (4.8) which yields representation
(4.11) with the functions ϕ(x, λ) and w(z) defined by (5.3) and (5.4). As before, the
functions ψ±(x, λ) are given by formula (4.12) and the operators �± – by formula
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(4.13). Then Theorems 4.5 and 4.7 remain true for the operator H corresponding to
the boundary condition (5.2).

5.3 Problem on the whole line

Consider now the operator (1.4) in the space L2(R).We here follow closely the scheme
described for short-range potentials, for example, in §5.1 of [20].

Suppose that the conditions on p(x) and q(x) are imposed for all x ∈ R; in
particular, the limits in (2.2) are taken for |x | → ∞. In addition to the Jost solution
θ(x, z) =: θ1(x, z) of Eq. (2.1) built in Theorem 2.9, we distinguish a solution θ2(x, z)
by its asymptotics as x → −∞. For the function �(x, z) defined by (2.11), we set
a2(x, z) = e�(x,z). Then the construction of Theorem 2.9 leads to the solution θ2(x, z)
of Eq. (2.1) with asymptotics θ2(x, z) ∼ a2(x, z) as x → −∞ (cf. (2.26)). We also
introduce the Wronskian of the solutions θ1 and θ2:

w(z) = {θ2(·, z), θ1(·, z)}.

The construction of the resolvent R(z) = (H − z)−1, z ∈ �, is similar to Sect. 4.2.
Since θ1 ∈ L2 as x → ∞ and θ2 ∈ L2 as x → −∞, the resolvent kernel equals (cf.
(4.8))

R(x, y; z) = w(z)−1θ2(x, z)θ1(y, z) for x ≤ y and R(y, x; z) = R(x, y; z).
(5.5)

Suppose now that z = λ± i0 where λ > 0. Calculating theWronskians for x → ∞
(if j = 1) or for x → −∞ (if j = 2), we find that

{θ j (λ + i0), θ j (λ − i0)} = (−1) j−12i
√
p0λ, j = 1, 2.

Thus, these solutions are linearly independent for all λ > 0, and we have

θ1(x, λ + i0) = (2i)−1(p0λ)−1/2K1(λ)−2(w(λ)θ2(x, λ + i0)

− w(λ + i0)θ2(x, λ − i0)
)

(5.6)

θ2(x, λ + i0) = (2i)−1(p0λ)−1/2K2(λ)−2(w(λ)θ1(x, λ + i0)

− w(λ + i0)θ1(x, λ − i0)
)

(5.7)

where

w(λ) = {θ2(·, λ + i0), θ1(·, λ − i0)},

K1(λ) = K (λ) is defined by (2.28) and
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K2(λ) = exp

(
−

∫ 0

−∞

√(
q(y) − λ

p(y)

)

+
dy

)
.

Note the identity

|w(λ ± i0)|2 = 4p0λK1(λ)2K2(λ)2 + |w(λ)|2. (5.8)

For its proof, we substitute expression (5.6) for θ1(x, λ + i0) and θ1(x, λ + i0) =
θ1(x, λ − i0) into the right-hand side of (5.7) and observe that the coefficient in front
of θ2(x, λ + i0) should be equal to 1.

We need an analogue of representation (4.11).

Lemma 5.1 For all x, y ∈ R and λ > 0, we have the representation

dE(x, y; λ)/dλ =
√
p0λ

π |w(λ ± i0)|2
(
K1(λ)2θ1(x, λ + i0)θ1(y, λ − i0)

+ K2(λ)2θ2(x, λ + i0)θ2(y, λ − i0)
)
. (5.9)

Proof It follows from the Cauchy–Stieltjes formula (4.10) and the representation (5.5)
that

dE(x, y; λ)/dλ = 1

2π i |w(λ ± i0)|2
(
w(λ − i0)θ2(x, λ + i0)θ1(y, λ + i0)

−w(λ + i0)θ2(x, λ − i0)θ1(y, λ − i0)
)
, x ≤ y. (5.10)

Let us show that the right-hand sides of (5.9) and (5.10) coincide. Replacing θ1(x, λ+
i0) in (5.9) by its expression (5.6), we see that it suffices to check the identity

(
w(λ)θ2(x, λ + i0) − w(λ + i0)θ2(x, λ − i0)

)
θ1(y, λ − i0)

+ 2i
√
p0λ K2(λ)2θ2(x, λ + i0)θ2(y, λ − i0)

= w(λ − i0)θ2(x, λ + i0)θ1(y, λ + i0) − w(λ + i0)θ2(x, λ − i0)θ1(y, λ − i0).

(5.11)

The coefficients in front of θ2(x, λ+i0) in the left and right sides of (5.11) coincide by
virtue of (5.7). The terms containing θ2(x, λ − i0) in the left and right sides of (5.11)
are the same. Of course representation (5.9) extends to x ≥ y since its right-hand side
becomes complex conjugated if x and y are interchanged. ��
Remark 5.2 The left-hand side of (5.9) is real and symmetric in (x, y). Therefore in
addition to (5.9), we have the representation

dE(x, y; λ)/dλ =
√
p0λ

π |w(λ ± i0)|2
(
K1(λ)2θ1(x, λ − i0)θ1(y, λ + i0)

+ K2(λ)2θ2(x, λ − i0)θ2(y, λ + i0)
)
.
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Instead of (4.12), we now define eigenfunctions of the continuous spectrum of the
operator H by the relation

ψ j (x, λ) =
4
√
p0λ K j (λ)

i
√

πw(λ + i0)
θ j (x, λ + i0), j = 1, 2. (5.12)

Then (cf. (4.13)) we introduce the mappings�± : L2(R) → L2(R+;C2) by formulas

(�+ f )(λ) =
( ∫ ∞

−∞
ψ2(x, λ) f (x)dx,

∫ ∞

−∞
ψ1(x, λ) f (x)dx

)�

(�− f )(λ) =
( ∫ ∞

−∞
ψ1(x, λ) f (x)dx,

∫ ∞

−∞
ψ2(x, λ) f (x)dx

)�
.

(5.13)

It follows from (5.9) that relation (4.14) holds. Therefore, similarly to the proof of
Theorem 4.5, one obtains the following result. Note that the multiplication operator A
acts now in the space L2(R+;C2).

Theorem 5.3 Let Assumption 2.1 be satisfied for all x ∈ R. Then the operators �±
are bounded and satisfy relations (4.15)–(4.17).

Corollary 5.4 The positive spectrum of the operator H covers R+. It is absolutely
continuous and has multiplicity two.

In terms of functions (5.12), relations (5.6) and (5.7) can equivalently be rewritten
as (

ψ2(x, λ)

ψ1(x, λ)

)
= S(λ)

(
ψ1(x, λ)

ψ2(x, λ)

)
(5.14)

where

S(λ) = w(λ + i0)−1

(
iγ (λ) w(λ)

w(λ) iγ (λ)

)
and γ (λ) = 2

√
p0λK1(λ)K2(λ). (5.15)

According to (5.8), the 2×2matrix S(λ) is unitary. It is known as the scattering matrix
for the problem on the whole line. It follows from (5.14) that, for all f ∈ L2(R), the
identity (4.18) holds with the operators �± defined by (5.13) and the matrix (5.15).

Finally, we note that formulas (5.6), (5.7) yield asymptotics of the eigenfunctions
(5.12) as x → ±∞.
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