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Abstract
We reprove a result by Ren and Wei concerning the periodicity of minimizers of a
one-dimensional liquid drop model in the neutral case. Our proof works for general
boundary conditions and also in the non-neutral case.
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1 Introduction andmain result

In this paper, we consider the energy functional

I(L)
ρ [E] := Per E − γ

2

∫ L/2

−L/2

∫ L/2

−L/2
(1E (x) − ρ)|x − y|(1E (y) − ρ) dx dy (1)

defined on sets E ⊂ [−L/2, L/2] and involving a parameter ρ ∈ (0, 1), as well as
the corresponding ground-state energy
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e(L)
ρ (�) := inf

{
I(L)

ρ [E] : E ⊂ [−L/2, L/2], |E | = �
}

. (2)

The constant γ > 0 is fixed throughout this paper and will not be reflected in the
notation. (In fact, by rescaling E and L we could set γ = 1.) By Per E , we denote the
perimeter of the set E in the sense of geometric measure theory which, however, is
elementary in this one-dimensional context. Namely, a bounded set E ⊂ R is of finite
perimeter if and only if, up to sets of measure zero, there is an N ∈ N such that E is
the union of N intervals whose closures are disjoint, and in this case Per E = 2N .

The minimization problem (2) arises in nuclear physics. As suggested originally
in [7,14], nuclear matter at extremely high densities, as for instance, in the crust of
neutron stars, exhibits exotic phases, sometimes called ‘nuclear pasta phases’. The
relevant parameter ρ ∈ (0, 1) describes the ratio between the charge density of a
uniform background of electrons and that of the nuclei. For values of ρ around 1/2, it
is believed that nuclear matter arranges itself in a slablike structure which is periodic
with respect to one direction. Within Gamow’s liquid drop model [5], this slablike
regime is described by the energy functional (1).

Themodel (1), however, is of interest also beyond this concrete physical problem. It
is variant of a one-dimensional Coulomb problem. These are introduced as toy models
which mimic some of the properties of the (much harder) three-dimensional Coulomb
problem and have been studied, for instance, in [1,2,8–10]. One phenomenon which is
of particular interest is the emergence of periodic structures.While a proof of this prop-
erty still eludes us in the three-dimensional context, it has been shown to occur in sev-
eral one-dimensional models; see, for instance, [3,6,12,15,16] and references therein.

Remarkably, the minimization problem defining e(L)
ρ (�) can be solved explicitly.

In the ‘neutral’ case � = ρL , this was shown in a different, but essentially equivalent
formulation in the work [15] by Ren and Wei. We give a more quantitative and,
we think, simpler proof of their solution. Moreover, we present several extensions
which, we believe, are new. One of these concerns the study of the non-neutral case
� = ρL + Q with an excess charge Q �= 0. We show that this excess charge goes to
the boundary and lowers the energy per length (in the thermodynamic limit L → ∞)
by an amount of γ Q2/4. This is in contrast to the three-dimensional case, where the
excess charge raises the energy per volume by an amount proportional to Q2 [11].

Another generalization concerns theCoulombkernel− 1
2 |x−y| in (1). This function

coincides, up to irrelevant terms, with the Neumann Green’s function on the interval
(−L/2, L/2). (Because of this fact, our result in the neutral case is equivalent to the
Ren–Wei result.) In other occurrences of the abovemodel, and also as a technical tool in
certain proofs, it is natural to considerGreen’s functions on (−L/2, L/2)with different
boundary conditions, namely either periodic or Dirichlet boundary conditions. We
show that, remarkably, the ground-state energies for these various choices all coincide
on any given interval. Moreover, the optimizing sets coincide up to translations.

We now proceed to a precise statement of our main results. We begin with the
‘neutral’ case � = ρL considered previously in [15]. We consider the set

Eρ,N ,L =
N⋃

n=1

[
(2n − N − 1 − ρ)L

2N
,
(2n − N − 1 + ρ)L

2N

]
.
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Periodic energy minimizers for a one-dimensional liquid... 2071

This is the union of N intervals of length ρL/N centered at the points (2n − N −
1)L/(2N ), n = 1, . . . , N .

Theorem 1 Let ρ ∈ (0, 1) and L > 0. Then,

e(L)
ρ (ρL) = L min

N∈N

(
2(N/L) + γ

12

ρ2(1 − ρ)2

(N/L)2

)
.

The minimum on the right side is attained by at least one and at most two N ∈ N.
Minimizing sets are exactly those of the form Eρ,N ,L with aminimizing N. In particular,
minimizing sets are periodic with minimal period L/N.

Strictly speaking, this is not exactly the result from [15]. They consider the energy
functional (1) with Per E replaced by the relative perimeter Per(E, (−L/2, L/2)),
where boundaries of E coinciding with one of the points ±L/2 are not counted. This
has the effect that their functional has twice as many minimizers.

Having Theorem 1, it is easy to compute the thermodynamic limit.

Corollary 2 Let ρ ∈ (0, 1). Then,

lim
L→∞

e(L)
ρ (ρL)

L
=

(
3

2

)2/3

γ 1/3ρ2/3(1 − ρ)2/3.

Moreover, the set of limit points in L1
loc(R) of minimizers consists of the two sets

∑
n∈Z

[
β

(
n − ρ

2

)
, β

(
n + ρ

2

)]
and

∑
n∈Z

[
β

(
n + 1 − ρ

2

)
, β

(
n + 1 + ρ

2

)]

with β = 22/331/3γ −1/3(ρ(1 − ρ))−2/3.

In fact, we prove that Theorem 1 implies the uniform bound

e(L)
ρ (ρL)

L
≥

(
3

2

)2/3

γ 1/3ρ2/3(1 − ρ)2/3 for all L > 0 , (3)

as well as the remainder bound

e(L)
ρ (ρL)

L
=

(
3

2

)2/3

γ 1/3ρ2/3(1 − ρ)2/3 + O(L−2) as L → ∞. (4)

It is remarkable that the remainder here is O(L−2) and not O(L−1). We also show
that the error bound O(L−2) cannot be improved.

It is also remarkable that the energy in the thermodynamic limit does not behave
linearly as ρ → 0 or ρ → 1. This reflects the fact that the minimization problem
Per E − (γ /2)

∫∫
E×E |x − y| dx dy over sets E ⊂ R with fixed |E | yields −∞. In

contrast, in the three-dimensional case, where the corresponding whole space problem
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2072 R. L. Frank , E. H. Lieb

does have aminimizer, the analogous energy in the thermodynamic limit can be shown
to behave linearly as ρ → 0 with a coefficient depending on the whole space problem
[4].

Next, we comment on the non-neutral case. Since the explicit solution is somewhat
complicated to state, we content ourselves with the statement in the thermodynamic
limit.

Corollary 3 Let ρ ∈ (0, 1), L > 0 and Q ∈ R. Then,

lim
L→∞ L−1e(L)

ρ (ρL + Q) =
(
3

2

)2/3

γ 1/3ρ2/3(1 − ρ)2/3 − 1

4
γ Q2.

Thus, non-neutrality lowers the energy per length. We refer to the proof for a
description of minimizing sets.

So far, we have considered the problem where the sets interact through the whole
space Green’s function −|x − y|/2. As a final topic, we consider various choices of
Green’s functions corresponding to different boundary conditions, namely

− 1

2
|x − y| + 1

2L
(x2 + y2) − 1

4
L Neumann case

− 1

2
|x − y| − 1

L
xy + 1

4
L Dirichlet case

− 1

2
|x − y| + 1

2L
(x − y)2 + 1

12
L periodic case. (5)

The formula above in the periodic case is valid when |x − y| ≤ L/2 and is extended
L-periodically to R. We denote by k any one of these three kernels and consider the
energy functional

Ĩ(L)
ρ [E] := Per E − γ

∫ L/2

−L/2

∫ L/2

−L/2
(1E (x) − ρ)k(x, y)(1E (y) − ρ) dx dy

and the minimization problem

ẽ(L)
ρ (�) := inf

{
Ĩ(L)

ρ [E] : E ⊂ [−L/2, L/2], |E | = �
}

.

In the periodic case, we agree to interpret Per E as the perimeter of E considered as
a subset of R/LZ and drop the constraint E ⊂ [−L/2, L/2], interpreting the double
integral as an integral over (R/LZ) × (R/LZ).

Theorem 4 Let k be one of the kernels in (5). Then, for any ρ ∈ (0, 1) and L > 0,

ẽ(L)
ρ (ρL) = L min

N∈N

(
2(N/L) + γ

12

ρ2(1 − ρ)2

(N/L)2

)
. (6)

Moreover, equality holds if and only if
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Periodic energy minimizers for a one-dimensional liquid... 2073

(1) in the Neumann case, E = Eρ,N ,L ,
(2) in theDirichlet case, E = Eρ,N ,L+a for a ∈ [−(1+ρ)L/(2N ), (1+ρ)L/(2N )],
(3) in the periodic case, E = Eρ,N ,L + a for a ∈ R,

where, in all cases, N is optimal for the minimum on the right side in (6).

The results in the Dirichlet and in the periodic case seem to be new. Non-sharp
bounds in the periodic case have been obtained in [13].

The structure of this paper is as follows. Section2 contains the main inequality on
which our argument hinges and we use it to derive Theorem 1. In Sect. 3, we discuss
different boundary conditions and prove Theorem 4. Finally, in Sect. 4 we discuss the
thermodynamic limit provingCorollary 2, the bounds stated thereafter andCorollary 3.

2 Themain inequality

The key ingredient in the proof of Theorem 1 is the following lower bound.

Proposition 5 (1) Let ρ ∈ (0, 1) and N ∈ N. For any set E ⊂ R which is the union
of at most N intervals, one has

−1

2

∫∫
E×E

|x − y| dx dy + ρ

∫
E
x2 dx ≥ − 1

12ρ
|E |3

(
1 − (1 − ρ)2

N 2

)
.

Equality holds if and only if E is the union of exactly N intervals, centered at the
points (2n−N−1)|E |

2ρN , n = 1, . . . , N, and all of equal length.
(2) Let ρ ≥ 1. For any set E ⊂ R, one has

−1

2

∫∫
E×E

|x − y| dx dy + ρ

∫
E
x2 dx ≥ ρ − 2

12
|E |3.

Equality holds if and only if E is an interval centered at the origin.

Proof Wewill prove the assertion of part (1), but with the case ρ = 1 included. Before
doing so, let us observe that this will also imply the statement for ρ > 1. Indeed, once
the ρ = 1 statement is proved, we know that

−1

2

∫∫
E×E

|x − y| dx dy +
∫
E
x2 dx ≥ − 1

12
|E |3

with equality if and only if E is an interval centered at the origin. On the other hand,
by a simple rearrangement inequality we know that for ρ > 1

(ρ − 1)
∫
E
x2 dx ≥ (ρ − 1)

∫ |E |/2

−|E |/2
x2 dx = ρ − 1

12
|E |3

with equality if and only if E is an interval centered at the origin. This implies the
claimed statement for ρ > 1.
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2074 R. L. Frank , E. H. Lieb

Thus, in the following we will assume that ρ ∈ (0, 1]. We denote by x1 < · · · < xN
the centers of the intervals and by q1, . . . , qN their lengths. (If there are less than N
intervals, we set some of the qn’s equal to zero.) We will show that

− 1

2

∫∫
E×E

|x − y| dx dy + ρ

∫
E
x2 dx

= ρ
∑
n

qn

(
xn − 1

2ρ

(∑
m<n

qm −
∑
m>n

qm

))2

+ (1 − ρ)2

12ρ

∑
n

q3n − 1

12ρ

(∑
n

qn

)3

. (7)

Dropping the first term on the right side, which is nonnegative, and bounding using
Hölder’s inequality

∑
n

q3n ≥ N−2

(∑
n

qn

)3

,

we obtain from (7) the lower bound in the proposition. Moreover, the nonnegative
term that we dropped vanishes if and only if

xn = 1

2ρ

(∑
m<n

qm −
∑
m>n

qm

)
for all n = 1, . . . , N .

Note that this minimizing configuration is consistent with coming from centers of
intervals, since (recalling that ρ ≤ 1)

xn+1 − xn = 1

2ρ
(qn + qn+1) ≥ 1

2
(qn + qn+1) ,

so xn + qn/2 ≤ xn+1 − qn+1/2. Finally, in Hölder’s inequality equality holds if and
only if qn = N−1 ∑

m qm for all n. From this, we deduce the conditions for equality
in the proposition.

It remains to prove identity (7). By a straightforward computation of integrals, we
find

−1

2

∫∫
E×E

|x − y| dx dy + ρ

∫
E
x2 dx = −

∑
n<m

qnqm |xn − xm |

−2 − ρ

12

∑
n

q3n + ρ
∑
n

qnx
2
n .
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Recalling that the xn are ordered, we can complete the square and obtain

−
∑
n<m

qnqm |xn − xm | + ρ
∑
n

qnx
2
n = ρ

∑
n

qn

(
xn − 1

2ρ

(∑
m<n

qm −
∑
m>n

qm

))2

− 1

4ρ

∑
n

qn

(∑
m<n

qm −
∑
m>n

qm

)2

.

We now observe that

∑
n

qn

(∑
m<n

qm −
∑
m>n

qm

)2

+ 1

3

∑
n

q3n = 1

3

(∑
n

qn

)3

.

This can be proved by induction, for instance. Combining the last two identities, we
obtain (7). 	

Corollary 6 Let ρ ∈ (0, 1), L > 0 and N ∈ N. For any set E ⊂ [−L/2, L/2] which
is the union of at most N intervals, one has

− 1

2

∫ L/2

−L/2

∫ L/2

−L/2
(1E (x) − ρ)|x − y|(1E (y) − ρ) dx dy

≥ − 1

12ρ
|E |3

(
1 − (1 − ρ)2

N 2

)
+ 1

4
ρ|E |L2 − 1

6
ρ2L3.

Moreover, if (N − 1+ ρ)|E | ≤ ρNL, then equality holds if and only if E is the union
of exactly N intervals, centered at the points (2n−N−1)|E |

2ρN , n = 1, . . . , N, and all of
equal length.

Proof Since E ⊂ [−L/2, L/2], we have

− 1

2

∫ L/2

−L/2

∫ L/2

−L/2
(1E (x) − ρ)|x − y|(1E (y) − ρ) dx dy

= −1

2

∫∫
E×E

|x − y| dx dy + ρ

∫
E
x2 dx + 1

4
ρ|E |L2 − 1

6
ρ2L3.

The claimed inequality now follows from the proposition. Moreover, the equality
conditions in the proposition are consistent with the constraint E ⊂ [−L/2, L/2] if
and only if (N − 1)|E |/(2ρN ) + |E |/(2N ) ≤ L/2. 	


Now, we are in position to prove our main result.

Proof of Theorem 1 Sets of finite perimeter in R are finite unions of intervals. There-
fore, we can compute the infimum over all sets E of finite perimeter with |E | = ρL
by first minimizing over all set E with |E | = ρL which are the union of exactly N
intervals and then taking the infimum over N . If we insert |E | = ρL into the bound
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2076 R. L. Frank , E. H. Lieb

in Corollary 6, we obtain for any set E ⊂ [−L/2, L/2] with |E | = ρL which is the
union of N intervals,

−1

2

∫ L/2

−L/2

∫ L/2

−L/2
(1E (x) − ρ)|x − y|(1E (y) − ρ) dx dy ≥ 1

12
L3 ρ2(1 − ρ)2

N 2 .

Moreover, for such E , Per E = 2N . This yields the claimed lower bound. This lower
bound is, in fact, optimal since in the case |E | = ρL the condition in Corollary 6 is
satisfied, and therefore the bound is attained by the set described in the corollary. 	


3 Different boundary conditions

Our goal in this section is to prove Theorem 4. The main ingredient in the proof is the
following analogue of Proposition 5 where translation invariance is restored.

Proposition 7 Let ρ ∈ (0, 1] and N ∈ N. For any set E ⊂ R which is the union of at
most N intervals, one has

−1

2

∫∫
E×E

|x − y| dx dy + ρ

∫
E
x2 dx − ρ

|E |
(∫

E
x dx

)2

≥ − 1

12ρ
|E |3

(
1 − (1 − ρ)2

N 2

)
.

Equality holds if and only if E is the union of exactly N intervals, centered at the
points (2n−N−1)|E |

2ρN + X, n = 1, . . . , N, for some X ∈ R, and all of equal length.

Proof Let X := |E |−1
∫
E x dx and E ′ = E − X . Then,

− 1

2

∫∫
E×E

|x − y| dx dy + ρ

∫
E
x2 dx − ρ

|E |
(∫

E
x dx

)2

= −1

2

∫∫
E×E

|x − y| dx dy + ρ

∫
E
(x − X)2 dx

= −1

2

∫∫
E ′×E ′

|x − y| dx dy + ρ

∫
E ′
x2 dx .

Since |E ′| = |E | and since E ′ is also the union of at most N intervals, the claimed
lower bound now follows immediately from Proposition 5.

Moreover, also by that proposition, equality holds if and only if E ′ is the union
of exactly N intervals, centered at the points (2n−N−1)|E ′|

2ρN , n = 1, . . . , N , and all of
equal length. Clearly, this is equivalent to the statement in the proposition. 	

Proof of Theorem 4 In the Neumann case, we have k(x, y) = − 1

2 |x− y|+c(x)+c(y)

for some function c. Thus, under the neutrality condition |E | = ρL wehave Ĩ(L)
ρ [E] =

I(L)
ρ [E], and so the assertion follows immediately from Theorem 1.
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In the periodic case, we observe that k(x − y) = − 1
2 |x − y| + 1

2L (x − y)2 + 1
12 L

holds not only for |x − y| ≤ L/2, but even for |x − y| ≤ L . Thus, both in the Dirichlet
and in the periodic case we have k(x, y) = − 1

2 |x − y| − 1
L xy + c(x) + c(y) for all

x and y in the domain of integration with some function c. Thus, under the neutrality
condition |E | = ρL we have

Ĩ(L)
ρ [E] = I(L)

ρ [E] − 1

L

(∫ L/2

−L/2
x(1E (x) − ρ) dx

)2

= I(L)
ρ [E] − ρ

|E |
(∫

E
x dx

)2

.

Arguing as in the proof of Corollary 6, with Proposition 7 instead of Proposition 5,
we obtain the assertion. 	


4 The thermodynamic limit

With the exact formula from Theorem 1 at hand, it is easy to compute the thermody-
namic limit with optimal remainder estimates.

Proof of Corollary 2 We use the explicit expression for the infimum from Theorem 1
and write

2(N/L) + γ

12

ρ2(1 − ρ)2

(N/L)2
= γ 1/3ρ2/3(1 − ρ)2/3 f

(
2N

Lγ 1/3ρ2/3(1 − ρ)2/3

)

with

f (x) = x + 1

3x2
.

The function f has a unique minimum at x = (2/3)1/3 with f ((2/3)1/3) = (3/2)2/3.
Thus, a minimizer consists of N = β−1L + o(L) intervals as L → ∞. Inserting
this into the formula for Eρ,N ,L we obtain the claim about limit points of minimizers.

	

Remark 8 Since f (x) ≥ (3/2)2/3 for all x , the preceding proof yields the uniform
bound (3). Moreover, along the sequence (LN )N∈N defined by 2N/(LNγ 1/3ρ2/3(1−
ρ)2/3) = (2/3)1/3 we have

e(L)
ρ (ρLN ) − LN

(
3

2

)2/3

γ 1/3ρ2/3(1 − ρ)2/3 = 0.

We now prove the remainder bound (4) and show its optimality. Given L > 0, choose
N such that

2N

Lγ 1/3ρ2/3(1 − ρ)2/3
≤ (2/3)1/3 <

2(N + 1)

Lγ 1/3ρ2/3(1 − ρ)2/3

123
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and define

δ− = (2/3)1/3 − 2N

Lγ 1/3ρ2/3(1 − ρ)2/3
, δ+ = 2(N + 1)

Lγ 1/3ρ2/3(1 − ρ)2/3
− (2/3)1/3.

Then,

0 ≤ δ± ≤ 2

Lγ 1/3ρ2/3(1 − ρ)2/3
.

Since the function f introduced in the previous proof has a unique local minimum,

L−1e(L)
ρ (ρL) = γ 1/3ρ2/3(1 − ρ)2/3

× min

{
f

(
2N

Lγ 1/3ρ2/3(1 − ρ)2/3

)
, f

(
2(N + 1)

Lγ 1/3ρ2/3(1 − ρ)2/3

)}

= γ 1/3ρ2/3(1 − ρ)2/3 min
{
f
(
(2/3)1/3 − δ−

)
, f

(
(2/3)1/3 + δ+

)}
.

Since

f (x) = (3/2)2/3 + c(x − (2/3)1/3)2 + o((x − (2/3)1/3)2) as x → (2/3)1/3

with c = (3/2)4/3, we conclude that

L−1e(L)
ρ (ρL) = γ 1/3ρ2/3(1 − ρ)2/3

(
(3/2)2/3 + cmin{δ2+ + o(δ2+), δ2− + o(δ2−)}

)
.

Clearly,

lim sup
L→∞

L min{δ+, δ−} = 1

γ 1/3ρ2/3(1 − ρ)2/3
,

and therefore

lim sup
L→∞

L2
(
L−1e(L)

ρ (ρL) − (3/2)2/3γ 1/3ρ2/3(1 − ρ)2/3
)

= c

γ 1/3ρ2/3(1 − ρ)2/3
.

This proves the claimed optimal error bound.

Finally, we discuss the problem with an excess charge.

Proof of Corollary 3 We infer from Corollary 6 that for any set E ⊂ [−L/2, L/2]with
|E | = ρL + Q which consists of at most N intervals we have the lower bound

I(L)
ρ [E] ≥ 2N − γ

12ρ
(ρL + Q)3

(
1 − (1 − ρ)2

N 2

)
+ γ

4
ρ(ρL + Q)L2 − γ

6
ρ2L3

= 2N + γ

12ρ
(ρL + Q)3

(1 − ρ)2

N 2 − γ

12ρ
(3ρLQ2 + Q3).
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Therefore,

e(L)
ρ (ρL + Q) ≥ min

N∈N

(
2N + γ

12ρ
(ρL + Q)3

(1 − ρ)2

N 2

)

− γ

12ρ
(3ρLQ2 + Q3). (8)

Clearly,

lim
L→∞ L−1 γ

12ρ
(3ρLQ2 + Q3) = γ

4
Q2 ,

which gives the claimed contribution to the energy due to the excess charge.Moreover,
elementary analysis shows that

lim
L→∞ L−1 min

N∈N

(
2N + γ

12ρ
(ρL + Q)3

(1 − ρ)2

N 2

)

=
(
3

2

)2/3

γ 1/3ρ2/3(1 − ρ)2/3. (9)

This yields the claimed asymptotic lower bound

lim inf
L→∞ L−1e(L)

ρ (ρL + Q) ≥
(
3

2

)2/3

γ 1/3ρ2/3(1 − ρ)2/3 − γ

4
Q2.

In order to prove an asymptotic upper bound, we first assume

Q < 22/331/3γ −1/3ρ1/3(1 − ρ)1/3. (10)

In fact, under this assumption we will be able to solve the e(L)
ρ (ρL + Q) problem

explicitly for L large enough. To do so, we note that the elementary analysis leading
to (9) shows also that the minimum on the right side is attained by some N satisfying

N = 2−2/33−1/3γ 1/3ρ2/3(1 − ρ)2/3L + o(L) .

Therefore, for L large enough we can restrict the minimum in (8) to such N , and then
assumption (10) implies that the inequality

(N − 1 + ρ)Q ≤ ρ(1 − ρ)L

holds for all considered N . Using the latter inequality, we infer from the second part
of Corollary 6 that the above lower bound on I(L)

ρ [E] can be saturated, and therefore
we infer that equality holds in (8) for all sufficiently large L . This proves the claimed
asymptotic upper bound under the assumption (10).
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It remains to deal with Q for which (10) does not hold. In fact, we give a proof that
works for all Q > 0 by reducing it to the case Q < 0 (and ρ to 1 − ρ). This proof,
however, does not yield the optimal set. We start by observing

I(L)
ρ [E] = I(L)

1−ρ[(−L/2, L/2) \ E] + (Per E − Per ((−L/2, L/2) \ E)) .

Since

|Per E − Per ((−L/2, L/2) \ E)| ≤ 2 ,

we conclude that for all � > 0,

∣∣∣e(L)
ρ (�) − e(L)

1−ρ(L − �)

∣∣∣ ≤ 2.

In particular, because of what we have already shown in the first part of the proof
(noting that this formula is invariant under changing ρ to 1 − ρ and Q to −Q),

L−1e(L)
ρ (ρL + Q) = L−1e(L)

1−ρ((1 − ρ)L − Q) + O(L−1)

=
(
3

2

)2/3

γ 1/3ρ2/3(1 − ρ)2/3 − γ

4
Q2 + o(1).

This proves the claimed asymptotic upper bound. 	
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