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Abstract
We generalize the operadic approach to algebraic quantum field theory
(arXiv:1709.08657) to a broader class of field theories whose observables on a space-
time are algebras over any single-colored operad. A novel feature of our framework is
that it gives rise to adjunctions between different types of field theories. As an interest-
ing example, we study an adjunction whose left adjoint describes the quantization of
linear field theories. We also analyze homotopical properties of the linear quantization
adjunction for chain complex valued field theories, which leads to a homotopically
meaningful quantization prescription for linear gauge theories.
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1 Introduction and summary

Algebraic quantum field theory is a well-established and successful framework to
axiomatize and investigate quantum field theories on the Minkowski spacetime and
also on more general Lorentzian manifolds, see e.g. [11,25] for overviews. In this
setting a theory is described by a functor A : C → AlgAs from a suitable category
C of spacetimes to the category of associative and unital algebras, which is required
to satisfy some physically motivated axioms. For instance, in locally covariant alge-
braic quantum field theory [13,18], C = Loc is the category of globally hyperbolic
Lorentzian manifolds with morphisms given by causal isometric embeddings and the
physical axioms are Einstein causality and the time-slice axiom. Einstein causality
demands that any two observables, i.e. elements of the algebras assigned by A, that
are causally disjoint commute with each other, which encodes the idea that two mea-
surements in causally disjoint spacetime regions do not influence each other. The
time-slice axiom demands that the algebra maps A( f ) : A(M) → A(M ′) associ-
ated with Cauchy morphisms, i.e. spacetime embeddings f : M → M ′ such that
f (M) ⊆ M ′ contains a Cauchy surface of M ′, are isomorphisms, which encodes
a concept of time evolution. The framework of algebraic quantum field theory can
also be adapted to obtain a novel point of view on classical field theories, see e.g.
[5,12,14,22], where in contrast to associative and unital algebras one assigns Pois-
son algebras of classical observables to spacetimes. The classical analog of Einstein
causality then demands that the Poisson bracket between any two causally disjoint
observables is zero.

The aim of this paper is to develop an operadic framework that generalizes [8] to
a very broad and flexible class of field theories, see Definition 3.3. This includes as
special instances the various flavors of algebraic quantum field theory [11,13,18,25]
and their classical analogs [5,12,14,22]. Our two main motivations for this work are
as follows: (1) Describing field theories in terms of algebras over colored operads
provides an excellent framework to discover and study universal constructions. This
has already lead to a refinement of Fredenhagen’s universal algebra construction for
quantum field theories [19–21,31] in terms of a so-called operadic left Kan extension
[8], which technically behaves better than the original construction as it respects the
quantum field theory axioms. In this paper, we will show that the quantization of linear
field theories may be expressed in terms of an operadic left Kan extension too, which
allows us to understand and describe the interplay between quantization and other
universal constructions. (2) Operadic techniques are particularly useful and powerful
when working with chain complex valued field theories, e.g. gauge theories described
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Algebraic field theory operads and linear quantization 2533

in the BRST/BV formalism [22,23,29]. The reason for this is that chain complexes
are naturally compared by quasi-isomorphisms and hence one is only allowed to per-
form constructions that preserve quasi-isomorphisms. Operad theory provides a huge
toolbox to develop such constructions, which in technical language are called derived
functors, see, e.g. [27,28] and also [9] for applications to quantum field theory. In this
paper, we apply these techniques to investigate homotopical properties of the linear
quantization functor. A similar construction in the context of factorization algebras
[15] has been recently investigated in [24]. As a simple example, we present a quan-
tization of linear Chern–Simons theory on oriented surfaces that is compatible with
quasi-isomorphisms.

Let us now present a more detailed outline of the content of this paper. In Sect. 2,
we shall fix our notations by recalling the necessary background material on colored
operads and their algebras. In Sect. 3, we introduce our broad and flexible framework
for field theories in Definition 3.3. A field theory is described by a functor A : C →
AlgP from a small categoryC to the category of algebras over a single-colored operad
P, which is required to satisfy a suitable generalization of the Einstein causality axiom.
(The time-slice axiom will be formalized via localization techniques in Sect. 4.2.)
One should interpret C as a category of spacetimes and P as the operad controlling
the algebraic structure of the observables on a fixed spacetime. For example, quantum
field theories are obtained by choosing the associative operad P = As and classical
field theories by choosing the Poisson operad P = Pois. Linear field theories, which
we describe in terms of Heisenberg Lie algebras of presymplectic vector spaces, are
obtained by choosing the unital Lie operad P = uLie. One of the key results of
this section (see Theorem 3.12) is that such field theories are precisely the algebras
over a colored operad that we denote by P(r1,r2)

C
. This colored operad depends on

two different kinds of input data, which control the spacetime category of interest
and the type of field theory. More precisely, the first datum is an orthogonal category
C = (C,⊥) (see Definition 3.1), and the second is a bipointed single-colored operad
P(r1,r2) = (P, r1, r2 : I [2] ⇒ P) (see Definition 3.14). The orthogonality relation ⊥
and the two pointings r1, r2 are required to formalize a suitable generalization of the
Einstein causality axiom. We prove that the assignment (C,P(r1,r2)) �→ P(r1,r2)

C
of

field theory operads is in a suitable sense functorial.
In Sect. 4, we harness this functorial behavior in order to study adjunctions between

the categories of field theories corresponding to differentC and P(r1,r2). This includes
generalizations of the time-slicification and local-to-global adjunctions from [8],
which have already found interesting applications to quantum field theory on space-
times with boundaries [4]. A novel feature of our framework, which is not captured
by [8], is a second kind of functorial assignment P(r1,r2) �→ P(r1,r2)

C
of our colored

operads to bipointed single-colored operads. This results in adjunctions between the
categories of field theories of different types. We shall investigate in detail the inter-
play of such adjunctions with the time-slice axiom and local-to-global property of
field theories. A particularly interesting example, which we study in detail in Sect. 5,
is given by an adjunction whose left adjoint describes the quantization of linear field
theories.
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In Sect. 6,we extend our results to the case ofCh(K)-valuedfield theories, i.e. gauge
theories, by using techniques from model category theory [17,30]. Our reformulation
in Sect. 5 of the usual quantization of linear field theories in terms of (the left adjoint of)
an adjunction is very valuable for studying the quantization of linear gauge theories. In
particular, it allows us to construct a derived linear quantization functorwhich provides
a homotopically meaningful quantization prescription for linear gauge theories in
the sense that it maps weakly equivalent linear gauge theories to weakly equivalent
quantum gauge theories. A deeper homotopical study of the building blocks of the
derived linear quantization functor (see Appendix A) reveals that it can be modeled
(up to a natural weak equivalence) by the underived linear quantization functor. From
a computational point of view, this is a very pleasing result because it allows us to
write down explicit formulas for the quantization of linear gauge theories. This will be
illustrated by studying linear Chern–Simons theory on oriented surfaces. We conclude
by analyzing in some detail the interplay between our (derived) linear quantization
functor and suitable homotopical generalizations of the time-slice axiom and local-
to-global property of gauge theories.

2 Preliminaries

Throughout this paper we fix a closed symmetric monoidal category M, which we
further assume to be complete and cocomplete, i.e. all small limits and colimits exist
in M. The monoidal product is denoted by ⊗ : M × M → M, the monoidal unit by
I ∈ M and the internal hom by [−,−] : Mop × M → M, where (−)op denotes the
opposite category. The symmetric braiding is denoted by τ : m ⊗ m′ → m′ ⊗ m, for
all m,m′ ∈ M. We shall always suppress the associator and unitors and in particular
simply write m1 ⊗ · · ·⊗mn for multiple tensor products of objects m1, . . . ,mn ∈ M.
BecauseM is by assumption cocomplete, there exists a Set-tensoring⊗ : Set×M →
M, which we denote with abuse of notation by the same symbol as the monoidal
product. Explicitly, for any set S ∈ Set and m ∈ M, we define

S ⊗ m :=
∐

s∈S
m ∈ M, (2.1)

where
∐

is the coproduct inM.

Example 2.1 A simple example of a bicomplete closed symmetric monoidal category
is the Cartesian closed category Set of sets. Here ⊗ = × is the Cartesian product,
I = {∗} is any singleton set and [S, T ] = Map(S, T ) is the set of maps from S to T .
The symmetric braiding is given by the flip map τ : S×T → T × S , (s, t) �→ (t, s).

Example 2.2 Another standard example of a bicomplete closed symmetric monoidal
category is the category VecK of vector spaces over a field K. Here ⊗ is the usual
tensor product of vector spaces, I = K is the 1-dimensional vector space and [V ,W ] =
HomK(V ,W ) is the vector space of linear maps from V toW . The symmetric braiding
is given by the flip map τ : V ⊗ W → W ⊗ V , v ⊗ w �→ w ⊗ v.
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Algebraic field theory operads and linear quantization 2535

2.1 Colored operads

We provide a brief review of those aspects of the theory of colored operads that are
relevant for this work. We refer to [8,10,34] for a more detailed presentation.

Let C ∈ Set be a non-empty set, which we shall call the ‘set of colors’. We will use
the notation c:=(c1, . . . , cn) ∈ Cn for elements of the n-fold product set.

Definition 2.3 A C-colored operadOwith values inM is given by the following data:

• for each n ≥ 0 and (c, t) ∈ Cn+1, an object O(t
c
) ∈ M (called the object of

operations from c to t);
• for each n ≥ 0, (c, t) ∈ Cn+1 and permutation σ ∈ �n , an M-morphism O(σ ) :
O(t

c
)→O( t

cσ
)
(called the permutation action), where cσ := (cσ(1), . . . , cσ(n));

• for each n > 0, k1, . . . , kn ≥ 0, (a, t) ∈ Cn+1 and (bi , ai ) ∈ Cki+1, for i =
1, . . . , n, an M-morphism γ : O( t

a
) ⊗ ⊗n

i=1O
(ai
bi

) → O(t
b
)
(called the operadic

composition), where b := (b1, . . . , bn) is defined by concatenation;
• for each c ∈ C, an M-morphism 1 : I → O(c

c
)
(called the operadic unit).

These data are required to satisfy the standard permutation action, equivariance, asso-
ciativity, and unitality axioms, see e.g. [34,Definition 11.2.1].Amorphismφ : O → P
between twoC-colored operadsO andPwith values inM is a family ofM-morphisms

φ : O(t
c
) −→ P(t

c
)
, (2.2)

for all n ≥ 0 and (c, t) ∈ Cn+1, that is compatible with the permutation actions
φ O(σ ) = P(σ ) φ, the operadic compositions φ γO = γ P (φ ⊗ ⊗n

i=1 φ) and the
operadic units φ 1O = 1P. We denote the category of C-colored operads with values
inM by OpC(M).

Colored operads generalize the concept of (enriched) categories in the following
sense. In contrast to allowingonly for 1-to-1 operations, such as themorphismsC(c, c′)
in a categoryC, colored operads also describe n-to-1 operations in terms of the objects
of operations O(t

c
)
. The operadic composition generalizes the usual categorical com-

position to operations of higher arity and the operadic unit is analogous to the identity
morphisms in a category. Permutation actions are a new feature for operations of arity
≥ 2 and they have no analog in ordinary category theory. The following example
clarifies how every category defines a colored operad with only 1-ary operations.

Example 2.4 Let C be a small category and denote its set of objects by C0. The fol-
lowing construction defines a C0-colored operad DiagC ∈ OpC0

(Set) with values in
M = Set, which is called the diagram operad of C, see e.g. [10]. For (c, t) ∈ Cn+1

0 ,
one defines the set of operations by

DiagC
(t
c
) :=

{
∅, for n �= 1,

C(c, t), for c = c.
(2.3)

The permutation action is uniquely fixed because �1 = {e} is the trivial group. The
only non-trivial operadic compositions are γ : DiagC

(
t
a

)×DiagC
(a
b
) → DiagC

(
t
b

)
and
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2536 S. Bruinsma, A. Schenkel

they are given by composition of morphisms in the category C. Finally, the operadic
unit 1 : {∗} → DiagC

(c
c
)
is given by the identity morphisms in the category C. One

confirms that this defines a colored operad in the sense of Definition 2.3.

Many interesting examples of (colored) operads can be conveniently defined in
terms of generators and relations, see e.g. the examples below. Let us briefly explain
how this construction works. We denote by SeqC(M) the category of C-colored (non-
symmetric) sequenceswith values inM. An object X ∈ SeqC(M) is a family of objects
X
(t
c
) ∈ M, for all n ≥ 0 and (c, t) ∈ Cn+1, and a SeqC(M)-morphism f : X → Y is

a family of M-morphisms f : X(t
c
) → Y

(t
c
)
, for all n ≥ 0 and (c, t) ∈ Cn+1. There

exists a forgetful functor U : OpC(M) → SeqC(M) that forgets the permutation
action, operadic composition and operadic unit of a C-colored operad. This functor
has a left adjoint which is called the free C-colored operad functor, i.e. we have an
adjunction

F : SeqC(M) OpC(M) : U. (2.4)

Given any choice of generators G ∈ SeqC(M), we consider the corresponding free
C-colored operad F(G) ∈ OpC(M). In order to implement relations, we consider
R ∈ SeqC(M) together with two parallel SeqC(M)-morphisms r1, r2 : R ⇒ UF(G).
Note that because (2.4) is an adjunction, the latter is equivalent to two parallel
OpC(M)-morphisms r1, r2 : F(R) ⇒ F(G), which we denote with abuse of notation
by the same symbols. Because the category OpC(M) is cocomplete, the following
construction defines a C-colored operad.

Definition 2.5 The C-colored operad presented by the generators G ∈ SeqC(M) and
relations r1, r2 : R ⇒ UF(G) is defined as the coequalizer

F(R)
r2

r1
F(G) F(G)/(r1 = r2) (2.5)

in OpC(M).

Example 2.6 Consider for the moment M = Set. The associative operad As ∈
Op{∗}(Set) is the single-colored operad (i.e. C = {∗} is a singleton) presented by
the following generators and relations: We define the set of generators of arity n by

G(n) :=

⎧
⎪⎨

⎪⎩

{η}, for n = 0 ,

{μ}, for n = 2 ,

∅, else ,

(2.6)

for all n ≥ 0. The generatorμ in arity 2 is interpreted as a multiplication operation and
the generator η in arity 0 as a unit element. To implement associativity and left/right
unitality of these operations, we consider
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Algebraic field theory operads and linear quantization 2537

R(n) :=

⎧
⎪⎨

⎪⎩

{λ, ρ}, for n = 1 ,

{a}, for n = 3 ,

∅, else ,

(2.7)

for all n ≥ 0, together with the two Seq{∗}(Set)-morphisms r1, r2 : R → UF(G)

defined by

r1 :

⎧
⎪⎨

⎪⎩

λ �−→ γ
(
μ ⊗ (η ⊗ 1)

)
,

ρ �−→ γ
(
μ ⊗ (1 ⊗ η)

)
,

a �−→ γ
(
μ ⊗ (μ ⊗ 1)

)
,

, r2 :

⎧
⎪⎨

⎪⎩

λ �−→ 1,

ρ �−→ 1,

a �−→ γ
(
μ ⊗ (1 ⊗ μ)

)
,

(2.8)

where the operadic composition and unit are those of the free operad F(G). The asso-
ciative operad As := F(G)/(r1 = r2) ∈ Op{∗}(Set) is defined as the corresponding
coequalizer.

It is instructive and useful to visualize the generators and relations in terms of rooted
trees. The generators are depicted by

μ = , η = , (2.9a)

and the relations (in the order they appear in (2.8)) then read as

= 1 , = 1 , = . (2.9b)

Let us note that the associative operad can be defined in any bicomplete closed
symmetric monoidal category M. Using the Set-tensoring (2.1) and the unit object
I ∈ M, we define generators G ⊗ I ∈ Seq{∗}(M) and relations r1 ⊗ I , r2 ⊗ I :
R⊗I → UF(G)⊗I ∼= UF(G⊗I ) in the category ofM-valued sequencesSeq{∗}(M).
The corresponding coequalizer then defines the M-valued associative operad As :=
F(G ⊗ I )/(r1 ⊗ I = r2 ⊗ I ) ∈ Op{∗}(M).

Example 2.7 Consider for themomentM = VecK. The Lie operad Lie ∈ Op{∗}(VecK)

is the single-colored operad presented by the following generators and relations: There
is only one generator of arity 2, the Lie bracket, that we depict by

[·, ·] = . (2.10a)

The relations are given by antisymmetry and the Jacobi identity

1 2

= −
2 1

,

1 2 3

+
2 3 1

+
3 1 2

= 0, (2.10b)
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2538 S. Bruinsma, A. Schenkel

where the numbers below the trees indicate input permutations.
Note that for defining the Lie relations we had to use the natural Abelian group

structure on the Hom-sets ofVecK, i.e. addition of linear maps between vector spaces.
Hence, the Lie operad can not be defined in a generic bicomplete closed symmetric
monoidal categoryM. If, however,M is an additive category, then one can define the
Lie operad Lie ∈ Op{∗}(M) with values inM along the same lines as above.

Example 2.8 As in Example 2.7, let us assume thatM is additive. The Poisson operad
Pois ∈ Op{∗}(M) is the single-colored operad presented by the following generators
and relations: The generators are

μ = , η = , {·, ·} = , (2.11a)

where {·, ·} denotes the Poisson bracket. The generators μ and η satisfy the relations
of the associative operad (2.9) and the generator {·, ·} the relations of the Lie operad
(2.10). We further demand the relations

1 2

=
2 1

,

1 2 3

=
31 2

+
2 1 3

, (2.11b)

which express thatμ is commutative and that {·, ·} is a derivation in the right entry (and
hence by antisymmetry also a derivation in the left entry). Computing the operadic
composition of the derivation relation with 1 ⊗ η ⊗ η implies that

= 0, (2.12)

i.e. the Poisson bracket of the unit element is zero.

Example 2.9 This example will play a role in the formalization of linear field theories;
see Example 3.8. Let M be additive. The unital Lie operad uLie ∈ Op{∗}(M) is the
single-colored operad obtained by adding to the Lie operad from Example 2.7 a new
generator of arity 0, i.e. we have two generators

[·, ·] = , η = . (2.13)

In addition to the antisymmetry and Jacobi identity relations (2.10) for [·, ·],wedemand
the compatibility relation

= 0 (2.14)

between the Lie bracket and the unit.

123



Algebraic field theory operads and linear quantization 2539

We shall often require a generalization of the concept of colored operad morphisms
from Definition 2.3 to morphisms that do not necessarily preserve the underlying sets
of colors. As a preparation for the relevant definition, note that for every D-colored
operad P ∈ OpD(M) and every map of sets f : C → D, one may define the
pullback C-colored operad f ∗(P) ∈ OpC(M). Concretely, it is defined by setting
f ∗(P)

(t
c
) := P( f (t)

f (c)

)
, for all n ≥ 0 and (c, t) ∈ Cn+1, and restricting the permutation

action, operadic composition and operadic unit in the evident way.

Definition 2.10 The category Op(M) of operads with varying colors with values in
M has as objects all pairs (C,O) consisting of a non-empty set C and a C-colored
operad O ∈ OpC(M). A morphism is a pair ( f , φ) : (C,O) → (D,P) consisting of
a map of sets f : C → D and anOpC(M)-morphism φ : O → f ∗(P) to the pullback
C-colored operad.

2.2 Algebras over colored operads

We have seen above that a colored operad O describes abstract n-to-1 operations, for
all n ≥ 0, together with a composition law γ , specified identities 1 and a permutation
action O(σ ) that allows us to permute the inputs of operations. Forming concrete
realizations/representations of these abstract operations leads to the concept of algebras
over colored operads.

Definition 2.11 An algebra A over a C-colored operad O ∈ OpC(M), or shorter an
O-algebra, is given by the following data:

• for each c ∈ C, an object Ac ∈ M;
• for each n ≥ 0 and (c, t) ∈ Cn+1, an M-morphism α : O(t

c
) ⊗ Ac → At (called

O-action), where Ac := ⊗n
i=1 Aci with the convention that A∅ = I for n = 0.

This data is required to satisfy the standard associativity, unity and equivariance
axioms, see e.g. [34, Definition 13.2.3]. A morphism κ : A → B between two
O-algebras A and B is a family of M-morphisms κ : Ac → Bc, for all c ∈ C, that is
compatible with theO-actions, i.e. κ αA = αB (id⊗⊗n

i=1 κ). We denote the category
of O-algebras by AlgO.

Example 2.12 Consider the diagram operad DiagC ∈ OpC0
(Set) from Example 2.4.

A DiagC-algebra is a family of sets Ac ∈ Set, for all objects c ∈ C0 in the category
C, together with maps α : DiagC

(
t
c

) × Ac → At , for all c, t ∈ C0. (Here we already
used that DiagC only contains 1-ary operations.) Because DiagC

(
t
c

) = C(c, t) is the
Hom-set, the latter data is equivalent to specifying for each C-morphism f : c → t
a map of sets A( f ) := α( f ,−) : Ac → At . The axioms for O-algebras imply
that A(g f ) = A(g) A( f ), for all composable C-morphism, and A(id) = id for the
identities. Hence, a DiagC-algebra is precisely a functor C → Set, i.e. a diagram of
shape C. One observes that morphisms between DiagC-algebras are precisely natural
transformations between the corresponding functors.

Example 2.13 Consider for the moment M = Set and the associative operad As ∈
Op{∗}(Set) from Example 2.6. An As-algebra is a single set A = A∗ ∈ Set
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2540 S. Bruinsma, A. Schenkel

together with an As-action. The latter is equivalent to providing a family of maps
α : As(n) → Map(A×n, A), for all n ≥ 0, which define an Op{∗}(Set)-morphism
to the endomorphism operad End(A), see e.g. [34, Definition 13.8.1]. Because As
is presented by generators and relations (see Example 2.6), this is equivalent to
defining α on the generators such that the relations hold true. This yields two maps
μA := α(μ) : A× A → A and ηA := α(η) : {∗} → A, which because of the relations
have to satisfy the axioms of an associative and unital algebra in Set. One finds that
morphisms of As-algebras are precisely morphisms of associative and unital algebras.

For a general bicomplete closed symmetric monoidal categoryM, one obtains that
the category AlgAs of algebras over As ∈ Op{∗}(M) is the category of associative and
unital algebras in M. In particular, for M = VecK, this is the category of associative
and unital K-algebras.

Example 2.14 A similar argument as in Example 2.13 shows that the category AlgLie
of algebras over the Lie operad Lie ∈ Op{∗}(M) (see Example 2.7) is the category of
Lie algebras in M and that the category AlgPois of algebras over the Poisson operad
Pois ∈ Op{∗}(M) (see Example 2.8) is the category of Poisson algebras inM.

Given an Op(M)-morphism ( f , φ) : (C,O) → (D,P) in the sense of Defini-
tion 2.10, one may define a pullback functor ( f , φ)∗ : AlgP → AlgO between the
corresponding categories of algebras. The pullback of A ∈ AlgP is the O-algebra
defined by (( f , φ)∗A)c := A f (c) ∈ M, for all c ∈ C, together with the O-action

O(t
c
) ⊗ (( f , φ)∗A)c

φ⊗id P( f (t)
f (c)

) ⊗ A f (c)
α

A f (t) = (( f , φ)∗A)t . (2.15)

Theorem 2.15 For any Op(M)-morphism ( f , φ) : (C,O) → (D,P), the pullback
functor ( f , φ)∗ : AlgP → AlgO has a left adjoint, which is called operadic left Kan
extension. We denote the corresponding adjunction by

( f , φ)! : AlgO AlgP : ( f , φ)∗ . (2.16)

Example 2.16 Every functor F : C → D defines an evident Op(Set)-morphism
(F0, F) : (C0,DiagC) → (D0,DiagD) between the corresponding diagram operads
(see Example 2.4). Recalling from Example 2.12 thatAlgDiagC

∼= SetC is the category

of functors from C to Set (and similarly that AlgDiagD
∼= SetD), one shows that the

pullback functor (F0, F)∗ is the usual pullback functor F∗ := (−)◦F : SetD → SetC

for functor categories. Its left adjoint (F0, F)! is therefore the ordinary categorical left
Kan extension LanF : SetC → SetD.

3 Field theory operads

3.1 Orthogonal categories and field theories

Let us briefly recall the basic idea of algebraic quantum field theory, see e.g. [11,13,18,
25] for more details. Broadly speaking, a field theory in this setting is a functor from
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a suitable category of spacetimes to a category of algebraic structures of interest that
satisfies a list of physically motivated axioms. The prime example is given by functors
A : Loc → AlgAs from the categoryLoc of globally hyperbolic Lorentzian manifolds
to the category of associative and unital algebras that satisfy the Einstein causality
axiom. The latter is a property of the functor A : Loc → AlgAs which demands that
for every pair ( f1 : M1 → M, f2 : M2 → M) of Loc-morphisms whose images are
causally disjoint in M the diagram

A(M1) ⊗ A(M2)

A( f1)⊗A( f2)

A( f1)⊗A( f2)
A(M) ⊗ A(M)

μ
op
M

A(M) ⊗ A(M)
μM

A(M)

(3.1)

commutes, where μ
(op)
M denotes the (opposite) multiplication on A(M). Another

important physical example is given by functors A : Loc → AlgAs that satisfy the
time-slice axiom in addition to the Einstein causality axiom. Such theories will be
formalized later in Sect. 4.2 via localization techniques.

For the purpose of this paper, we consider the following generalization of quantum
field theories satisfying the Einstein causality axiom. (Examples which justify this
generalization are presented at the end of this subsection.) Let C be a small cate-
gory which we interpret as a category of spacetimes. Instead of associative and unital
algebras, let us take any single-colored operad P ∈ Op{∗}(M) and consider the func-
tor category AlgPC. An object in this category is a functor A : C → AlgP, i.e. an
assignment of P-algebras to spacetimes, and the morphisms are natural transforma-
tions between such functors. To encode physical axioms which generalize the Einstein
causality axiom above, we recall the concept of orthogonal categories from [8].

Definition 3.1 An orthogonal category is a pair C := (C,⊥) consisting of a small
category C and a subset ⊥⊆ MorC t×t MorC of the set of pairs of morphisms with
a common target, which satisfies the following properties:

(i) Symmetry: If ( f1, f2) ∈⊥, then ( f2, f1) ∈⊥.
(ii) Stability under compositions: If ( f1, f2) ∈⊥, then (g f1 h1, g f2 h2) ∈⊥ for all

composable C-morphisms g, h1 and h2.

We shall also write f1 ⊥ f2 for elements ( f1, f2) ∈⊥. An orthogonal functor F :
C → D is a functor F : C → D that preserves orthogonality, i.e. if f1 ⊥C f2 then
F( f1) ⊥D F( f2). We denote by OrthCat the category of orthogonal categories and
orthogonal functors.

Example 3.2 Let Loc be any small category that is equivalent to the usual category
of oriented, time-oriented and globally hyperbolic Lorentzian spacetimes of a fixed
dimension ≥ 2, see [13,18]. We define ⊥Loc as the subset of all pairs ( f1 : M1 →
M, f2 : M2 → M) of causally disjoint Loc-morphisms, i.e. pairs of morphisms
such that the images f1(M1) and f2(M2) are causally disjoint subsets in M . The pair
Loc := (Loc,⊥Loc) defines an orthogonal category.
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Let us now consider a parallel pair of Seq{∗}(M)-morphisms r1, r2 : I [2] ⇒ U (P),
where I [2] ∈ Seq{∗}(M) is defined by

I [2](n) :=
{
I , for n = 2 ,

∅, else ,
(3.2)

for all n ≥ 0. This means that each ri picks out an operation of arity 2 in P. For
simplifying notation, we shall write

P(r1,r2) := (P, r1, r2 : I [2] ⇒ U (P)
)

(3.3)

and we call P(r1,r2) an (arity 2) bipointed single-colored operad.

Definition 3.3 A field theory of type P(r1,r2) on C is a functor A : C → AlgP that
satisfies the following property: For all ( f1 : c1 → c) ⊥ ( f2 : c2 → c), the diagram

I ⊗ A(c1) ⊗ A(c2)

r2⊗A( f1)⊗A( f2)

r1⊗A( f1)⊗A( f2) P(2) ⊗ A(c)⊗2

αP
c

P(2) ⊗ A(c)⊗2

αP
c

A(c)

(3.4)

inM commutes, where αP
c denotes theP-action onA(c) ∈ AlgP (see Definition 2.11).

The category of field theories of type P(r1,r2) on C is defined as the full subcategory

FT
(
C,P(r1,r2)

) ⊆ AlgPC, (3.5)

whose objects are all functors A : C → AlgP satisfying (3.4).

Remark 3.4 Our concept of field theories inDefinition 3.3 is based on the idea that there
exist two distinguished arity 2 operations in P, which act in the same way when pre-
composed with an orthogonal pair f1 ⊥ f2 of C-morphisms. There exists an obvious
generalization of this scenario to n-ary operations in P and orthogonal n-tuples of
C-morphisms. We however decided not to introduce this more general framework for
field theories, because all examples of interest to us are field theories in the sense of
Definition 3.3.

Example 3.5 (Quantumfield theories) Consider the associative operadAs ∈ Op{∗}(M)

from Example 2.6 and the two Seq{∗}(M)-morphisms μ,μop : I [2] ⇒ U (As) which
select the multiplication and opposite multiplication operations. A field theory of type
As(μ,μop) on C is a functor A : C → AlgAs to the category of associative and unital
algebras which satisfies the analog of (3.1). For C = Loc (see Example 3.2), this is
a locally covariant quantum field theory [13,18] that satisfies the Einstein causality
axiom but not necessarily the time-slice axiom. The time-slice axiomwill be discussed
in Sect. 4.2.

123



Algebraic field theory operads and linear quantization 2543

Remark 3.6 If M is additive, there exists an alternative but equivalent formalization
of the type of field theories from Example 3.5. Consider the associative operad As ∈
Op{∗}(M) and the two Seq{∗}(M)-morphisms [·, ·], 0 : I [2] ⇒ U (As) which select
the commutator [·, ·] = μ − μop and the zero-operation (of arity 2). A field theory
of type As([·,·],0) on C is a functor A : C → AlgAs to the category of associative and
unital algebras which satisfies the property that

[
A( f1)(−),A( f2)(−)

]
c : A(c1) ⊗ A(c2) −→ A(c) (3.6)

is the zero-map, for all ( f1 : c1 → c) ⊥ ( f2 : c2 → c). (Here [·, ·]c = μc − μ
op
c

denotes the commutator on A(c).) This is equivalent to our description in Example
3.5, i.e.

FT
(
C,As([·,·],0)

) ∼= FT
(
C,As(μ,μop)

)
. (3.7)

This observation will be useful in Sect. 5 when we study the linear quantization
adjunction.

Example 3.7 (Classical field theories) LetM be additive. Consider the Poisson operad
Pois ∈ Op{∗}(M) from Example 2.8 and the two Seq{∗}(M)-morphisms {·, ·}, 0 :
I [2] ⇒ U (Pois) which select the Poisson bracket and the zero-operation. A field
theory of type Pois({·,·},0) on C is a functor A : C → AlgPois to the category of
Poisson algebras which satisfies the property that

{
A( f1)(−),A( f2)(−)

}
c : A(c1) ⊗ A(c2) −→ A(c) (3.8)

is the zero-map, for all ( f1 : c1 → c) ⊥ ( f2 : c2 → c). (Here {·, ·}c denotes
the Poisson bracket on A(c).) For C = Loc, this is a classical analog of locally
covariant quantum field theory, where one assigns to each spacetime a Poisson algebra
of classical observables, see e.g. [5,12,14,22]. The property (3.8) demands that the
Poisson bracket between causally disjoint classical observables is zero, which captures
the classical analog of the Einstein causality axiom.

Example 3.8 (Linear field theories) In the usual construction of linear quantum field
theories, see e.g. [1–3] for reviews, one first defines a functor L : Loc → PSymp
to the category of presymplectic vector spaces, which is then quantized by form-
ing CCR-algebras (CCR stands for canonical commutation relations). Recall that a
presymplectic vector space (V , ω) is a pair consisting of a vector space V and an
antisymmetric linear map ω : V ⊗ V → K. Notice that this is not an operation of
arity 2 in the sense of operads because the target is the ground field and not V . Hence,
PSymp is not the category of algebras over an operad and, as a consequence, functors
L : Loc → PSymp do not define field theories in the sense of Definition 3.3.

However, there exists a canonical upgrade of every functor L : Loc → PSymp to a
field theory in the sense ofDefinition 3.3.Given anypresymplectic vector space (V , ω),
one can define its Heisenberg Lie algebra H(V , ω). The underlying vector space of

123



2544 S. Bruinsma, A. Schenkel

H(V , ω) is given byV⊕ K and theLie bracket [−,−] : (V⊕ K)⊗(V⊕K) → V⊕K

is

[v ⊕ k, v′ ⊕ k′] := 0 ⊕ ω(v, v′), (3.9)

for all v⊕k, v′⊕k′ ∈ V ⊕K. There exists a canonical unit map η : K → V ⊕K , k �→
0 ⊕ k, which is compatible with the Lie bracket, i.e. [v ⊕ k, η(k′)] = 0, for all
v ⊕ k ∈ V ⊕ K and k′ ∈ K. Hence, Heisenberg Lie algebras are algebras over the
unital Lie operaduLie ∈ Op{∗}(M)given inExample 2.9.Because formingHeisenberg
Lie algebras is functorial, we can define for every L : Loc → PSymp the composite
functor H L : Loc → AlguLie.

Consider now the two Seq{∗}(M)-morphisms [·, ·], 0 : I [2] → U (uLie) which

select the Lie bracket and the zero-operation. A field theory of type uLie([·,·],0) on C
is a functor A : C → AlguLie to the category of unital Lie algebras which satisfies the
property that

[
A( f1)(−),A( f2)(−)

]
c : A(c1) ⊗ A(c2) −→ A(c) (3.10)

is the zero-map, for all ( f1 : c1 → c) ⊥ ( f2 : c2 → c). (Here [·, ·]c denotes the Lie
bracket on A(c).) This property is a suitable analog of the Einstein causality axiom
for linear field theories. In particular, if C = Loc, M = VecK and A = H L :
Loc → AlguLie is given by applying the Heisenberg Lie algebra construction to a
functor L : Loc → PSymp with values in presymplectic vector spaces, then (3.10) is
equivalent to the property that the presymplectic structure of causally disjoint linear
observables is zero. This is precisely the Einstein causality axiom for linear field
theories, see e.g. [1–3].

3.2 Operadic description

In this section, we show that the category of field theories from Definition 3.3 is the
category of algebras over a suitable colored operad. This generalizes previous results
in [8] and it is the key insight that allows us to study a large family of universal
constructions for field theories in Sect. 4. As a preparation for the relevant definition,
we define an auxiliary colored operad that describes functors from a small category
C to the category of P-algebras.
Definition 3.9 Let C be a small category with set of objects C0 and let P ∈ Op{∗}(M)

be a single-colored operad. The C0-colored operad PC ∈ OpC0
(M) is defined by the

following data:

• for n ≥ 0 and (c, t) ∈ Cn+1
0 , the object of operations is

PC
(t
c
) := C(c, t) ⊗ P(n) ∈ M, (3.11)

where ⊗ is the Set-tensoring (2.1) and C(c, t) := ∏n
i=1 C(ci , t) is the product of

Hom-sets;
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• for n ≥ 0, (c, t) ∈ Cn+1
0 and σ ∈ �n , the permutation action PC(σ ) is defined by

PC
(t
c
) PC(σ ) PC

( t
cσ
)

P(n)

ι f

P(σ )
P(n)

ι f σ

(3.12)

for all f := ( f1, . . . , fn) ∈ C(c, t), where ι f : P(n) → PC
(t
c
) = C(c, t) ⊗

P(n) are the inclusion morphisms into the coproduct (see (2.1)) and f σ :=
( fσ(1), . . . , fσ(n));

• for n > 0, k1, . . . , kn ≥ 0, (a, t) ∈ Cn+1
0 and (bi , ai ) ∈ Cki+1

0 , for i = 1, . . . , n,
the operadic composition γ PC is defined by

PC
( t
a
) ⊗

n⊗
i=1

PC
(ai
bi

) γPC PC
(t
b
)

P(n) ⊗
n⊗

i=1
P(ki )

ι f ⊗⊗n
i=1 ιgi

γP P(k1 + · · · + kn)

ι f (g1,...,gn )

(3.13)

for all f = ( f1, . . . , fn) ∈ C(a, t) and g
i

= (gi1, . . . , giki ) ∈ C(bi , ai ), for
i = 1, . . . , n, where f (g

1
, . . . , g

n
) := ( f1 g11, . . . , fn gnkn ) ∈ C(b, t) is defined

by composition in the category C;
• for c ∈ C0, the operadic unit 1PC is

I

1P

1PC PC
(c
c
)

P(1)

ιidc

(3.14)

where idc : c → c is the identity morphism of c in the category C.

A straightforward check shows that these data define a colored operad (see Defini-
tion 2.3).

Lemma 3.10 There exists a canonical isomorphism

AlgPC
∼= AlgPC (3.15)

between the category of algebras over the colored operad PC ∈ OpC0
(M) from

Definition 3.9 and the category of functors from C to AlgP.
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Proof A PC-algebra is a family of objects Ac ∈ M, for all c ∈ C0, together with a
PC-action α : PC

(t
c
) ⊗ Ac → At . Because (3.11) is a coproduct, this is equivalent to

a family of M-morphisms α f : P(n) ⊗ Ac → At , for all n ≥ 0, (c, t) ∈ Cn+1
0 and

f ∈ C(c, t), which satisfies the following compatibility conditions resulting from the
axioms for algebras over colored operads

(
P(n) ⊗

n⊗
i=1

P(ki )
)

⊗ Ab
γP⊗id

permute ∼=

P(k1 + · · · + kn) ⊗ Ab

α f (g1,...,gn )

P(n) ⊗
n⊗

i=1

(
P(ki ) ⊗ Abi

)
id⊗⊗

i αgi

P(n) ⊗ Aa α f
At

(3.16a)

I ⊗ Ac

∼=

1P⊗id P(1) ⊗ Ac

αidc

P(n) ⊗ Ac

P(σ )⊗ permute

α f
At

Ac P(n) ⊗ Acσ

α f σ

(3.16b)

Using that any f = ( f1, . . . , fn) ∈ C(c, t) can be written as f = idt n( f1, . . . , fn),
where idt n = (idt , . . . , idt ) is of length n, the diagram (3.16a) implies that α f factor-
izes as

P(n) ⊗
n⊗

i=1

(
I ⊗ Aci

) ∼= P(n) ⊗ Ac

id⊗⊗
i (1P⊗id)

α f
At

P(n) ⊗
n⊗

i=1

(
P(1) ⊗ Aci

)
id⊗⊗

i α fi

P(n) ⊗ A⊗n
t

αidt n

(3.17)

Hence, the PC-action α is uniquely specified by the following two types of M-
morphisms: (1) α̃t := αidt n : P(n) ⊗ A⊗n

t → At , for all t ∈ C0 and n ≥ 0, and

(2) A( f ) := α f (1P ⊗ id) : Ac ∼= I ⊗ Ac → At , for all C-morphisms f : c → t .
The remaining conditions in (3.16) are equivalent to α̃t defining a P-action on At , for
all t ∈ C0, and A( f ) : Ac → At defining a functor C → AlgP to P-algebras. From
this perspective, PC-algebra morphisms correspond precisely to natural transforma-
tions between functors from C to AlgP. ��

For the rest of this subsection, we fix an orthogonal category C = (C,⊥) and a
bipointed single-colored operad P(r1,r2) = (P, r1, r2 : I [2] ⇒ U (P)). (Recall the
definition of I [2] in (3.2).) We define a C0-colored sequence R⊥ ∈ SeqC0

(M) by
setting
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R⊥
(t
c
) :=

{(⊥∩C(c, t)
) ⊗ I , for n = 2 ,

∅, else ,
(3.18)

for all n ≥ 0 and (c, t) ∈ Cn+1
0 , and a parallel pair of SeqC0

(M)-morphisms

r1,C, r2,C : R⊥ U (PC) (3.19a)

by setting, for i = 1, 2,

R⊥
( t
(c1,c2)

) ri,C PC
( t
(c1,c2)

)

I

ι( f1, f2)

ri
P(2)

ι( f1, f2)

(3.19b)

for all ( f1 : c1 → t, f2 : c2 → t) ∈⊥.

Definition 3.11 The operad of field theories of type P(r1,r2) on C is defined as the
coequalizer

F(R⊥)
r2,C

r1,C PC P(r1,r2)
C

(3.20)

in OpC0
(M).

The importance of this operad is evidenced by the following theorem.

Theorem 3.12 There exists a canonical isomorphism

AlgP(r1,r2)

C

∼= FT
(
C,P(r1,r2)

)
(3.21)

between the category of algebras over the colored operad P(r1,r2)
C

∈ OpC0
(M) from

Definition 3.11 and the category of field theories of type P(r1,r2) on C from Defini-
tion 3.3.

Proof Because P(r1,r2)
C

is defined as a coequalizer (3.20), its algebras are precisely
those PC-algebras A ∈ AlgPC

that satisfy the relations encoded by r1,C, r2,C : R⊥ ⇒
U (PC) [see (3.19)]. Using the notations from the proof of Lemma 3.10, this concretely
means that the diagram

I ⊗ Ac1 ⊗ Ac2

r2⊗id⊗id

r1⊗id⊗id P(2) ⊗ Ac1 ⊗ Ac2

α( f1, f2)

P(2) ⊗ Ac1 ⊗ Ac2 α( f1, f2)
At

(3.22)
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in M commutes, for all ( f1 : c1 → t, f2 : c2 → t) ∈⊥. Using the isomorphism of
Lemma 3.10, one easily translates this diagram to the diagram (3.4) for the functor
A : C → AlgP corresponding to A ∈ AlgPC

, which completes the proof. ��

Example 3.13 Recalling Examples 3.5, 3.7 and 3.8, our construction defines colored
operads for quantum field theory As(μ,μop)

C
(or equivalently As([·,·],0)

C
provided thatM

is additive, see Remark 3.6), for classical field theory Pois({·,·},0)
C

and for linear field

theory uLie([·,·],0)
C

formalized in terms of Heisenberg Lie algebras.

3.3 Functoriality

Note that the field theory operad P(r1,r2)
C

∈ OpC0
(M) from Definition 3.11 depends

on the choice of two kinds of data: (1) An orthogonal category C = (C,⊥) and (2) a
bipointed single-colored operadP(r1,r2) = (P, r1, r2 : I [2] ⇒ U (P)).Wewill see that
both of these dependencies are functorial. Recall from Definition 3.1 that orthogonal
categories are the objects of the category OrthCat. The second kind of data may be
arranged in terms of a category as follows.

Definition 3.14 The category of (arity 2) bipointed single-colored operadsOp2pt{∗}(M)

has the following objects and morphisms: An object is a pair P(r1,r2) = (P, r1, r2 :
I [2] ⇒ U (P)) consisting of a single-colored operad P ∈ Op{∗}(M) and a parallel
pair of Seq{∗}(M)-morphisms r1, r2 : I [2] ⇒ U (P) [see (3.2) for the definition of

I [2]]. A morphism φ : P(r1,r2) → Q(s1,s2) is anOp{∗}(M)-morphism φ : P → Q that
preserves the points, i.e. the diagram

I [2] ri
U (P)

U (φ)

I [2] si
U (Q)

(3.23)

in Seq{∗}(M) commutes for i = 1, 2.

Proposition 3.15 The assignment (C,P(r1,r2)) �−→ (C0,P(r1,r2)
C

) of the field theory

operads from Definition 3.11 naturally extends to a functorOrthCat×Op2pt{∗}(M) →
Op(M)with values in the category of operadswith varying colors (seeDefinition2.10).

Proof For every morphism (F, φ) : (C,P(r1,r2)) → (D,Q(s1,s2)) in OrthCat ×
Op2pt{∗}(M), one can define an Op(M)-morphism φF : PC → QD between the corre-
sponding auxiliary operads fromDefinition 3.9. Concretely, this morphism is specified
by the components
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PC
(t
c
) φF QD

(F(t)
F(c)

)

P(n)

ι f

φ
Q(n)

ιF( f )

(3.24)

We now show that the assignment of the field theory operads is functorial too. For
this we first note that one can define analogously to above a morphism R⊥C → R⊥D

of colored sequences and one easily checks that this defines a morphism of par-
allel pairs in (3.19). (For this step, one uses that F is an orthogonal functor and
that φ preserves the points.) Because forming colimits is functorial, this defines an
OpC0

(M)-morphism P(r1,r2)
C

→ colim
(
F∗(F(R⊥D)) ⇒ F∗(QD)

)
to the coequalizer

of the corresponding pullback operads. (With an abuse of notation, we denoted by F
both the freeD0-colored operad functor (2.4) and the orthogonal functor F : C → D.)
Notice that pullback operads arise at this point because Definition 3.11 considers col-
imits in the categories of operads with a fixed set of colors and not in the category
Op(M). From the universal property of colimits, one obtains a canonical OpC0

(M)-

morphism colim
(
F∗(F(R⊥D)) ⇒ F∗(QD)

) → F∗(Q(s1,s2)
D

) to the pullback of field
theory operad. The composition of the latter two morphisms defines our desired
Op(M)-morphism, which we denote with abuse of notation by the same symbol
φF : P(r1,r2)

C
→ Q(s1,s2)

D
as the one for the auxiliary operads. ��

As a consequence of this proposition, we obtain for every morphism (F, φ) :
(C,P(r1,r2)) → (D,Q(s1,s2)) in OrthCat × Op2pt{∗}(M) an Op(M)-morphism φF :
P(r1,r2)
C

→ Q(s1,s2)
D

and hence by Theorems 2.15 and 3.12 an adjunction

(φF )! : FT
(
C,P(r1,r2)

)
FT

(
D,Q(s1,s2)

) : (φF )∗ (3.25)

between the corresponding categories of field theories. From the concrete definition
of φF given in the proof of Proposition 3.15 and the identification in Theorem 3.12,
one observes that the right adjoint (φF )∗ admits a very explicit description in terms
of either of the two compositions in the commutative diagram

FT
(
C,Q(s1,s2)

)

(φ∗)∗

FT
(
D,Q(s1,s2)

)F∗

(φ∗)∗
(φF )∗

FT
(
C,P(r1,r2)

)
FT

(
D,P(r1,r2)

)
.

F∗

(3.26)

In this diagram, F∗ is the restriction to the categories of field theories of the pullback
functor for functor categories

F∗ := (−) ◦ F : AlgOD −→ AlgOC, (3.27)
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for O = P and O = Q, and (φ∗)∗ is the restriction to the categories of field theories
of the pushforward functor for functor categories

(φ∗)∗ := φ∗ ◦ (−) : AlgQE −→ AlgPE, (3.28)

for E = C and E = D, where φ∗ : AlgQ → AlgP is the pullback functor correspond-
ing to the single-colored operad morphism φ : P → Q.

4 Universal constructions for field theories

This section is concerned with analyzing in more depth the adjunctions in (3.25)
and their relevance for universal constructions in field theory. Because of (3.26), this
problem may be decomposed into three smaller building blocks:

1. Adjunctions induced by orthogonal functors F : C → D

F! : FT
(
C,P(r1,r2)

)
FT

(
D,P(r1,r2)

) : F∗ (4.1)

2. Adjunctions induced by Op2pt{∗}(M)-morphisms φ : P(r1,r2) → Q(s1,s2)

(φ∗)! : FT
(
C,P(r1,r2)

)
FT

(
C,Q(s1,s2)

) : (φ∗)∗ (4.2)

3. The interplay between these two cases via the diagram of categories and functors

FT
(
C,Q(s1,s2)

)

(φ∗)∗

F!
FT

(
D,Q(s1,s2)

)
F∗

(φ∗)∗

FT
(
C,P(r1,r2)

)
(φ∗)!

F!
FT

(
D,P(r1,r2)

)
F∗

(φ∗)!

(4.3)

in which the square formed by the right adjoints commutes by (3.26) and, as
a consequence of the uniqueness (up to a unique natural isomorphism) of left
adjoint functors, the square formed by the left adjoints commutes up to a unique
natural isomorphism.

In the following subsections,we studyparticular classes of examples of such adjunc-
tions, all ofwhich aremotivated by concrete problems and constructions in field theory,
and discuss their interplay. A particularly interesting example, which we will discuss
later in Sect. 5, is given by an adjunction that describes the quantization of linear field
theories.
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4.1 Full orthogonal subcategories

Recall from [8] that a full orthogonal subcategory of an orthogonal category D =
(D,⊥D) is a full subcategory C ⊆ D that is endowed with the pullback orthogonality
relation, i.e. f1 ⊥C f2 if and only if f1 ⊥D f2. The embedding functor j : C → D
defines an orthogonal functor j : C → D.

Proposition 4.1 Let j : C → D be a full orthogonal subcategory and P(r1,r2) ∈
Op2pt{∗}(M) a bipointed single-colored operad. Then the corresponding adjunction

j! : FT
(
C,P(r1,r2)

)
FT

(
D,P(r1,r2)

) : j∗ (4.4)

exhibits FT
(
C,P(r1,r2)

)
as a full coreflective subcategory of FT

(
D,P(r1,r2)

)
, i.e. the

unit η : id → j∗ j! of this adjunction is a natural isomorphism.

Proof The proof is analogous to the corresponding one in [8] and will not be repeated.
��

Example 4.2 Recall the orthogonal category Loc of globally hyperbolic spacetimes
fromExample 3.2. Consider the full subcategoryLoc� ⊆ Loc of all spacetimeswhose
underlyingmanifold is diffeomorphic toRm . Endowedwith the pullback orthogonality
relation, i.e. f1 ⊥Loc� f2 if and only if f1 ⊥Loc f2, this defines a full orthogonal

subcategory j : Loc� → Loc. The corresponding adjunction is

j! : FT
(
Loc�,P(r1,r2)

)
FT

(
Loc,P(r1,r2)

) : j∗ . (4.5)

The right adjoint j∗ is the restriction functor which restricts field theories that are
defined on all of Loc to the full orthogonal subcategory Loc� of spacetimes diffeo-
morphic to R

m . More interestingly, the left adjoint j! is a universal extension functor
which extends field theories that are only defined on Loc� to all of Loc. It was shown
in [8] that j! is a generalization and refinement of Fredenhagen’s universal algebra
construction [19–21,31].

A non-trivial application of a similar universal extension functor for quantum field
theories on spacetimes with boundaries has been studied in [4]. It has been shown that
the ideals of the universal extension j!(B) of a theory B that is defined only on the
interior of a spacetime with boundary are related to boundary conditions.

Remark 4.3 The result in Proposition 4.1 that j! exhibits FT
(
C,P(r1,r2)

)
as a full

coreflective subcategory ofFT
(
D,P(r1,r2)

)
is crucial for a proper interpretation of j! as

a universal extension functor and j∗ as a restriction functor in the spirit of Example 4.2.
Given any field theoryB ∈ FT

(
C,P(r1,r2)

)
on the full orthogonal subcategoryC ⊆ D,

one may apply the left and then the right adjoint functor in (4.4) to obtain another field
theory j∗ j!(B) ∈ FT

(
C,P(r1,r2)

)
onC ⊆ D. The latter is interpreted as the restriction

of the universal extension of B. By Proposition 4.1, the unit ηB : B → j∗ j!(B)
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defines an isomorphism between these two theories, which means that j! extends field
theories from C ⊆ D to all of D without altering their values on the subcategory C.

With this observation in mind, we would like to comment on existing criticisms
that universal constructions, such as Fredenhagen’s universal algebra or our universal
extension j!, may fail to provide a non-trivial result, see e.g. [32] and also [31]. (We
would like to thank the anonymous referee for bringing this to our attention.) It is indeed
true that the algebra j!(B)(d) ∈ AlgP associated with an object d ∈ D that is not in
the subcategory C ⊆ D, i.e. d /∈ C, might be trivial. However, for every non-trivial
B ∈ FT

(
C,P(r1,r2)

)
, the universally extended field theory j!(B) ∈ FT

(
D,P(r1,r2)

)

as a whole is non-trivial because, as we explained above, its restriction j∗ j!(B) to C
is isomorphic to the input B of the construction. We expect that one can construct
physical examples of such theories that are non-trivial on simple spacetimes in C, but
might be trivial on certain complicated spacetimes inD, by considering field equations
that admit only local solutions.

An interesting application of the class of adjunctions in (4.4) is that they allow us
to formalize a kind of local-to-global (i.e. descent) condition for field theories. Given
a field theory A ∈ FT

(
D,P(r1,r2)

)
on the bigger category D, one may ask whether

it is already completely determined by its values on the full orthogonal subcategory
C ⊆ D. In the context of Example 4.2, thismeans asking if the value of a field theory on
a general spacetime M ∈ Loc is completely determined by its behavior on spacetimes
diffeomorphic to Rm , which is a typical question of descent. The following definition
provides a formalization of this idea.

Definition 4.4 A field theory A ∈ FT
(
D,P(r1,r2)

)
on D is called j-local if the

corresponding component of the counit εA : j! j∗(A) → A is an isomorphism.

The full subcategory of j-local field theories is denoted by FT
(
D,P(r1,r2)

) j-loc ⊆
FT

(
D,P(r1,r2)

)
.

The following result, which extends earlier results from [8] to our more general
framework, shows that j-local field theories on the bigger category D may be equiv-
alently described by field theories on the full orthogonal subcategory C ⊆ D.

Corollary 4.5 The adjunction (4.4) restricts to an adjoint equivalence

j! : FT
(
C,P(r1,r2)

)
∼ FT

(
D,P(r1,r2)

) j -loc : j∗ . (4.6)

Proof This is an immediate consequence of Proposition 4.1. ��
Example 4.6 Being a powerful local-to-global property, it is in general not easy to
prove that a given field theory A ∈ FT

(
D,P(r1,r2)

)
on D is j-local for some full

orthogonal subcategory embedding j : C → D. Positive results are known for the
usual Klein–Gordon quantum field theory and j : Loc� → Loc, see [31] and [8,
Section 5]. We expect that this proof can be adapted to cover all vector bundle valued
linear quantum field theories in the sense of [1–3].
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4.2 Orthogonal localizations

Recall from [8] that the orthogonal localization of an orthogonal category C at a
subsetW ⊆ MorC of the set of morphisms is given by the localized categoryC[W−1]
endowed with the pushforward orthogonality relation ⊥C[W−1] := L∗(⊥C) along the
localization functor L : C → C[W−1], i.e. ⊥C[W−1] is the smallest orthogonality
relation such that L( f1) ⊥C[W−1] L( f2) for all f1 ⊥C f2. The localization functor

defines an orthogonal functor L : C → C[W−1].
Proposition 4.7 Let L : C → C[W−1] be an orthogonal localization and P(r1,r2) ∈
Op2pt{∗}(M) a bipointed single-colored operad. Then the corresponding adjunction

L ! : FT
(
C,P(r1,r2)

)
FT

(
C[W−1],P(r1,r2)

) : L∗ (4.7)

exhibits FT
(
C[W−1],P(r1,r2)

)
as a full reflective subcategory of FT

(
C,P(r1,r2)

)
, i.e.

the counit ε : L ! L∗ → id of this adjunction is a natural isomorphism.

Proof The proof is analogous to the corresponding one in [8] and will not be repeated.
��

Let us now explain in some detail the relationship between the adjunction (4.7) and
a suitable generalization of the ‘time-slice axiom’ that we shall call W -constancy.

Definition 4.8 A field theory A ∈ FT
(
C,P(r1,r2)

)
is called W -constant if the AlgP-

morphism A( f ) : A(c) → A(c′) is an isomorphism, for all ( f : c → c′) ∈ W . The
full subcategory of W -constant field theories is denoted by FT

(
C,P(r1,r2)

)W -const ⊆
FT

(
C,P(r1,r2)

)
.

Proposition 4.9 The adjunction (4.7) restricts to an adjoint equivalence

L ! : FT
(
C,P(r1,r2)

)W-const ∼ FT
(
C[W−1],P(r1,r2)

) : L∗ . (4.8)

As a consequence, a field theory A ∈ FT
(
C,P(r1,r2)

)
is W-constant if and only if the

corresponding component ηA : A → L∗L !(A) of the unit of the adjunction (4.7) is
an isomorphism.

Proof By Proposition 4.7, we already know that the right adjoint functor L∗ is fully
faithful, and hence it remains to prove that its essential image isFT

(
C,P(r1,r2)

)W -const.

The image of L∗ lies in FT
(
C,P(r1,r2)

)W -const because, for every B ∈ FT
(
C[W−1],

P(r1,r2)
)
, the field theory L∗(B) is W -constant since L∗ = (−) ◦ L is given by

restricting the pullback functor for functor categories and the localization functor L :
C → C[W−1]mapsmorphisms inW to isomorphisms. To prove essential surjectivity,
let A ∈ FT

(
C,P(r1,r2)

)W -const and consider its underlying functor A : C → AlgP.
By definition of localization, there exists a functor B : C[W−1] → AlgP and a
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natural isomorphism A ∼= L∗(B). Using that the orthogonality relation ⊥C[W−1]
is generated by L( f1) ⊥C[W−1] L( f2), for all f1 ⊥C f2, one easily checks that

B ∈ FT
(
C[W−1],P(r1,r2)

)
. ��

Example 4.10 Recall the orthogonal category Loc of globally hyperbolic spacetimes
from Example 3.2 and consider the subset W ⊆ MorLoc of all Cauchy morphisms,
i.e. morphisms f : M → M ′ whose image f (M) ⊆ M ′ contains a Cauchy surface
of M ′. In this case, W -constant field theories are precisely field theories that satisfy
the usual time-slice axiom with respect to all Cauchy morphisms. As a consequence
of Proposition 4.9, such field theories can be described equivalently as field theories
on the orthogonal localization Loc[W−1] of Loc at all Cauchy morphisms W . This
alternative point of view comes together with an adjunction

L ! : FT
(
Loc,P(r1,r2)

)
FT

(
Loc[W−1],P(r1,r2)

) : L∗ , (4.9)

which allows us to detect W -constancy of a field theory A ∈ FT
(
Loc,P(r1,r2)

)
by

testing whether the unit ηA : A → L∗ L !(A) is an isomorphism.
The right adjoint L∗ of the adjunction (4.9) can be interpreted as the functor that

forgets that a field theoryB ∈ FT
(
Loc[W−1],P(r1,r2)

)
satisfies the time-slice axiom.

More interestingly, the left adjoint L ! assigns to a field theory A ∈ FT
(
Loc,P(r1,r2)

)

that does not necessarily satisfy the time-slice axiom a theory that does. Hence, one
may call the left adjoint functor L ! a ‘time-slicification’ functor. Notice that the
result in Proposition 4.7 that L∗ exhibits FT

(
Loc[W−1],P(r1,r2)

)
as a full reflec-

tive subcategory of FT
(
Loc,P(r1,r2)

)
has a concrete meaning. The isomorphisms

εB : L ! L∗(B) → B given by the counit say that time-slicification does not alter
those field theories that already do satisfy the time-slice axiom, which is of course a
very reasonable property.

To conclude we consider the following example in order to show that our ‘time-
slicification’ functor does not generically produce trivial field theories. Let B =
A/I ∈ FT

(
Loc[W−1],P(r1,r2)

)
be a field theory satisfying the time-slice axiom that

is obtained by quotienting out an equation of motion ideal I of an ‘off-shell’ field
theory A. More formally, this means that L∗(B) ∈ FT

(
Loc,P(r1,r2)

)
is given by a

coequalizer

F(I) A L∗(B) (4.10)

in the category FT
(
Loc,P(r1,r2)

)
, where F(I) is the freely-generated field theory of

the equation of motion ideal I and the two maps are given extending via the free-
forget adjunction F � U the inclusion I ↪→ U (A) and the zero map 0 : I → U (A) to
F(I). The ‘off-shell’ field theory A ∈ FT

(
Loc,P(r1,r2)

)
is of course not assumed to

satisfy the time-slice axiom. Because the ‘time-slicification’ functor L ! is left adjoint
it preserves colimits and hence
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L !F(I) L !(A) L !L∗(B)
εB

∼= B (4.11)

is a coequalizer in FT
(
Loc[W−1],P(r1,r2)

)
, where we used Proposition 4.7 for the

last arrow. We see that our field theory B = A/I may be equivalently presented as
a quotient of the ‘time-slicification’ L !(A) of the ‘off-shell’ field theory A. In other
words, every ‘on-shell’ quotient of A can be presented as a quotient of L !(A), hence
L !(A) must be non-trivial provided that A admits non-trivial ‘on-shell’ quotients.

4.3 Change of bipointed single-colored operad

Our third class of examples are adjunctions that correspond to morphisms φ :
P(r1,r2) → Q(s1,s2) of bipointed single-colored operads, i.e.

(φ∗)! : FT
(
C,P(r1,r2)

)
FT

(
C,Q(s1,s2)

) : (φ∗)∗ . (4.12)

Let us stress that these adjunctions are conceptually very different to the ones we
studied in the previous two subsections because they change the type of field theories
and not the orthogonal category on which field theories are defined. In particular,
such adjunctions can not be formulated within the original operadic framework for
algebraic quantum field theory developed in [8] as they crucially rely on the more
flexible definition 3.11 of field theory operads. In Sect. 5, we study an interesting
example given by an adjunction that describes the quantization of linear field theories.

We observe the following preservation results for j-local field theories (see Defini-
tion 4.4) and for W -constant field theories (see Definition 4.8) under the adjunctions
(4.12).

Proposition 4.11 Let φ : P(r1,r2) → Q(s1,s2) be an Op2pt{∗}(M)-morphism, j : C → D
a full orthogonal subcategory and W ⊆ MorC a subset.

(a) The left adjoint functor (φ∗)! : FT
(
D,P(r1,r2)

) → FT
(
D,Q(s1,s2)

)
preserves

j-local field theories.
(b) The right adjoint functor (φ∗)∗ : FT(C,Q(s1,s2)

) → FT
(
C,P(r1,r2)

)
preserves

W-constant field theories.

Proof Item (a): LetA ∈ FT
(
D,P(r1,r2)

) j-loc be any j-local field theory of typeP(r1,r2),
i.e. εA : j! j∗(A) → A is an isomorphism. The claim is that the field theory (φ∗)!(A) ∈
FT

(
D,Q(s1,s2)

)
of type Q(s1,s2) is j-local as well, i.e. ε

(φ∗)!(A)
: j! j∗(φ∗)!(A) →

(φ∗)!(A) is an isomorphism. This follows from the commutative diagram

123



2556 S. Bruinsma, A. Schenkel

j! j∗ (φ∗)!(A)
ε
(φ∗)!(A)

(φ∗)!(A)

j! j∗ (φ∗)! j! j∗(A)

∼=j! j∗ (φ∗)!εA
ε
(φ∗)! j! j∗(A)

(φ∗)! j! j∗(A)

∼= (φ∗)!εA

j! j∗ j! (φ∗)! j∗(A)

∼=
ε
j! (φ∗)! j∗(A)

j! (φ∗)! j∗(A)

∼=

j! (φ∗)! j∗(A)

∼=j!η(φ∗)! j∗(A)

(4.13)

where isomorphisms are indicated by ∼=. In more detail, the top square commutes by
naturality of the counit and the vertical arrows are isomorphisms becauseA is j-local.
The middle square commutes because of (4.3). The bottom triangle is the triangle
identity for the adjunction and the unit (vertical arrow) is an isomorphism because
of Proposition 4.1. Item (b): This is immediate because (φ∗)∗ = φ∗ ◦ (−) is given
by restricting the pushforward functor for functor categories and every functor φ∗
preserves isomorphisms. ��

Let us emphasize that the result in Proposition 4.11 is asymmetric in the sense
that j-local field theories are preserved by the left adjoints (φ∗)! andW -constant field
theories are preserved by the right adjoints (φ∗)∗. The opposite preservation properties
do not hold true in general; however, we would like to note the following special case
in which there exists a further preservation result. This will become relevant in Sect. 5
below.

Proposition 4.12 Let φ : P(r1,r2) → Q(s1,s2) be an Op2pt{∗}(M)-morphism and W ⊆
MorC a subset. Suppose that the left adjoint functor (φ∗)! : FT(C,P(r1,r2)) →
FT(C,Q(s1,s2)) is (naturally isomorphic to) the restriction to the categories of field
theories of the pushforward functor for functor categories

(φ!)∗ := φ! ◦ (−) : AlgPC −→ AlgQC, (4.14)

where the adjunction φ! : AlgP � AlgQ : φ∗ corresponds to the single-colored
operad morphism φ : P → Q. Then the left adjoint functor (φ∗)! : FT(C,P(r1,r2)) →
FT(C,Q(s1,s2)) preserves W-constant field theories.

Proof This is immediate because by hypothesis there is a natural isomorphism (φ∗)! ∼=
φ! ◦ (−) and every functor φ! preserves isomorphisms. ��

We conclude this section with a technical lemma that provides a criterion to detect
whether the hypotheses of Proposition 4.12 are fulfilled. Recall from Definition 3.11
that there exists a natural projection OpC0

(M)-morphism π : PC → P(r1,r2)
C

from

our auxiliary operads to the field theory operads. Given any Op2pt{∗}(M)-morphism

φ : P(r1,r2) → Q(s1,s2), this yields the square of adjunctions
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FT
(
C,P(r1,r2)

)

π∗

(φ∗)!
FT

(
C,Q(s1,s2)

)
(φ∗)∗

π∗

AlgPC

π!
(φ!)∗

AlgQC

(φ∗)∗

π!

(4.15)

in which the square formed by the right adjoints commutes, i.e. (φ∗)∗ π∗ = π∗ (φ∗)∗,
and hence the square formed by the left adjoints commutes (up to a unique natural
isomorphism), i.e. (φ∗)! π! ∼= π! (φ!)∗. Notice that the vertical adjunctions exhibit
the field theory categories as full reflective subcategories of the functor categories. An
immediate consequence is the following

Lemma 4.13 If the functor (φ!)∗ π∗ : FT(C,P(r1,r2)
) → AlgQC factors through the

full reflective subcategory FT
(
C,Q(s1,s2)

) ⊆ AlgQC, then the left adjoint (φ∗)! :
FT

(
C,P(r1,r2)

) → FT
(
C,Q(s1,s2)

)
is (naturally isomorphic to) the restriction to the

categories of field theories of the pushforward functor (φ!)∗ : AlgPC → AlgQC.

5 Linear quantization adjunction

Throughout this section we assume that the underlying bicomplete closed symmetric
monoidal category M is additive. Recalling Example 3.5 and also Remark 3.6, we
define the category of quantum field theories on an orthogonal category C by

QFT(C) := FT
(
C,As([·,·],0)

)
. (5.1)

Recalling further Example 3.8, we define the category of linear field theories on C by

LFT(C) := FT
(
C, uLie([·,·],0)). (5.2)

We define an Op{∗}(M)-morphism

φ : uLie −→ As ,

{
η �−→ η,

[·, ·] �−→ μ − μop,
(5.3)

which one can confirm is well-defined by using the relations of the associative operad
(see Example 2.6) and the ones of the unital Lie operad (see Example 2.9). It is
evident that φ : uLie([·,·],0) → As([·,·],0) defines an Op2pt{∗}(M)-morphism in the sense
of Definition 3.14. By (4.12) this induces an adjunction between the category of linear
field theories and the category of quantum field theories, which we shall denote by

(φ∗)! = Qlin : LFT(C) QFT(C) : Ulin = (φ∗)∗ . (5.4)
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The aim of this section is to study this adjunction in detail and in particular to show
that the left adjoint Qlin admits an interpretation as a linear quantization functor.

Let us first provide an explicit description of the right adjoint functor Ulin = (φ∗)∗.
Note that the functor φ∗ : AlgAs → AlguLie from associative and unital algebras to
unital Lie algebras is very explicit. It assigns to any (A, μA, ηA) ∈ AlgAs the unital
Lie algebra φ∗(A, μA, ηA) = (A, μA − μ

op
A , ηA) ∈ AlguLie, where the Lie bracket

is given by the commutator. The corresponding pushforward functor Ulin = (φ∗)∗ :
QFT(C) → LFT(C) carries out this construction object-wise on C. Concretely, for(
A : C → AlgAs

) ∈ QFT(C), the functor underlying Ulin(A) ∈ LFT(C) is given by
Ulin(A)(c) = φ∗(A(c)

) ∈ AlguLie, for all c ∈ C.
We now provide an explicit description of the left adjoint functor Qlin in (5.4).

Our strategy is to analyze the pushforward functor (φ!)∗ : AlguLieC → AlgAs
C for

the functor categories and to prove that it satisfies the criterion of Lemma 4.13. As
a consequence of this lemma, the restriction to the categories of field theories of the
pushforward functor (φ!)∗ defines a model for the left adjoint functor Qlin.

Let us describe first the left adjoint functor of the adjunction φ! : AlguLie � AlgAs :
φ∗ between algebras over single-colored operads. The following construction, which
we will call the unital universal enveloping algebra construction, defines a model
for the left adjoint φ!. Let V ∈ AlguLie be any unital Lie algebra, with Lie bracket
[·, ·] : V ⊗ V → V and unit η : I → V . As the first step, we form the usual tensor
algebra T⊗V := ⊕∞

n=0 V
⊗n ∈ AlgAs, i.e. the free As-algebra of the underlying object

V ∈ M, with multiplication μ⊗ : T⊗V ⊗ T⊗V → T⊗V and unit η⊗ : I → T⊗V .
We then consider the two parallel M-morphisms

V ⊗ V
q1 := (μ⊗−μ

op
⊗ ) (ι1⊗ι1)

q2 := ι1 [·,·]
T⊗V , (5.5a)

where ι1 : V → T⊗V is the inclusion into the coproduct, which compare the com-
mutator of T⊗V with the Lie bracket of V . We form the corresponding coequalizer

T⊗(V ⊗ V )
q1

q2
T⊗V π

U⊗V (5.5b)

in AlgAs and notice that U⊗V is the universal enveloping algebra of the underlying
Lie algebra (V , [·, ·]) ∈ AlgLie. As the final step, we consider the two parallel M-
morphisms

I
s1 := π ι1 η

s2 := π η⊗
U⊗V , (5.6a)

which compare the unit of V with the unit of T⊗V , and form the corresponding
coequalizer
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T⊗(I )
s1

s2
U⊗V π ′

φ!(V ) (5.6b)

in AlgAs. All of these constructions are clearly functorial.

Lemma 5.1 The functor φ! : AlguLie → AlgAs described above is left adjoint to the
functor φ∗ : AlgAs → AlguLie.

Proof It is easy to construct a natural bijection HomAlgAs(φ!(V ), A) ∼= HomAlguLie
(V , φ∗(A)), for all V ∈ AlguLie and A ∈ AlgAs. Concretely, given κ : φ!(V ) → A in
AlgAs, then κ π ′ π ι1 : V → φ∗(A) defines an AlguLie-morphism. On the other hand,
given ρ : V → φ∗(A) in AlguLie, then the canonical extension to an AlgAs-morphism
ρ : T⊗V → A on the tensor algebra descends to the quotients in (5.5) and (5.6). ��
Proposition 5.2 For every linear field theory (B : C → AlguLie) ∈ LFT(C), the func-
tor (φ!)∗(B) : C → AlgAs defines a quantum field theory, i.e. (φ!)∗(B) ∈ QFT(C).

Proof By hypothesis, given any orthogonal pair ( f1 : c1 → c) ⊥ ( f2 : c2 → c) in C,
the induced Lie bracket [B( f1)(−),B( f2)(−)]c : B(c1)⊗B(c2) → B(c) is the zero
map. We have to prove that the induced commutator [φ! B( f1)(−), φ! B( f2)(−)]c :
φ! B(c1) ⊗ φ! B(c2) → φ! B(c) associated to the functor (φ!)∗(B) = φ! B : C →
AlgAs is the zero map too. This is an immediate consequence of our definition of
the unital universal enveloping algebra [see (5.5) and (5.6)] and the fact that the
commutator bracket satisfies the Leibniz rule in both entries. The latter property is
used to expand the commutator of polynomials to a sum of terms containing as a factor
the commutator of generators, which is identified via (5.5) with the Lie bracket. ��

As a consequence of Lemma 4.13, we obtain

Corollary 5.3 The restriction to the categories of field theories of (φ!)∗ : AlguLieC →
AlgAs

C is a model for the left adjoint functor Qlin : LFT(C) → QFT(C) in (5.4).

Remark 5.4 Let us explain whyQlin : LFT(C) → QFT(C) deserves the name quan-
tization functor. Suppose that B = H L ∈ LFT(C) is the composition of a functor
L : C → PSymp to the category of presymplectic vector spaces with the Heisenberg
Lie algebra functor H : PSymp → AlguLie as described in Example 3.8. It is easy to
check that the composition φ! H : PSymp → AlgAs of the Heisenberg Lie algebra
functor and the unital universal enveloping algebra functor is naturally isomorphic to
the usual (polynomial) CCR-algebra functor CCR : PSymp → AlgAs that is used
in the quantization of linear field theories, see e.g. [1–3]. In particular, we obtain a
natural isomorphismQlin

(
H L

) ∼= CCR L : C → AlgAs, which means that our quan-
tization prescription via Qlin is in this case equivalent to the ordinary CCR-algebra
quantization of linear field theories.

We would like to emphasize that our linear quantization functor preserves both
j-locality and W -constancy, i.e. it preserves descent and the time-slice axiom of field
theories.
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Corollary 5.5 (a) Let j : C → D be a full orthogonal subcategory. Then the linear
quantization functorQlin : LFT(D) → QFT(D)maps j-local linear field theories
to j-local quantum field theories, (see Definition 4.4).

(b) Let C be an orthogonal category and W ⊆ MorC a subset. Then the linear
quantization functor Qlin : LFT(C) → QFT(C) maps W-constant linear field
theories to W-constant quantum field theories, (see Definition 4.8).

Proof Item (a) is a consequence of Proposition 4.11 and item (b) is a consequence of
Proposition 4.12 and Corollary 5.3. ��

6 Toward the quantization of linear gauge theories

The techniques we developed in this paper can be refined to the case where M is a
suitable symmetric monoidal model category. Let us recall that a model category is a
category that comes equipped with three distinguished classes of morphisms—called
weak equivalences, fibrations, and cofibrations—that satisfy a list of axioms going
back to Quillen; see, e.g. [17] for a concise introduction. The main role is played by
the weak equivalences, which introduce a consistent concept of “two things being the
same” that is weaker than the usual concept of categorical isomorphism. For example,
the category M = Ch(K) of (possibly unbounded) chain complexes of vector spaces
over a field K may be endowed with a symmetric monoidal model category structure
in which the weak equivalences are quasi-isomorphisms; see e.g. [30].

Model category theory plays an important role in the mathematical formulation of
(quantum) gauge theories. In particular, the ‘spaces’ of fields in a gauge theory are
actually higher spaces called stacks, which may be formalized within model category
theory. We refer to [33] for the general framework and also to [7] for the example
of Yang–Mills theory. Consequently, the observable ‘algebras’ in a quantum gauge
theory are actually higher algebras, e.g. the differential graded algebras arising in the
BRST/BV formalism. We refer to [22,23,29] for concrete constructions within the
BRST/BV formalism in algebraic quantum field theory, to [9] for the relevant model
categorical perspective and to [26] for a related deformation theoretic point of view.

The aim of this last section is to refine our results for the linear quantization adjunc-
tion from Sect. 5 to the framework of model category theory. This will provide a
mathematically solid setup to quantize linear gauge theories to quantumgauge theories
in a way that is consistent with the concept of weak equivalences. As an explicit exam-
ple, we discuss the quantization of linear Chern–Simons theory on oriented surfaces.
In order to simplify our analysis, we restrict ourselves to the case whereM = Ch(K)

is the symmetric monoidal model category of chain complexes of vector spaces over
a field K of characteristic zero, e.g. K = C or K = R. In this section, we shall freely
use terminology and results from general model category theory [17,30] and more
specifically the model structures for colored operads and their algebras [27,28]. We
refer to [6,9] for a more gentle presentation of how these techniques can be applied to
Ch(K)-valued algebraic quantum field theory.
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6.1 Model structures on field theory categories

Our first (immediate) result is that the categories FT(C,P(r1,r2)) of field theories with
values in M = Ch(K) from Definition 3.3 are model categories, i.e. there exists a
consistent concept ofweak equivalences forCh(K)-valuedfield theories. Furthermore,
the adjunctions in (3.25) are compatible with these model category structures in the
sense that they are Quillen adjunctions.

Proposition 6.1 Let C be any orthogonal category and P(r1,r2) ∈ Op2pt{∗}(Ch(K)) any

bipointed single-colored operad. Define a FT(C,P(r1,r2))-morphism ζ : A → B (i.e.
a natural transformation of functors A,B : C → AlgP) to be

(i) a weak equivalence if the underlying Ch(K)-morphism of each component ζc :
A(c) → B(c) is a quasi-isomorphism,

(ii) a fibration if the underlying Ch(K)-morphism of each component ζc : A(c) →
B(c) is degree-wise surjective, and

(iii) a cofibration if it has the left-lifting property with respect to all acyclic fibrations.

These choices define a model structure on FT(C,P(r1,r2)).

Proof This is a consequence of Theorem 3.12 and Hinich’s results [27,28], which
show that all colored operads in Ch(K) are admissible for K a field of characteristic
zero. ��
Proposition 6.2 Let F : C → D be any orthogonal functor andφ : P(r1,r2) → Q(s1,s2)

any Op2pt{∗}(Ch(K))-morphism. Then the adjunction in (3.25) is a Quillen adjunction
with respect to the model structures from Proposition6.1.

Proof This follows immediately from [27,28]. ��
As a specific instance of the general result of Proposition 6.1, we obtain that both the

category of Ch(K)-valued linear field theories LFT(C) and the category of Ch(K)-
valued quantum field theories QFT(C) carry a canonical model structure. In order to
develop a better intuition for Ch(K)-valued field theories and their relation to gauge
theories, let us introduce a simple example of a Ch(K)-valued linear field theory.

Example 6.3 (Linear Chern–Simons theory on oriented surfaces) Let us denote by
Man2 the category of oriented 2-manifolds and orientation preserving open embed-
dings. We endowMan2 with an orthogonality relation⊥ by declaring two morphisms
f1 : M1 → M and f2 : M2 → M to be orthogonal, f1 ⊥ f2, if and only if
their images are disjoint, i.e. f1(M1) ∩ f2(M2) = ∅. The field configurations on
M ∈ Man2 of Chern–Simons theory with structure group R are given by flat R-
connections A ∈ �1(M) modulo gauge transformations. In the context of linear
derived geometry, see, e.g. [6,15] for more details, the flatness condition dA = 0
and the quotient by gauge transformations A → A + dε are both refined to higher
categorical concepts called homotopy kernels and stacky quotients. This results in a
chain complex of field configurations, that is given in our example by the shifted de
Rham complex
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F(M) :=
( (−1)

�2(M)
(0)

�1(M)
d

(1)

�0(M)
d

)
, (6.1)

where the round brackets indicate homological degrees. Note that the zeroth homology
of F(M) is the usual vector space of gauge equivalence classes of flat R-connections
on M .

We describe linear observables on M by the smooth dual of F(M), which explicitly
reads as

L(M) :=
( (−1)

�2
c(M)

(0)

�1
c(M)

−d
(1)

�0
c(M)

−d
)
, (6.2)

where the subscript c denotes forms with compact support. The evaluation of observ-
ables on field configurations is given by the integrationmap

∫
M : L(M)⊗F(M) → K.

Note that the minus signs in (6.2) are necessary for
∫
M to be a chain map. To define a

presymplectic structure on L(M), observe that there exists a chain map

L(M)

�

F(M)

:=

⎛

⎜⎜⎜⎜⎝

�2
c(M)

−ι

�1
c(M)

ι

−d
�0

c(M)

−ι

−d

�2(M) �1(M)
d

�0(M)
d

⎞

⎟⎟⎟⎟⎠
, (6.3)

where ι : �
p
c (M) → �p(M) denotes the inclusion of compactly supported p-forms

into all p-forms. We define the chain map

ω : L(M) ⊗ L(M)
id⊗�

L(M) ⊗ F(M)

∫
M

K (6.4)

and note that ω is a presymplectic structure, i.e. it is graded antisymmetric.
Precisely as in Example 3.8, we can assign to the presymplectic chain com-

plex (L(M), ω) its Heisenberg Lie algebra, which we shall denote by BCS(M) :=
L(M) ⊕ K ∈ AlguLie. Using pushforwards of compactly supported forms along
Man2-morphisms f : M → N and observing that (6.4) are the components of a
natural transformation, we can promote the assignment M �→ BCS(M) to a func-
tor BCS : Man2 → AlguLie. Because the integration of any product of forms with
disjoint support yields zero, this functor defines a Ch(K)-valued linear field theory
BCS ∈ LFT(Man2) on the orthogonal category Man2. By construction, this linear
field theory describes linear Chern–Simons theory on oriented surfaces.

6.2 Homotopical properties of linear quantization

As a specific instance of the general result of Proposition 6.2, we obtain that the linear
quantization adjunction (5.4) is a Quillen adjunction between the model categories
LFT(C) andQFT(C). Using the general method of derived functors (see e.g. [17,30]),
there exists a left derived linear quantization functor LQlin and a right derivation
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of its right adjoint RUlin. These two derived functors preserve weak equivalences
and hence they are homotopically meaningful. The standard procedure to construct
derived functors is to choose fibrant and cofibrant replacement functors, denoted by
R : QFT(C) → QFT(C) and Q : LFT(C) → LFT(C), and to define the right
derived functor by

RUlin := Ulin R : QFT(C) −→ LFT(C) (6.5)

and the left derived functor by

LQlin := Qlin Q : LFT(C) −→ QFT(C). (6.6)

Note that there is some flexibility in choosing R and Q, but different choices define
naturally weakly equivalent derived functors.

For practical applications, it is crucial to find simple models for derived functors
that can be computed explicitly. The goal of this subsection is to obtain such simple
models for the derived functors of the linear quantization adjunction (5.4). For the
right derived functor RUlin, this problem is easy to solve because every object in the
model categoryQFT(C) is fibrant, hence the identity functor R = id defines a fibrant
replacement functor. This immediately implies

Proposition 6.4 The underived functor Ulin : QFT(C) → LFT(C) is a model for the
right derived functor RUlin in (6.5).

For the left derived functor LQlin, i.e. the derived linear quantization functor, the
situation gets more complicated because not every object in LFT(C) is cofibrant.
However, a more detailed study of Qlin reveals the following pleasing result.

Proposition 6.5 The underived functor Qlin : LFT(C) → QFT(C) preserves weak
equivalences. As a consequence, it is a model for the left derived functor LQlin in
(6.6).

Proof Recall from Corollary 5.3 that Qlin = (φ!)∗ = φ! ◦ (−) is given by post-
composing with the left adjoint functor φ! : AlguLie → AlgAs. It is shown in Lemma
A.1 that φ! preserves weak equivalences, hence Qlin preserves weak equivalences as
these are defined component-wise (see Proposition 6.1).

To prove the second statement, consider the natural transformation

LQlin = Qlin Q
Qlin q

Qlin (6.7)

obtained by whiskering the natural weak equivalence q : Q → id corresponding to
the cofibrant replacement functor Q. This is a natural weak equivalence becauseQlin
preserves weak equivalences, hence Qlin is a model for LQlin. ��
Example 6.6 Let us apply these results to carry out the quantization of linear Chern–
Simons theory from Example 6.3. As shown in Proposition 6.5, the underived
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linear quantization functor Qlin provides a homotopically meaningful quantization
prescription that agrees (up to weak equivalence) with any derived linear quanti-
zation functor LQlin. Applying the functor Qlin to the linear Chern–Simons model
BCS ∈ LFT(Man2) from Example 6.3, we obtain the linear Chern–Simons quan-
tum field theory ACS := Qlin(BCS) ∈ QFT(Man2). Using the concrete description
of Qlin given in Sect. 5, we can compute explicitly the differential graded algebra
ACS(M) ∈ AlgAs that is assigned to an oriented 2-manifold M ∈ Man2. One observes
that this differential graded algebra is presentable by generators and relations. The gen-
erators (6.2) are concentrated in homological degrees −1, 0 and 1. We shall use the
intuitive ‘smeared quantum field’ notation to denote the generators by

Ĉ(χ) ∈ ACS(M)−1, Â(α) ∈ ACS(M)0, B̂(β) ∈ ACS(M)1, (6.8a)

for all χ ∈ �2
c(M), α ∈ �1

c(M) and β ∈ �0
c(M). The differential acts on these

generators as

dB̂(β) = Â(−dβ), d Â(α) = Ĉ(−dα), dĈ(χ) = 0. (6.8b)

The relations are as follows:

• K-linearity: Ĉ(k χ + k′ χ ′) = k Ĉ(χ) + k′ Ĉ(χ ′), for all χ, χ ′ ∈ �2
c(M) and

k, k′ ∈ K, and similarly for Â and B̂;
• Commutation relations: The non-vanishing graded commutators are

[
Â(α), Â(α′)

] = ω(α, α′) =
∫

M
α ∧ α′, (6.9a)

[
Ĉ(χ), B̂(β)

] = ω(χ, β) = −
∫

M
χ ∧ β, (6.9b)

[
B̂(β), Ĉ(χ)

] = ω(β, χ) = −
∫

M
β ∧ χ. (6.9c)

Note that the zeroth homology H0(ACS(M)) is the ordinary algebra of gauge invariant
observables for quantized flat R-connections, see e.g. [16].

6.3 Homotopy j-locality and homotopyW-constancy

We would like to conclude by introducing natural homotopical generalizations of the
j-locality property (see Definition 4.4) and the W -constancy property (see Definition
4.8) in the context of model category theory. It will be shown that these properties are
preserved by linear quantization.
Homotopy j-locality: Let j : C → D be a full orthogonal subcategory and P(r1,r2) a
bipointed single-colored operad. From Proposition6.2, we obtain a Quillen adjunc-
tion j! : FT(C,P(r1,r2)) � FT(D,P(r1,r2)) : j∗. For the right derived functor, we can
choose again the underived functorR j∗ := j∗, because every object inFT(D,P(r1,r2))

is fibrant. However, in contrast to the linear quantization functor from the previous
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subsection, the left adjoint functor j! in general does not preserve weak equivalences
and hence it has to be derived L j! := j! Q. (See [9, Appendix A] for concrete exam-
ples illustrating this fact.) As a consequence, our previous concept of j-locality from
Definition 4.4 has to be derived as well in order to be homotopically meaningful. In
what follows, we denote by q : Q → id the natural weak equivalence corresponding
to our choice of cofibrant replacement functor Q.

Definition 6.7 A field theory A ∈ FT
(
D,P(r1,r2)

)
is called homotopy j-local if the

corresponding component of the derived counit

ε̃A : j! Q j∗(A)
j!q j∗(A)

j! j∗(A)
εA

A (6.10)

is a weak equivalence in FT
(
D,P(r1,r2)

)
.

Proposition 6.8 The linear quantization functor Qlin : LFT(D) → QFT(D) (see
Proposition 6.5) maps homotopy j-local linear field theories to homotopy j-local
quantum field theories.

Proof Let B ∈ LFT(D) be a homotopy j-local linear field theory, i.e. ε̃B :
j! Q j∗(B) → B is a weak equivalence. We have to prove that the derived counit
ε̃Qlin(B)

: j! Q j∗ Qlin(B) → Qlin(B) corresponding to the quantum field theory

Qlin(B) ∈ QFT(D) is a weak equivalence too.
As a preparatory step, let us consider the commutative diagram

j! Q j∗ Qlin(B)

ε̃Qlin(B)

Qlin(B)

j! Q j∗ Qlin j!︸ ︷︷ ︸
∼= j! Qlin

Q j∗(B)

j! Q j∗ Qlin ε̃B ∼
ε̃
Qlin j! Q j∗(B)

Qlin j!︸ ︷︷ ︸
∼= j! Qlin

Q j∗(B)

Qlin ε̃B∼

j! Q j∗ j! QQlin Q j∗(B)

j! Q j∗ j! qQlin Q j∗(B) ∼

ε̃ j! QQlin Q j∗(B)

j! QQlin Q j∗(B)

j! qQlin Q j∗(B)∼

(6.11)

The vertical arrows in the top square are weak equivalences because B is by
hypothesis homotopy j-local. The vertical arrows in the bottom square are weak
equivalences because left Quillen functors preserve cofibrant objects and weak equiv-
alences between cofibrant objects. The natural isomorphism in the underbraces is due
to (4.3). By the 2-of-3 property of weak equivalences, the top horizontal arrow is a
weak equivalence (which is our claim) if and only if the bottom horizontal arrow is a
weak equivalence.

Introducing A := Qlin Q j∗(B), it thus remains to prove that ε̃ j! Q(A) :
j! Q j∗ j! Q(A) → j! Q(A) is a weak equivalence. This follows from the 2-of-3
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property of weak equivalences and the commutative diagram

j! Q j∗ j! Q(A)

ε̃ j! Q(A)

j!q j∗ j!Q(A)

j! j∗ j! Q(A)
ε j!Q(A)

j! Q(A)

j! Q2(A)

j!QηQ(A)
∼=

j!qQ(A)

∼
j! Q(A)

j!ηQ(A)
∼=

(6.12)

where the top triangle is just the definition of the derived counit (6.10). The vertical
arrows are isomorphisms because of Proposition 4.1 and the right triangle is the tri-
angle identity for the (non-derived) unit and counit. The bottom horizontal arrow is a
weak equivalence because left Quillen functors preserve weak equivalences between
cofibrant objects. ��
Example 6.9 Let j : Disk2 → Man2 be the full orthogonal subcategory of all oriented
2-manifolds M that are diffeomorphic to R2. It is an interesting question whether the
linear Chern–Simons quantum field theory ACS ∈ QFT(Man2) from Example 6.6
is homotopy j-local with respect to this j . In particular, homotopy j-locality would
imply that its value ACS(M) on a topologically non-trivial oriented 2-manifold M
such as the torus is already encoded in the restriction j∗(ACS) ∈ QFT(Disk2) of the
quantum field theory to disks. Unfortunately, proving homotopy j-locality of a given
theory is a complicated task and hencewe can not yet provide an answer to the question
whether ACS ∈ QFT(Man2) is homotopy j-local or not. We however would like to
mention that positive results are already available for simple toy-models which do not
involve quantization, see [9] for details. We expect that Proposition 6.8 will be very
useful for investigating homotopy j-locality of ACS = Qlin(BCS) ∈ QFT(Man2)
because it allows us to replace this question by the (slightly) simpler question whether
the linear field theory BCS ∈ LFT(Man2) from Example 6.3 is homotopy j-local.
We hope to come back to this issue in a future work.

Homotopy W-constancy: Let C be an orthogonal category, W ⊆ MorC a subset and
P(r1,r2) a bipointed single-colored operad. Similarly to locally constant factorization
algebras [15], we propose a homotopical generalization of the W -constancy property
from Definition 4.8.

Definition 6.10 A field theory A ∈ FT
(
C,P(r1,r2)

)
is called homotopy W -constant

if the Ch(K)-morphism underlying the AlgP-morphism A( f ) : A(c) → A(c′) is a
quasi-isomorphism for all ( f : c → c′) ∈ W .

Proposition 6.11 The linear quantization functor Qlin : LFT(C) → QFT(C) (see
Proposition 6.5) maps homotopy W-constant linear field theories to homotopy W-
constant quantum field theories.

Proof Recall from Corollary 5.3 that Qlin = (φ!)∗ = φ! ◦ (−) is given by post-
composing with the left adjoint functor φ! : AlguLie → AlgAs. By Lemma A.1, the
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latter preserves weak equivalences and hence it preserves the homotopyW -constancy
property. ��

Example 6.12 It is easy to prove that the linear Chern–Simons model BCS ∈
LFT(Man2) from Example 6.3 is homotopy W -constant for W ⊆ MorMan2 the
subset of all isotopy equivalences f : M → M ′. The chain map underlying
BCS( f ) : BCS(M) → BCS(M

′) is given by

f∗ ⊕ id : L(M) ⊕ K −→ L(M ′) ⊕ K, (6.13)

where L(M) and L(M ′) are (up to a global minus sign) shifted compactly supported
de Rham complexes (see (6.2)) and f∗ is given by degree-wise pushforward of com-
pactly supported forms. For f : M → M ′ an isotopy equivalence, this map is a
quasi-isomorphism because compactly supported de Rham cohomology is invariant
under isotopies. Together with Proposition 6.11, this implies that the linear Chern–
Simons quantum field theory ACS = Qlin(BCS) ∈ QFT(Man2) from Example 6.6 is
homotopy W -constant too.
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A Technical details for Sect. 6.2

In this appendix we let M = Ch(K) be the symmetric monoidal model category of
chain complexes of vector spaces over a field K of characteristic zero. Recall the
unital universal enveloping algebra functor φ! : AlguLie → AlgAs from Lemma 5.1.
With Proposition 6.1 we see that the categories AlguLie and AlgAs carry a canonical
model structure in which a morphism is a weak equivalence if the underlying Ch(K)-
morphism is a quasi-isomorphism.

Lemma A.1 The functor φ! : AlguLie → AlgAs preserves weak equivalences.

Proof As a preparation for the proof, we have to revisit the unital universal enveloping
algebra construction from (5.5) and (5.6) for the category Ch(K) of chain complexes.
By definition, the unital universal enveloping algebra φ!(V ) ∈ AlgAs of a unital Lie
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algebra (V , [·, ·], η) ∈ AlguLie is the differential graded algebra presented by

φ!(V ) = T⊗V
/I, (A.1)

where I ⊆ T⊗V is the differential graded ideal generated by the relations

v1 ⊗ v2 − (−1)|v1| |v2| v2 ⊗ v1 = [v1, v2], 1⊗ = 1, (A.2)

for all homogeneous elements v1, v2 ∈ V . Here 1⊗ = η⊗(1) denotes the unit element
of the tensor algebra T⊗V = ⊕∞

m=0 V
⊗m and 1 = η(1) is the unit element of V .

Using the canonical filtration T≤nV := ⊕n
m=0 V

⊗m of the tensor algebra, we define

φ!(V )n := T≤nV
/(

T≤nV ∩ I), (A.3a)

for all n ≥ 0. This defines a sequential diagram

φ!(V )0 φ!(V )1 φ!(V )2 · · · (A.3b)

in the category Ch(K), whose colimit

φ!(V ) = colimn≥0
(
φ!(V )n

)
(A.3c)

is the chain complex underlying φ!(V ). Using the explicit form of the relations (A.2),
we observe that the quotient

φ!(V )n+1/φ!(V )n ∼= Ṽ⊗n+1/�n+1 (A.4)

is given by the coinvariants of the canonical permutation group action on the n+1-fold
tensor product of quotient chain complex Ṽ := V /K1. In other words, there is a short
exact sequence

0 φ!(V )n φ!(V )n+1 Ṽ⊗n+1
/
�n+1 0 (A.5)

of chain complexes, for all n ≥ 0.
Let now ρ : V → V ′ be a weak equivalence in AlguLie. Our goal is to prove that

φ!(ρ) : φ!(V ) → φ!(V ′) is a weak equivalence in AlgAs, i.e. that the induced map
H•(φ!(ρ)) : H•(φ!(V )) → H•(φ!(V ′)) in homology is an isomorphism. Because
filtered colimits commute with forming homologies, it is by (A.3) sufficient to prove
that

H•(φ!(ρ)n) : H•(φ!(V )n) −→ H•(φ!(V ′)n) (A.6)

is an isomorphism, for all n ≥ 0. For n = 0 this is clearly the case, and for n = 1 it
follows from the observation that the induced map ρ : Ṽ = V /K1 → Ṽ ′ = V ′/K1′
is a quasi-isomorphism.
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The case n > 1 is proven by induction. Assume that (A.6) is an isomorphism for
some n ≥ 0. The short exact sequence (A.5) of chain complexes induces a long exact
sequence in homology and ρ : V → V ′ induces a map of long exact sequences

Hm+1(
Ṽ⊗n+1

�n+1
) Hm(φ!(V )n)

∼=

Hm(φ!(V )n+1) Hm( Ṽ
⊗n+1

�n+1
) Hm−1(φ!(V )n)

∼=

Hm+1(
Ṽ ′⊗n+1

�n+1
) Hm(φ!(V ′)n) Hm(φ!(V ′)n+1) Hm( Ṽ

′⊗n+1

�n+1
) Hm−1(φ!(V ′)n)

(A.7)
where byour induction hypothesis the second andfifth verticalmaps are isomorphisms.
The induction step consists of proving that the middle vertical map is an isomorphism.
By the five lemma, this follows if the first and fourth vertical maps are isomorphisms.
BecauseK is a field of characteristic zero, the chain complex Ṽ⊗n+1/�n+1 of coinvari-
ants of the permutation group action is isomorphic to the chain complex (Ṽ⊗n+1)�n+1

of invariants of the permutation group action. For charK = 0, taking invariants of
finite group actions preserves quasi-isomorphisms, so the Künneth theorem and the
fact that ρ : Ṽ → Ṽ ′ is a quasi-isomorphism imply that the first and fourth vertical
maps in (A.7) are isomorphisms. This completes the proof. ��
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