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Abstract
Rogue waves in the nonlocal PT -symmetric nonlinear Schrödinger (NLS) equation
are studied by Darboux transformation. Three types of rogue waves are derived, and
their explicit expressions in terms of Schur polynomials are presented. These rogue
waves show a much wider variety than those in the local NLS equation. For instance,
the polynomial degrees of their denominators can be not only n(n + 1), but also
n(n − 1)+ 1 and n2, where n is an arbitrary positive integer. Dynamics of these rogue
waves is also examined. It is shown that these rogue waves can be bounded for all
space and time or develop collapsing singularities, depending on their types as well
as values of their free parameters. In addition, the solution dynamics exhibits rich
patterns, most of which have no counterparts in the local NLS equation.

Keywords Rogue waves · Nonlocal NLS equation · Darboux transformation · Schur
polynomials

Mathematics Subject Classification 35Q55 · 35C08 · 37K35

1 Introduction

Rogue waves are spontaneous large waves that “appear from nowhere and disappear
with no trace” [1]. These waves attracted a lot of attention in recent years due to
their dramatic and often damaging effects, such as in the ocean and optical fibers
[2,3]. The first analytical expression of a rogue wave was derived for the nonlinear
Schrödinger (NLS) equation by Peregrine [4]. Later, higher-order rogue waves in the
NLS equation were derived, and their interesting dynamical patterns were revealed

B Jianke Yang
jxyang@uvm.edu

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai
200062, China

2 Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-018-1133-5&domain=pdf
http://orcid.org/0000-0001-5247-1152


946 B. Yang, J. Yang

[5–12]. Since then, analytical rogue waves have been derived for a large number of
other integrable systems, such as the derivative NLS equation [13,14], the three-wave
interaction equation [15], the Davey–Stewartson equations [16,17], and many others
[18–30]. Experimental observations of rogue waves have also been reported in optical
fibers and water tanks [31–35].

Most of the rogue waves derived earlier were for local integrable equations, i.e.,
the solution’s evolution depends only on the local solution value and its local space
and time derivatives. Recently, a nonlocal NLS equation

iut (x, t) = uxx (x, t) + 2σu2(x, t)u∗(−x, t), (1)

was proposed and studied [36–40]. Here, σ = ±1 is the sign of nonlinearity (with
the plus sign being the focusing case and minus sign the defocusing case), and the
asterisk * represents complex conjugation. Notice that here, the solution’s evolution
at location x depends on not only the local solution at x , but also the nonlocal solution
at the distant position − x . That is, solution states at distant locations x and − x
are directly related, reminiscent of quantum entanglement between pairs of particles.
Equation (1) was calledPT -symmetric since it is invariant under the combined action
of the PT operator, i.e., the joint transformation x → − x , t → −t and complex
conjugation [41]. Hence, if u(x, t) is a solution, so is u∗(− x,−t). The application
of this PT -symmetric NLS equation for an unconventional system of magnetics was
reported in [42]. Following this nonlocal PT -symmetric NLS equation, many other
nonlocal integrable equations were quickly reported and investigated [43–60]. These
nonlocal equations are distinctly different from local equations for their novel space
and/or time coupling, which could induce new types of solution dynamics and inspire
physical applications in nonconventional settings. A connection between nonlocal
and local equations was discovered in [61], where it was shown that many nonlocal
equations could be converted to local equations through transformations.

Rogue waves in nonlocal integrable equations are an interesting and largely unex-
plored subject. While rogue waves in the nonlocal Davey–Stewartson equations have
been briefly investigated in [54,55,60,61], these waves in themore fundamental nonlo-
cal NLS equation (1) have received little attention. Since any x-symmetric solution of
the local NLS equation would also satisfy the nonlocal NLS equation (1), x-symmetric
rogue waves of the local NLS equation, such as the Peregrine wave [4], would also
be rogue waves of the nonlocal equation (1). But whether the nonlocal NLS equation
admits x-asymmetric rogue waves is the true open question.

In this article, we study rogue waves in the focusing nonlocal NLS equation (1)
(with σ = 1). We derive these waves by Darboux transformation and then obtain
their explicit algebraic expressions through Schur polynomials. We find three types
of rogue waves, which are x-asymmetric in general. The first type of solutions has
polynomial degrees in their denominators as n(n +1), where n is an arbitrary positive
integer. These polynomial degreesmatch those in the localNLSequation.However, our
second and third types of rogue waves have polynomial degrees in their denominators
as n(n − 1) + 1 and n2, which have no counterparts in the local NLS equation. This
means that the nonlocalNLS equation admits amuchwider variety of roguewaves than
its local counterpart. Dynamics of these rogue waves is also examined. We show that
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these rogue waves can be bounded for all space and time. But more importantly, they
can also develop collapsing singularities. In addition, the solution dynamics exhibits
rich patterns, most of which have no counterparts in the local NLS equation.

2 Rogue wave solutions

We consider rogue waves in the focusing nonlocal NLS equation (1) (with σ = 1),
which approach the same unit constant background when x, t → ±∞. In the local
NLS equation, rogue waves in the form of rational solutions of x and t have been
reported in [5–12], and the degree of the denominator in the n-th order rogue wave is
n(n + 1) [7,11]. For the nonlocal NLS equation (1), we will show that, in addition to
rogue waves with denominator degree n(n + 1), there are also other types of rogue
waves with denominator degrees n(n−1)+1 and n2. Thus, the nonlocal NLS equation
admits a wider variety of rogue waves than the local NLS equation.

Our results are summarized in the following theorems.

Theorem 1 The n-th order type-I rogue waves in the focusing nonlocal NLS equation
(1) are given by the formula

u(1)
n (x, t) = e−2i t

(
1 + 2i

τ
(1)
1

τ
(1)
0

)
, (2)

where

τ
(1)
0 = det

1≤i, j≤n

(
m(1)

i, j

)
, τ

(1)
1 = det

((
m(1)

i, j

)
1≤i, j≤n

ν(1)

μ(1) 0

)
, (3)

m(1)
i, j = lim

ε̃,ε→0

1

(2i − 2)!(2 j − 2)!
∂2i+2 j−4

∂ε̃2i−2∂ε2 j−2

[
ψ(ζ )φ(λ)

λ − ζ

]
, (4)

μ(1) =
[
φ

(0)
1 , φ

(1)
1 , . . . , φ

(n−1)
1

]
, φ

(k)
1 = lim

ε→0

∂2kφ1(λ)

(2k)!∂ε2k
, (5)

ν(1) =
[
ψ

(0)
2 , ψ

(1)
2 , . . . , ψ

(n−1)
2

]T
, ψ

(k)
2 = lim

ε̃→0

∂2kψ2(ζ )

(2k)!∂ε̃2k
, (6)

λ = i(1 + ε2), ζ = −i(1 + ε̃2), (7)

and the superscript ‘T’ represents the matrix transpose. Here, functions φ(λ) =
(φ1, φ2)

T and ψ(ζ ) = (ψ1, ψ2) are defined as

φ(λ) = 1√
h − 1

⎛
⎝ sinh

[
A + 1

2 ln
(

h + √
h2 − 1

)]
sinh

[
−A + 1

2 ln
(

h + √
h2 − 1

)]
⎞
⎠ ,

λ = ih, h = 1 + ε2, A =
√

h2 − 1(x − 2iht + iθ), θ =
n−1∑
k=0

skε
2k, (8)
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ψ(ζ ) = 1√
ĥ − 1

⎡
⎣ sinh

[
Â + 1

2 ln
(

ĥ +
√

ĥ2 − 1
)]

sinh
[
− Â + 1

2 ln
(

ĥ +
√

ĥ2 − 1
)]

⎤
⎦
T

,

ζ = −îh, ĥ = 1 + ε̃2, Â =
√

ĥ2 − 1(x + 2îht + iθ̂ ), θ̂ =
n−1∑
k=0

rk ε̃
2k, (9)

and sk and rk (k = 0, 1, . . . , n − 1) are free real parameters.

Theorem 2 The n-th order type-II rogue waves in the focusing nonlocal NLS equation
(1) are given by the formula

u(2)
n (x, t) = e−2it

(
1 + 2i

τ
(2)
1

τ
(2)
0

)
, (10)

where

τ
(2)
0 = det

1≤i, j≤n

(
m(2)

i, j

)
, τ

(2)
1 = det

((
m(2)

i, j

)
1≤i, j≤n

ν(2)

μ(2) 0

)
, (11)

m(2)
i, j =

{
limε→0

1
(2 j−2)!

∂2 j−2

∂ε2 j−2

[
ψ0φ(λ)
i+λ

]
, when i = 1,

m(1)
i−1, j , when i �= 1; (12)

μ(2) = μ(1), ν(2) =
[
−1, ν(1)

1 , . . . , ν
(1)
n−1

]T
, (13)

ψ0 = (1,−1), and m(1)
i, j , μ

(1), ν(1), φ and λ are as given in Theorem 1.

Theorem 3 The n-th order type-III rogue waves in the focusing nonlocal NLS equation
(1) are given by the formula

u(3)
n (x, t) = e−2it

(
1 + 2i

τ
(3)
1

τ
(3)
0

)
, (14)

where

τ
(3)
0 = det

1≤i, j≤n

(
m(3)

i, j

)
, τ

(3)
1 = det

((
m(3)

i, j

)
1≤i, j≤n

ν(3)

μ(3) 0

)
, (15)

m(3)
i, j = lim

ε̃,ε→0

1

(2i − 2)!(2 j − 2)!
∂2i+2 j−4

∂ε̃2i−2∂ε2 j−2

[
ω(ζ )φ(λ)

λ − ζ

]
, (16)

μ(3) = μ(1), ν(3) =
(
ω

(0)
2 , ω

(1)
2 , . . . , ω

(n−1)
2

)T
, ω

(k)
2 = lim

ε̃→0

∂2kω2(ζ )

(2k)!∂ε̃2k
, (17)
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ω(ζ ) = (ω1, ω2) is defined as

ω(ζ ) =
⎛
⎝ cosh

[
Â + 1

2 ln
(

ĥ +
√

ĥ2 − 1
)]

− cosh
[

Â − 1
2 ln

(
ĥ +

√
ĥ2 − 1

)]
⎞
⎠

T

, (18)

and φ, μ(1), ζ , λ, ζ , Â, ĥ are as given in Theorem 1.

Rogue waves are rational solutions, and the τ0 and τ1 functions in the above theo-
rems are polynomials of x and t .More explicit algebraic expressions for these functions
can be provided through Schur polynomials Sn(x), which are defined by

∞∑
k=0

Sk(x)εk = exp

( ∞∑
k=0

xkε
k

)
, (19)

where x = (x1, x2, . . .). Specifically,

S0(x) = 1, S1(x) = x1, S2(x) = x2 + x21
2

,

Sn(x) =
∑

l1+2l2+···+klk=n

⎛
⎝ k∏

j=1

x
l j
j

l j !

⎞
⎠ .

Using Schur polynomials, we get the following more explicit expressions for these
rogue waves.

Theorem 4 The matrix elements for rogue waves in Theorems 1–3 have the following
explicit algebraic expressions,

m(1)
i, j =

min{i−1, j−1}∑
ν=0

1

2i

(
Ã2i−1,νA2 j−1,ν + B̃2i−1,νB2 j−1,ν

)
,

m(2)
1, j = 1

2i

[
S2 j−1(W+) − S2 j−1(W−)

]
,

m(3)
i, j =

min{i−1, j−1}∑
ν=0

1

2i

(
Ã2i−2,νA2 j−1,ν − B̃2i−2,νB2 j−1,ν

)
,

μ
(1)
j = S2 j−1(Y+), ν

(1)
j = S2 j−1(̃Y

−
), ν

(3)
j = −S2 j−2(̃Y

−
),

where

Ãi,ν = 1

2ν
Si−2ν(X̃

+
), A j,ν = 1

2ν
S j−2ν(X+),

B̃i,ν = 1

2ν
Si−2ν(X̃

−
), B j,ν = 1

2ν
S j−2ν(X−),
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X± = (
X±
1 , X±

2 , . . .
)
, X̃

± = (
X̃±
1 , X̃±

2 , . . . ,
)
,

Y± = (
Y ±
1 , Y ±

2 , . . .
)
, Ỹ

± = (
Ỹ ±
1 , Ỹ ±

2 , . . . ,
)
, W ± = (

W ±
1 , W ±

2 , . . .
)
,

X±
2k+1 = √

2

⎡
⎣ k∑

j=0

±(δ j,0x − 2it + is j )

( 1
2

k-j

) (
1

2

)k− j

+ (2k)!
23k+1(k!)2

(−1)k

(2k + 1)

⎤
⎦ ,

X̃±
2k+1 = √

2

⎡
⎣ k∑

j=0

±(δ j,0x + 2it + ir j )

( 1
2

k-j

) (
1

2

)k− j

+ (2k)!
23k+1(k!)2

(−1)k

(2k + 1)

⎤
⎦ ,

W ±
2k+1 = Y ±

2k+1 = X±
2k+1, Ỹ ±

2k+1 = X̃±
2k+1, W ±

2k = (−1)k

k · 2k
,

X±
2k(ν) = X̃±

2k(ν) = (ν + 1)

[
(−1)k

k · 2k

]
, Y ±

2k = Ỹ ±
2k = 0,

δ j,0 is the standard Kronecker delta notation (i.e., δ0,0 = 1 and zero otherwise),

(
α

n

)
≡ α(α − 1) · · · (α − n + 1)

n! ,

and parameters sk and rk are free real constants.

Theorem 5 All the three types of rogue waves in the above theorems satisfy the fol-
lowing boundary conditions,

un(x, t) → (−1)ne−2it , x, t → ±∞. (20)

In addition, the degrees of their denominator polynomials are

deg(τ (1)
0 ) = n(n + 1), deg(τ (2)

0 ) = n(n − 1) + 1, deg(τ (3)
0 ) = n2. (21)

Remark 1 Type-I and type-III rogue waves have 2n real parameters, {sk, rk, 0 ≤ k ≤
n − 1}. Type-II rogue waves have 2n − 1 real parameters, {s0, s1, . . . , sn−1} and
{r0, r1, . . . , rn−2}. However, the parameter rn−2 (when n ≥ 2) automatically vanishes
from this solution. The reason is that rn−2 only appears in the last rows of the deter-
minants τ

(2)
0 and τ

(2)
1 . We can readily show that the derivatives of these last rows with

respect to rn−2 are proportional to the first rows of those determinants; thus, the solu-
tion u(2)

n (x, t) is actually independent of rn−2. This means that type-II rogue waves
have only 2n −2 real parameters {s0, s1, . . . , sn−1} and {r0, r1, . . . , rn−3}when n ≥ 2
(they have one real parameter s0 when n = 1). Utilizing time-translation invariance
of the nonlocal NLS equation (1), one of those parameters can be further removed for
each type of these solutions.
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3 Derivation of rogue wave solutions

In this section, we derive the rogue wave solutions given in Sect. 2. This derivation
is based on the generalized Darboux transformation (DT) first proposed in [62] and
further developed in [10,63]. The outline of our derivation is as follows.

We begin with the following ZS-AKNS scattering problem [64,65]:

Φx = U (Q, λ)Φ, (22)

Φt = V (Q, λ)Φ, (23)

where

U (Q, λ) = −iλσ3 + Q, (24)

V (Q, λ) = 2iλ2σ3 − 2λQ − iσ3
(

Qx − Q2
)

, (25)

Q(x, t) =
(

0 u(x, t)
v(x, t) 0

)
, σ3 = diag(1,−1). (26)

The compatibility condition of these equations is the zero-curvature equation

Ut − Vx + [U , V ] = 0, (27)

which yields the following coupled system for potential functions (u, v) in the matrix
Q:

iut = uxx − 2u2v, (28)

ivt = − vxx + 2v2u. (29)

The focusing nonlocal NLS equation (1) is obtained from the above coupled system
under the symmetry reduction [36]:

v(x, t) = −u∗(− x, t). (30)

Under this reduction, the potential matrix Q satisfies the following symmetry condi-
tion:

σ1Q∗(x, t)σ1 = −Q(− x, t), (31)

where

σ1 =
[
0 1
1 0

]
. (32)

To construct the Darboux transformation, we also introduce the adjoint spectral prob-
lem

Ψx = −Ψ U (Q, λ), (33)

Ψt = −Ψ V (Q, λ). (34)
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3.1 N-fold Darboux transformation and its reduction

For theZS-AKNSscatteringproblem (22), (23)with general potential functionsu(x, t)
and v(x, t), its Darboux transformation as given in [10,39,63] is

T = I + ζ1 − λ1

λ − ζ1
P1, P1 = Φ1Ψ1

Ψ1Φ1
, (35)

where Φ1 is a column-vector solution of the original Lax pair system (22), (23)
with spectral parameter λ = λ1, and Ψ1 is a row vector solution of the adjoint Lax
pair system (33), (34) with spectral parameter λ = ζ1. This Darboux transformation
closely mimics the dressing matrix in the Riemann–Hilbert formulation of the inverse
scattering transform for the focusing NLS equation [65,66]. Under this Darboux trans-
formation, if Φ(x, λ) satisfies the original ZS-AKNS scattering equations (22), (23),
then the new function

Φ[1] = T Φ (36)

would satisfy the same ZS-AKNS scattering problem, except that the potential matrix
Q is transformed to

Q[1] = Q + i(ζ1 − λ1) [σ3, P1] . (37)

This relation between the old and new potentials is the Bäcklund transformation for
the coupled evolution equations (28), (29).

The above Douboux transformation is for the general coupled system (28), (29).
Now we consider the reduction in this DT for the nonlocal NLS equation (1). Due to
the potential symmetry (31), it can be shown by direct calculations that the matrix U
possesses the following symmetry

σ1U∗(− x, t,−λ∗)σ1 = −U (x, t, λ). (38)

Using this symmetry and the zero-curvature equation (27), we can derive the corre-
sponding symmetry of the matrix V by utilizing the fact that, for the given matrix U
in (24), the matrix V which satisfies the zero-curvature equation (27) with the specific
form of λ-dependence as in Eq. (25) is unique. This V symmetry is

σ1V ∗(− x, t,−λ∗)σ1 = V (x, t, λ). (39)

Using theseU andV symmetries,we can derive the symmetries ofwave functionsΦ
and adjoint wave functions Ψ and hence the symmetry of the Darboux transformation
for the nonlocal NLS equation (1). Applying these symmetries to the spectral problems
(22), (23), we get

[
σ1Φ

∗(− x)
]

x = U (x,−λ∗)
[
σ1Φ

∗(− x)
]
, (40)

and

[
σ1Φ

∗(− x)
]

t = V (x,−λ∗)
[
σ1Φ

∗(− x)
]
. (41)
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Thus, if Φ(x) is a wave function of the linear system (22), (23) at λ, then σ1Φ
∗(− x)

is a wave function of this same system at −λ∗. This symmetry has been reported in
[37]. In the same way, we find that if Ψ (x) is an adjoint wave function of the adjoint
linear system (33), (34) at λ, thenΨ ∗(− x)σ1 is an adjoint wave function of the adjoint
system at −λ∗.

From the above symmetries, we see that if λ1 and ζ1 are purely imaginary, i.e.,
λ1, ζ1 ∈ iR, then functions σ1Φ

∗
1 (− x), Φ1(x) would satisfy the same Lax pair equa-

tions (22), (23) at λ = λ1, and functions Ψ ∗
1 (− x)σ1, Ψ1(x) would satisfy the same

adjoint Lax pair equations (33), (34) at λ = ζ1. In this case, if σ1Φ
∗
1 (− x) and Φ1(x)

are linearly dependent on each other, andΨ ∗
1 (− x)σ1,Ψ1(x) are linearly dependent on

each other, then the Darboux transformation (35) would preserve the potential reduc-
tion (30) and thus be a Darboux transformation for the nonlocal NLS equation (1).
Specifically, we have the following result.

Proposition 1 If λ1, ζ1 ∈ iR,

σ1Φ
∗
1 (− x) = α Φ1(x), Ψ ∗

1 (− x)σ1 = β Ψ1(x), (42)

where α and β are complex constants, then the Darboux matrix (35) is a Darboux
transformation for the focusing nonlocal NLS equation (1).

This proposition can be readily proved by checking that the new potential matrix
Q[1] from Eq. (37) satisfies the symmetry (30) under conditions (42).

Remark 2 Under conditions (42), it is easy to show that |α| = |β| = 1.

Remark 3 A similar, but more restrictive proposition was presented in [39], where
α, β were required to be ±1. Our proposition above gives a more general DT for
λ1, ζ1 ∈ iR.

Remark 4 If λ1, ζ1 /∈ iR, then another DT reduction exists for the focusing nonlocal
NLS equation (1) [39]. However, this DT is irrelevant to our rogue wave calculations.

The N -fold Darboux transformation is a N times iteration of the elementary Dar-
boux transformation. These N iterations of the elementary DT can be lumped together
into a single N -fold Darboux matrix, which would yield a concise algebraic expres-
sion for the new solutions. For rogue wave calculations, the relevant N -fold Darboux
matrix is given in the following proposition.

Proposition 2 The N-fold Darboux transformation matrix for the focusing nonlocal
NLS equation (1) can be represented as

TN = I − Y M−1D−1X , (43)
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where

Y = [ Φ1, Φ2, . . . , ΦN ]2×N , X =

⎡
⎢⎢⎢⎣

Ψ1
Ψ2
...

ΨN

⎤
⎥⎥⎥⎦

N×2

,

M =
(

m(N )
i, j

)
1≤i, j≤N

, m(N )
i, j = ΨiΦ j

λ j − ζi
,

D = diag (λ − ζ1, λ − ζ2, . . . , λ − ζN ) ,

λk, ζk ∈ iR, Φk ≡ Φ(x, t, λk) solves the spectral equation (22), (23) at λ = λk ,
Ψk ≡ Ψ (x, t, ζk) solves the adjoint spectral equation (33), (34) at λ = ζk ,

σ1Φ
∗(− x, t, λk) = αk Φ(x, t, λk), Ψ ∗(− x, t, ζk)σ1 = βk Ψ (x, t, ζk),

and |αk | = |βk | = 1. Moreover, the Bäcklund transformation between potential func-
tions is:

u[N ] = u − i

⎡
⎣σ3,

N∑
i, j=1

Φi (M−1)i, jΨ j

⎤
⎦
1,2

= u + 2i

∣∣∣∣ M X2
Y1 0

∣∣∣∣
|M | , (44)

where Y1 represents the first row of matrix Y , and X2 represents the second column
of matrix X .

This N -fold DT has been reported in [39], and the last expression in Eq. (44) can
be found in [66]. The proof of this theorem can be given along the lines of [66,67].

3.2 Derivation of rogue waves

To derive formulas for rogue waves, we first need the general eigenfunctions solved
from the linear system (22), (23) and its adjoint system (33), (34). Choosing a plane
wave solution u[0] = e−2it to be the seed solution and introducing a diagonal matrix
D = diag

(
e−it , eit

)
, we can derive a general wave function for the linear system (22),

(23) as
Φ(x, t) = Dφ(x, t), (45)

where

φ(x, t) =
(

c1eA + c2e−A

c4eA + c3e−A

)
,

A =
√

−λ2 − 1(x − 2λt + iθ),

c3 = c2
(
iλ −

√
−λ2 − 1

)
, c4 = c1

(
iλ +

√
−λ2 − 1

)
, (46)
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and c1, c2, θ are arbitrary complex constants. Imposing the conditions of λ being
purely imaginary, |λ| > 1, θ real, and

αc2 = c∗
1

(
iλ +

√
−λ2 − 1

)
, |α| = 1, (47)

the above wave function would satisfy the symmetry condition (42). Through a simple
Gauge (phase) transformation on the complex constant c1, we can normalize α = 1.

Similarly, for the same seed solution u[0] = e−2it , we can derive the adjoint wave
functions to Eqs. (33), (34) satisfying the symmetry condition (42) as

Ψ (x, t) = ψ(x, t)D∗, (48)

where

ψ(x, t) =
(̂

c1e
Â + ĉ2e

− Â, ĉ4e
Â + ĉ3e

− Â
)

,

Â =
√

−λ2 − 1(x − 2λt + iθ̂ ),

ĉ3 = ĉ2
(
−iλ −

√
−λ2 − 1

)
, ĉ4 = ĉ1

(
−iλ +

√
−λ2 − 1

)
, (49)

λ is purely imaginary, |λ| > 1, θ̂ is real, and

β ĉ2 = ĉ∗
1

(
−iλ +

√
−λ2 − 1

)
, |β| = 1. (50)

Through aGauge transformation on the complex constant ĉ1, we can normalize β = 1.
It is noted that this Ψ (x, t) solution can also be derived directly from the above
Φ(x, t) solution using the fact that, for the present x-independent seed solution u[0], if
Φ(x, t, ζ ) solves the original linear system (22), (23), then Ψ (x, t, λ) = Φ†(x, t, ζ ∗)
solves the adjoint system (33), (34).

Due to the free complex constants c1 and ĉ1, we get two types of wave functions
and adjoint wave functions. When c1 is taken as a real constant and denoting λ = ih
with h > 1, then after a constant normalization, the wave function φ(x, t) becomes

φ(x, t, λ) = 1√
h − 1

⎛
⎝ sinh

[
A + 1

2 ln
(

h + √
h2 − 1

)]
sinh

[
−A + 1

2 ln
(

h + √
h2 − 1

)]
⎞
⎠ , (51)

A =
√

h2 − 1(x − 2iht + iθ), (52)

where θ is a real constant.Here, the scaling constant 1/
√

h − 1 is introduced so that this
wave function does not approach zero in the limit of h → 1 (i.e., λ → i). This scaling
of the wave function clearly does not affect the solution in view of Proposition 2.
Hereafter, we call this wave function type-a.
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When c1 is taken as a purely imaginary constant, then after a constant normalization,
the wave function φ(x, t) becomes

φ(x, t, λ) =
⎛
⎝ cosh

[
A + 1

2 ln
(

h + √
h2 − 1

)]
− cosh

[
A − 1

2 ln
(

h + √
h2 − 1

)]
⎞
⎠ , (53)

where A is the same as that in (52). Hereafter, we call this wave function type-b.
If we take the limit of h → 1+ in the above solution (53), we also get a special

wave function

φ0 =
(

1
−1

)
(54)

at the spectral parameter λ = i. We call this wave function type-c.
Similarly, we get several types of adjoint wave functions. If ĉ1 is taken as a real

constant and denoting λ = −îh with ĥ > 1, then after a constant normalization, the
adjoint wave function (49) becomes

ψT(x, t, λ) = 1√
ĥ − 1

⎛
⎝ sinh

[
Â + 1

2 ln
(

ĥ +
√

ĥ2 − 1
)]

sinh
[
− Â + 1

2 ln
(

ĥ +
√

ĥ2 − 1
)]

⎞
⎠ ,

Â =
√

ĥ2 − 1(x + 2îht + iθ̂ ), (55)

where θ̂ is a real constant. Since this adjoint wave function is the counterpart of type-a
wave function, we call it of type-a as well. If ĉ1 is taken as a purely imaginary constant,
then after a constant normalization, the adjoint wave function (49) becomes

ψT(x, t, λ) =
⎛
⎝ cosh

[
Â + 1

2 ln
(

ĥ +
√

ĥ2 − 1
)]

− cosh
[

Â − 1
2 ln

(
ĥ +

√
ĥ2 − 1

)]
⎞
⎠ . (56)

This adjoint wave function will be called type-b since it is the counterpart of the type-b
wave function. In the limit of ĥ → 1+, this latter adjoint wave function reduces to

ψ0 = (1,−1) (57)

at the spectral parameter λ = − i. It will be called type-c.
Rogue waves are rational solutions. To derive rogue waves from the above wave

functions and adjoint wave functions using Proposition 2, we need to choose spectral
parameters λk and ζk so that the exponents A and Â vanish themselves or vanish under
certain limits. These exponents would vanish when λ = ± i. Thus, we can take λk to
be i or approach i, and take ζk to be − i or approach − i. Since wave functions and
adjoint wave functions in the Darboux transformation for the nonlocal NLS equation
(1) are unrelated (see Proposition 2), and several different types of wave functions and
adjoint wave functions exist, we have a lot of freedom in the construction of solutions.
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Choices of different types of wave functions and adjoint wave functions will lead to
different types of rogue waves. This will be treated separately below.

1. We choose the wave functions to be all type-a with spectral parameters λ = λk

and constant θ = θk , where

λk = i(1 + ε2k ), θk =
n−1∑
j=0

s jε
2 j
k , 1 ≤ k ≤ n, (58)

and s0, s1, . . . , sn−1 are real constants. It is important that these real constants s j are
k-independent. In addition, we choose the adjoint wave functions to be also all type-a
with spectral parameters λ = ζk and constant θ̂ = θ̂k , where

ζk = − i(1 + ε̃2k ), θ̂k =
n−1∑
j=0

r j ε̃
2 j
k , 1 ≤ k ≤ n, (59)

and r0, r1, . . . , rn−1 are k-independent real constants. Notice that the wave function
φ(x, t, λ) in (51) with λ = i(1+ ε2) and adjoint wave function ψ(x, t, ζ ) in (55) with
ζ = − i(1 + ε2) are both even functions of ε. Thus, we can expand

φ(x, t, λ) =
∞∑

k=0

φ(k)ε2k, ψ(x, t, ζ ) =
∞∑

k=0

ψ(k)ε̃2k, (60)

ψ(x, t, ζ )φ(x, t, λ)

λ − ζ
=

∞∑
k=0

∞∑
l=0

mk, l ε̃
2kε2l , (61)

where

φ(k) = lim
ε→0

∂2kφ(x, t, λ)

(2k)!∂ε2k
, ψ(k) = lim

ε̃→0

∂2kψ(x, t, ζ )

(2k)!∂ε̃2k
, (62)

and

mk,l = lim
ε,̃ε→0

1

(2k − 2)!(2l − 2)!
∂2k+2l−4

∂ε̃2k−2∂ε2l−2

[
ψ(x, t, ζ )φ(x, t, λ)

λ − ζ

]
. (63)

Applying these expansions to each matrix element in the Bäcklund transformation
(44), performing simple determinantmanipulations and taking the limits of εk , ε̃k → 0
(1 ≤ k ≤ n), we derive the type-I rogue waves as given in Theorem 1.

2. We choose the wave functions to be all type-a as in the first case, but choose
the adjoint wave functions to be a mixture of type-a and type-c. More specifically,
we choose the first adjoint wave function Ψ1 to be type-c and the other adjoint wave
functions to be type-a, i.e., Ψ1 = ψ0D∗ at spectral parameter λ = − i, and Ψk =
ψ(x, t, ζk)D∗(2 ≤ k ≤ n), where ψ(x, t, ζk) is the type-a adjoint wave function (55)
at spectral parameters λ = ζk and constant θ̂ = θ̂k as in Eq. (59). Then, repeating the
limit process as in the previous case, we derive the type-II rogue waves as given in
Theorem 2.
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3. We choose the wave functions to be all type-a as in the first two cases, but
choose the adjoint wave functions to be all type-b, with spectral parameters λ = ζk

and constant θ̂ = θ̂k as in Eq. (59). Then, repeating the same limit processes as in the
first two cases, we derive the type-III rogue waves as given in Theorem 3.

3.3 Algebraic expressions of rogue waves

In this subsection, we prove Theorem 4, which gives more explicit algebraic expres-
sions for the rogue waves in Theorems 1–3.

The basic idea is to notice that, the matrix elements in Theorems 1–3, which are
derivatives of certain functions in the small ε and ε̃ limits, are nothing, but the coef-
ficients of power expansions of those functions in ε and ε̃. Thus, we need to derive
these power expansions.

For this purpose, we first recall the following three expansions

√
2 + ε2 =

∞∑
k=0

pkε
2k, (64)

ln

(
1 + ε2

2

)
=

∞∑
k=1

qkε
2k, (65)

1

2
ln

(
1 + ε2 + ε

√
2 + ε2

)
=

∞∑
k=0

wkε
2k+1, (66)

where

pk = √
2

( 1
2
k

) (
1

2

)k

,

( 1
2
k

)
=

1
2

( 1
2 − 1

) · · · ( 12 − k + 1
)

k! ,

qk = (−1)k+1

k · 2k
, wk =

√
2(2k)!

23k+1(k!)2
(−1)k

(2k + 1)
.

Thefirst twoexpansions are straightforward.Regarding the third expansion (66), notice
that the function on its left side is odd in ε; hence, its expansion does not contain any
even powers of ε. To prove this expansion, we notice that

1

2
ln

(
1 + ε2 + ε

√
2 + ε2

)
= ln

⎛
⎝ ε√

2
+

√
1 +

(
ε√
2

)2
⎞
⎠ = i arcsin

(− iε√
2

)
,

because arcsin(x) = − i ln
(
ix + √

1 − x2
)
. Then, using the Taylor expansion of

arcsin(x), the third expansion (66) can then be proved.
Next, we define

Θ±(ε) = ± A + 1

2
ln

(
h +

√
h2 − 1

)
, (67)
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Θ̃±(̃ε) = ± Â + 1

2
ln

(
ĥ +

√
ĥ2 − 1

)
, (68)

where A, h, Â and ĥ are as given in Theorem 1. These functions appeared in the
exponents of the wave functions and adjoint wave functions in Theorems 1–3; thus,
their power expansions are needed.

Using the expansions (64) and (66), we can calculate the expansion for Θ+(ε) as

Θ+(ε) = ε
√
2 + ε2

(
x − 2i(1 + ε2)t +

∞∑
k=0

iskε
2k

)
+ 1

2
ln

(
1 + ε2 + ε

√
2 + ε2

)

= ε

( ∞∑
k=0

pkε
2k

) ( ∞∑
k=0

(
δk,0x − 2it + isk

)
ε2k

)
+

∞∑
k=0

wkε
2k+1,

where δk,0 is the Kronecker delta notation. Thus,

Θ+(ε) =
∞∑

k=0

X+
2k+1ε

2k+1, (69)

where X+
2k+1 is as given in Theorem 4. Similarly, we obtain the expansion for Θ̃+(̃ε)

as

Θ̃+(̃ε) =
∞∑

k=0

X̃+
2k+1ε̃

2k+1, (70)

where X̃+
2k+1 is as shown in Theorem 4.

Regarding Θ−(ε) and Θ̃−(̃ε), we notice that

Θ−(x) = [Θ+(− x)]∗, Θ̃−(x) = [Θ̃+(− x)]∗. (71)

From these relations, we get the expansions for Θ− and Θ̃− as

Θ−(ε) =
∞∑

k=0

X−
2k+1ε

2k+1, Θ̃−(̃ε) =
∞∑

k=0

X̃−
2k+1ε̃

2k+1, (72)

where X−
2k+1 and X̃−

2k+1 are as defined in Theorem 4.
From these expansions, we see that Θ±(ε) and Θ̃±(̃ε) are odd functions. Thus,

− Θ±(ε) = Θ±(− ε), − Θ̃±(̃ε) = Θ̃±(− ε̃). (73)

Using these relations, functions −Θ±(ε) and − Θ̃±(̃ε) can be expanded as

− Θ±(ε) =
∞∑

k=0

X±
2k+1 (− ε)2k+1 , − Θ̃±(̃ε) =

∞∑
k=0

X̃±
2k+1 (− ε̃)2k+1 . (74)
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Next, we also need to expand 1/(λ− ζ ), where λ = i(1+ ε2) and ζ = −i(1+ ε̃ 2).
This expansion can be obtained as follows

1

λ − ζ
= −2i

(2 + ε2)(2 + ε̃ 2)

(
1 − ε2ε̃2

(2 + ε2)(2 + ε̃2)

)−1

=
(
1

2i

)
1

(1 + ε2

2 )(1 + ε̃2

2 )

∞∑
ν=0

(
ε2ε̃2

(2 + ε2)(2 + ε̃2)

)ν

=
(
1

2i

) ∞∑
ν=0

(
ε2ε̃2

4

)ν

exp

[
−(ν + 1) ln

(
1 + ε2

2

)
− (ν + 1) ln

(
1 + ε̃2

2

)]

=
(
1

2i

) ∞∑
ν=0

(
ε2ε̃2

4

)ν

exp

( ∞∑
k=1

X±
2k(ν)ε2k +

∞∑
k=1

X̃±
2k(ν)̃ε 2k

)
, (75)

where X±
2k(ν) and X̃±

2k(ν) are as given in Theorem 4.

As in Theorem 4, we introduce vectorsX± and X̃
±
. Then, using Schur polynomials

defined in Sect. 2, we have

exp

( ∞∑
k=0

X±
k εk

)
=

∞∑
k=0

Sk(X±)εk, exp

( ∞∑
k=0

X̃±
k ε̃ k

)
=

∞∑
k=0

Sk(X̃
±
)̃ε k . (76)

Now, we are ready to derive all the matrix elements in Theorems 1–3 in terms
of purely algebraic expressions. First, we consider type-I rogue wave solutions in
Theorem 1. Its matrix elements m(1)

i, j defined in (4) come from the O(ε2i−2ε̃2 j−2)

coefficients in the two-variable Taylor expansion of the function

ψ(ζ )φ(λ)

λ − ζ
= ψ1(ζ )φ1(λ)

λ − ζ
+ ψ2(ζ )φ2(λ)

λ − ζ
, (77)

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2) are given in Eqs. (8), (9) with λ = i(1 + ε2)

and ζ = − i(1 + ε̃2).
By using expansions (69)–(76), a direct calculation shows that

ψ1(ζ )φ1(λ)

λ − ζ
=

(
1

2εε̃

)
cosh

[
Θ+(ε) + Θ̃+(̃ε)

] − cosh
[
Θ+(ε) − Θ̃+(̃ε)

]
λ − ζ

= 1

2i

∞∑
ν=0

(
ε2ε̃2

4

)ν ∞∑
k=0

S2k+1(X+)ε2k
∞∑

l=0

S2l+1(X̃
+
)̃ε2l

= 1

2i

∞∑
i=0

∞∑
j=0

min{i, j}∑
ν=0

1

4ν
S2i−2ν+1(X+)S2 j−2ν+1(X̃

+
)ε2i ε̃ 2 j ,

ψ2(ζ )φ2(λ)

λ − ζ
=

(
1

2εε̃

)
cosh

[
Θ−(ε) + Θ̃−(̃ε)

] − cosh
[
Θ−(ε) − Θ̃−(̃ε)

]
λ − ζ
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= 1

2i

∞∑
ν=0

(
ε2ε̃2

4

)ν ∞∑
k=0

S2k+1(X−)ε2k
∞∑

l=0

S2l+1(X̃
−
)̃ε2l

= 1

2i

∞∑
i=0

∞∑
j=0

min{i, j}∑
ν=0

1

4ν
S2i−2ν+1(X−)S2 j−2ν+1(X̃

−
)ε2i ε̃ 2 j .

Inserting these two parts into (77), the coefficient m(1)
i, j of the O(ε2i−2ε̃2 j−2) term is

then

m(1)
i, j = 1

2i

min{i−1, j−1}∑
ν=0

1

4ν

[
S2i−2ν−1(X+)S2 j−2ν−1(X̃

+
) + S2i−2ν−1(X−)S2 j−2ν−1(X̃

−
)
]
,

which matches that given in Theorem 4.
To express μ(1) and ν(1) in matrix τ

(1)
1 , we also need the expansions of wave

functions and adjoint wave functions. Derivation of these expansions is easier. Recall
that

φ1(λ) = sinh
(
Θ+)

ε
, ψ2(ζ ) = sinh(Θ̃−)

ε̃
.

Then, using the earlier results and following similar calculations, we get

φ1(λ) =
∞∑
j=1

μ
(1)
j ε2( j−1), μ

(1)
j = S2 j−1(Y+),

ψ2(ζ ) =
∞∑
j=1

ν
(1)
j ε̃2( j−1), ν

(1)
j = S2 j−1(Ỹ

−
),

where Y+, Ỹ−
, μ(1)

j and ν
(1)
j are as defined in Theorem 4.

For type-II rogue waves in Theorem 2, the only expression we need to derive is for
m(2)

1, j . This is again an easier derivation, and we find that

ψ0φ(λ)

λ + i
= φ2 − φ1

i(2 + ε2)
=

∞∑
j=1

m(2)
1, jε

2( j−1),

m(2)
1, j = 1

2i

[
S2 j−1(W+) − S2 j−1(W−)

]
,

where W± are as defined in Theorem 4.
At last, to derive explicit expressions for type-III rogue waves in Theorem 3, one

only needs to make somemodifications to the derivation for type-I rogue waves above.
In this case,
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ω(ζ )φ(λ)

λ − ζ
= ω1(ζ )φ1(λ)

λ − ζ
+ ω2(ζ )φ2(λ)

λ − ζ
, (78)

where ω(ζ ) is the adjoint wave function given in Theorem 3, and φ(λ) is still the wave
function given in Theorem 1. From direct calculations, we get

ω1(ζ )φ1(λ)

λ − ζ
=

(
1

2ε

)
sinh

[
Θ+(ε) + Θ̃+(̃ε)

] + sinh
[
Θ+(ε) − Θ̃+(̃ε)

]
λ − ζ

= 1

2i

∞∑
ν=0

(
ε2ε̃2

4

)ν ∞∑
k=0

S2k+1(X+)ε2k
∞∑

l=0

S2l(X̃
+
)̃ε2l

= 1

2i

∞∑
i=0

∞∑
j=0

min{i, j}∑
ν=0

1

4ν
S2i−2ν+1(X+)S2 j−2ν(X̃

+
)ε2i ε̃ 2 j ,

ω2(ζ )φ2(λ)

λ − ζ
=

(−1

2ε

)
sinh

[
Θ−(ε) + Θ̃−(̃ε)

] + sinh
[
Θ−(ε) − Θ̃−(̃ε)

]
λ − ζ

= i

2

∞∑
ν=0

(
ε2ε̃2

4

)ν ∞∑
k=0

S2k+1(X−)ε2k
∞∑

l=0

S2l(X̃
−
)̃ε2l

= i

2

∞∑
i=0

∞∑
j=0

min{i, j}∑
ν=0

1

4ν
S2i−2ν+1(X−)S2 j−2ν(X̃

−
)ε2i ε̃ 2 j .

Combining these two parts, the coefficient m(3)
i, j of the O(ε2i−2ε̃2 j−2) term is then

m(3)
i, j = 1

2i

min{i−1, j−1}∑
ν=0

1

4ν

[
S2i−2ν−1(X+)S2 j−2ν−2(X̃

+
) − S2i−2ν−1(X−)S2 j−2ν−2(X̃

−
)
]
,

which matches that in Theorem 4. Similarly,

ω2(ζ ) = −cosh(Θ̃−)

ε̃
=

∞∑
j=1

ν
(3)
j ε̃2( j−1), ν

(3)
j = −S2 j−2(Ỹ

−
).

Theorem 4 is then proved.

3.4 Boundary conditions

In this subsection, we prove Theorem 5, which gives the boundary conditions of these
rogue waves as well as the degrees of their denominator polynomials.

From the definition in (19), we know that the Schur polynomial has the form
Sk(x) = xk

1/k!+(lower degree terms). Thus, the degree of the polynomial Si−2ν(X̃
±
)

in (x, t) is (i − 2ν), and its leading term is given by ±(x + 2it)i−2ν/(i − 2ν)!. In
addition, the degree of the polynomial S j−2ν(X±) is ( j − 2ν), and its leading term is
given by ±(x − 2it) j−2ν/( j − 2ν)!. Thus,
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deg(A2 j−1,ν) = deg(B2 j−1,ν) = deg(Ã2 j−1,ν) = deg(B̃2 j−1,ν) = 2 j − 2ν − 1,

deg(A2 j−2,ν) = deg(B2 j−2,ν) = deg(Ã2 j−2,ν) = deg(B̃2 j−2,ν) = 2 j − 2ν − 2,

but

deg(A2 j−1,ν + B2 j−1,ν) = deg(Ã2 j−1,ν + B̃2 j−1,ν) = 2 j − 2ν − 2,

deg(A2 j−2,ν − B2 j−2,ν) = deg(Ã2 j−2,ν − B̃2 j−2,ν) = 2 j − 2ν − 3.

Using these relations and performing similar calculations as in Ref. [11], we can show
from Theorem 4 that

τ
(1)
0 = c(1)

0 (x2 + 4t2)n(n+1)/2 + (lower degree terms),

τ
(2)
0 = c(2)

0 (x + 2it)(n−1)(n−2)/2(x − 2it)n(n+1)/2 + (lower degree terms),

τ
(3)
0 = c(3)

0 (x + 2it)n(n−1)/2(x − 2it)n(n+1)/2 + (lower degree terms),

where c(1)
0 , c(2)

0 and c(3)
0 are n-dependent constants. Thus, the polynomial degrees of

τ
(k)
0 in Theorem 5 are proved.
In addition, we find that when n is odd,

τ
(1)
1 = ic(1)

0 (x2 + 4t2)n(n+1)/2 + (lower degree terms),

τ
(2)
1 = ic(2)

0 (x + 2it)(n−1)(n−2)/2(x − 2it)n(n+1)/2 + (lower degree terms),

τ
(3)
1 = ic(3)

0 (x + 2it)n(n−1)/2(x − 2it)n(n+1)/2 + (lower degree terms);

but when n is even, the polynomial degrees of τ
(1)
1 , τ (2)

1 and τ
(3)
1 are lower than those

of τ
(1)
0 , τ (2)

0 and τ
(3)
0 , respectively (in both x and t). Using these results, the boundary

conditions of the three types of rogue waves given in Theorem 5 are proved.

4 Dynamics of rogue waves

In this section, we discuss dynamics of these rogue waves.

4.1 Dynamics of type-I rogue waves

The first-order type-I rogue wave is obtained by setting n = 1 in Eq. (2), where the
matrix elements can be obtained from Theorem 4. In this case, we find that

μ
(1)
1 = √

2

(
x − 2it + is0 + 1

2

)
, ν

(1)
1 = −√

2

(
x + 2it + ir0 − 1

2

)
,

τ
(1)
0 = m(1)

1,1 = −i

[(
x − 2it + is0 + 1

2

) (
x + 2it + ir0 + 1

2

)
+
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(
x − 2it + is0 − 1

2

) (
x + 2it + ir0 − 1

2

)]
,

τ
(1)
1 =

∣∣∣∣∣ m(1)
1,1 ν

(1)
1

μ
(1)
1 0

∣∣∣∣∣ = 2

(
x − 2it + is0 + 1

2

) (
x + 2it + ir0 − 1

2

)
,

where r0 and s0 are real constants. Thus, the first-order type-I rogue wave is

u(1)
1 (x, t) = e−2i t

(
1 + 2 i

τ
(1)
1

τ
(1)
0

)

= e−2i t
[
1 − 2 (2x − 4it + 2is0 + 1) (2x + 4it + 2ir0 − 1)

16t2 + 4x2 + 8 (r0 − s0) t + 4i (r0 + s0) x − 4r0s0 + 1

]
.

Denoting t0 ≡ (r0 − s0)/4 and x0 ≡ (r0 + s0)/2, this rogue wave can be rewritten as

u(1)
1 (x, t) = −e−2i t

[
1 + 4(4it̂ − 1)

16t̂2 + 4 (x + ix0) 2 + 1

]
, t̂ = t + t0. (79)

This solution has one nonreducible real parameter x0, since the parameter t0 can be
removed by time-translation invariance.

When x20 < 1/4, this rogue wave is nonsingular. If x0 = 0, it is the classical x-
symmetric Peregrine solution of the local NLS equation, which is shown in Fig. 1a
[note that any x-symmetric solution of the local NLS equation would satisfy the
nonlocal equation (1)]. The peak amplitude of this Peregrine solution is 3, i.e., three
times the level of the constant background. But if x0 �= 0, this solution would be
x-asymmetric and would not satisfy the local NLS equation, and its peak amplitude
would become higher. One of such solutions is shown in Fig. 1b.

When x20 ≥ 1/4, however, this rogue wave would collapse at x = 0 and two time

values tc = ±
√

(4x20 − 1)/16. One such solution is displayed in Fig. 2. Note that wave
collapse has been reported in bright solitons of the nonlocal NLS equation (1) before
[36,37]. Here we see that collapse occurs for rogue waves as well.

Next, we consider second-order type-I rogue waves, which are given in Theorems 1
and 4 (with n = 2). By tuning the free real parameters s0, r0, s1 and r1, we can get
both nonsingular and singular (collapsing) solutions. Two nonsingular solutions are
displayed in Fig. 3, where a single-peak pattern and a triangular pattern are observed.
These patterns resemble those in the local NLS equation [5,6,8,10–12], even though
the present solutions are x-asymmetric and thus do not satisfy the local NLS equation.

More interesting are the collapsing solutions, which show more complex patterns
which have not been observed before. Six of them are displayed in Fig. 4. In panel
(a), the solution contains two singular (collapsing) peaks on the vertical t axis, plus
two “Peregrine-like” nonsingular peaks on the horizontal x axis. Panel (b) contains
a quartet of singular peaks and one “Peregrine-like” nonsingular peak in the middle.
The other four panels each contain six singular peaks, which are arranged in various
circular and double-triangle patterns.Note that themaximumnumber of singular peaks
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Fig. 1 Two nonsingular first-order type-I rogue waves (79). a s0 = 0, r0 = 0 (corresponding to x0 = 0);
b s0 = 1/2, r0 = −1/20 (corresponding to x0 = 0.225); c, d the corresponding density plots

Fig. 2 A collapsing first-order type-I rogue wave (79) with s0 = 6, r0 = 1 (corresponding to x0 = 3.5). a
3D plot; b density plot. Different color maps are used in these two plots for aesthetic reasons (color figure
online)

in these solutions is six, which matches the polynomial degree of the denominator τ (1)
0

given in Theorem 5 at this n = 2 value.
Third-order type-I rogue waves would exhibit an even wider variety of solution

patterns. Six of them are displayed in Fig. 5. The top row shows two nonsingular
solutions, which contain six “Peregrine-like” peaks arranged in triangular and pen-
tagon patterns, reminiscent of similar solutions in the local NLS equation [9–12]. The
lower two rows show four collapsing solutions, with panel (c) containing two singular
peaks and five “Peregrine-like” nonsingular peaks in between panel (d) containing ten
singular peaks surrounding one “Peregrine-like” nonsingular peak, panel (e) contain-
ing twelve singular peaks in a pentagon–triangular mixed pattern, and panel (f) also
containing twelve singular peaks, but in a more exotic pattern. Again, this maximum

123



966 B. Yang, J. Yang

Fig. 3 Two nonsingular x-asymmetric second-order type-I rogue waves. a s0 = r0 = 1/6, s1 = r1 = 0;
b s0 = r0 = 1/6, s1 = 100, r1 = −100. c, d the corresponding density plots

Fig. 4 Six collapsing second-order type-I rogue waves. a s0 = r0 = 2, s1 = r1 = 50; b s0 = r0 =
3, s1 = r1 = −20; c s0 = 1/6, r0 = −1/6, s1 = r1 = 100; d s0 = r0 = 6, s1 = 20, r1 = −20; e
s0 = r0 = 6, s1 = −20, r1 = 20; f s0 = r0 = 6, s1 = −20, r1 = −20
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Fig. 5 Six third-order type-I rogue waves (top row: nonsingular solutions; lower two rows: collapsing
solutions). a s0 = 1/6, r0 = 1/4, s1 = 30, r1 = −30, s2 = 0, r2 = 0; b s0 = 1/6, r0 = 1/4, s1 =
0, r1 = 0, s2 = 100, r2 = −100; c s0 = r0 = 0, s1 = 0, r1 = 0, s2 = r2 = 240; d s0 = r0 = 10, s1 =
80, r1 = 0, s2 = 0, r2 = −600. e s0 = r0 = 1, s1 = r1 = 10, s2 = r2 = 120; f s0 = r0 = 0, s1 = r1 =
100, s2 = r2 = 0

number of singular peaks twelve matches the polynomial degree of the denominator
τ

(1)
0 at n = 3.

4.2 Dynamics of type-II rogue waves

Type-II rogue waves are given in Theorems 2 and 4. First, we consider the first order
of such solutions, where n = 1. In this case, we get
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Fig. 6 First-order type-II rogue wave (80), with parameter s0 = 0. a 3D plot; b density plot

μ
(2)
1 = μ

(1)
1 , ν

(2)
1 = −1,

τ
(2)
0 = m(2)

1,1 = − i
√
2 (x − 2i t + is0) ,

τ
(2)
1 =

∣∣∣∣∣ m(2)
1,1 ν

(2)
1

μ
(2)
1 0

∣∣∣∣∣ = √
2

(
x − 2it + is0 + 1

2

)
;

thus,

u(2)
1 (x, t) = −e−2it

[
1 + 1

x − 2it̂

]
, t̂ = t − s0/2. (80)

Here s0 is a free real parameter, which can be removed by a shift of time. This rogue
wave is shown in Fig. 6. It collapses once at x = 0 and t̂ = 0. In addition, it spatially
decays to the constant background in proportion to 1/x , which is slower than the
classical Peregrine solution. A counterpart of this solution in the nonlocal Davey–
Stewartson equations has been reported in [54,55].

Nowwe consider the second-order type-II roguewaves by setting n = 2 in Eq. (10).
Using Theorem 4, we find that these solutions are given by

u(2)
2 (x, t) = e−2it

[
1 + 3 (2x − 4it + 2is0 + 1)2

4 (x − 2it + is0)3 − 3 (x − 6it + is0 + 2is1)

]
, (81)

which can be rewritten as

u(2)
2 (x, t) = e−2it

[
1 + 3

(
2x − 4it̂ + 1

)2
4

(
x − 2it̂

)3 − 3
(
x − 6it̂ + 2iŝ1

)
]

, (82)

where t̂ = t − s0/2, and ŝ1 = s1 − s0. This solution contains a single nonreducible
real parameter ŝ1 after the parameter s0 is removed by time translation.

It is easy to show that this solution always collapses three times—one at x = 0, and
the other two at locations symmetric in x . In addition, the latter two collapses occur at
the same time. To illustrate, two such collapsing rogue waves are displayed in Fig. 7.
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Fig. 7 Two second-order type-II rogue waves (82). a s0 = 30, s1 = 0; b s0 = −30, s1 = 0

Fig. 8 Six third-order type-II rogue waves. a s0 = −20, s1 = s2 = 0, r0 = 30; b s0 = 20, s1 = s2 =
0, r0 = −30; c s0 = r0 = 2, s1 = 0, s2 = 40; d s0 = r0 = 4, s1 = 0, s2 = 400; e s0 = r0 = −4, s1 = 0,
s2 = −400; f s0 = r0 = 0, s1 = 0, s2 = 200

Third-order type-II rogue waves are obtained by setting n = 3 in Eq. (10), and they
contain four free real parameters, s0, s1, s2 and r0. Six of such solutions are displayed
in Fig. 8. These solutions always collapse, and this collapsing exhibits various patterns
such as triangles and pentagons. The maximum number of collapsing points is 7 [as
in panels (a, b, d, e)], which matches the polynomial degree of τ

(2)
0 for n = 3. But

this number of collapsing points can be less than 7 [as in panels (c, f)]; in which case
pairs of collapsing points are replaced by “Peregrine-like” nonsingular peaks.
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Fig. 9 Three second-order type-III rogue waves. a s0 = 0, s1 = 60, r0 = r1 = 0; b s0 = 2, s1 =
− 60, r0 = r1 = 0; c s0 = 2, s1 = − 40, r0 = 2, r1 = 0

4.3 Dynamics of type-III rogue waves

Type-III roguewaves are obtained fromEq. (14). The first-order one, with n = 1, turns
out to be the same as the first-order type-II rogue wave given in Eq. (80) and Fig. 6.
The second-order one, with n = 2, has the polynomial degree of its denominator τ

(3)
0

to be 4. These rogue waves have four free real parameters s0, r0, s1 and r1. Three such
solutions are shown in Fig. 9. The solutions in panels (a) and (b) contain four singular
peaks arranged in novel patterns, while the one in panel (c) contains two singular peaks
and one “Peregrine-like” nonsingular peak.

5 Summary and discussion

In summary, we have derived three types of rogue waves for the focusing nonlocal
NLS equation (1) by Darboux transformation and Schur polynomials. The first type
of n-th order rogue waves has denominator degrees n(n + 1) and can be bounded or
collapsing depending on their 2n real parameters. The second and third types of n-th
order rogue waves have denominator degrees n(n − 1) + 1 and n2, respectively, and
they appear to be collapsing for all their 2n −2 (n > 1) and 2n real parameters. These
rogue waves also exhibit rich solution patterns, encompassing not only those in the
local NLS equation, but also many new ones. These results reveal that the nonlocal
NLS equation admits a wider variety of roguewaves, which could be useful in physical
systems where this nonlocal NLS equation arises.

We should point out that, by other choices of wave functions and adjoint wave
functions in the Darboux transformation (see Sect. 3.2), we can get additional rogue
wave solutions. But all additional solutions we obtained turn out to be equivalent
to those three types reported in this article. For example, if we choose the wave
functions to be all type-b, but choose the adjoint wave functions to be all type-a,
then we would get rogue wave solutions [u(3)

n (− x,−t)]∗, which are equivalent to
the type-III rogue waves in Theorem 3 since the nonlocal NLS equation (1) is PT -
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invariant (see Introduction). For another example, if we choose the first wave function
and adjoint wave function to be type-c, but the remaining wave functions and adjoint
wave functions to be all type-a, then we would just get type-I rogue waves, but with
a negative sign. Whether there exist additional types of rogue waves which are not
equivalent to the three types derived in this paper is still an open question.

The roguewaves presented in this article correspond to the special initial conditions,
which are special deformations of the constant background. In realistic situations, the
initial condition is rarely one of those special deformations. Rather, it is often a random
noise perturbation on the constant background. Then, can these rogue waves arise
from a chaotic background? Will they stay bounded or collapse? What is the statistics
of these rogue waves and their peak amplitudes under random initial conditions?
For rogue waves in other physical systems, these questions have been investigated
[3,68,69]. For the nonlocal NLS equation (1), these questions merit exploration as
well. But they lie beyond the scope of the present article and will be left for future
studies.
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