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Abstract
Automorphisms of the infinite-dimensional Onsager algebra are introduced. Certain
quotients of the Onsager algebra are formulated using a polynomial in these automor-
phisms. In the simplest case, the quotient coincides with the classical analog of the
Askey–Wilson algebra. In the general case, generalizations of the classical Askey–
Wilson algebra are obtained. The corresponding class of solutions of the non-standard
classical Yang–Baxter algebra is constructed, fromwhich a generating function of ele-
ments in the commutative subalgebra is derived. We provide also another presentation
of the Onsager algebra and of the classical Askey–Wilson algebras.

Keywords Onsager algebra · Non-standard Yang–Baxter algebra · Askey–Wilson
algebras · Integrable systems

Mathematics Subject Classification 81R50 · 81R10 · 81U15

1 Introduction

The Onsager algebra is an infinite-dimensional Lie algebra with three known presen-
tations. Introduced by Onsager [22] in the investigation of the exact solution of the
two-dimensional Ising model, the original presentation is given in terms of genera-
tors {An, Gm |n, m ∈ Z} and relations (see Definition 2.1). The second presentation
is given in terms of two generators {A0, A1} satisfying the so-called Dolan–Grady
relations (2.4) [8,9]. Recently [3], a third presentation has been identified. It is given
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2188 P. Baseilhac, N. Crampé

in terms of elements of the non-standard classical Yang–Baxter algebra (2.7) with
r-matrix (2.5).

The Askey–Wilson algebra has been introduced in [36], providing an algebraic
scheme for the Askey–Wilson polynomials. This algebra is connected with the double
affine Hecke algebra of type (C∨

1 , C1) [17–20,33], the theory of Leonard pairs [21,28,
29] andUq(sl2) [15,16,35]. A well-known presentation of the Askey–Wilson algebra1

is given in terms of three generators satisfying the relations displayed in Definition
3.1. Generalizations of the Askey–Wilson algebra are an active field of investigation.
Various examples of generalizations have been considered in the literature, see, for
instance, [11,14,23,24].

In this note, it is shown that the class of quotients of the Onsager algebra consid-
ered by Davies in [8,9] generates a classical analog (q = 1) of the Askey–Wilson
algebra and generalizations of this algebra. For each quotient, classical analogs of
the automorphisms recently introduced in [6] are used to derive explicit polynomial
expressions for the generators. Based on the results of [3] extended to these quotients,
for the classical Askey–Wilson algebra and each of its generalization, a presentation
à la Faddeev–Reshetikhin–Takhtajan is given. Using this presentation, for each quo-
tient a commutative subalgebra is identified. To complete the analysis, we also give
a new presentation of the Onsager algebra that can be understood as the specializa-
tion q = 1 of the infinite-dimensional quantum algebra Aq introduced in [4,5]. In
this alternative presentation, the quotients of the Onsager algebra corresponding to
Davies’ prescription are determined.

2 The Onsager algebra, quotients and FRT presentation

In this section, three different presentations of theOnsager algebraO are first reviewed,
and three different automorphisms �, τ0, τ1 of the Onsager algebra are introduced.
Using these, the elements in O are written as simple polynomial expressions of the
fundamental generators A0, A1. Then, we consider certain quotients of the Onsager
algebra introduced by Davies [8,9]. Each quotient is formulated using an operator
written as a polynomial in the automorphisms. Given a quotient, the FRT presentation
is constructed from which a generating function for mutually commuting quantities is
obtained.

2.1 The Onsager algebra

The Onsager algebra has been introduced in the context of mathematical physics [22].
The first presentation of this algebra which originates in Onsager’s work [22] is now
recalled.

Definition 2.1 The Onsager algebra O is generated by {An, Gm |n, m ∈ Z} subject to
the following relations:

[An, Am] = 4 Gn−m, (2.1)

1 For the universal Askey–Wilson algebra introduced in [32], a second presentation is known.
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FRT presentation of classical Askey–Wilson algebras 2189

[Gn, Am] = 2An+m − 2Am−n, (2.2)

[Gn, Gm] = 0. (2.3)

Remark 1 {An, Gm} for n ∈ Z and m ∈ Z+ form a basis ofO . Note that G−n = −Gn

and G0 = 0.

Note that a second presentation is given in terms of two generators A0, A1 subject to
a pair of relations, the so-called Dolan–Grady relations [10]. They read:

[A0, [A0, [A0, A1]]] = 16[A0, A1], [A1, [A1, [A1, A0]]] = 16[A1, A0]. (2.4)

These two presentations define isomorphic Lie algebras, see [8,9,25].
In a recent paper [3], a third presentation of the Onsager algebra was proposed

using the framework of the non-standard classical Yang–Baxter algebra. It is called
a FRT presentation in honor of the authors Faddeev–Reshetikhin–Takhtajan [12,13].
Let us introduce the r-matrix (u, v are formal variables, sometimes called “spectral
parameters” in the literature on integrable systems)

r12(u, v) = 1

(u − v)(uv − 1)⎛
⎜⎜⎝

u(1 − v2) 0 0 −2(u − v)

0 −u(1 − v2) −2v(uv − 1) 0
0 −2u(uv − 1) −u(1 − v2) 0

−2uv(u − v) 0 0 u(1 − v2)

⎞
⎟⎟⎠ (2.5)

solution of the non-standard classical Yang–Baxter equation

[ r13(u1, u3), r23(u2, u3) ] = [ r21(u2, u1), r13(u1, u3) ]
+[ r23(u2, u3), r12(u1, u2) ], (2.6)

where we denote r12(u) = r(u) ⊗ II , r23(u) = II ⊗ r(u) and so on.

Theorem 1 [3] The non-standard classical Yang–Baxter algebra

[ B1(u), B2(v) ] = [ r21(v, u), B1(u) ] + [ B2(v), r12(u, v) ] (2.7)

for the r-matrix (2.5) and

B(u) =
( G(u) A−(u)

A+(u) −G(u)

)
(2.8)

with

G(u) =
∑
n≥1

unGn, A−(u) =
∑
n≥0

un A−n, A+(u) =
∑
n≥1

un An , (2.9)

provides an FRT presentation of the Onsager algebra.

This type of “twisted” classical r-matrix has been studied in [26] and their associated
algebras in [27].
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2190 P. Baseilhac, N. Crampé

2.2 Automorphisms of the Onsager algebra

We are interested in three algebra automorphisms of O . Let � : O → O denote
the algebra automorphism defined by �(A0) = A1 and �(A1) = A0. Observe that
�2 = id. We now introduce two other automorphisms of O .

Proposition 2.1 There exist two involutive algebra automorphisms τ0, τ1 : O → O
such that

τ0(A0) = A0, (2.10)

τ0(A1) = −1

8

(
A1A2

0 − 2A0A1A0 + A2
0A1

)

+A1 = −1

8
[A0, [A0, A1]] + A1, (2.11)

τ1(A1) = A1, (2.12)

τ1(A0) = −1

8

(
A0A2

1 − 2A1A0A1 + A2
1A0

)
+ A0

= −1

8
[A1, [A1, A0]] + A0. (2.13)

Proof Firstly, we show that τ0 leaves invariant the first relation in (2.4). This follows
immediately from the fact that

[A0, τ0(A1)] = [A1, A0]. (2.14)

Secondly, we show that τ0 leaves invariant the second relation in (2.4). Observe that:

[τ0(A1), [τ0(A1), A0]] = −8τ0τ1(A0) + 8A0. (2.15)

It follows:

[τ0(A1), [τ0(A1), [τ0(A1), A0]]] = 8 [τ0τ1(A0), τ0(A1)]︸ ︷︷ ︸
=τ0([τ1(A0),A1])

+8 [τ0(A1), A0]︸ ︷︷ ︸
=[A0,A1]

= 16[A0, A1].

So, we conclude that τ0 leaves invariant both relations in (2.4).

τ0(τ0(A0)) = A0, (2.16)

τ0(τ0(A1)) = −1

8
[A0, [A0, τ0(A1)]] + τ0(A1) = A1 . (2.17)

This proves that τ0 is involutive and by consequence is a bijection.
The same holds for τ1, using τ1 = � ◦ τ0 ◦ �. �	

Remark 2 (τ0�)(τ1�) = (τ1�)(τ0�) = id.
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FRT presentation of classical Askey–Wilson algebras 2191

Let us mention that the automorphisms �, τ0, τ1 can be viewed as the classical
analogs q = 1 of the automorphisms considered in [6] (see also [34]). Using τ0, τ1
and �, the elements of the Onsager algebra admit simple expressions as polynomials
of the two fundamental generators A0, A1.

Proposition 2.2 In the Onsager algebra O , one has:

Am = (τ1�)m(A0) and Gn = 1

4
[(τ1�)n(A0), A0]. (2.18)

Proof By definition (2.1), one has G1 = [A1, A0]/4. By Remark 2, one has (τ0�) =
(τ1�)−1. According to (2.10)–(2.13), it follows:

[G1, A0] = 2(A1 − τ0(A1)), [G1, A1] = 2(τ1(A0) − A0) . (2.19)

Comparing (2.19) with (2.2), we see that the identification (2.18) holds form = −1, 2.
Then, we note that τ1(G1) = −G1 by (2.4). Acting with (τ1�)k on (2.19), one derives
(2.2) for n = 1. The second relation in (2.18) follows from (2.1). �	
Remark 3 �(A−n) = An+1 and �(Gn) = −Gn .

In the FRT presentation displayed in Theorem 1, the action of the automorphisms
is easily identified. The action of τ0, τ1 on the currents is such that:

(τ0�)(A−(u)) = u−1(A−(u) − A0), (τ0�)(A+(u)) = u(A+(u) + A0),

(τ1�)(A−(u)) = u(A−(u) + A1), (τ1�)(A+(u)) = u−1(A+(u) − A1),

(τ0�)(G(u)) = (τ1�)(G(u)) = G(u). (2.20)

2.3 Quotients of the Onsager algebra

In Davies’ paper on the Onsager algebra and superintegrability [8,9], Davies considers
certain quotients of the Onsager algebra. Below, we characterize the relations consid-
ered by Davies in terms of an operator which is a polynomial in two automorphisms
τ 0, τ 1. As will be shown later, these quotients can be viewed as generalizations of the
classical (q = 1) Askey–Wilson algebra.

Definition 2.2 Let {αn|n = 0, . . . , N } be nonzero scalars with N any nonzero positive
integer. The algebra ON is defined as the quotient of the Onsager algebra O by the
relations

N∑
n=−N

αn A−n = 0 and
N∑

n=−N

αn An+1 = 0 with α−n = αn . (2.21)

There exists an algebra homomorphism ϕN : O → ON that sends A0 
→ A0,
A1 
→ A1. We now introduce three automorphisms τ 0, τ 1 and � of ON such that
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2192 P. Baseilhac, N. Crampé

τ 0ϕN = ϕN τ0, τ 1ϕN = ϕN τ1 and �(A0) = A1. According to Proposition 2.2,
introduce the operator:

SN =
N∑

n=−N

αn(τ 1�)n . (2.22)

The relations in (2.21) simply read SN (A0) = 0 and SN (A1) = 0, respectively. These
results allow us to give an alternative presentation of the quotients ON :

Proposition 2.3 The quotient ON is generated by A0 and A1 subject to the Dolan
Grady relations

[A0, [A0, [A0, A1]]] = 16[A0, A1] and

[A1, [A1, [A1, A0]]] = 16[A1, A0], (2.23)

and to the relations

SN (A0) = 0 and SN (A1) = 0, (2.24)

where SN is defined by (2.22).

Furthermore, one has [(τ 1�)p, SN ] = 0 for any p ∈ Z. Together with the second
relation in (2.18), it follows:

Remark 4 The relations (2.21) imply:

N∑
n=−N

αn An+p = 0,
N∑

n=−N

αnGn+p = 0 for any p ∈ Z. (2.25)

It follows that the algebraON has only 3N linearly independent elements. We choose
the set {An, Gm |n = −N + 1, . . . , N ; m = 1, . . . , N }.

Note that above relations can be derived using the commutation relations (2.1)–(2.3)
[8,9].

Remark 5 It is possible to introduce a slightly more general quotient ON (c1, c2). The
algebraON (c1, c2) is defined as the quotient of the Onsager algebraO by the relations

N∑
n=−N

αn A−n = c1 and
N∑

n=−N

αn An+1 = c2 with α−n = αn, (2.26)
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FRT presentation of classical Askey–Wilson algebras 2193

where c1, c2 are central elements. In this quotient, the following relations hold

N∑
n=−N

αn An+2p = c1,
N∑

n=−N

αn An+2p+1 = c2,
N∑

n=−N

αnGn+p = 0 for any p ∈ Z.

(2.27)

We recover ON by putting c1 = c2 = 0.

In the algebra ON , all higher elements can be written in terms of the elements
{An, Gm |n = −N + 1, . . . , N ; m = 1, . . . , N }. Without loss of generality, choose
αN ≡ 1. By induction using (2.25), one finds:

A−N−p = (−1)p+N
N∑

j=−N+1

U
(N )
p, j (α0, . . . , αN−1)A j for any p ≥ 0, (2.28)

whereU(N )
p, j (α0, . . . , αN−1) is a N−variable polynomial that is determined recursively

through the relation:

U
(N )
p+1, j (α0, . . . , αN−1) =

p∑
k=0

(−1)kαk−N+1U
(N )
p−k, j ({αl})

+
{

(−1)N+pα j+p+1 for − N + 1 ≤ j ≤ N − p − 1

0 for N − p ≤ j ≤ N
,

with the convention α−N+1+k ≡ 0 if k ≥ 2N and initial conditions:

U
(N )
0, j (α0, . . . , αN−1) = (−1)N+1α j .

Similarly, one gets:

AN+p+1 = (−1)p+N
N∑

j=−N+1

U
(N )
p, j (α0, . . . , αN−1)A1− j ,

G N+p+1 = (−1)p+N+1
N∑

j=−N+1

U
(N )
p, j (α0, . . . , αN−1)G j−1 for any p ≥ 0,

where (2.1) has been used to derive the second relation. For N = 1, one finds that
U

(1)
n− j, j (α0) = Un(α0) is the Chebyshev polynomial of second kind.

2.4 FRT presentation of the quotientsON

For the class of quotients ON of the Onsager algebra, the corresponding solutions of
the non-standard Yang–Baxter algebra (2.7) are now constructed.
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2194 P. Baseilhac, N. Crampé

Proposition 2.4 The non-standard classical Yang–Baxter algebra (2.7) for the r-
matrix (2.5) and

B(N )(u) = 1

p(N )(u)

( G(N )(u) A−(N )(u)

A+(N )(u) −G(N )(u)

)
with p(N )(u) =

N∑
p=−N

αpu−p

(2.29)

where, by setting f (N )
p (u) =

∑N

q=p
αqu p−q ,

A+(N )(u) =
N∑

p=1

(
f (N )

p (u)Ap − u f (N )
p (u−1)A−p+1

)
, (2.30)

A−(N )(u) =
N∑

p=1

(
u−1 f (N )

p (u)A−p+1 − f (N )
p (u−1)Ap

)
, (2.31)

G(N )(u) =
N∑

p=1

(
f (N )

p (u) + f (N )
p (u−1)

)
G p −

N∑
p=1

αpG p, (2.32)

provides an FRT presentation of the algebra ON .

Proof The goal consists in expressing all the elements {An, Gm |n, m ∈ Z} present
in the FRT presentation of the Onsager algebra (see Theorem 1) in terms of the 3N
linearly independent elements ofON {An, Gm |n = −N +1, . . . , N ; m = 1, . . . , N }.
For instance, let us consider the current A+(u) in (2.8). Imposing the first relation of
(2.25), it follows:

A+(u) =
N∑

p=1

u p Ap +
∞∑

p=N+1

u p Ap

=
N∑

p=1

u p Ap − 1

αN

∞∑
p=1

u p+N
N−1∑

q=−N

αq Ap+q

=
N∑

p=1

u p Ap − 1

αN

−1∑
q=−N

αquN−q

∞∑
p=1

u p+q Ap+q

︸ ︷︷ ︸
=A+(u)+∑0

p=q+1 u p Ap

− α0

αN
uN

∞∑
p=1

u p Ap

︸ ︷︷ ︸
=A+(u)

− 1

αN

N−1∑
q=1

αquN−q
∞∑

p=1

u p+q Ap+q

︸ ︷︷ ︸
=A+(u)−∑q

p=1 u p Ap

.
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FRT presentation of classical Askey–Wilson algebras 2195

By factorizing A+(u) in the last equation and after simplifications, one gets:

A+(u)

N∑
q=−N

αquN−q

︸ ︷︷ ︸
≡uN p(N )(u)

=
N∑

q=1

αquN−q
q∑

p=1

u p Ap

−
−1∑

q=−N

αquN−q
0∑

p=q+1

u p Ap. (2.33)

It follows:

A+(u) = 1

p(N )(u)

N∑
q=1

q∑
p=1

(
αqu p−q Ap − α−quq−p+1A−p+1

)
,

which leads to the formula (2.30). Applying the same procedure to A−(u) and G(u),
we obtain the other formulae. �	

Using the FRT presentation, a commutative subalgebra ofON can be easily identi-
fied. Note that the result below is a straightforward restriction of [3, Proposition 2.5]
to the quotients of the Onsager algebra.

Proposition 2.5 Let κ, κ∗, μ be generic scalars. A generating function of mutually
commuting elements in ON is given by:

b(N )(u) = 1

p(N )(u)

N−1∑
p=0

(
f (N )

p (u) − f (N )
p (u−1)

)
Ip, (2.34)

where

Ip = κ(Ap + A−p) + κ∗(Ap+1 + A−p+1) + μ(G p+1 − G p−1),

I0 = κ A0 + κ∗ A1 + μG1. (2.35)

Proof Introduce the 2 × 2 matrix:

M(x) =
(

μ/x κ + κ∗/x
κ + κ∗x μx

)
(2.36)

which is a solution of

[tr1(r12(u, v)M1(u)), M2(v)] = 0. (2.37)

Then, by using the result [3, Proposition 2.5], one shows that b(N )(u) =
tr M(u)B(N )(u) satisfies [b(N )(u), b(N )(v)] = 0. Inserting (2.30)–(2.32) in b(N )(u) =
tr

(
M(u)B(N )(u)

)
, one derives (2.34). �	

123



2196 P. Baseilhac, N. Crampé

3 O1 andO2 and generalized classical Askey–Wilson algebras

The defining relations of the algebraON are easily extracted from the defining relations
of the non-standard classical Yang–Baxter algebra (2.7). For instance, we consider the
cases N = 1, 2 below. For N = 1,weprove thatO1 is isomorphic to theAskey–Wilson
algebra introduced by [36] specialized at q = 1.

3.1 The classical Askey–Wilson algebra aw(3)

We treat here in detail the case of the quotientO1. To simplify the notations, we choose
α0 = α and α±1 = 1. Equation (2.29) becomes

B(1)(u) = 1

p(1)(u)

(
G1 u−1A0 − A1

−u A0 + A1 −G1

)
(3.1)

where p(1)(u) = u + α + u−1. Then, the non-standard Yang–Baxter algebra (2.7)
provides the following defining relations of O1

[G1, A0] = 2αA0 + 4A1, [A1, G1] = 2αA1 + 4A0,

[A1, A0] = 4G1. (3.2)

Remark 6 The r-matrix (2.5) allows us to construct a representation ofO1. Indeed, the
mapπ(B(1)

1 (u)) = r13(u, w) satisfies the non-standard Yang–Baxter algebra (2.7) and
the expansion w.r.t. u is same. By comparing the expansions, one gets the following
representation, for α = −w − w−1,

π(G1) = (w−1 − w)

(
1 0
0 −1

)
, π(A0) = 2

(
0 1
1 0

)
and π(A1) = 2

(
0 w−1

w 0

)
.

(3.3)

By Proposition 2.3, there is another presentation of the algebra O1. Indeed, O1 is
generated by A0 and A1 subject to

[A0, [A0, A1]]−8αA0 −16A1 = 0, [A1, [A1, A0]]−8αA1 −16A0 = 0. (3.4)

Let us remark that the Dolan–Grady relations (2.23) are not necessary in this case
since they are implied by (3.4).

In [36], Zhedanov introduced the Askey–Wilson algebra with three generators
K0, K1, K2 and deformation parameter q. More recently, a central extension of the
original Askey–Wilson algebra [36] called the universal Askey–Wilson algebra has
been introduced [32]. In that paper, besides the original presentation of [36], a second
presentation of the universal Askey–Wilson algebra is given. Below, we show that
the quotient of the Onsager algebra O1 is isomorphic to the classical (q = 1) analog
of the Askey–Wilson algebra, denoted aw(3). The first presentation of the original
Askey–Wilson algebra is now recalled.
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FRT presentation of classical Askey–Wilson algebras 2197

Definition 3.1 [36] The Askey–Wilson algebra has three generators K0, K1, K2 that
satisfy the commutation relations2:

[
K0, K1

]
q = K2,

[
K2, K0

]
q = BK0 + C1K1 + D1,[

K1, K2
]

q = BK1 + C0K0 + D0, (3.5)

where B, C0, C1, D0, D1 are the structure constants of the algebra.

Remark 7 In terms of the generators K0, K1, the defining relations of the Askey–
Wilson algebra read:

[
K0,

[
K0, K1

]
q

]
q−1 + BK0 + C1K1 + D1 = 0,

[
K1,

[
K1, K0

]
q

]
q−1 + BK1 + C0K0 + D0 = 0.

Definition 3.2 The classical Askey–Wilson algebra, denoted aw(3), is the Askey–
Wilson algebra specialized to q = 1. We keep the same notations for the classical
Askey–Wilson algebra than for the usual Askey–Wilson algebra.

Proposition 3.1 The algebra O1 and the algebra aw(3) are isomorphic. The isomor-
phism aw(3) → O1 is given by:

K0 
→ a0A0 + b0, K1 
→ a1A1 + b1, K2 
→ −a0a1
4

G1, q 
→ 1

with the identification of the structure constants:

B = −8α/a0a1, C0 = −16/a2
0 , C1 = −16/a2

1 , D0 = −8αb0 + 16b1
a2
0a1

,

D1 = −8αb1 + 16b0
a2
1a0

.

Proof By direct computation. �	
A corollary of this proposition is that Proposition 2.4 provides an FRT presentation of
aw(3). Note that for a specialization of the structure constants B = D0 = D1 in (3.5),
one recovers the q-deformation of the Cartesian presentation of the sl2 Lie algebra
[37]. From that point of view, the representation (3.3) is natural.

The universal Askey–Wilson algebra has been introduced in [32]. For this algebra,
a second presentation is known [32, Theorem 2.2]. It is given in terms of the quotient
of the q-deformed analog of the Dolan–Grady relations (2.4) by a relation of quartic
order in the two fundamental generators. These relations correspond to the presentation
given by relations (3.4). Let us mention also that, from the second relation of (2.25)
with N = p = 1, one gets αG1 + G2 = 0. In terms of A0, A1, this relation reads:

8α[A1, A0] + 2(A1A0A1A0 − A0A1A0A1) − A2
1A2

0 + A2
0A2

1 = 0. (3.6)

2 We denote the q-commutator [X , Y ]q = q XY − q−1Y X .
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2198 P. Baseilhac, N. Crampé

Note that (3.6) is not necessary: it follows from the commutator of the first (resp.
second) relation in (3.4)with A0 (resp. A1).Wewould like to point out that the relations
(3.4) coincidewith (2.2), (2.3) of [32] for the specialization q = 1 and central elements
evaluated to scalar values. Also, the Dolan–Grady relations (2.4) together with (3.6)
coincide with the specialization q = 1 (and a suitable identification of the central
element γ in terms of α) of the relation given in [32, Theorem 2.2].

3.2 The generalized classical Askey–Wilson algebra aw(6)

For N = 2, choose α0 = α′, α±1 = α and α±2 = 1, Eq. (2.29) reads

B(2)(u) = 1

p(2)(u)(
G2 + (u + α + u−1)G1 u−1 A−1 + u−1(α + u−1)A0 − (u + α)A1 − A2

−u A−1 − u(u + α)A0 + u(α + u−1)A1 + A2 −G2 − (u + α + u−1)G1

)

(3.7)

where p(2)(u) = u2+αu+α′+αu−1+u−2. One gets the following defining relations
for O2 from (2.7)

[A0, A−1] = [A2, A1] = [A1, A0] = 4G1,

[A1, A−1] = [A2, A0] = 4G2, (3.8)

[A2, A−1] = 4(1 − α′)G1 − 4αG2, (3.9)

[G1, A0] = 2A1 − 2A−1, [G1, A1] = 2A2 − 2A0, (3.10)

[G1, A−1] = 2αA−1 + 2(1 + α′)A0 + 2αA1 + 2A2, (3.11)

[G1, A2] = −2A−1 − 2αA0 − 2(1 + α′)A1 − 2αA2, (3.12)

[G2, A0] = 2αA−1 + 2α′ A0 + 2αA1 + 4A2, (3.13)

[G2, A1] = −4A−1 − 2αA0 − 2α′ A1 − 2αA2, (3.14)

[G2, A−1] = 2(α′ − α2)A−1 + 2α(1 − α′)A0

+2(2 − α2)A1 − 2αA2, (3.15)

[G2, A2] = 2αA−1+2(α2 − 2)A0+2α(α′ − 1)A1 + 2(α2 − α′)A2, (3.16)

[G1, G2] = 0. (3.17)

Remark 8 As previously, a representation of O2 is obtained from the r-matrix as fol-
lows:

π(B(2)
1 (u)) = r13(u, w1) + r14(u, w2) (3.18)

with α = −w1 − w−1
1 − w2 − w−1

2 and α′ = w1w2 + w1w
−1
2 + 2 + w−1

1 w2 +
w−1
1 w−1

2 . By expanding w.r.t. the formal variable u, one gets a 4 × 4 representation
for A−1, A0, A1, A2, G1 and G2.

By analogy with the classical Askey–Wilson algebra aw(3) with defining relations
(3.2), we call the algebra generated by the 6 elements A−1, A0, A1, A2, G1, G2 sub-
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ject to the relations (3.8)–(3.17) the generalized classical Askey–Wilson aw(6). By
construction, this algebra is isomorphic to O2.

By using Proposition 2.3 for N = 2, we get another presentation of the algebra
O2 ∼= aw(6) : it is generated by A0 and A1 subject to the Dolan–Grady relation (2.23)
with the additional following relations

[A0, [A1, [A0, [A1, A0]]]] − 16[A1, [A1, A0]] − 8α[A0, [A0, A1]]
+64(α′ + 2)A0 + 128αA1 = 0, (3.19)

[A1, [A0, [A1, [A0, A1]]]] − 16[A0, [A0, A1]] − 8α[A1, [A1, A0]]
+64(α′ + 2)A1 + 128αA0 = 0. (3.20)

By analogy with both previous examples, we define the generalization of the clas-
sical Askey–Wilson algebra, denoted aw(3N ), as the algebra ON generated by 3N
generators {A−N+1, . . . , AN } and {G1, . . . , G N } and subject to the relations project-
ing the FRT relation (2.7). The number of defining relations 3N (3N − 1)/2 and we
do not write them explicitly. Using the FRT presentation, these relations can be eas-
ily extracted. We can alternatively define aw(3N ) with the help of Proposition 2.3,
as the algebra generated by A0, A1 and subject to the Dolan–Grady relations (2.23)
and relations (2.24). Finally, let us recall that a generating function of elements of its
commutative subalgebra is given in Proposition 2.5.

4 Another presentation of the Onsager algebra and its quotients

In this section, a Lie algebra denoted A is introduced. It is shown to be isomorphic
with the Onsager algebra. The corresponding FRT presentation is given, and polyno-
mial expressions for the elements in A are obtained in terms of the two fundamental
generators using the automorphisms introduced in Sect. 2. Then, we introduce the
algebraAN as a quotient ofA by the classical analog of the relations derived in [4,5].
The FRT presentation of AN is given.

4.1 Another presentation of the Onsager algebra

In [4,5] (see also [7]), an infinite-dimensional quantum algebra denoted Aq has been
introduced.Recently, it has been conjectured that a certain quotient ofAq is isomorphic
to the q-Onsager algebra3 [2]. We now introduce the classical analog of Aq (q = 1).

Definition 4.1 A is a Lie algebra with generators {W−k,Wk+1, G̃k+1|k ∈ Z≥0} satis-
fying the following relations, for k, l ≥ 0:

[W−l ,Wk+1
] = G̃k+l+1, (4.1)[G̃k+1,W−l
] = 16W−k−l−1 − 16Wk+l+1, (4.2)

3 The q-Onsager algebra is defined in terms of generators and q-analogs of the Dolan–Grady relations
(2.4), see [1,31]. Note that the same relations showed up earlier in the context of polynomial association
schemes [30].
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[Wl+1, G̃k+1
] = 16Wl+k+2 − 16W−k−l , (4.3)[W−k,W−l
] = 0,

[Wk+1,Wl+1
] = 0,

[G̃k+1, G̃l+1
] = 0. (4.4)

Remark 9 The generators W0,W1 satisfy the Dolan–Grady relations (2.4).

Indeed, inserting the relations (4.1) into (4.2), (4.3) for k = l = 0, from the first
two equalities in (4.4) for k = 1, l = 0 one gets:

[W0, [W0, [W0,W1]]] = 16[W0,W1],
[W1, [W1, [W1,W0]]] = 16[W1,W0]. (4.5)

Proposition 4.1 The non-standard classical Yang–Baxter algebra (2.7) for the
r-matrix (2.5) and

B(u) = 1

2

( − 1
4 G̃(u) u−1W+(u) − W−(u)

−uW+(u) + W−(u) 1
4 G̃(u)

)
(4.6)

with, by setting U = (u + u−1)/2,

W+(u) =
∞∑

k=0

W−kU−k−1, W−(u) =
∞∑

k=0

Wk+1U−k−1,

G̃(u) =
∞∑

k=0

G̃k+1U−k−1 , (4.7)

provides an FRT presentation of the algebra A.

Proof Insert (4.6) into (2.7) with (2.5). Define the formal variables U = (u + u−1)/2
and V = (v + v−1)/2. One obtains equivalently:

(U − V )
[W+(u),W−(v)

] = G̃(v) − G̃(u),

(U − V )
[G̃(u),W±(v)

] ± 16
(
UW±(u) − VW±(v) − W∓(u) + W∓(v)

) = 0,[W±(u),W±(v)
] = 0,

[G̃(u), G̃(v)
] = 0.

Expanding the currents as (4.7), the above equations are equivalent to (4.1)–(4.4). �	
Theorem 2 The Onsager algebra O (see Definition 2.1) and the algebra A (see Defi-
nition 4.1) are isomorphic.

Proof By Theorem 1 and Proposition 4.1, the Onsager algebra O and the algebra A
have the same FRT presentation (2.7) with the same r-matrix (2.5). Then, the isomor-
phism between O and A follows from the fact that the power series of the entries in
(2.8), (4.6) have same expansions w.r.t. the formal variable. �	
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The explicit relation between the generators {Ak, Gl |k ∈ Z, l ∈ Z≥0} of the
Onsager algebra O and the generators {W−k,Wk+1, G̃l+1|k, l ∈ Z≥0} of the alge-
bra A is obtained as follows. By comparison between (2.8) and (4.6), we get:

A+(u) ≡ 1

2

( − uW+(u) + W−(u)
)
, A−(u) ≡ 1

2

(
u−1W+(u) − W−(u)

)
,

G(u) ≡ −1

8
G̃(u) (4.8)

with (2.9) and (4.7). Then, one can prove that one has the following expansion around
u = 0, for k ≥ 0:

U−k−1 = 2
∞∑

p=0

c2p+k
p u2p+k+1 with ck

p = (−1)p2k−2p (k − p)!
(p)!(k − 2p)! .

By direct comparison of the l.h.s and r.h.s in (4.8), it follows, for k ≥ 0,

Ak+1 =

[
k
2

]
∑
p=0

ck
pWk−2p+1 −

[
k−1
2

]
∑
p=0

ck−1
p W−k+2p+1, (4.9)

A−k =

[
k
2

]
∑
p=0

ck
pW2p−k −

[
k−1
2

]
∑
p=0

ck−1
p Wk−2p, (4.10)

Gk+1 = −1

4

[
k
2

]
∑
p=0

ck
pG̃k−2p+1. (4.11)

Conversely, one has:

W−k = 1

2k

k∑
p=0

k!
p!(k − p)! Ak−2p, Wk+1 = 1

2k

k∑
p=0

k!
p!(k − p)! Ak+1−2p, (4.12)

G̃k+1 = 1

2k−2

k∑
p=0

k!
p!(k − p)!G2p−k−1. (4.13)

Here, [n] is the integer part of n (with the convention [−1/2] = −1). For small values
of k, explicit relations between the first few elements are reported in “Appendix A.”

According to Theorem 2, (4.12), (4.13) and (4.4), the following three lemmas are
easily shown.

Lemma 4.1 The following subsets form a basis for the same subspace of O:

(i) A0, A1 + A−1, A2 + A−2, A3 + A−3, . . .
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(i i) W0, W−1, W−2, W−3, . . .

Lemma 4.2 The following subsets form a basis for the same subspace of O:

(i) A1, A2 + A0, A3 + A−1, A4 + A−2, . . .

(i i) W1, W2, W3, W4, . . .

Lemma 4.3 The following subsets form a basis for the same subspace of O:

(i) G1, G2, G3, G4, . . .

(i i) G̃1, G̃2, G̃3, G̃4, . . .

Remark 10 From [25], we know that the generators of the Onsager algebra O can be
represented by the matrices

Ak = 2

(
0 tk

t−k 0

)
, Gk = (tk − t−k)

(
1 0
0 −1

)
, (4.14)

where t is an indeterminate. Then, by using (4.12) and (4.13), we deduce that the
generators of A can be represented by the matrices

W−k =
(

t + t−1

2

)k

A0, Wk+1 =
(

t + t−1

2

)k

A1, G̃k+1 = −4

(
t + t−1

2

)k

G1.

(4.15)

4.2 Automorphisms of the algebraA

In view of the isomorphism between O and A, the action of the automorphisms
τ0, τ1,� introduced in Proposition 2.1 is now described in the alternative presentation
A. Inverting the correspondence (4.8), one has:

W+(u) ≡ 2

(u−1 − u)

(A+(u) + A−(u)
)
,

W−(u) ≡ 2

(u−1 − u)

(
u−1A+(u) + uA−(u)

)
,

G̃(u) ≡ −8G(u). (4.16)

Using (2.20), it yields to:

τ0(W+(u)) = W+(u), τ0(W−(u)) = 2UW+(u) − W−(u) − 2W0,

τ1(W−(u)) = W−(u), τ1(W+(u)) = 2UW−(u) − W+(u) − 2W1,

τ0(G̃(u)) = τ1(G̃(u)) = −G̃(u).

Using (4.7), it follows:
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Proposition 4.2 The action of the automorphisms τ0, τ1 on the elements of A is such
that:

τ0(W−k) = W−k, τ0(Wk+1) = 2W−k−1 − Wk+1, (4.17)

τ1(Wk+1) = Wk+1, τ1(W−k) = 2Wk+2 − W−k, (4.18)

τ0(G̃k+1) = τ1(G̃k+1) = −G̃k+1. (4.19)

From (4.2), (4.3) note that

W−k−1 = 1

16
[G̃k+1,W0] + Wk+1, Wk+2 = 1

16
[W1, G̃k+1] + W−k .

Inserting G̃k+1 = [W0,Wk+1] in the first equation above, from (4.17), (4.19) one
recovers the classical (q = 1) analogs of the formulae given in Proposition 7.4 of
[34]. Similarly, G̃k+1 = [W−k,W1] can be inserted into the second equation above in
order to rewrite (4.18).

Combining above relations, one gets:

(τ0 + τ1)(W+(u)) = 2UW−(u) − 2W1, (τ0 + τ1)(W−(u)) = 2UW+(u) − 2W0.

From the expansions (4.7), it follows (note that W1 = τ1�(W0)):

Proposition 4.3 In the algebra A, one has:

W−k =
(

τ0� + τ1�

2

)k

(W0), Wk+1 =
(

τ0� + τ1�

2

)k

(W1) and

G̃k+1 = [W0,

(
τ0� + τ1�

2

)k

(W1)
]
.

Remark 11 �(W−k) = Wk+1, �(G̃k+1) = −G̃k+1.

Note that the polynomial expressions for the elements {W−k,Wk+1, G̃k+1} com-
puted here using the action of the automorphisms can be viewed as the classical
(q = 1) analogs of the expressions computed in [2], where the elements of the algebra
Aq are derived as polynomials of the fundamental generators W0,W1 satisfying the
q-deformed version of (4.5).

4.3 Quotients of the Lie algebraA and of the Onsager algebra

By analogy with the analysis of the previous section, we now introduce certain quo-
tients of the algebra A. These quotients can be viewed as the classical analogs of the
quotients of algebra Aq considered in [4,5, Eq. 11].
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Definition 4.2 Let {βn|n = 0, . . . , N } be nonzero scalars with N any nonzero positive
integer. The algebra AN is defined as the quotient of the algebra A by the relations

N∑
k=0

βkW−k = 0 and
N∑

k=0

βkWk+1 = 0. (4.20)

According to Proposition 4.3, introduce the operator:

S′
N =

N∑
n=0

βn(τ 0� + τ 1�)n . (4.21)

Then, Eq. (4.20) simply reads S′
N (W0) = 0 and S′

N (W1) = 0, respectively. Further-
more, one has [(τ 0� + τ 1�)p, S′

N ] = 0 for any p ∈ Z. It follows:

Remark 12 The relations (4.20) imply:

N∑
k=0

βkW−k−p = 0,
N∑

k=0

βkWk+1+p = 0,
N∑

k=0

βk G̃k+1+p = 0 for any p ∈ Z≥0.

(4.22)

The algebra AN has 3N generators {W−k,Wk+1, G̃k+1|k = 0, 1, . . . , N − 1}.
Note that above relations (4.22) can be derived using the commutation relations (4.1)–
(4.3).

Theorem 3 The algebra AN is isomorphic to the quotient of the Onsager algebra ON

with the identification

β2k = 22k

(2k)!

[
N
2

]
∑
p=k

2p(−1)p−k (k + p − 1)!
(p − k)! α2p, (4.23)

β2k+1 = 22k+1

(2k + 1)!

[
N+1
2

]
∑

p=k+1

(2p − 1)(−1)p−k−1 (k + p − 1)!
(p − k − 1)!α2p−1. (4.24)

Proof By Theorem 2,O andA are isomorphic, and the isomorphism is given by (4.9)–
(4.11). To show thatAN andON are isomorphic, it is necessary and sufficient to show
that (2.21) and (4.20) are equivalent if relations (4.23)–(4.24) hold. By inserting (4.9)
and (4.10) in (2.21), one gets equivalently (4.20) by using (4.23)–(4.24). �	

The corresponding class of solutions of the non-standardYang–Baxter algebra (2.7)
is now considered.
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Proposition 4.4 Let {βp|p = 0, . . . , N − 1} be nonzero scalars with N ∈ N≥1. Then,
the non-standard classical Yang–Baxter algebra (2.7) for the r-matrix (2.5) and

B(N )(u) = 1

2 p̃(N )(U )

⎛
⎝ − 1

4 G̃(N )(u) u−1W(N )
+ (u) − W(N )

− (u)

−uW(N )
+ (u) + W(N )

− (u) 1
4 G̃(N )(u)

⎞
⎠

p̃(N )(U )) =
N∑

p=0

βpU p, (4.25)

where

W(N )
+ (u)) =

N−1∑
k=0

f̃ (N )
k (U )W−k, W(N )

− (u) =
N−1∑
k=0

f̃ (N )
k (U )Wk+1,

G̃(N )(u) =
N−1∑
k=0

f̃ (N )
k (U )G̃k+1 (4.26)

and

f̃ (N )
k (U ) =

N∑
p=k+1

βpU p−k−1, (4.27)

provides an FRT presentation of the algebra AN .

Proof The proof is similar to the one of Proposition 2.4 by replacing the relations (2.8)
and (2.21) by (4.6) and (4.20). �	
Remark 13 Note that (4.25) can be interpreted as the classical analog of the Sklyanin’s
operators constructed in [4,5] satisfying the reflection algebra.

Acknowledgements We thankS.Belliard for discussions, andP.Terwilliger andA.Zhedanov for comments
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of this work has been done.

Appendix A

From (4.9) to (4.11), for k = 0, 1, 2 one has:

A0 = W0, A1 = W1, G1 = −1

4
G̃1,

A−1 = 2W−1 − W1, A2 = 2W2 − W0, G2 = −1

2
G̃2,

A−2 = 4W−2 − W0 − 2W2, A3 = 4W3 − W1 − 2W−1, G3 = −G̃3 + 1

4
G̃1.
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Conversely, from (4.12)–(4.13) for k = 1, 2 one has:

W−1 = A1 + A−1

2
, W2 = A0 + A2

2
, G̃2 = −2G2,

W−2 = A2 + 2A0 + A−2

4
, W2 = A3 + 2A1 + A−1

4
, G̃3 = −G3 − 2G1 .
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