
Letters in Mathematical Physics (2019) 109:497–564
https://doi.org/10.1007/s11005-018-1114-8

Feynman integral relations from parametric annihilators

Thomas Bitoun1 · Christian Bogner2 · René Pascal Klausen2 · Erik Panzer3

Received: 20 March 2018 / Revised: 15 June 2018 / Accepted: 6 July 2018 / Published online: 9 August 2018
© The Author(s) 2018

Abstract
We study shift relations between Feynman integrals via the Mellin transform through
parametric annihilation operators. These contain the momentum space integration by
parts relations, which are well known in the physics literature. Applying a result of
Loeser and Sabbah, we conclude that the number of master integrals is computed by
the Euler characteristic of the Lee–Pomeransky polynomial. We illustrate techniques
to compute this Euler characteristic in various examples and compare it with numbers
of master integrals obtained in previous works.

Keywords Feynman integrals ·Master integrals · Integration by parts · IBP ·
D-module · Euler characteristic

1 Introduction

At higher orders in perturbative quantum field theory, the computation of observables
via Feynman diagrams involves a rapidly growing number of Feynman integrals.
Fortunately, the number of integrals which need to be computed explicitly can be
reduced drastically by use of linear relations

∑

i

ciIi = 0 (∗)

between different Feynman integrals Ii , with coefficients ci that are rational functions
of the space-time dimension d and the kinematic invariants characterizing the physical
process (masses and momenta of elementary particles).
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Themost commonly usedmethod to derive such identities is the integration by parts
(IBP) method introduced in [22,92]. In this approach, the relations (∗) are obtained
as integrals of total derivatives in the momentum space representation of Feynman
integrals.Combining these relations, any integral of interest canbe expressed as a linear
combination of somefinite, preferred set ofmaster integrals.1 Laporta’s algorithm [50]
provides a popular approach to obtain such reductions, and various implementations of
it are available [2,62,75,76,80,86,98]. However, the increase of complexity of todays
computations has recently motivated considerable theoretical effort to improve our
understanding of the IBP approach and the efficiency of automated reductions [35,40,
52,55,57,70,78,97,99]. This includes a method by Baikov [5,7,8,82], which is based
on a parametric representation of Feynman integrals.

It is interesting to ask for the number of master integrals which remain after such
reductions. This number provides an estimate for the complexity of the computation
and informs the problem of constructing a basis ofmaster integrals by anAnsatz. In the
recent literature, algorithms to count master integrals were proposed and implemented
in the computer programs Mint [58] and Azurite [32].

We propose an unambiguous definition for the number of master integrals as the
dimension of an appropriate vector space. This definition and our entire discussion are
independent of the method of the reduction. The main result of this article shows that
this number is a well-understood topological invariant: the Euler characteristic of the
complement of a hypersurface {G = 0} associated to the Feynman graph. Therefore,
many powerful tools are available for its computation.

To arrive at our result, we follow Lee and Pomeransky [58] and view Feynman inte-
grals as aMellin transform of G−d/2, where G is a certain polynomial in the Schwinger
parameters. Each of these parameters corresponds to a denominator (inverse propaga-
tors or irreducible scalar products) of the momentum space integrand. The classical
IBP relations relate Feynman integrals which differ from each other by integer shifts
of the exponents of these denominators. As Lee [56] and Baikov [7] pointed out, such
shift relations correspond to annihilation operators of the integrands of parametric
representations.2 In our set-up, these are differential operators P satisfying

PG−d/2 = 0.

Werecall that such parametric annihilators provide all shift relations betweenFeynman
integrals, in particular the ones known from the classical IBP method in momentum
space. The obvious question, whether the latter suffice to obtain all shift relations,
seems to remain open. As a positive indication in this direction, we show that the
momentum space relations contain the inverse dimension shift.

Ideals of parametric annihilators are examples of D-modules. Loeser and Sabbah
studied the algebraic Mellin transform [60] of holonomic D-modules and proved a
dimension formula in [59,61], which, applied to our case, identifies the number of
master integrals as an Euler characteristic. The key property here is holonomicity,

1 For different applications, various criteria for choosing the master integrals have been suggested. These
include uniform transcendentality [39], finiteness [96] or finiteness of coefficients [21].
2 Tkachov’s idea [93] to insert Bernstein–Sato operators in the integrand with two Symanzik polynomials
was used for numerical computations of one- and two-loop integrals [9,27,28,68,69].
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which was studied in the context of Feynman integrals already in [46] and of course
is crucial in the proof [77] that there are only finitely many master integrals.

It is furthermore worthwhile to notice that algorithms [65,67] have been devel-
oped to compute generators for the ideal of all annihilators of G−d/2, see also [72,
section 5.3]. Today, efficient implementations of these algorithms via Gröbner bases
are available in specialized computer algebra systems such as Singular [4,25]. We
hope that these improvements may stimulate further progress in the application of
D-module theory to Feynman integrals [30,78,79,90].

We begin our article with a review of the momentum space and parametric repre-
sentations of scalar Feynman integrals and recall how the Mellin transform translates
shift relations to differential operators that annihilate the integrand. In Sect. 2.4 we
illustrate how the classical IBP identities obtained in momentum space supply special
examples of such annihilators. The relations between integrals in different dimensions
are addressed in Sect. 2.5, where we relate them to the Bernstein–Sato operators and
show that these can be obtained from momentum space IBPs. Our main result is pre-
sented in Sect. 3, where we apply the theory of Loeser and Sabbah to count the master
integrals in terms of the Euler characteristic. Practical applications of this formula are
presented in Sect. 4, which includes a comparison to other approaches and results in
the literature. Finally, we discuss some open questions and future directions.

In “Appendix A”, we give an example to illustrate our definitions in momentum
space, present proofs of the parametric representations and demonstrate algebraically
that momentum space IBPs are parametric annihilators. The theory of Loeser and
Sabbah is reviewed in “Appendix B”, which includes complete, simplified proofs
of those theorems that we invoke in Sect. 3. Finally, “Appendix C” discusses the
parametric annihilators of a two-loop example in detail.

2 Annihilators and integral relations

In this section, we elaborate a method to obtain relations between Feynman integrals
from differential operators with respect to the Feynman parameters and show that
these relations include the well-known IBP relations from momentum space.

2.1 Feynman integrals and Schwinger parameters

At first we fix conventions and notation for Feynman integrals inmomentum space and
recall their representations using Schwinger parameters.While the former is the setting
for most traditional approaches to study IBP identities, it is the latter (in particular
in its form with a single polynomial) which provides the direct link to the theory of
D-modules that our subsequent discussion will be based on.

We consider integrals (also called integral families [98]) that are defined by an
dL-fold integral (L is the loop number), over so-called loop momenta �1, . . . , �L
in d-dimensional Minkowski space, of a product of powers of denominators D =
(D1, . . . ,DN ):
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I(ν1, . . . , νN ) =
⎛

⎝
L∏

j=1

∫
dd� j

iπd/2

⎞

⎠
N∏

a=1
D−νa
a . (2.1)

The denominators are (at most) quadratic forms in the L loop momenta and some
number E of linearly independent externalmomenta p1, . . . , pE . Inmost applications,
the denominators are inverse Feynman propagators associated with the momentum
flow through a Feynman graph that arises from imposing momentum conservation at
each vertex, see Example 3. However, we will only restrict ourselves to graphs from
Sect. 3.2 onwards, and keep our discussion completely general until then.

An integral (2.1) is a function of the indices ν = (ν1, . . . , νN ) (denominator expo-
nents), the dimension d of spacetime and kinematical invariants (masses and scalar
products of external momenta). However, we suppress the dependence on kinematics
in the notation and treat kinematical invariants as complex numbers throughout. The
dimension and indices are understood as free variables; that is, we consider Feynman
integrals as meromorphic functions of (d, ν) ∈ C1+N in the sense of Speer [83].

Definition 1 To each denominator Da of a list D = (D1, . . . ,DN ), we associate a
variable xa (1 ≤ a ≤ N ) called Schwinger parameter. The linear combination

N∑

a=1
xaDa = −

L∑

i, j=1
�i j (�i · � j )+

L∑

i=1
2(Qi · �i )+ J (2.2)

decomposes into quadratic, linear and constant terms in the loop momenta.3 This
defines a symmetric L × L matrix �, a vector Q of L linear combinations of external
momenta and a scalar J . We define furthermore the polynomials

U := det�, F := U
(
Qᵀ�−1Q + J

)
and G := U + F . (2.3)

Schwinger parameters yield useful representations of the Feynman integrals (2.1):

Proposition 2 Let us denote the superficial degree of convergence by

ω := |ν| − L
d

2
where |ν| :=

N∑

i=1
νi . (2.4)

Then, the Feynman integral (2.1) can be written as

I(ν1, . . . , νN ) =
(

N∏

i=1

∫ ∞

0

xνi−1
i dxi
� (νi )

)
e−F/U

Ud/2 , (2.5)

I(ν1, . . . , νN ) = �(ω)

(
N∏

i=1

∫ ∞

0

xνi−1
i dxi
� (νi )

)
δ
(
1−∑N

j=1 x j
)

Ud/2−ωFω
and (2.6)

3 The scalar products �i · � j = �1i �
1
j −

∑d
μ=2 �

μ
i �

μ
j are understood with respect to the Minkowski metric.
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Fig. 1 The one-loop bubble
graph with momentum flow k2 = + p

k1 =

p −p

I(ν1, . . . , νN ) = �
( d
2

)

�
( d
2 − ω

)
(

N∏

i=1

∫ ∞

0

xνi−1
i dxi
�(νi )

)
G−d/2. (2.7)

Formulas (2.5) and (2.6) are known since the sixties, and we refer to [64,81] for
detailed discussions and for the original references. The trivial consequence (2.7) was
popularized only much more recently by Lee and Pomeransky [58], and it is this
representation that we will use in the following. In Appendix A.1, we include proofs
for these equations and provide further technical details.

Example 3 Consider the graph in Fig. 1 with massless Feynman propagators, D1 =
−�2 and D2 = −(� + p)2. We find � = x1 + x2, Q = −x2 p and J = −x2 p2
according to (2.2). Hence, the graph polynomials (2.3) become U = x1 + x2 and
F = (−p2)x1x2 such that

I(ν1, ν2) = �( d2 )

�(d − ν1 − ν2)

∫ ∞

0

xν1−1
1 dx1
�(ν1)

∫ ∞

0

xν2−1
2 dx2
�(ν2)

×
(
x1 + x2 − p2x1x2

)−d/2
. (2.8)

Remark 4 (meromorphicity) Depending on the values of d and ν, integrals (2.1) and
(2.5)–(2.7) can be divergent. However, there exists a non-empty, open domain in
C1+N � (d, ν) where all of them are convergent and agree with each other.4 From
there, analytic continuation defines a unique, meromorphic extension of every Feyn-
man integral to the whole parameter space C1+N . The poles are simple and located
on affine hyperplanes defined by linear equations with integer coefficients. For these
foundations of analytic regularization, we refer to [83,84].

For a number of reasons, in particular the preservation of fundamental symmetries,
the most widely used scheme in quantum field theory is dimensional regularization
[23,87]. It consists of specializing the ν ∈ ZN to integers and only keeps the dimension
d as a regulator. In this case, the poles are not necessarily simple anymore.

The uniqueness of the analytic continuation of a Feynman integral (as a function of
d and ν) is very important; in particular, it means that an identity between Feynman
integrals is already proven once it has been established locally in the non-empty
domain of convergence of the involved integral representations. In other words, in any
calculation with analytically regularized Feynman integrals, we may simply assume,

4 The only exception are cases of zero-scale subintegrals, like massless tadpoles. Such integrals are zero
in dimensional regularization and therefore irrelevant for our considerations.
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without loss of generality, that the parameters are such that the integrals converge. The
resulting relation then necessarily remains true everywhere by analytic continuation.

Example 5 The one-loop propagator in Example 3 can be computed in terms of �-
functions:

I(ν1, ν2) = (−p2)d/2−ν1−ν2
�(d/2− ν1)�(d/2− ν2)�(ν1 + ν2 − d/2)

�(ν1)�(ν2)�(d − ν1 − ν2)
. (2.9)

Integral (2.8) converges only in a certain domain of (ν, d), but there it evaluates to
(2.9), which has a uniquemeromorphic continuation. Its poles lie on the infinite family
of hyperplanes defined by {d/2− ν1 = k}, {d/2− ν2 = k} and {ν1 + ν2 − d/2 = k},
indexed by k ∈ Z≤0.

2.2 Integral relations and theMellin transform

In this section, we summarize how relations between ν-shifted Feynman integrals
can be identified with differential operators that annihilate G−d/2. This method was
suggested in [56] (and in [7] for the Baikov representation).

The parametric representation (2.7) can be interpreted as a multi-dimensional
Mellin transform. For our purposes, we slightly deviate from the standard definition,
as for example given in [18] and include the factors �(νi ) that occur in (2.7).

Definition 6 Let ν = (ν1, . . . , νN ) ∈ CN . The twisted (multi-dimensional) Mellin
transform of a function f : RN+ −→ C is defined as

M { f } (ν) :=
(

N∏

i=1

∫ ∞

0

xνi−1
i dxi
�(νi )

)
f (x1, . . . , xN ), (2.10)

whenever this integral exists. As a special case, we define

Ĩ(ν) :=M
{
G−d/2

}
(ν) such that I(ν) = �(d/2)

�(d/2− ω)
Ĩ(ν). (2.11)

Recall that, as mentioned in Remark 4, we do not have to worry about the actual
domain of convergence of (2.10) in the algebraic derivations below. The key features
of the Mellin transform for us are the following elementary relations; see [18] for their
form without the �’s in (2.10).

Lemma 7 Let α, β ∈ C, ν ∈ CN , 1 ≤ i ≤ N and f , g : RN+ −→ C. Writing ei for
the i-th unit vector, the (twisted) Mellin transform has the following properties:

1. Linearity: M {α f + βg} (ν) = αM { f } (ν)+ βM {g} (ν),
2. Multiplication: M {xi f } (ν) = νiM { f } (ν + ei ) and
3. Differentiation: M {∂i f } (ν) = −M { f } (ν − ei ).

Proof The linearity is immediate from (2.10), and the functional equation �(νi+1) =
νi�(νi ) provides the multiplication rule

[
xνi−1
i /�(νi )

]
xi = νi x

νi
i /�(νi + 1). The

differentiation rule is a consequence of integration by parts,
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∫ ∞

0

xνi−1
i dxi
�(νi )

∂i f =
[
xνi−1
i

�(νi )
f

]∞

xi=0
−

∫ ∞

0

xνi−2
i dxi

�(νi − 1)
f ,

because the boundary terms vanish inside the convergence domain of both inte-
grals. This just says that if limxi→0(x

νi−ε−1
i f ) is finite for some ε > 0, then

limxi→0(x
νi−1
i f ) = 0 vanishes and the analogous argument applies to the upper

bound xi →∞. �	

2.3 Operator algebras and annihilators

TheMellin transform relates differential operators acting on G−d/2 with operators that
shift the indices ν of the Feynman integrals I(ν). In this section, we formalize this
connection algebraically in the language of D-modules. For the most part, we only
need basic notions which we will introduce below, and point out [24] as a particularly
accessible introduction to the subject.

Definition 8 TheWeyl algebra AN in N variables x1, . . . , xN is the non-commutative
algebra of polynomial differential operators

AN := C
〈
x1, . . . , xN , ∂1, . . . , ∂N | ∂i x j = x j∂i + δi j for all 1 ≤ i, j ≤ N

〉
,

(2.12)

such that the commutators are [xi , x j ] = [∂i , ∂ j ] = 0 and [∂i , x j ] = δi, j (Kronecker
delta).

Note that with the multi-index notations xα = xα1
1 · · · xαN

N and ∂β = ∂
β1
1 · · · ∂βN

N , every
operator P ∈ AN can be written uniquely in the form

P =
∑

α,β

cαβx
α∂β with α, β ∈ NN

0 ,

by commuting all derivatives to the right (onlyfinitelymanyof the coefficients cαβ ∈ C
are nonzero). Extending the coefficients cαβ fromC to polynomialsC[s] in a further,
commuting variable s, we obtain the algebra AN [s] := AN ⊗C C[s]. Later, we will
also consider the case AN

k := AN ⊗C k of coefficients that are rational functions
k := C(s). The integrands of the Mellin transform (2.10) naturally form a AN [s]-
module AN [s] f s , which we will introduce now.

Definition 9 Given a polynomial f ∈ C[x], the AN [s]-module C[s, x, 1/ f ] · f s
consists of elements of the form (p/ f k) · f s (where p ∈ C[s, x], k ∈ N0) with the
AN [s]-action

q

(
p

f k
· f s

)
:= qp

f k
· f s, ∂i

(
p

f k
· f s

)
:= f (∂i p)+ (s − k)p(∂i f )

f k+1
· f s (2.13)

for any polynomial q ∈ C[s, x]. This is just the natural action by multiplication and
differentiation, ∂i �→ ∂/(∂xi ). We abbreviate f s+k := f k · f s for k ∈ Z. The cyclic
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submodule generated by f s is denoted as AN [s] f s . If we extend the coefficients to
the rational functions in s, we write AN

k f s = AN [s] f s ⊗C[s] C(s).

Definition 10 The s-parametric annihilators of a polynomial f in x1, . . . , xN are the
elements of the (left) ideal of operators in AN [s] whose action on f s is zero:

AnnAN [s]( f s) :=
{
P ∈ AN [s] : P f s = 0

}
.

Example 11 Given f ∈ C[x1, . . . , xN ], we always have the trivial annihilators

f ∂i − s(∂i f ) ∈ Ann
(
f s

)
for 1 ≤ i ≤ N . (2.14)

Note that an annihilator ideal is a module over AN [s], that is, whenever P f s =
0, also (QP) f s = Q(P f s) = 0 for any operator Q ∈ AN [s]. These ideals are
studied in D-module theory [24,72] and in principle annihilators can be computed
algorithmically with computer algebra systems such as Singular [3,4,25]. For the
study of the Feynman integrals (2.7), we set s = −d/2 and f = G = U + F is
the polynomial from (2.3). Via the Mellin transform, the elements of AN [s]Gs are
the integrands of shifts of the Feynman integral M {Gs}. Due to Lemma 7, every
annihilator P ∈ AnnAN [s] (Gs) corresponds to an identity of Feynman integrals with
shifted indices ν.

Definition 12 The algebra SN of shift operators in N variables is defined by

SN := C
〈
1̂
+
, . . . , N̂

+
, 1−, . . . ,N− | [î+, ĵ

+]=[i−, j−] = 0 and [î+, j−]=δi, j

〉
.

(2.15)

This algebra is clearly isomorphic to the Weyl algebra AN , since under the identi-

fications î
+ ↔ ∂i and j− ↔ x j the commutation relations are identical. In fact, a

different isomorphism is given by î
+ ↔ xi and j− ↔ −∂ j , and it is this identification

that corresponds to the Mellin transform (see Lemma 7). We therefore denote it by5

M {·} : AN ∼=−→ SN , P �→M {P} := P
∣∣∣
xi �→î

+
,∂i �→−i− for all1≤i≤N

. (2.16)

The conceptual difference between SN and AN is that we think of AN as acting on
functions f (x) by differentiation, whereas SN acts on functions F(ν) of a different
set ν = (ν1, . . . , νN ) of variables (the indices of Feynman integrals) by shifts of the

argument and, in case of î
+
, a multiplication with νi :

5 The use of the symbolM {·} for both the analyticMellin transform (2.10) and isomorphism (2.16) should
not lead to any confusion. It is suggestive of, and justified by, Corollary 13.
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(i−F)(ν) := F(ν − ei ) and (î
+
F)(ν) := νi F(ν + ei ). (2.17)

These operators are used very frequently in the literature on IBP relations, as for
example in [35,52,78,81]. An important role is played by the operators

ni := î
+
i−, which act by simple multiplication: (ni F)(ν) = νi F(ν). (2.18)

Their commutation relations are

[î+,n j ] = î
+
δi, j and [i−,n j ] = −i−δi, j . (2.19)

In terms of the SN action (2.17), we can rephrase the essence of Lemma 7 as

Corollary 13 The (twisted) Mellin transform (2.10) is compatible with the actions of
the algebras AN and SN under their identification (2.16). In other words,

M {
P f s

} =M {P} [M {
f s

}]
for all operators P ∈ AN [s]. (2.20)

Corollary 14 Every annihilator P ∈ AnnAN [s] (Gs) of Gs = G−d/2 yields a shift
relation M {P} ∈ SN [s] := SN ⊗ C[s] of the Feynman integral Ĩ from (2.11):
M {P} Ĩ = 0.

Example 15 For the bubble graph in Fig. 1withG = x1+x2− p2x1x2 fromExample 3,

(−p2)x1(s − x1∂1)+ (s − x1∂1 − x2∂2) ∈ Ann(Gs)

is easily checked to annihilate Gs . We therefore get the shift relation

(s + n1 + n2)Ĩ = p21̂
+
(s + n1)Ĩ = p2(s + n1 + 1)1̂

+Ĩ.

According to (2.18), this relation can also be written as

(−p2)ν1Ĩ(ν1 + 1, ν2) = − s + ν1 + ν2

s + ν1 + 1
Ĩ(ν1, ν2). (2.21)

We prefer to work with the modified Feynman integral Ĩ from (2.11), because it is
directly related to the Mellin transform. However, it is straightforward to translate
relations between Ĩ into relations for the actual Feynman integral I. Namely, if P =∑

α,β cα,βxα∂β ∈ AnnAN [s] (Gs), we substitute (2.11) to see

0 =M {P} Ĩ =
∑

α,β

cα,β

⎛

⎝
N∏

i, j=1
(î
+
)αi (−j−)β j

⎞

⎠ �(−s − ω)

�(−s) I
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and then recall from (2.4) that ω =∑
i νi + Ls to conclude

0= �(−s)M {P} Ĩ
�(−s − ω)

=
∑

α,β

cα,β

�(−s − ω − |α|+|β|)
�(−s − ω)

⎛

⎝
N∏

i, j=1
(î
+
)αi (−j−)β j

⎞

⎠ I.

(2.22)

Notice that the fraction �(−s − ω − |α| + |β|)/�(−s − ω) is a rational function in
ω (and thus in ν and s), due to the functional equation for �, since |α| and |β| are
integers.

Example 16 Substituting Ĩ(ν1, ν2) = I(ν1, ν2)�(−2s− ν1− ν2)/�(−s) and Ĩ(ν1+
1, ν2) = I(ν1 + 1, ν2)�(−2s − ν1 − 1 − ν2)/�(−s) from (2.11) into (2.21) results
in

(−p2)ν1I(ν1 + 1, ν2) = (s + ν1 + ν2)(2s + ν1 + ν2 + 1)

s + ν1 + 1
I(ν1, ν2),

which also follows from expression (2.9) of I(ν) in terms of �-functions.

Let us recapitulate these observations: By the Mellin transform (2.16), every annihi-
lator P ∈ AnnAN [s](Gs) gives rise to a linear relation M {P} Ĩ = 0 of the rescaled
Feynman integral Ĩ via a shift operatorM {P} ∈ SN [s]. Also we noted that according
to Ĩ = I �(−s −ω)/�(−s) from (2.11), such a relation is equivalent to a relation of
the original Feynman integral I as in (2.22).

On the other hand, if we are given a shift relation RĨ = 0 where R ∈ SN [s], then
R = M {P} corresponds to the differential operator P = M−1{R} ∈ AN [s] under
the Mellin transform (2.16). From the vanishingM {PGs} = 0 we can conclude that
this operator must be an annihilator, P ∈ AnnAN [s](Gs). This follows from

Theorem 17 (Inverse Mellin transform, e.g. [18, Theorem 3.5]) Suppose that the
(twisted) Mellin transform f 
(ν) := M { f } (ν) of f (x) from (2.10) converges in
a domain of the form ai ≤ Re(νi ) ≤ bi for all 1 ≤ i ≤ N, where a, b ∈ RN . Then,
its inverse is given by

f (x) =M−1{ f 
}(x) =
(

N∏

i=1

∫

σi+iR
dνi

�(νi )

xνi
i · 2π i

)
f 
(ν), where x ∈ RN+ . (2.23)

This multiple integral along lines parallel to the imaginary axis converges for ai ≤
σi ≤ bi (1 ≤ i ≤ N) and does not depend on the concrete choice of σi .

So not only do we get relations for Feynman integrals from parametric annihilators
of Gs , but in fact every relation of the form RĨ = 0 for a polynomial shift operator
R ∈ SN [s] does arise in this way.
Corollary 18 Let AnnSN [s](Ĩ) ⊆ SN [s] denote the SN [s]-module of polynomial shift
operators that annihilate a (rescaled) Feynman integral (2.11). Then the Mellin
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transform (2.16) restricts to a bijection between these relations and parametric anni-
hilators:

M {·} : AnnAN [s]
(Gs) ∼=−→ AnnSN [s]

(Ĩ)
. (2.24)

Instead of focussing on the annihilators themselves, we can also look at the AN [s]-
module AN [s] · Gs ∼= AN [s]/AnnAN [s](Gs) of the integrands and the SN [s]-module
SN [s] · Ĩ ∼= SN [s]/AnnSN [s](Ĩ) of all (shifted) Feynman integrals. The Mellin trans-
form gives an isomorphism

M {·} : AN [s] · Gs ∼=−→ SN [s] · Ĩ. (2.25)

2.4 On the correspondence tomomentum space

In this section, we first recall the integration by parts (IBP) relations for Feynman
integrals that are derived in momentum space, following [35]. We then note that these
provide a special set of parametric annihilators and discuss some open questions in
regard of this comparison of IBPs in parametric and momentum space.

Since the denominators Da from (2.1) are quadratic forms in the M = L+ vE
momenta q = (q1, . . . , qM ) := (�1, . . . , �L , p1, . . . , pE ), we can write them in the
form

Da =
∑

{i, j}∈�

A{i, j}a s{i, j} + λa (2.26)

such that the coefficientsA{i, j}a and λa are independent of loop momenta and the pairs

� := {{i, j} : 1 ≤ i ≤ L and 1 ≤ j ≤ M} (2.27)

label the |�| = L(L+1)
2 + LE loop-momentum-dependent scalar products

s{i, j} := qiq j = q jqi . (2.28)

In order to express the IBP relations coming from momentum space in terms of inte-
grals (2.1), we need to assume, for this and the following section, that we consider
N = |�| denominators such that the N × N square matrix A defined by (2.26) is
invertible.6 We think of A{i, j}a as the element of A in row a and column {i, j} and
write Aa{i, j} for the entry in row {i, j} and column a of A−1, such that the inverse of
(2.26) can be written as

s{i, j} =
N∑

a=1
Aa{i, j} (Da − λa) for all {i, j} ∈ �. (2.29)

6 For integrals associated to Feynman graphs, the number of edges is often less than |�|. In this case, one
augments the list of inverse propagators by an appropriate choice of additional quadratic forms in the loop
momenta, called irreducible scalar products (ISPs), to achieve N = |�|. See Example 62.
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We are interested in relations of the Feynman integral I from (2.1), that is,

I(ν1, . . . , νN ) =
⎛

⎝
L∏

j=1

∫
dd� j

iπd/2

⎞

⎠ f with the integrand f =
N∏

i=1
D−νi
i . (2.30)

Definition 19 Themomentum space IBP relations of I(ν1, . . . , νN ) are those relations
between scalar Feynman integrals that are obtained from Stokes’ theorem

(
L∏

n=1

∫
dd�n

)
oij f = 0, (2.31)

where the operators oij are defined in terms of the momenta7 as

oij :=
∂

∂qi
· q j =

d∑

μ=1

∂

∂qμ
i

qμ
j for i ∈ {1, . . . , L} , j ∈ {1, . . . , M} . (2.32)

The following, explicit form of these relations as difference equations is essentially
due to Baikov [6,7]; see also Grozin [35]. For completeness, we include the proof in
appendix A.1.

Proposition 20 Given a set of N = |�| denominatorsD such that the matrixA defined
by (2.26) is invertible, every momentum space IBP relation can be written explicitly
as

Oi
jI (ν1, . . . , νN ) = 0 (2.33)

where Oi
j denotes shift operators, indexed by 1 ≤ i ≤ L and 1 ≤ j ≤ M, that are

given by

Oi
j :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dδi j −
N∑

a,b=1
Cbi
aj â

+ (
b− − λb

)
for j ≤ L and

−
N∑

a,b=1
Cbi
aj â

+ (
b− − λb

)−
N∑

a=1

M∑

m=L+1
A{i,m}a q jqm â

+ for j > L.

(2.34)

The coefficients Cbi
a j are defined as

Cbi
a j :=

{∑M
m=1A{i,m}a Ab{m, j} (1+ δmi ) if j ≤ L and

∑L
m=1A{i,m}a Ab{m, j} (1+ δmi ) if j > L.

(2.35)

7 Recall that q1, . . . , qL denote the loop momenta, whereas qL+1, . . . , qM are the external momenta.
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Corollary 21 To every difference equation Oi
jI = 0 from momentum space IBP, there

corresponds a parametric annihilator Õ
i
j ∈ AnnAN [s] (Gs) of the form

Õ
i
j = dδi j +

N∑

a,b=1
Cbi
aj xa (∂b + λbH) for i, j ≤ L and (2.36)

Õ
i
j =

N∑

a,b=1
Cbi
aj xa (∂b + λbH)−

N∑

a=1

M∑

m=L+1
A{i,m}a q jqmxaH for i ≤ L < j,

(2.37)

where H := (L+1)d
2 +∑N

c=1 xc∂c.

Proof First recall rescaling (2.11) between the Feynman integral I and the Mellin
transform Ĩ of Gs . As we saw in (2.22), this means that

�(−s − ω)

�(−s) â+I=�(−s − ω)â+ Ĩ
�(−s − ω)

=(−s − ω − 1) â+Ĩ= â+(−s − ω)Ĩ,

and so if we substitute (2.11) into Oi
jI = 0 for the operators from (2.34), then apart

from the substitution â+b− �→ xa(−∂b) which does not change ω, the remaining
terms with shifts â+ do increment ω by one and thus acquire an additional factor of

−s − ω = (L + 1)(−s)−
∑

i

ni �→ (L + 1)(−s)+
N∑

c=1
xc∂c = H .

This proves thatM
{
Õ

i
j

}
Ĩ = 0 for the operators in (2.36) and (2.37) and Theorem 17

concludes the proof. �	
Note that the proof of the identity Õ

i
jGs = 0 given in Corollary 21 rests

on the inverse Mellin transform. An alternative, direct algebraic proof is given in
Appendix A.2.8

Definition 22 ByMomwe denote the left AN [s]-module generated by the annihilators

Õ
i
j from Corollary 21, corresponding to the momentum space IBP identities:

Mom :=
∑

i, j

AN [s] · Õi
j ⊆ AnnAN [s]

(Gs) . (2.38)

Since the Õ
i
j are first-order differential operators, we have the inclusions

Mom ⊆ Ann1AN [s](Gs) ⊆ AnnAN [s](Gs), (2.39)

8 For an algebraic proof of the analogous statement in the Baikov representation, see [35, section 9].
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where Ann1 denotes the AN [s]-module generated by all first-order annihilators. Note
that for a generic polynomial G, one would not expect that all of its annihilators can
be obtained from linear ones (Ann1 � Ann). It is therefore interesting that we observe
the equality Ann1 = Ann in all cases of Feynman integrals that we checked.

Question 23 ForaFeynman integralwith a complete set of irreducible scalar products,
is the second inclusion in (2.39) an equality? In other words, are the s-parametric
annihilators of Lee–Pomeransky polynomials G linearly generated?

Regarding the first inclusion in (2.39), we do know that it is strict (see the example
in Appendix C.4). However, it seems that Mom does provide all identities once we
enlarge the coefficients to rational functions in the dimension s = −d/2 and the
indices νe. Let us write θ = (θ1, . . . , θN ) and θe := xe∂e such that νe =M {−θe}.
Question 24 Given any annihilator P ∈ AnnAN [s](Gs), does there exist a polynomial
q ∈ C[s, θ ] such that q P ∈ Mom? In other words, does

C(s, θ)⊗C[s,θ] AnnAN [s](Gs) = C(s, θ)⊗C[s,θ] Mom hold? (2.40)

To test this conjecture, we should take all known shift relations for Feynman integrals,
and check if they can be realized as elements of Mom (after localizing at C(s, θ)).
In the remainder of this section, we will address such a relation, namely the one
originating from the well-known dimension shifts.

2.5 Dimension shifts

The representation I = M {
e−F/U · U s

}
from (2.5) shows, through Corollary 13,

that

I(d) =M {U} I(d + 2) (2.41)

where M {U} = U(1̂
+
, . . . , N̂

+
) is obtained from the polynomial U(x1, . . . , xN )

by substituting xi �→ î
+
. This raising dimension shift was pointed out by

Tarasov [89],9 and had been observed before in special cases [26]. For
Ĩ(d) = I(d) · �(d/2− ω)/�(d/2), the relation takes the form

Ĩ(d) = s

s + ω
U(1̂

+
, . . . , N̂

+
)Ĩ(d + 2). (2.42)

At the same time, the representation Ĩ =M {Gs} implies also that

Ĩ(d) = G(1̂
+
, . . . , N̂

+
)Ĩ(d + 2) =M {G} Ĩ(d + 2). (2.43)

9 Tarasov considered the special case where all inverse propagators are of the form De = k2e − m2
e , and

hence, U is just the graph (first Symanzik) polynomial from (3.22).
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Remark 25 The equality of (2.42) and (2.43) implies, via the Mellin transform, that

H(s)G + sU = −
(
s −

∑

a

xa∂a + Ls

)
G + sU ∈ Ann(Gs−1).

Indeed, H(s)Gs = s(LU + (L + 1)F)Gs−1 − s(L + 1)Gs = −sUGs−1 follows from
the homogeneity of U and F , see (A.5).10

A lowering dimension shift, expressing I(d + 2) in terms of I(d), corresponds to a
Bernstein–Sato operator of G under the Mellin transform Ĩ(d) =M {G−d/2

}
11:

Definition 26 A Bernstein–Sato operator P(s) ∈ AN [s] for a non-constant poly-
nomial f is a polynomial differential operator such that there exists a polynomial
b(s) ∈ C[s] with

P(s) f s+1 = b(s) f s . (2.44)

Such operators always exist, and the Bernstein–Sato polynomial is the unique monic
polynomial b(s) of smallest degree for which (2.44) has a nonzero solution [10,73].
Given a solution of (2.44) for f = G, we get a lowering dimension shift relation:

Ĩ(d + 2) = 1

b(s − 1)
M {P(s − 1)} Ĩ(d). (2.45)

Corollary 27 If we allow the coefficients to be rational functions k = C(s), every
integral in d + 2n dimensions can be written as an integral in d dimensions. In
other words, the multiplication with f is invertible on AN

k f s . Put still differently, f s

generates the full module

AN
k · f s = k[x, 1/ f ] · f s . (2.46)

Proof By (2.44), f s−n = P(s−n)
b(s−n)

· · · P(s−1)
b(s−1) f s ∈ AN

k · f s for all n ∈ N. �	

In general, computing a Bernstein operator is not at all trivial. But in the case of a
complete set of irreducible scalar products (N = |�| and A is invertible), an explicit
formula for the lowering dimension shift follows from Baikov’s representation [7] of
Feynman integrals. We use form (2.48) given by Lee in [53,54]:

10 In fact, H(s)G + sU = ∑
e xe (G∂e − (s − 1)(∂eG)) follows from the trivial annihilators (2.14) of

Gs−1.
11 Tkachov proposed in [93] to use a generalization of (2.44) to several polynomials (the individual
Symanzik polynomials U and F , instead of G = U + F ), which in the physics literature is referred to as
Bernstein–Tkachov theorem. However, this result is in fact due to Sabbah [71] (see also [36]).

123



512 T. Bitoun et al.

Recall that (q1, . . . , qM ) = (�1, . . . , �L , p1, . . . , pE ) denotes the combined loop-
and external momenta (M = L + E). We introduce the Gram determinants

Grn(s) := det

⎛

⎜⎝
qn · qn · · · qn · qM

...
. . .

...

qM · qn · · · qM · qM

⎞

⎟⎠ = det
(
s{i, j}

)
n≤i, j≤M (2.47)

and remark that Gr := GrL+1(s) = det(pi · p j )1≤i, j≤E depends only on the external
momenta. Furthermore, note that Gr1(s) is a polynomial in the scalar products s{i, j} =
qi · q j . By (2.29), we can think of it also as a polynomial in the denominators D.

Definition 28 The Baikov polynomial P(y) ∈ C[y1, . . . , yN ] is the polynomial
defined by P(D1, . . . ,DN ) = Gr1(s).

Theorem 29 (Baikov representation [53]) The Feynman integral (2.1) can be written
as

I(d) = c · π−LE/2−L(L−1)/4

�
( d−E−L+1

2

) · · ·� ( d−E
2

) · (−1)Ld/2

Gr(d−E−1)/2

(
N∏

e=1

∫
d ye
yνe
e

)
· {P(y)}(d−N−1)/2

(2.48)

where c ∈ Q is a rational constant and the Baikov polynomial P(y) has degree at
most M = L + E. The contour of integration in (2.48) is such that P vanishes on its
boundary.

We include the proof in “Appendix A.3”. For us, the interesting feature of this alter-
native formula is that the dimension appears with a positive sign in the exponent of
the integrand. We can therefore directly read off

Corollary 30 (lowering dimension shift [54]) A Feynman integral in d+ 2 dimensions
can be expressed as an integral in d dimensions by12

I(d + 2) = (−1)L
( d−L−E+1

2

) · · · ( d−E
2

)
P(1−, . . . ,N−)

Gr
I(d). (2.49)

Proof According to (2.48), I(d + 2) is obtained by multiplying the integrand of I(d)

with (−1)LP(y)/Gr and adjusting the �-factors in the prefactor as �
( d+2−E

2

) =
d−E
2 �

( d−E
2

)
and so on. Multiplying the integrand of the Baikov representation with

ye is equivalent to decrementing νe; hence, the multiplication of the integrand byP(y)
can be written as the action of P(1−, . . . ,N−) on the integral. �	

Equation (2.49) can be thought of as a Bernstein equation for I(d), or, equivalently,
as a special type of integral relation: Combining (2.49) with the raising dimension shift
(2.49), we find that

12 The first fraction can also be written as 2L/ (d − L − E + 1)L in terms of the Pochhammer symbol
(raising factorial) aL = a(a + 1) · · · (a + L − 1).
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{P(1−, . . . ,N−)

Gr
U(1̂

+
, . . . , N̂

+
)− E − d + 2

2
· · · E − d + (L + 1)

2

}
I(d) = 0.

(2.50)

We ask if this annihilator is contained inMom; in other words, whether the lowering
dimension shift relation (2.49) is a consequence of themomentum space IBP identities.
This is what we will establish in the following Proposition 31. First let us write
the Baikov polynomial P(y) explicitly: The block decomposition (si, j )1≤i, j≤M =(

V B
Bᵀ G

)
with V = (�i · � j )i, j≤L , B = (�i · p j )i≤L, j≤E and G = (pi · p j )i, j≤E shows

that

P(y)

Gr
= det Q(y) where Q(D) := V − BG−1Bᵀ

is an L × L matrix whose entries are quadratic in the denominators. By (2.29),

Qi, j = Aa{i, j}(Da − λa)−Aa{i,r}(Da − λa)G
−1
r ,sAb{ j,s}(Db − λb) (2.51)

where we suppress the explicit summation signs over a = 1, . . . , N in the first sum-
mand and over a, b = 1, . . . , N and r , s = L + 1, . . . , M in the second summand.

Proposition 31 Annihilator (2.50), corresponding to the lowering dimension shift
(2.49), is contained in the ideal of shift operators generated by the momentum space
IBP’s from Proposition 20:

det Q(1−, . . . ,N−) · U(1̂
+
, . . . , N̂

+
)−

L+1∏

j=2

(E + j − d)

2
∈

∑

i, j

SN [d] · Oi
j .

(2.52)

Proof Let us abbreviate �̃ := �(1̂
+
, . . . , N̂

+
) from (A.2) such that U = det� and

similarly Q̃ := Q(1−, . . . ,N−) formatrix (2.51).Using (2.51) and (2.15),we compute

[
Q̃i, j , ĉ

+]
= Aa{i, j}

[
a−, ĉ+

]− G−1r ,sAa{i,r}Ab{ j,s}
(
(a− − λa)

[
b− − λb, ĉ

+]

+ [
a− − λa, ĉ

+]
(b− − λb)

)

= −Ac{i, j} + G−1r ,s

(
Aa{i,r}Ac{ j,s}(a

− − λa)+Ac{i,r}Ab{ j,s}(b
− − λb)

)
.

Contracting with the matrix A{k,l}c (for k, l ≤ L) by summing over c, we conclude
that

[
Q̃i, j ,A{k,l}c ĉ+

]
= − δ{i, j},{k,l} + G−1r ,s

(
Aa{i,r}δ{ j,s},{k,l}(a

−

− λa)+ δ{i,r},{k,l}Ab{ j,s}(b
− − λb)

)
.
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Note that the indices r and s take values > L , whereas i and j are ≤ L . Hence,
δ{ j,s},{k,l} = δ{i,r},{k,l} = 0. So, recalling (A.2), we finally arrive at

[
Q̃i, j , �̃k,l

]
= 1+ δk,l

2
δ{i, j},{k,l} = δi,kδ j,l + δi,lδ j,k

2
. (2.53)

Recall (2.3), that U(x) = det�(x), such that

det Q(1−, . . . ,N−) · U(1̂
+
, . . . , N̂

+
) = det Q̃ · det �̃.

We can now invoke an identity of Turnbull [94], see also [29] for a combinatorial and
[20] for an algebraic proof, which relates this product of determinants to a determinant
of the product Q̃ ·�̃. This is non-trivial, because the elements of these two matrices do
not commute, according to (2.53). Turnbull’s identity, as stated in [20, Proposition 1.4],
applies precisely to this kind of very mild non-commutativity (2.53) and states that

det Q̃ · det �̃ = col-det
(
Q̃ · �̃+ Qcol

)
, where (Qcol)i, j := − L − i

2
δi, j

(2.54)

is a simple diagonal matrix and col-det denotes the column-ordered determinant

col-det A :=
∑

σ∈SN
sgn(σ )Aσ(1),1 . . . Aσ(N ),N . (2.55)

So let us now compute the entries of the product of Q̃ from (2.51) with �̃. Firstly,

Ab{ j,s}(b
− − λb)�̃ j,k = −1

2
Ab{ j,s}(1+ δ j,k)A{ j,k}c (b− − λb)ĉ

+

= −1

2
Cbk
cs

{
ĉ+(b− − λb)− δb,c

}

according to (2.35). Note that Cbk
bs = ∑

b, j (1 + δ j,k)A{ j,k}b Ab{ j,s} =
∑

j (1 +
δ j,k)δ{ j,k},{ j,s} = 0 due to s > L ≥ k. So we can rewrite, due to (2.34),

Ab{ j,s}(b
− − λb)�̃ j,k = 1

2
Ok

s +
1

2

∑

m>L

A{k,m}b b̂
+
(qs · qm).

Note that qs · qm = Gs,m such that contraction of the second summand with G−1r ,s

produces δr ,m . So the sum over m collapses, and up to the term with Ok
s , Q̃i, j �̃ j,k is

−1+ δ j,k

2
Aa{i, j}(a

− − λa)A{ j,k}c ĉ+ − 1

2
Aa{i,r}(a

− − λa)A{k,r}b b̂
+

= −1

2
Cak
bi (a− − λa)b̂

+
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= 1

2

{
Ok

i − dδki + Cak
ai

}
= 1

2

{
Ok

i − dδki + (M + 1)δki

}
,

where the term Cak
ai =

∑
a, j (1 + δ j,k)A{ j,k}a Aa{ j,i} =

∑
j (1 + δ j,k)δ{ j,k},{ j,i} =

δki (M+1) comes from commuting a− with b̂
+
. Putting our results together, we arrive

at

Q̃i, j �̃ j,k = 1

2

{
(M + 1− d)δki +Ok

i −Aa{i,r}(a
− − λa)G

−1
r ,sO

k
s

}
. (2.56)

So if we ignore all terms that lie in the (left) ideal generated by the momentum space
(shift) operators Oi

j , the column determinant (2.55) of the matrix Q̃ · �̃+ Qcol from
(2.54) can be replaced by an ordinary determinant det B of the diagonal matrix

Bi, j = δi, j

2
(M + 1− d − L + i) = δi, j

2
(E + 1− d + i) ,

such that indeed we conclude with the result that

det Q̃ · det �̃ ≡
L∏

i=1

E + 1− d + i

2
mod

∑

i, j

SN [d] ·Oi
j .

�	
The Mellin transform I(d) =M {U se−F/U}

identifies (2.50) with the annihilator

{
det Q(−∂) · U − b̃(s)

}
· U se−F/U = 0, where b̃(s) :=

L+1∏

j=2

(
s + E + j

2

)
.

(2.57)

To phrase this in terms of Ĩ(d) =M {Gs} = I(d) · �(−s − ω)/�(−s), we can use
UGs = −H(s + 1)Gs+1/(s + 1) from Remark 25 to conclude that

�(H(s)) · det Q(−∂) · 1

�(H(s)− L − 1)
· Gs+1 = −(s + 1)b̃(s)Gs, (2.58)

where H(s) =M−1{−s − ω} = −s(L + 1)+∑N
i=1 θi . Recall from (2.22) that the

left-hand side of (2.58) can be written, in terms of the homogeneous components Qr

(with degree r ) of det Q(−∂) =∑
r Qr , as

∑

r

�(H(s))

�(H(s)− L − 1+ r)
Qr =

∑

r≤L+1

[
L+1−r∏

i=1
(H(s)− i)

]
Qr

+
∑

r>L+1

[
r−L−1∏

i=0

1

H(s)+ i

]
Qr .
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If r ≤ L+1, this is a polynomial differential operator, and we thus obtained an explicit
Bernstein–Sato operator as in Definition 26.

Corollary 32 If the degree of the Baikov polynomial P(y) is not more than L+1, then
the Bernstein–Sato polynomial b(s) of the Lee–Pomeransky polynomial G is a divisor
of (s + 1)b̃(s). In particular, all roots of b(s)/(s + 1) are simple and at half-integers.

Note that degP(y) ≤ min {2L, M} = L+min {L, E} byDefinition 28 and Eq. (2.51),
so in particular, the corollary applies to all propagator graphs (E = 1) and to all graphs
with one loop (L = 1).

3 Euler characteristic as number of master integrals

Here, we will show, using the theory of Loeser and Sabbah [59], that the number of
master integrals equals the Euler characteristic of the complement of the hypersurface
defined by G = 0 inside the torusGN

m . (We writeGm = A\ {0} for the multiplicative
group andA for the affine line.) For a full understanding of this section, some knowl-
edge of basic D-module theory is indispensable, but we tried to include sufficient
detail for the main ideas to become clear to non-experts as well. In particular, we will
give self-contained proofs that only use D-module theory at the level of [24].

Definition 33 By VG we denote the vector space of all Feynman integrals associated to
G, over the field C(s, ν) := C(s, ν1, . . . , νN ) of rational functions (in the dimension
and indices). More precisely, with ĨG :=M {Gs},

VG :=
∑

n∈ZN

C(s, ν) · ĨG(ν + n) = C(s, ν)⊗C[s,ν]
(
SN [s] · ĨG

)
. (3.1)

The number of master integrals is the dimension of this vector space:

C (G) := dimC(s,ν) VG . (3.2)

Note that this is the same as the dimension of the space
∑

n C(s, ν)IG(ν + n) of
Feynman integrals (2.1), because the ratios IG(ν + n)/ĨG(ν + n) = �(−s)/�(−s −
ω− |n|) with |n| = n1+ · · ·+ nN are all related by a rational function inC(s, ν), see
(2.22).

Remark 34 The phrase “master integrals” is used with different meanings in the
physics literature. The main sources for discrepancies are:

1. Almost always the integrals are considered only for integer indices ν ∈ ZN , instead
of as functions of arbitrary indices. In this setting, integrals with at least one νe = 0
can be identified with quotient graphs (“subtopologies”) and are often discarded
from the counting of master integrals.

2. We only discuss relations of integrals that are expressible as linear shift operators
acting on a single integral. This set-up cannot account for relations of integrals of
different graphs (with some fixed values of the indices), as for example discussed
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in [48]. It also excludes symmetry relations, which are represented by permutations
of the indices νe.

3. Some authors do not count integrals if they can be expressed in terms of�-functions
or products of simpler integrals, for example [41,48].

Taking care of these subtleties, we will demonstrate in Sect. 4 that our definition gives
results that do match the counting of master integrals obtained by other methods.

A fundamental result formethods of integration byparts reduction is that the number
of master integrals is finite. This was proven in [77] for the case of integer indices
ν ∈ ZN , using the momentum space representation. Below we will show that this
result holds much more generally, for unconstrained ν, and that it becomes a very
natural statement once it is viewed through the parametric representation. Notably, it
remains true for Mellin transformsM {Gs} of arbitrary polynomials G—the fact that
G comes from a (Feynman) graph is completely irrelevant for this section.

Recall that, by the Mellin transform, we can rephrase statements about integrals in
terms of the parametric integrands. In line with (2.25) and (3.1), we can rewrite (3.2)
as

C (G) = dimC(s,θ)

(
C(s, θ)⊗C[s,θ] AN [s] · Gs

)
,

where C[s, θ ] = C[s, θ1, . . . , θN ] denotes the polynomials in the dimension s =
−d/2 and the operators θe := xe∂e =M−1{−νe}, and F := C(s, θ) stands for their
fraction field (the rational functions in these variables). Since F contains k := C(s),
we can equivalently work over this base field throughout and write

C (G) = dimF (F ⊗R M ) (3.3)

in terms of R := k[θ ] and the module M = AN
k ·Gs over the Weyl algebra AN

k :=
AN ⊗C k = AN [s] ⊗C[s] k over the field k = C(s). Crucially, AN

k ·Gs is a holonomic
AN
k -module, which is a fundamental result due to Bernstein [10].
Holonomicmodules are, in a precise sense, themost constrained andbehave inmany

ways like finite-dimensional vector spaces. For example, sub- and quotient modules,
direct and inverse images of holonomic modules are again holonomic [44,45], and
holonomicmodules in zero variables are precisely thefinite-dimensional vector spaces.
The holonomicity of the parametric integrand was already exploited in [46] to show
that Feynman integrals fulfil a holonomic system of differential equations, and it is
also a key ingredient in the proof in [77].

The number defined in (3.3) has been studied by Loeser and Sabbah [59] in a
slightly different setting, namely for holonomic modules over the algebra

DN
k := k[x±11 , . . . , x±1N ]〈∂1, . . . , ∂N 〉 = k[x±1] ⊗k[x] AN

k = AN
k [x−1] (3.4)

of linear differential operators on the torusGN
m . Note thatDN

k is just the localization of
AN
k at the coordinate hyperplanes xi = 0; that is, the coefficients of the derivations are

extended frompolynomialsO(AN
k ) = k[x] to Laurent polynomialsO(GN

m ) = k[x±1]
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in the coordinates xi . Equivalently, we can also view DN
k = ι∗AN

k as the pull-back
under the (open) inclusion

ι : GN
m ↪−→ AN

k .

The pull-back along ι turns every AN
k -moduleM into aDN

k -module ι∗M , namely the
localization ι∗M = k[x±1]⊗k[x]M =M [x−1]. Importantly, ifM is holonomic, so
is its pull-back ι∗M . The starting point for this section is

Theorem 35 (Loeser and Sabbah [59,61]) Let M denote a holonomic AN
k -module.

Then, F ⊗R M is a finite-dimensional vector space over F. Moreover, its dimension
is given by the Euler characteristic dimF (F ⊗R M ) = χ (ι∗M ).

In “Appendix B”, we provide a self-contained proof of this crucial theorem, simpler
and more explicit than in [61]. For now, let us content ourselves with reducing it to
the known situation on the torus.

Proof We can invoke dimF (F⊗R ι∗M ) = χ(ι∗M ) <∞ from [61, Théorème 2]. To
conclude, we just need to note that F ⊗R M and F ⊗R M [x−1] = F ⊗R ι∗M are
isomorphic vector spaces (over F). This is clear since each coordinate xi is invertible
after localizing at F : Due to ∂i xi = 1+xi∂i , we find that (1+xi∂i )−1⊗∂i ∈ F⊗R AN

k
is an inverse to 1⊗ xi . �	
This result not only implies the mere finiteness of the number of master integrals, but
in addition gives a formula for this number—it is the Euler characteristic, given by

χ
(
M ′) := χ(DR(M ′)) =

∑

i

(−1)i dimk H
i (DR(M ′)

)
, (3.5)

of the algebraic de Rham complex of M ′ := ι∗M . This is the complex

DR(M ′) :=
(
�•GN

m
⊗O(GN

m ) M
′[N ], d

)
(3.6)

of M ′-valued differential forms on the torus GN
m , with the connection d(ω ⊗ m) =

dω⊗m +∑N
i=1(dxi ∧ ω)⊗ ∂im. Note that the r -forms ω are shifted to sit in degree

r − N of the complex, which is thus supported in degrees between −N and 0; hence
(3.5) is a finite sum over −N ≤ i ≤ 0. The extremal cohomology groups are easily
identified as

H−N (
DR(M ′)

) =
N⋂

i=1
ker ∂i and H0 (

DR(M ′)
) ∼=M ′

/ N∑

i=1
∂iM

′ = π∗M ′,

(3.7)

with the latter also known as push-forward of M ′ under the projection π : GN
m −�

A0
k to the point. Since holonomicity is preserved under direct images, we conclude
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that dimk H0
(
DR(M ′)

)
is finite.13 In fact, the same is true for the other de Rham

cohomology groups, which shows that (3.5) is indeed well defined.14

Since we are interested in Feynman integrals, we consider the special case where
the AN

k -module M is simply M = AN
k · Gs from Definition 9. Its elements can be

written uniquely in the form h ·Gs , where h ∈ k[x,G−1], such that AN
k ·Gs ∼= k[x,G−1]

by (2.46) are isomorphic as k[x]-modules: xi (hGs) = (xi h)Gs . The action (2.13) of
the derivatives, however, is twisted by a term proportional to s: ∂i (hGs) = Gs(∂i h +
sh(∂iG)/G). Despite this twist, we find that the Euler characteristic stays the same:

Proposition 36 Let G ∈ C[x1, . . . , xN ] be a polynomial and set k = C(s). Then, the
Euler characteristics of the algebraic deRhamcomplexes of the holonomic AN

k -module
ι∗AN

k Gs and the holonomic AN
C-module C[x±1,G−1] = O(GN

m \V(G)) coincide:

χ(ι∗AN
k Gs) = χ

(
C[x±1,G−1]

)
. (3.8)

In particular, we can dispose of the parameter s completely and compute with the
algebraic de Rham complex of C[x±1,G−1], which is the ring of regular functions
of the complement of the hypersurface V(G) = {x : G(x) = 0} in the torus GN

m .
Combining Theorem 35 with Proposition 36, we thus obtain our main result:

Corollary 37 The number of master integrals of an integral family with N denomina-
tors is

C (G) = χ
(
C[x±1,G−1]

)
, (3.9)

the Euler characteristic of the algebraic de Rham complex of the complement of
the hypersurface x1 . . . xN · G = 0 inside the affine plane AN . Via Grothendieck’s
comparison isomorphism, this is the same as the topological Euler characteristic, up
to a sign:15

C (G) = (−1)Nχ
(
CN\ {x1 . . . xN · G = 0}

)
= (−1)Nχ

(
GN

m \ {G = 0}
)

. (3.10)

Remark 38 We stress that this geometric interpretation of the number of master inte-
grals is valid for dimensionally regulated Feynman integrals, that is, we consider them
as meromorphic functions in d (and ν). This is reflected in our treatment of s = −d/2
as a symbolic parameter.

If, instead, one specializes to a fixed dimension like d = 2 (s = −1) or d = 4
(s = −2), then (2.46) is no longer true in general.16 It can then happen that AN ·Gs �

13 Recall that a holonomic module over the point A0
k is the same as a finite-dimensional k-vector space.

14 The de Rham complex DR(AN
k ) is a resolution of k[x] by free AN

k -modules, such that H•(DR(M ′))
are the (left) derived functors of π∗M ′ = H0(DR(M ′)). In the language of derived categories, saying that
π∗M ′ is holonomic actually means precisely that DR(M ′) is a complex with cohomology groups that are
holonomic modules over the point—that is, finite-dimensional vector spaces over k.
15 This sign arises from the shift by N in the Definition (3.6) of the de Rham complex DR.
16 It fails precisely if, for some r ∈ N, s − r is a zero of the Bernstein–Sato polynomial of G.
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C[x,G−1] is a proper submodule (note k = C(s) = C). While Theorem 35 still
applies and relates the number of master integrals in a fixed dimension to the Euler
characteristic ofDN ·Gs , this is not always equal to the topological Euler characteristic
(3.10). This is expected, since the number of master integrals is known to be different
in fixed dimensions [88].17

Proof of Proposition 36 Given an AN
C-module M and a polynomial f ∈ C[x], set

M ′ :=M [ f −1] and consider the AN
C-moduleM ′ f s formed by products of f s with

elements m ∈ M ′[s] := M ′ ⊗C C[s].18 As vector spaces, M ′ f s ∼= M ′[s] via
m f s �→ m, but the AN

C action on M ′ f s has twisted derivatives to take into account
the factor f s :

xi · m f s := xim f s and ∂i · m f s :=
{
(∂im)+ sm

∂i f

f

}
f s . (3.11)

Following Malgrange [63], we introduce the action of a further variable t by setting

t · m(s) f s := m(s + 1) f s+1 and ∂t · m(s) f s := −sm(s − 1) f s−1, (3.12)

where we use the intuitive abbreviation f s+r := f r · f s for r ∈ Z. One easily verifies
[∂t , t] = 1 and [∂i , ∂t ] = [∂i , t] = [xi , ∂t ] = [xi , t] = 0, such that M ′ f s becomes
an AN+1

C -module in the N + 1 variables (x1, . . . , xN , t). Note that the operator t acts
invertibly on M ′, such that the identity ∂t t = −s gives ∂t = −st−1 and thus

M ′ f s

∂tM ′ f s
= M ′ f s

st−1M ′ f s
= M ′ f s

sM ′ f s
∼=M ′

is an isomorphismof AN
C-modules.19 Since ∂t is injective onM ′ f s (it raises the degree

in s), the deRhamcomplexDR(M ′ f s) is quasi-isomorphic toDR(M ′ f s/∂tM ′ f s) =
DR(M ′), see Corollary 70. So we can conclude the equality

χ(M ′ f s) = χ(M ′), (3.13)

once we assume that M is holonomic to ensure that these Euler characteristics are
well defined. Indeed, the holonomicity ofM ′ and M ′ f s holds because

• M ′ = j∗M is the pull-back ofM under the inclusion j : AN
C\ { f = 0} ↪−→ AN

C,

17 In these references, the indices are restricted to integers. However, our calculations in Sect. 4 show
agreement of this way of counting with our set-up where the indices are treated as free parameters.
18 It would be more consistent with Definition 9 to write M ′[s] f s instead of M ′ f s , but we prefer the
shorter form to avoid clutter and to stress that we view it as an AN

C-module, not a AN
C[s]-module.

19 This is also clear from the fact that M ′ f s/(∂tM ′ f s ) = π∗(M ′ f s ) is the push-forward of M ′ f s
under the projection π : AN+1 −→ AN forgetting the last coordinate. Namely, sinceM ′ f s = F∗M ′ as
we discuss below, π∗(F∗M ′) = (π ◦ F)∗M ′ = id∗M ′ =M ′.
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• M ′ f s = F∗M ′ is the push-forward of M ′ under the closed embedding
F : AN

C ↪−→ AN+1
C which sends x to (x, f (x)).20

Alternatively, the filtration � jM ′ f s := f − j ∑
i≤ j s

i�2 j(deg f )−iM induced by any
good filtration�• onM directly shows the holonomicity ofM ′ f s , since its dimension
grows like j N+1 for large j . We now invoke the theory of Loeser–Sabbah to deduce
that

χ(M ′ f s) = dimC(θ,t∂t ) M
′ f s(θ, t∂t ) = dimk(θ) N (θ) = χ(N )

whereN :=M ′ f s(t∂t ) denotes the algebraic Mellin transform (B.1) ofM ′ f s with
respect to the coordinate t . But note that, according to (3.12), localizing at t∂t = −s−1
just extends the coefficients to k = C(s). So N = M ′ ⊗C C(s) f s = M ⊗C k f s

is just the holonomic AN
k -module on the left-hand side of (3.8), because, over k, f is

invertible by Corollary 27. We have proven χ(M ⊗C k f s) = χ(M [ f −1]), and the
special case of M = C[x±1] with f = G proves the claim. �	
Remark 39 More abstractly, Proposition 36 can also be seen as an application of the
theory of characteristic cycles [33]: It is known that the Euler characteristic only
depends on the characteristic cycle of a AN

k -module, which follows from the Dubson–
Kashiwara formula [51, equation (6.6.4)]. Therefore, it is sufficient to show that the
AN
k -modules k[x±1,G−1] and k[x±1]Gs have the same characteristic cycles, via [33,

Theorem 3.2]. This follows from the fact that these modules are identical up to the
twist by the isomorphism ∂i �→ ∂i + s(∂iG)/G of DN

k [G−1].

3.1 Nomaster integrals

Corollary 37 shows in particular that there are no master integrals, C (G) = 0,
precisely when the Euler characteristic χ(GN

m \V( f )) := χ(C[x±1, f −1]) =
χ((C∗)N\V( f )) vanishes for f = G. For example, this happens if f is homoge-
neous in a generalized sense: Suppose we can find λ0, . . . , λN ∈ Z, not all zero, such
that

f
(
x1t

λ1 , . . . , xN t
λN

) = tλ0 f (x1, . . . , xN ) in C[x, t±1]; (3.14)

which is equivalent (apply ∂t and set t = 1) to the existence of a linear annihilator,

Pλ
s · f s = 0, of the form Pλ

s :=
N∑

i=1
λiθi − sλ0 ∈ Z[s, θ ]\ {0} . (3.15)

20 It follows from (3.12) that M ′ f s = ⊕
n≥0 ∂nt M

′ ∼= F∗M as C[x]-modules, since ∂nt M
′ =

∂nt t
nM ′ ≡ snM ′ mod s<nM ′. Furthermore, the derivatives act on F∗M by ∂i • m(s) = (∂i −

(∂i f )∂t )m(s) = (∂i + s(∂i f )t
−1)m(s) = (∂i + s(∂i f )/ f )m(s − 1) in accordance with (3.11).
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Lemma 40 Given f ∈ C[x1, . . . , xN ], the algebraic Mellin transform M :=
M ⊗C(s)[θ] C(s, θ) of M := DN

k · f s is zero if, and only if, f s is annihilated by
a polynomial in the Euler operators θ :

AnnAN
k
( f s) ∩C[s, θ ] �= {0} . (3.16)

Proof Clearly,M = {0} requires f s to be mapped to zero in the localizationM ofM
atC[s, θ ]\ {0}, and therefore the existence of a nonzero polynomial P(θ, s) ∈ C[s, θ ]
with P(θ, s) · f s = 0. Conversely, given such an operator, its shifts P(θ − α, s + r)
by (r , α) ∈ Z1+N annihilate the elements xα · f s+r , which are therefore all mapped
to zero in M. By linearity, this proves M = {0}, because every element of M can be
written as g f s+r ⊗ h for some r ∈ Z, h ∈ C[s, θ ]\ {0} and a Laurent polynomial
g ∈ k[x±1]. �	
In particular, the presence of a linear annihilator (3.15) implies M = {0} and hence
χ(GN

m \V( f )) = 0 via Corollary 37. Note that we could equally phrase this in terms of
the hypersurfaceV( f ) ⊂ GN

m itself asχ(V( f )) = 0, because theEuler characteristics
are related through χ(V( f )) = −χ(GN

m \V( f )) (see Sect. 3.3).
When f = G comes from Feynman graph G (as in the next section), it is not

difficult to see that homogeneity (3.14) occurs precisely when G has a tadpole.21 If
this is the case, the integrals from Proposition 2 do not converge for any values of s
and ν. In fact, M = {0} dictates that the only value one can assign to M { f s} (ν)

which is consistent with integration by parts relations is zero.
The purpose of this section is to show that the simple homogeneity condition (3.14)

is not only sufficient for a vanishing Mellin transform, but it is also necessary:

Proposition 41 Let f ∈ C[x1, . . . , xN ] denote a polynomial. Then, the hypersurface
{ f = 0} inside the torusGN

m has vanishing Euler characteristic precisely when there
are λ0, . . . , λN ∈ Z, not all zero, such that (3.14) holds.

Geometrically, homogeneity (3.14) can be interpreted as follows: Dividing by the
greatest common divisor, we may assume that λ0, . . . , λN are relatively prime. Thus,
we may extend (λ1, . . . , λN ) to a basis of the lattice ZN and hence construct a matrix
A ∈ GLN (Z) with first row A1i = λi . In the associated coordinates y, defined by

xi =
N∏

j=1
y
A ji
j and yi =

N∏

j=1
x
A−1j i
j where A−1j i :=

(
A−1

)

j i
,

the polynomial f takes the form f (x) = yλ0
1 g(ȳ) for some Laurent polynomial g ∈

C[ȳ±1] in the remaining variables ȳ = (y2, . . . , yN ). In particular, the hypersurface
{ f = 0} = {g = 0} can be defined by an equation independent of the coordinate y1.

21 A tadpole here means a proper subgraph γ � G which shares only a single vertex with the rest of G
and does not depend on masses or external momenta. In this case, GG = Uγ FG/γ factorizes such that the
variables xi with i ∈ γ only appear in the homogeneous polynomial Uγ of degree λ0 := Lγ . Thus, we
obtain (3.14) by setting λe = 1 if e ∈ γ and λe = 0 otherwise.
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Corollary 42 Let f ∈ C[x1, . . . , xN ] denote a polynomial. Then, V( f ) ⊂ GN
m has

Euler characteristic zero if and only if it is isomorphic to a product of Gm times a
hypersurface {g = 0} ⊂ GN−1

m .

To prove Proposition 41, we will look at the Newton polytope NP ( f ) of f , which is
defined as the convex hull of the exponents of monomials that appear in f :

NP

⎛

⎝
∑

α∈ZN

cαx
α

⎞

⎠ := conv
{
α ∈ ZN : cα �= 0

}
⊂ RN . (3.17)

Since everymonomial xα is an eigenvector of operators (3.15), Pλ
s (θ)·xα = Pλ

s (α)xα ,
it is annihilated by Pλ

1 exactly when α belongs to Fλ :=
{
Pλ
1 (α) = 0

}
, the hyperplane

Fλ = {α : α1λ1 + · · · + αNλN = λ0}. In particular, 0 = Pλ
s · f s = s f s−1Pλ

1 · f is
equivalent to the Newton polytope NP ( f ) ⊂ Fλ being contained in that hyperplane.
We can therefore reformulate the equivalent conditions (3.14) and (3.15) as

dimNP ( f ) < N . (3.18)

Such polytopes have zero N -dimensional volume, and we call them degenerate.

Proof of Proposition 41 We proceed by induction over the dimension N , and we will
assume f to be non-constant. (The proposition holds trivially for any constant f ∈ C.)
In the case N = 1, the variety V( f ) ⊂ C∗ is a finite set, and hence, its Euler
characteristic coincides with its cardinality. Therefore, χ(V( f )) = 0 if and only if f
has no zero inside the torus. This is only possible if f is proportional to a monomial
xr1; in particular, f must be homogeneous and we are done.

Now consider N > 1 and assume that χ(GN
m \V( f )) = χ(V( f )) = 0. Recall that

(3.14) is equivalent to degeneracy (3.18) of NP ( f ), so we only need to rule out the
non-degenerate case. We achieve this by exploiting the hypothesis dimNP ( f ) = N
to construct a linear annihilator Pλ

s of f s , which implies (3.18) in contradiction to the
non-degeneracy of NP ( f ).

To start, we use Lemma 40 to find a polynomial 0 �= P(θ, s) ∈ C[s, θ ] such that
P(θ, s) · f s = 0, and we choose one with minimal total degree in s and θ . Then
pick an (N − 1) dimensional face σ = NP ( f ) ∩ Fλ, which we can write as the
intersection of NP ( f ) with a hyperplane Fλ for some integers λ0, . . . , λN such that
NP ( f ) ⊆ {

α : Pλ
1 (α) ≤ 0

}
. Under rescaling (3.14), all monomials of f = ∑

α cαxα

with α ∈ σ ⊂ Fλ acquire a factor of tλ0 , while the remaining monomials with
α ∈ NP ( f ) \σ come with a smaller exponent

∑N
i=1 αiλi < λ0 of t :

f (x1t
λ1, . . . , xN t

λN )= tλ0 fσ (x)
(
1+O

(
t−1

))
, where fσ (x) :=

∑

α∈ZN∩σ

cαx
α

(3.19)

and O (
t−1

)
denotes a rational function in t−1C(x)[t−1]. Note that P(θ, s) ·

f s(
{
xi tλi

}
) = 0 is still zero, because the rescaling of x commutes with the Euler
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operators θi · h(xi tλi ) = (θi · h(xi ))|xi �→xi tλi
. Therefore, applying P(θ, s) to the s-th

power of the right-hand side of (3.19) and dividing by t sλ0 yields

0 = P(θ, s) · f sσ (x)
(
1+O

(
t−1

))s = P(θ, s) · f sσ +O
(
t−1

)
f sσ ,

whereO (
t−1

)
on the right-hand side denotes a formal series in t−1C(x, s)[[t−1]]. In

particular, the coefficient of t0 must vanish, and we conclude that P(θ, s) · f sσ = 0.
Label the variables such that λN �= 0, then we can divide P(θ, s) by the linear form
Pλ
s (θ, s) from (3.15), as a polynomial in θN , to obtain a decomposition

P(θ, s) = P(θ ′, 0, s)+ Pλ
s (θ, s) · Q(θ, s)

for some polynomial Q(θ, s) ∈ C[θ, s], such that the first summand depends only on
θ ′ := (θ1, . . . , θN−1) and s. Since NP ( fσ ) = σ ⊂ Fλ is contained in the hyperplane
Fλ =

{
α : Pλ

1 (α) = 0
}
, we see Pλ

s · f sσ = f s−1Pλ
1 · fσ = 0 and thus Q(θ, s) drops

out in

0 = P(θ, s) · f sσ = P(θ ′, 0, s) · f sσ = P(θ ′, 0, s) · gs,

where g := f |xN=1 ∈ C[x1, . . . , xN−1] is a polynomial in less than N variables. If
P(θ ′, 0, s) were nonzero, Lemma 40 would show χ(GN−1

m \V(g)) = 0, such that we
could apply our induction hypothesis to g and conclude that g is homogeneous in our
generalized sense. We saw that this is equivalent to the degeneracy of NP (g), which
contradicts that NP (g) ∼= NP ( fσ ) = σ is of dimension N − 1.22

Therefore, P(θ ′, 0, s) must be zero and we conclude that P(θ, s) = Pλ
s · Q has a

linear factor Pλ
s (θ, s).23 Now setm := Q(θ, s)· f s , which is nonzero, because P(θ, s)

was chosen as an annihilator of f s of minimal degree. We may write this element in
the formm = a · f s+r for some r ∈ Z and a Laurent polynomial a ∈ C(s)[x±]. After
multiplying with a polynomial inC[s], we may even assume 0 �= a ∈ C[s, x±1]with
Pλ
s · a f s+r = 0. Applying the Leibniz rule and dividing by a f s+r , we find

0 = Pλ
0 · a
a

− sλ0 + (s + r)
Pλ
0 · f
f

.

Since the degree of Pλ
0 ·a in s is at most the degree (in s) of a itself, this first summand

on the right has a finite limit as s → 0. We therefore must have a cancellation of the
terms linear in s, Pλ

0 · f = λ0 f , which yields the sought-after Pλ
s · f s = 0. �	

Remark 43 In summary, we showed that the following six conditions on a polynomial
f ∈ C[x1, . . . , xN ] are equivalent: (1) homogeneity (3.14) of f , (2) existence (3.15) of
an annihilator of f s linear in θ , (3) existence (3.16) of an annihilator of f s polynomial

22 Observe that NP (g) is the orthogonal projection of NP ( fσ ) onto the coordinate hyperplane {αN = 0}.
This projection restricts to an isomorphism between {αN = 0} and Fλ (because λN �= 0), and therefore
dimNP (g) = dimNP ( fσ ).
23 The existence of a linear annihilator could also be deduced from [31, Théorème 9.2].
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in θ , (4) degeneracy (3.18) of the Newton polytope NP ( f ), (5) vanishing of the Euler
characteristic χ(GN

m \V( f )) = χ(V( f )) = 0 and (6) divisibility of V( f ) by Gm as
stated in Corollary 42.

To conclude, let us interpret our observation in the light of the well-known result, due
to Kouchnirenko [49, Théorème IV] and Khovanskii [47, Theorem 2 in section 3],
that relates the Euler characteristic to the volume of the Newton polytope:

Theorem 44 For almost all polynomials f ∈ C[x1, . . . , xN ] with a fixed Newton
polytope, we have χ(GN

m \V( f )) = (−1)N · N ! · VolNP ( f ).

For polynomials f whose nonzero coefficients are sufficiently generic, Proposi-
tion 41 follows from Theorem 44. Our proof shows that when VolNP ( f ) = 0,
the theorem applies without any constraints on the nonzero coefficients of f . In
fact, this statement extends to the case when N !VolNP ( f ) = 1, because it is
known that (−1)N · χ(GN

m \V( f )) is always bounded from above by N !VolNP ( f ),
for all f , leaving only the possibilities {0, 1} for the signed Euler characteristic
(−1)N · χ(GN

m \V( f )).

3.2 Graph polynomials

Our discussion so far applies to all integrals of type (2.1)—the defining data are thus
the setD = (D1, . . . ,DN ) of denominators, which is sometimes also called an integral
family [98]. The denominators can be arbitrary quadratic forms in the loop momenta;
decomposition (2.2) then defines the associated polynomials U , F and G through
(2.3). In particular, the denominators do not have to be related to the momentum flow
through a (Feynman) graph in any way.

However, we will from now on consider the most common case in applications:
integrals associated to a Feynman graph with Feynman propagators.

Definition 45 Given a connected Feynman graph G with N internal edges, E + 1
external legs and L loops, imposingmomentumconservation at each vertex determines
the momenta ke flowing through each edge e in terms of the E external and L loop
momenta.24 The Symanzik polynomialsUG andFG of the graphG are the polynomials
U and F from (2.3) for the set D = (D1, . . . ,DN ) of inverse Feynman propagators,25

1

De
= 1

−k2e + m2
e − iε

(1 ≤ e ≤ N ), (3.20)

where me is the mass associated to the particle propagating along edge e. The number
C (G) of master integrals of the Feynman graph G is defined in terms of (3.2) as

C (G) := C (GG) where GG := UG + FG . (3.21)

24 Momentum conservation implies that the sum p1 + · · · + pE+1 = 0 of the incoming momenta on all
external legs vanishes; hence only E of them are independent.
25 The infinitesimal imaginary part iε is irrelevant for our purpose of counting integrals and will be
henceforth ignored.
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This class of integrals (using only the propagators in the graph) is sometimes referred to
as scalar integrals andmight appear to be insufficient for applications, since in general
one needs to augment the inverse propagators by additional denominators, called
irreducible scalar products (ISPs), in order to be able to express arbitrary numerators of
the momentum space integrand in terms of integrals (2.1); see Example 62. Therefore,
one might expect that, in order to count all these integrals, one ought to replace GG

in (3.21) by the polynomial associated to the full set of denominators, including the
ISPs.

However, it is well known since [89] that all such integrals with ISPs are in fact
linear combinations of scalar integrals in higher dimensions d + 2k, for some k ∈ N.
Furthermore, those can be written as scalar integrals in the original dimension d by
Corollary 27. Therefore, (3.21) is the correct definition to count the number of master
integrals of (any integral family determined by) a Feynman graph.

We can therefore invoke the following, well-known combinatorial formulas for the
Symanzik polynomials [14,81], which go back at least to [64].

Proposition 46 The Symanzik polynomials of a graph G can be written as

UG =
∑

T

∏

e/∈T
xe and FG = UG

N∑

e=1
xem

2
e −

∑

F

p2F
∏

e/∈T
xe, (3.22)

where T runs over the spanning trees of G and F enumerates the spanning two-forests
of G. (pF denotes the sum of all external momenta flowing into one of the components
of F.)

In Sect. 4.2, we will use these formulas to count the sunrise integrals.

Example 47 The graph polynomials of the bubble graph (Fig. 1) are, in general kine-
matics,

U = x1 + x2 and F = (x1 + x2)(x1m
2
1 + x2m

2
2)− p2x1x2. (3.23)

It is important to keep in mind that, even with a fixed graph, the number of master
integrals will vary depending on the kinematical configuration—e.g. whether a propa-
gator is massive or massless, or whether an external momentum is non-exceptional or
sits on a specific value (like zero or various thresholds). We will always explicitly state
any assumptions on the kinematics, and hence stick with the simple notation (3.21).

3.3 The Grothendieck ring of varieties

Since we are from now on only interested in the Euler characteristic, we can simplify
calculations by abstracting from the concrete varietyV(G) := {G = 0} to its class [G]
in the Grothendieck ring K0(VarC). This ring is the free Abelian group generated by
isomorphism classes [X ] of varieties overC, modulo the inclusion–exclusion relation
[X ] = [X\Z ] + [Z ] for closed subvarieties Z ⊂ X . It is a unital ring for the product
[X ] · [Y ] = [X × Y ] with unit 1 = [A0] given by the class of the point. Crucially,
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the Euler characteristic factors through the Grothendieck ring, since it is compatible
with these relations: χ(X) = χ(X\Z) + χ(Z) and χ(X × Y ) = χ(X) · χ(Y ). The
class L = [A1] of the affine line is called Lefschetz motive and fulfils χ(L) = 1. For
several polynomials P1, . . . , Pn , we writeV(P1, . . . , Pn) := {P1 = · · · = Pn = 0}.

If a variety is described by polynomials that are linear in one of the variables, we
can eliminate this variable to reduce the ambient dimension.26 Let us state such a
relation explicitly, since our setting is slightly different than usual: For us, the natural
ambient space is the torus GN

m and not the affine plane AN .

Lemma 48 Let A, B ∈ C[x1, . . . , xN−1]and consider the linear polynomial A+xN B.
Then

[GN
m \V (A + xN B)] = L ·

[
GN−1

m \V (A, B)
]

−[GN−1
m \V(A)] − [GN−1

m \V(B)] (3.24)

holds in the Grothendieck ring. In particular, the Euler characteristic is

χ
(
GN

m \V (A + xN B)
)
= −χ

(
GN−1

m \V (A · B)
)

. (3.25)

Proof Consider the hypersurface V(G) ⊂ GN
m , defined by G := A + xN B, under the

projection π : GN
m −→ GN−1

m that forgets the last coordinate xN .
As long as AB �= 0, the unique solution of G = 0 in the fibre is xN = −A/B.

If A = 0, the solution xN = 0 is not in Gm and the fibre is empty, and it is also
empty whenever B = 0. The only exception to this emptiness is over the intersection
A = B = 0, where xN is arbitrary and the fibre is the full Gm . This fibration proves
(3.24); equivalently, we can write it via [V(A · B)] = [V(A)]+ [V(B)]− [V(A, B)]
and [Gm] = L− 1 as

[GN
m \V (A + xN B)] = [Gm]

(
[GN−1

m \V(A)] + [GN−1
m \V(B)]

)

−L · [GN−1
m \V(A · B)].

Applying the Euler characteristic proves (3.25) due to χ(A1) = 1 and χ(Gm) = 0. �	
Corollary 49 Set Ũ := U |xN=1 and F̃ := F |xN=1. Then

χ
(
GN

m \V(G)
)
= χ

(
GN−1

m \V(Ũ , F̃)
)
− χ

(
GN−1

m \V(Ũ)
)
− χ

(
GN−1

m \V(F̃)
)

(3.26)

= −χ
(
GN−1

m \V(Ũ · F̃)
)

. (3.27)

Proof Recall that U and F are homogeneous of degrees L and L + 1, respectively
(Corollary 63). Since multiplication with xN ∈ Gm is invertible, we can rescale

26 Such linear reductionswere first investigated by Stembridge [85] and have led, via the c2-invariant [74]
of Schnetz, to the discovery of graph hypersurfaces that are not of mixed Tate type [17].
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Fig. 2 A 1-scale subgraph γ of
G is replaced by a single edge in
G′ G = γ �→ G′ =

all variables xi with i < N by xN . This change of coordinates transforms G into
x LN (Ũ + xN F̃). Since xN �= 0, this shows that [GN

m \V(G)] = [GN
m \V(Ũ + xN F̃)]

such that the claim is just a special case of Lemma 48. �	

Example 50 Both graphs consisting of a pair of massless edges,

(3.28)

with the externalmomentum p such that p2 �= 0, have a singlemaster integralC (G) =
1.

Proof According to (3.22), the graph polynomials of the graphs in (3.28) are Useries =
1, Fseries = −p2(x1 + x2), Uparallel = x1 + x2, Fparallel = −p2x1x2 such that

Gseries = 1− p2(x1 + x2) and Gparallel = x1 + x2 − p2x1x2.

In both cases, the number of master integrals (3.10) is C (G) = −χ(Gm\V(ŨF̃)) =
χ(Gm ∩V(ŨF̃)) = χ(Gm ∩V(1+ x1)) = χ({−1}) = 1 according to (3.27). �	

Much more on the Grothendieck ring calculus of graph hypersurfaces V(U) can be
found, for example, in [1,17]. These techniques can be used to prove some general
statements about the counts of master integrals. Let us give just one example:

Lemma 51 Let G be a Feynman graph with a subgraph γ such that all propagators
in γ are massless and γ has only two vertices which are connected to external legs or
edges in G\γ .27 Write G ′ for the graph obtained from G by replacing γ with a single
edge (see Fig. 2), then

C (G) = C (γ ) · C (
G ′

)
. (3.29)

Proof Every spanning tree T of G restricts on γ either to a spanning tree or to a
spanning two-forest. In the first case, T \γ is a spanning tree of G/γ (the graph where
γ is contracted to a single vertex); in the second case, T \γ is a spanning tree of G\γ .
Note that the two-forests T ∩ γ in the second case determine Fγ from (3.22), since
all propagators in γ are massless. Therefore, we find UG = Uγ · UG/γ + F ′γ · UG\γ

27 Such a graph γ is called massless propagator or p-integral.
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where we setF ′γ := Fγ

∣∣
p2=−1. Going through the same considerations forFG shows

that28

GG = Uγ · GG/γ + F ′γ · GG\γ .

Now label the edges in γ as 1, . . . , Nγ and rescale all Schwinger parameters xe with
2 ≤ e ≤ Nγ by x1. Due to the homogeneity of Uγ and Fγ from Corollary 63, we see
that [GN

m \V(GG)] = [GN
m \V(A + x1B)] where A = ŨγGG/γ and B = F̃ ′γGG\γ in

terms of Ũγ := Uγ

∣∣
x1=1 and F̃

′
γ := F ′γ

∣∣∣
x1=1

. Applying (3.25), we obtain a separation

of variables:

χ
(
GN

m \V(GG)
)
= −χ

(
GN−1

m \V(Ũγ F̃ ′γGG/γGG\γ )
)

= −χ
(
G

Nγ−1
m \V(Ũγ F̃ ′γ )

)
· χ

(
G

N−Nγ
m \V(GG/γGG\γ )

)

= −χ
(
G

Nγ
m \V(Gγ )

)
· χ

(
G

N−Nγ+1
m \V(GG ′)

)
.

In the last line we used (3.27), upon noting the contraction-deletion formula GG ′ =
GG/γ + x0GG\γ in terms of the additional Schwinger parameter x0 for the (massless)
edge that replaces γ in G ′. (This formula is easily checked by considering which
spanning trees and forests contain this edge or not.) Note that for the subgraph γ , the
value of p2 does not matter for V(F̃γ ) = V(F̃ ′γ ), as long as p2 �= 0. Finally, recall
(3.10). �	

Of course, this result is well known on the function level: If G has a 1-scale subgraph
γ , then the Feynman integral of G factorizes into the product

IG(ν) = Iγ (νγ )
∣∣
p2=−1 · IG ′(ωγ , ν′) (3.30)

of the integrals of γ and G ′. Here, we denote by νγ and ν′ the indices corresponding
to the edges in γ and outside γ , respectively, such that ν = (νγ , ν′). Note that the
edge replacing γ in G ′ (see Fig. 2) gets the index ωγ = ∑

e∈γ νe − Lγ · (d/2) from
(2.4), which depends on the indices of γ (Lγ denotes the loop number of γ ).

Corollary 52 Let G be a graph with a pair {e, f } of massless edges in series or in
parallel. Then, C (G) = C

(
G ′

)
where G ′ is the graph obtained by replacing the

pair with a single edge. In other words, repeated application of the series-parallel
operations from Fig. 3 does not change the number of master integrals.

Proof Combine Lemma 51 with Example 50. �	
28 Note that the intersection of a two-forest F of G with γ has at most two trees connected to external
vertices of γ . Any further tree in F ∩γ is thus necessarily a full component of F and forces its contribution
to FG to vanish by p2F = 0 (due to the absence of external legs).
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Fig. 3 The series (S) and
parallel (P) operations consist of
replacing a sequential or parallel
pair of massless edges with a
single edge

(S)→→→−−−→→→→�−− (P ) �−−−−→−−

4 Tools and examples

The Euler characteristic of a singular hypersurface can be computed algorithmically
via several methods.29 In this section, we demonstrate how some of these techniques
can be used to compute the number of master integrals in various examples.

We begin with methods based on fibrations. In particular, the Euler characteristic
can be computed very easily for the class of linearly reducible graphs, see Sect. 4.1.
However, the decomposition of the Euler characteristic of the total space E of a
fibration E −→ B with fibre F into the product

χ(E) = χ(B) · χ(F) (4.1)

is true in general and not restricted to the linear case. In Sect. 4.2, we use a quadratic
fibration in order to count the master integrals of all sunrise graphs.

Apart from these geometric approaches, which seem towork verywell for Feynman
graphs, there are general algorithms for the computation of de Rham cohomology
and the Euler characteristic of hypersurfaces. In Sect. 4.3 we discuss some available
implementations of these algorithms in computer algebra systems.

In final Sect. 4.4, we comment on the relation of our result to other approaches in
the physics literature.

4.1 Linearly reducible graphs

If the polynomialV( f ) = a+ xNb is linear in a variable xN , we saw in Lemma 48
that we can easily eliminate this variable xN in the computation of the Euler char-
acteristic (or the class in the Grothendieck ring) of the hypersurface V( f ) (or its
complement). Analogous formulas also exist in the case of a variety V( f1, . . . , fn)
of higher codimension, given that all of the defining polynomials fi = ai + xNbi
are linear in xN . Such linear reductions have been used heavily in the study of graph
hypersurfaces and are straightforward to implement on a computer [74,85].

If such linear reductions can be applied repeatedly until all Schwinger parameters
have been eliminated, the graph is called linearly reducible [15]. Linear reducibil-
ity is particularly common among graphs with massless propagators; we give some
examples in Fig. 4.

29 We will not discuss Kouchnirenko’s Theorem 44 here, because in most examples we found that it does
not apply. It seems that coefficients of graph polynomials are often not sufficiently generic.
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P1 = P2 = P3 = P4 =

P5 = P6 = P7 =

F1 =
m

F2 =
m

F3 =
m

F4 =
m

F5 =
m

F6 =
m

F7 =
m

F8 = m F9 = m

Fig. 4 Some linearly reducible propagators (Pi ) and form factors (Fi ). All internal edges are massless, and
the form factors have two massless external legs (p21 = p22 = 0) and one massive leg p23 �= 0, indicated by
the label m

Table 1 The number C (G) of master integrals, computed as the Euler characteristic 3.10, for the graphs in
Fig. 4

G P1 P2 P3 P4 P5 P6 P7 F1 F2 F3 F4 F5 F6 F7 F8 F9
C (G) 16 10 10 10 10 15 22 1 4 5 4 5 20 24 12 13

At the end of a full linear reduction, the class ofGN
m \V(G) in the Grothendieck ring

is expressed as a polynomial in the Lefschetz motiveL. To get the Euler characteristic,
one then merely needs to substitute L = [A1] �→ χ(A1) = 1.

Example 53 Consider the 2-loop propagator WS′3 from Fig. 5. Linear reductions give

[G5
m\V(GWS′3)] = −L4 + 5L3 − 13L2 + 21L− 15 (4.2)

in the Grothendieck ring. Substituting L �→ 1 shows that C
(
WS′3

) = 3 via (3.10).

In this way, we calculated the Euler characteristics for the graphs in Fig. 4, using an
implementation of the linear reductions similar to the method of Stembridge [85]. Our
results are listed in Table 1.

Beyond the computation of such results for individual graphs, it is possible to obtain
results for some infinite families of linearly reducible graphs. In particular, efficient
computations are possible for graphs of vertex width three [16]. For example, the class
in the Grothendieck ring of V(U) was computed for all wheel graphs in [17]. It is
possible to adapt such calculations to our setting (where the ambient space is GN

m
instead of AN ). For example, we could prove

Proposition 54 The number of master integrals of the massless propagators obtained
by cutting a wheel WSL with L loops, either at a rim or a spoke (see Fig. 5), is

C
(
WS′L

) = C
(
WS′′L

) = L(L − 1)

2
. (4.3)
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WS′
3 = WS′

4 = WS′
5 = WS′

L =

WS′′
4 = WS′′

5 = WS′′
L =

Fig. 5 The propagator graphs WS′L (WS′′L ) with L − 1 loops are obtained from cutting a rim (spoke) of the
wheel WSL with L loops

S1 = S2 = S3 = SL =

Fig. 6 The sunrise graphs SL with L loops

The proof of this and related results will be presented elsewhere.

4.2 Sunrise graphs

In [43], the number of master integrals was computed for all sunrise integrals; based
on a Mellin–Barnes representation and the differential reduction [19,42] of an explicit
solution in terms of Lauricella hypergeometric functions. To our knowledge, this has
hitherto been the only non-trivial30 infinite family of Feynman integrals with explicitly
known master integral counts. Their first result can be phrased as31

Proposition 55 The L-loop sunrise graph SL from Fig. 6 with L + 1 nonzero masses
(and non-exceptional external momentum) has C (SL) = 2L+1 − 1 master integrals.

We will now demonstrate that this result can be obtained from a straightforward
computation of the Euler characteristic, according to Corollary 37.

Proof The graph polynomials (3.22) for the sunrise graph are

U =
L+1∑

i=1

∏

j �=i
x j =

(
L+1∏

i=1
xi

)(
L+1∑

i=1

1

xi

)
and F = (−p)2

L+1∏

i=1
xi + U

L+1∑

i=1
xim

2
i .

(4.4)

We note that for the first term in (3.26), we find that U = F = 0 imply
∏

i xi = 0,
which has no solutions in the torus—hence, this term contributes χ(GL

m) = 0. We
thus obtain

(−1)LC (SL) = χ

(
GL

m\V
(
1+

L∑

i=1
x−1i

))
+ χ

(
GL

m\XL
p2

)
, (4.5)

30 We consider families that arise simply by duplication of massless propagators, like those shown in [19,
Figure 2], as trivial (due to Corollary 52).
31 Beware that the number 2L+1 − L − 2 given in [43, equation (4.5)] counts only irreducible master
integrals, which means that it discards the L + 1 integrals associated to the subtopologies obtained by
contracting any of the edges. Our conventions, however, do take these integrals into account.
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where we introduced the notation

XL
p2 := V

(
−p2 +

[
m2

L+1 +
L∑

i=1
m2

i xi
]
·
[
1+

L∑

i=1
x−1i

])
⊂ GL

m . (4.6)

The first Euler characteristic in (4.5) is readily evaluated to (−1)L by applying (3.25)
repeatedly (being on the torus, we may replace x−1i by xi ), so we conclude that

C (SL) = 1+ (−1)L · χ
(
GL

m\XL
p2

)
. (4.7)

Now let us consider the projectionπ : GL
m −→ GL−1

m that forgets xL . Set y := m2
L+1+∑

i<L m
2
i xi and z := 1+∑

i<L x−1i , such that XL
p2
={

xL p2=(1+ zxL)(y + m2
L xL)

}

⊂ GL
m . We note that the discriminant D of this quadric in xL factorizes into

D = (m2
L − p2 + yz)2 − 4m2

L yz =
(
yz − [p + mL ]2

)
·
(
yz − [p − mL ]2

)
,

(4.8)

such that GL−1
m ⊂ V(D) = XL−1

(p+mL )2
∪̇ XL−1

(p−mL )2
is the disjoint union of two

hypersurfaces.32 Since the factors are related to the (L − 1)-loop sunrise by (4.7),
we find

χ(V(D)) = 2 · (−1)L · (C (SL−1)− 1). (4.9)

Over a point x ′ ∈ XL−1
p±mL

⊂ V(D) in the discriminant, the fibre of π−1(x ′) has
precisely one solution (x ′, xL) in XL

p2
, determined by xL = −y/[mL(mL ± p)]:

[
(GL

m\XL
p2) ∩V(D)

]
= ([Gm] − 1) · [V(D)]. (4.10)

If D(x ′) �= 0 is nonzero and also yz �= 0, then the fibre π−1(x ′) has precisely two
distinct solutions xL in the quadric XL

p2
. Hence, χ(π−1(x ′)) = χ(Gm)−2 = −2 and

thus

χ
(
(GL

m\XL
p2)\V(yzD)

)
= −2χ

(
GL−1

m \V(yzD)
)
= 2χ(V(D))

+2χ(V(yz)), (4.11)

where used that V(D) ∩ V(yz) = ∅ for non-exceptional values of p2, such that
(p ± mL)2 �= 0 in (4.8). The reason that we need to exclude the case when yz = 0
in (4.11) is that for y = 0, one of the solutions of XL

p2
= {

xL p2 = (1+ zxL)m2
L xL

}

is xL = 0 /∈ Gm ; whereas for z = 0 the equation for XL
p2
= {

xL p2 = y + m2
L xL

}

32 We assume p2 �= 0 and m2
L �= 0, which guarantees that (p + mL )2 �= (p − mL )2.
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becomes linear. In both cases, there is only one solution in the fibre, and there is none
if both y = z = 0 vanish. (We assume p2 �= m2

L ):

[(GL
m\XL

p2) ∩V(yz)] = ([Gm] − 2) · [V(yz)] + [V(y)] + [V(z)]. (4.12)

We can now combine (4.10)–(4.12) via [Y ] = [Y ∩V(D)]+[Y ∩V(yz)]+[Y\V(D ·
yz)] for Y = GL

m\XL
p2

into the reduction formula

χ(GL
m\XL

p2) = χ(V(D))+ χ(V(y))+ χ(V(z)) = 2 · (−1)L · C (SL−1) . (4.13)

Here, we inserted (4.9) and usedχ(V(y)) = χ(V(z)) = −χ(GL−1
m \V(z)) = (−1)L ,

which follows from repeated application of (3.25)—just as above, when we computed
the first term in (4.5). According to (4.7), we can write the reduction as the recursion

C (SL) = 2C (SL−1)+ 1,

which is obviously solved by the claimed C (SL) = 2L+1 − 1. It merely remains to
verify the base case L = 1, and indeed, C (S1) = 1+χ(X1

p2
) = 3 follows easily from

(4.7) since X1
p2
= {

x1 p2 = (1+ x1)(m2
2 + m2

1x1)
} ⊂ Gm consists of precisely two

points. �	
It should be clear that our calculation can be adapted to the situationwhen somemasses
are zero. Let us demonstrate how to obtain another result of [43]33:

Proposition 56 The L-loop sunrise graph with R ≤ L nonzero masses, L + 1 − R
vanishing masses and non-exceptional external momentum, has C (SL) = 2R master
integrals.

Proof By Corollary 52, we may replace all massless edges by a single (massless) edge
without changing the number of master integrals; hence, we can assume L = R ≥ 1.
(The totally massless case R = 0 reduces to the trivial case of a single edge.) Label
the edges such that the massless edge is mL+1 = 0.

We can apply the exact same recursion as in the proof of Proposition 55; the only
difference to (4.13) is that now, χ(V(y)) = 0 vanishes because y =∑

i<L m
2
i xi has

become homogeneous in x such that [V(y)] = [Gm] · [V(y)∩ {x1 = 1}]. Therefore,
(4.13) takes the form χ(GL

m\XL
p2

) = (−1)L · (2C (SL−1)− 1) and yields, via (4.7),
the recursion

C (SL) = 2C (SL−1) .

We are done after verifying the base case: Indeed, C (S1) = 1 + χ(X1
p2

) = 2 from

(4.7) is clear since X1
p2
= {

p2x1 = (1+ x1)m2
1x1

}
is the single point x1 = p2/m2

1−1
inGm . �	
33 The additional term−δ0,L−R in [43, Equation (4.13)] subtracts a reducible integral that can be attributed
to a subtopology. Our counting, however, accounts for all master integrals.
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Table 2 Counts ofmaster integrals according to (3.10) computedwithMacaulay2’sEuler for some graphs
for massless and massive internal propagators. (As no symmetries are regarded, all masses can be assumed
to be different from each other.) All external momenta are assumed to be non-degenerate (nonzero and not
on any internal mass shell) in both cases

Graph G

C (G) massless 4 11 3 4 20

C (G) massive 7 15 30 19 55

4.3 General algorithms

The computer algebra system Macaulay2 [34] provides the function Euler in the
package CharacteristicClasses. It implements the algorithm of [38] for the
computation of the Euler characteristic. This program requires projective varieties as
input, so we need to homogenize G to G̃ = x0U + F , and can then use one of

[AN\V(x1 · · · xNG)] = [PN\V(x1 · · · xN G̃)] − [PN−1\V(x1 · · · xNF)] (4.14)

= [PN\V(x0x1 · · · xN G̃)] (4.15)

to express the sought-after number of master integrals as the Euler characteristic of a
projective hypersurface complement. We found that this algorithm performs well for
small numbers of variables (edges): The examples in Table 2 require not more than
a couple of minutes of runtime. For more variables, however, the computations tend
to rapidly become much more time consuming and often impracticable. Apart from
the results in Table 2, we also verified Proposition 55 for the sunrise graphs SL using
Euler for up to six loops.

Example 57 Consider the one-loop sunrise graph S1 with m2
1 = m2

2 = −p2 = 1,
which is a non-degenerate kinematic configuration. According to Example 47, its
Lee–Pomeransky polynomial is G = (x1 + x2)(x1 + x2 + 1)+ x1x2. TheMacaulay2
script

load "CharacteristicClasses.m2"
R=QQ[x0,x1,x2]
I=ideal(x0*x1*x2*((x1+x2)*x0+(x1+x2)^2+x1*x2))
Euler(I)

computes the output 0 for χ(V(x0x1x2G̃) ∩ P2). Using χ(P2) = 3 and (4.15), we
conclude C (S1) = 3− 0 = 3 in agreement with Proposition 55.

Recall that the number of master integrals depends on the kinematical configuration;
in Table 2 we give the results both for massless and for massive internal propagators.
In particular, note how the massless 2-loop propagator WS′3 from Example 53 with
only C

(
WS′3

) = 3 master integrals grows to carry C
(
WS′3

) = 30 master integrals in
the fully massive case.
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Furthermore,Macaulay2 also provides an implementation (the commanddeRham)
of algorithm [66] ofOaku andTakayama for the computation of the individual deRham
cohomology groups. This uses D-modules and Gröbner bases and tends to demand
more resources than the method discussed above.

Example 58 Consider again the massive one-loop sunrise from Example 47. The pro-
gram

load "Dmodules.m2"
R=QQ[x1,x2]
f=x1*x2*(x1+x2+(x1+x2)^2+x1*x2)
deRham f

computes the following cohomology groups of X = G2
m\V(G): H0(X) ∼= Q,

H1(X) ∼= Q3 and H2(X) ∼= Q5. Hence, C (S1) = χ(X) = 5 − 3 + 1 = 3 as
in Example 57.

The same functionality is provided by Singular’s deRham.lib library via the
command deRhamCohomology. The Singular analogue of Example 58 is

LIB "deRham.lib";
ring R = 0,(x1,x2),dp;
list L = (x1*x2*(x1+x2+(x1+x2)^2+x1*x2));
deRhamCohomology(L);

4.4 Comparison to other approaches

We successfully reproduced all of our results above (the wheels WS′L with L ≤ 6, the
sunrises SL with L ≤ 4 loops and the graphs from Fig. 4 and Table 2) with the program
Azurite [32], which provides an implementation of Laporta’s approach [50]. While
it employs novel techniques to boost performance, in the end it solves linear systems
of equations between integrals obtained from annihilators of the integrand of Baikov’s
representation (2.48) in order to count the number of master integrals.

The observed agreement with our results is to be expected, since the identification
of integral relations with parametric annihilators that we elaborated on in Sect. 2.3
works equally for the Baikov representation, which can also be interpreted as a Mellin
transform. Note, however, that we must use the options Symmetry -> False and
GlobalSymmetry -> False forAzurite in order to switch off the identification
of integrals that differ by a permutation of the edges. The reason being that, in our
approach, all edges e carry their own index νe and no relation between these indices
for different edges is assumed.

Unfortunately, due to the wayAzurite treats subsectors, this can occasionally lead
to an apparent mismatch. However, this is rather a technical nuisance than an actual
disagreement.

Example 59 For the graph G in Fig. 7, the Euler characteristic gives C (G) = 15,
whereas both Reduze [98] and Azurite produce 16 master integrals. The problem
arises from the subsector where the edges 1 and 2 are contracted: As shown in Fig. 7, it
does have a remaining external momentum p4, such that themomenta running through
edges 3 and 4 are different—however, since p24 = 0, the graph polynomials (and hence
the Feynman integrals) are identical to those of the vacuum graph G ′ in Fig. 7. Since
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G =

p2

p3

p1

p4

1

2

3

4 5G/ {1, 2} =
p4

p4

3 4

5

�→
3

5
3

4

5
4

G′ =
3 4

5

Fig. 7 A graph G with a massive loop (edges 3, 4 and 5), two massless propagators {1, 2} and four external
legs (p21 �= 0 massive and p22 = p23 = p24 = 0 massless). Since the only momentum p4 running through

the graph after contracting 1 and 2 is null (p24 = 0), the associated integral is the same as for G′

edges 3 and 4 in G ′ have the same mass, they can be combined and thus G ′ clearly
has only a single master integral: the product of two tadpoles.

ButAzurite and Reduze instead consider the subsectors ofG/ {1, 2} obtained by
contracting a further edge (3 or 4), and obtain the two tadpoles (see Fig. 7) consisting
only of edges {4, 5} and {3, 5}, respectively, asmaster integrals. Of course, thesewould
be recognized as identical if symmetrieswere allowed, but the point is that evenwithout
using symmetries, there is only a single master integral for G ′ (as computed by the
Euler characteristic).

Our results are also consistent with the conclusions obtained within the differential
reduction approach [42]; indeed, we demonstrated in Sect. 4.2 how the master integral
counts of [43] for the sunrise graphs emerge directly from the computation of the Euler
characteristic. Let us point out again, however, that some care is required for these
comparisons, since those works refer to irreducible master integrals, which excludes
integrals that can be expressed with gamma functions. In particular, the fact that the
two-loop sunrise S2 with one massless line has C (S2) = 4 master integrals (see
Proposition 56) is consistent with [41]. We are counting all master integrals and are
not concerned here with the much more subtle question addressed by the observation
that two of these integrals may be expressed with gamma functions.

Finally, let us note that also the work of Lee and Pomeransky [58] addresses a dif-
ferent problem: Considering only integer indices ν ∈ ZN , how many top-level master
integrals are there for a graph G? This means that integrals obtained from subsectors
(graphs G/e with at least one edge e contracted) are discarded. Geometrically, the
number of the remaining master integrals is identified with the dimension of the coho-
mology group HN (CN\V(G)).34 In most cases, the program Mint computes this
number correctly, which then agrees with the other mentioned methods.35 We refer to
[13, section 4] and [43, section 6] for detailed discussions of this comparison. Note
that the dimension (and a basis) of the top cohomology group can also be computed
with the command deRhamCohom from the Singular library dmodapp.lib.

The concept of top-level integrals does not literally make sense in our setting of
arbitrary, non-integer indices ν. Here, there is no relation at all between integrals of
a quotient graph G/e and integrals of G. (The former do not depend on νe at all; the

34 Actually, they initially refer to a different, relative cohomology group; but in the description of their
implementation in Mint they seem to work with this total cohomology group.
35 Occasional mismatches are known, like for the graph F9 from Fig. 4 that was addressed in [13, sec-
tion 4.1]. These discrepancies are due to an error in the implementation of Mint that misses contributions
from critical points at infinity. (We thank Yang Zhang for bringing this to our attention.)
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latter do.) However, discarding integrals from quotient graphs suggests a definition of
a number as follows.

Remark 60 Using the inclusion–exclusion principle, one might be tempted to define

Ĉ (G) :=
∑

γ⊆G
(−1)|γ |C (G/γ ) = C (G)−

∑

e

C (G/e)+
∑

e< f

C (G/ {e, f })− · · ·

(4.16)

as the number of top-level master integrals, since it subtracts from all master integrals
C (G) the integrals associated to subsectors (and corrects for double counting). Note
that if γ contains a loop, the corresponding term in the sum should be set to zero. (We
only consider contractions with the same loop number as G.) The reverse relation,

C (G) =
∑

γ⊆G
Ĉ (G/γ ) , (4.17)

is consistent with the intuition that the total set of master integrals is obtained as the
union of all top-level masters. By GG/γ = G|xe=0∀e∈γ , we find that

Ĉ (G) = (−1)Nχ
(
AN\V(G)

)
(4.18)

is the Euler characteristic of the hypersurface complement inside affine space (as
compared to the torusGN

m as ambient space).We find that this number behaves exactly
as expected and is consistent with our calculations in Sect. 4. However, we point out
that this number can take negative values. For example, Ĉ (G/ {1, 2}) = −1 is negative
for the graph from Fig. 7. In fact, this is necessary for the consistency of sum (4.17)
of all master integrals:

1=C (G/ {1, 2})= Ĉ (G/ {1, 2})+Ĉ (G/ {1, 2, 3})+Ĉ (G/ {1, 2, 4}) = −1+1+1.

Namely, as we discussed in Example 59, the two subtopologies G/ {1, 2, 3} and
G/ {1, 2, 4} have one master integral each, if we consider them individually. However,
they are embedded into the graph G/ {1, 2}, which has only a single master integral,
C (G/ {1, 2}) = 1. This is sometimes referred to as a “relation between subtoplogies”,
and the negative value of Ĉ (G/ {1, 2}) = −1 is precisely correcting the total counting.

Note that symmetries play no role in this discussion - the “extra” relation is detected
by the Euler characteristic and thus corresponds to a parametric annihilator.36

5 Outlook

We have studied linear relations between Feynman integrals that arise from paramet-
ric annihilators of the integrand Gs in the Lee–Pomeransky representation. Seen as a

36 As a referee kindly pointed out, this relation also follows from momentum space IBPs.
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multivariate (twisted)Mellin transform, the integration bijects these special partial dif-
ferential operatorswith relations of various shifts (in the indices) of aFeynman integral.
In particular, every classical IBP relation (derived in momentum space) is of this type.

The question whether all shift relations of Feynman integrals (equivalently, all
parametric annihilators of Gs) follow from momentum space relations remains open
(seeQuestion 24).We showed that thewell-known lowering and raising operators with
respect to the dimension are consequences of the classical IBPs. A next step would
be to clarify if the same applies to the relations implied by the trivial annihilators
(2.14). Similarly, Question 23 asking whether the annihilator Ann(Gs) = Ann1(Gs)

is linearly generated, remains to be settled. A positive answer to either of these would
imply that the labour-intensive computation of the parametric annihilators could be
simplified considerably (Mom is known explicitly, andAnn1 can be calculated through
syzygies).

The main insight of this article is a statement on the number of master integrals,
which we define as the dimension of the vector space of the corresponding family of
Feynman integrals over the field of rational functions in the dimension and the indices.
Since we treat all indices νa as independent variables, this definition does not account
for symmetries (automorphisms) of the underlying graph. An important next step, in
particular for practical applications, is to incorporate these symmetries into our set-
up by studying the action of the corresponding permutation group. The widely used
partition of master integrals into top-level and subsector integrals can be mimicked in
our framework, as discussed in Remark 60.

Our result shows that the number of master integrals is not only finite, but identical
to the Euler characteristic of the complement of the hyperspace {G = 0} determined
by the Lee–Pomeransky polynomial G. This statement follows from a theorem of
Loeser andSabbah.We exemplified severalmethods to compute this number and found
agreement with other established methods. We expect that, combining the available
tools for the computation of the Euler characteristic, it should be possible to compile
a program for the efficient calculation of the number of master integrals for a wide
range of Feynman graphs.

Let us conclude by emphasizing, once again, that the main objects of the approach
elaborated here—the s-parametric annihilators generating the integral relations, and
theEuler characteristic giving thenumber ofmaster integrals—arewell-studiedobjects
in the theory of D-modules and furthermore algorithms for their automated computa-
tion are available in principle.

In particular, we hope that this parametric, D-module theoretical and geometrical
approach can also shed light on the problemsmost relevant for perturbative calculations
in QFT: the construction of a basis of master integrals and the actual reduction in
arbitrary integrals to such a basis. For this perspective, we would like to point out that
our approach of treating the indices νa as free variables, in particular not tied to take
integer values, is desirable in order to deal with dimensionally regulated integrals in
position space, and for the ability to integrate out one-scale subgraphs (both situations
introduce non-integer indices). For a recent step into this direction, see [91].
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A. Integral representations

In this appendix, we add technical details on the material of Sect. 2. We summarize
the various well-known parametric representations, including their proofs, and the
explicit relation to momentum space via Propositions 2 and 20. Furthermore, we give
an alternative, algebraic proof for Corollary 63.

A.1. Momentum space and Schwinger parameters

As in Sect. 3.2,we consider a connected Feynman graphG with N internal edges, E+1
external legs and loop number L , which is related by Euler’s formula L = N − V + 1
to the number V of vertices of G. Let us consider the case where each edge e of G is
associated with a Feynman propagator,37

1

De
= 1

−k2e + m2
e − iε

(1 ≤ e ≤ N ),

which depends on the mass me of the particle e and the d-dimensional momentum
ke ∈ Rd flowing through this edge. Enforcing momentum conservation at each vertex
fixes all ke in terms of E independent external momenta p1, . . . , pE and L free loop
momenta �1, . . . , �L . Note that the actual number of external legs of G is E + 1,
since overall momentum conservation

∑E+1
i=1 pi = 0 imposes one relation among the

external momenta. Taking only the inverse Feynman propagators De as denominators,
Eq. (2.1) defines the Feynman integral associated to G.

Example 61 The graph in Fig. 8 has V = 5 vertices, N = 6 internal edges and L = 2
loops. It depends on two independent external momenta p1 and p2. A choice of loop
momenta and the resulting momentum flow is depicted in Fig. 8. With all masses zero,

37 We use the signature (1,− 1, . . . ,− 1) for the Minkowski metric.
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Fig. 8 A two-loop Feynman
graph with a choice of loop
momenta and the resulting
momentum flow 1

2

1 − p1

2 − p1

p1

p2

−p1 − p2

2 + p21 − 2

this yields

I(ν1, . . . , ν6)=
∫

Rd

dd�1
iπd/2

∫

Rd

dd�2
iπd/2

1

[−�21 − iε]ν1[−�22 − iε]ν2 [−(�1 − �2)2 − iε]ν3
× 1

[−(�2 + p1)2 − iε]ν4 [−(�2 − p2)2 − iε]ν5[−(�1 − p2)2 − iε]ν6 .

Typically, the number |�| = L(L + 1)/2+ LE of independent scalar products s{i, j}
in (2.28) is larger than the number of edges in a graph G. We can then extend the
initial set of denominators (given as the inverse propagators of the graph) by a suitable
choice of additional quadratic (or linear) forms in the loop momenta, such that we
reach a set of |�| denominators with the property that the matrix A defined by

Da =
∑

{i, j}∈�

A{i, j}a s{i, j} + λa

becomes invertible. This means that all loop-momentum-dependent scalar products
can be written as linear combinations of the denominators, see (2.29). The additional
denominators introduced in this way are called irreducible scalar products.

Example 62 We again consider the graph from Fig. 8 with 6 internal edges labelled as
in Example 61. In the massless case, the inverse propagators are just De = −k2e and
their explicit decomposition into the |�| = 7 scalar products takes the form

⎛

⎜⎜⎜⎜⎜⎜⎝

D1

D2

D3

D4

D5
D6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�21

−�22

−(�1 − �2)
2

−(�2 + p1)2

−(�2 − p2)2

−(�1 − p2)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

− 1 0 0 0 0 0 0
0 0 − 1 0 0 0 0
− 1 2 − 1 0 0 0 0
0 0 − 1 0 0 − 2 0
0 0 − 1 0 0 0 2
− 1 0 0 0 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�21
�1�2

�22
�1 p1
�1 p2
�2 p1
�2 p2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

−p21
−p22
−p22

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
λ

.

The matrix A has rank 6 and annihilates (0, 0, 0, 1, 0, 0, 0)ᵀ. Thus, we can choose
D7 = �1 p1 as an irreducible scalar product to complete the basis of quadratic forms in
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the loop momenta. The matrix A then acquires an additional row (0, 0, 0, 1, 0, 0, 0)
and becomes invertible.

Note that we assume that the inverse propagators of G (the initial set of denominators)
are linearly independent (that is, the N × |�| matrix A of the inverse propagators
has full rank N ) in order to be able to extend them to a basis of quadratic forms by
choosing |�| − N irreducible scalar products.38

For each denominator Da we introduce a scalar xa , which is known as Schwinger-,
Feynman- or α-parameter. In Definition 1 we have introduced the decomposition

N∑

a=1
xaDa = −

L∑

i, j=1
�i j�i� j +

L∑

i=1
2Qi�i + J , (A.1)

which determines a symmetric L × L matrix �, a vector Q and a scalar J . With their
help we defined the polynomials U , F and G = U + F in (2.3). Explicitly, from
Definition 1 and (2.26) we can read off that

�i j = −1+ δi j

2

N∑

a=1
xaA{i, j}a for 1 ≤ i, j ≤ L, (A.2)

Qi = 1

2

N∑

a=1

M∑

j=L+1
xaA{i, j}a q j for 1 ≤ i ≤ L and (A.3)

J =
N∑

a=1
xaλa . (A.4)

Since �i j is an L × L matrix with entries that are linear in the Schwinger parameters,
the polynomial U is homogeneous of degree L . By Cramer’s rule, (det�)�−1i j is
homogeneous of degree L − 1 and the linearity of Q and J in the xa implies

Corollary 63 U andF are homogeneous polynomials in the variables x1, . . . , xN with
the degrees deg(U) = L and deg(F) = L + 1. Hence, for G = U + F , we have

(
N∑

a=1
xa∂a

)
G = LU + (L + 1)F = (L + 1)G − U = LG + F . (A.5)

Let us now come to the proof of Proposition 2 following [64] and [58].

38 If there are linear dependencies between the inverse propagators, these relations imply that the Feynman
integral can be expressed in terms of contracted graphs with linearly independent inverse propagators. For
example, if αD1 + βD2 = 1, then iterated use of 1/(D1D2) = α/D2 + β/D1 allows one to ultimately
eliminate one of D1 or D2. Therefore, requesting linear independence is no restriction.
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Proof of Proposition 2 We consider the Feynman integral defined in (2.1),

I(ν1, . . . , νN ) =
⎛

⎝
L∏

j=1

∫
dd� j

iπd/2

⎞

⎠
N∏

i=1
D−νi
i . (A.6)

Using the Schwinger trick to exponentiate each denominator,39

1

Dνa
a
= 1

�(νa)

∫ ∞

0
xνa−1
a e−xaDadxa, (A.7)

the integral in (A.6) turns into

I(ν1, . . . , νN ) =
(

N∏

i=1

∫ ∞

0

xνi−1
i dxi
� (νi )

)⎛

⎝
L∏

j=1

∫
dd� j

iπd/2

⎞

⎠ e−
∑N

a=1 xaDa .

According to (A.1) and (2.3), we can complete the square in the exponent

−
N∑

a=1
xaDa = (�−�−1Q)ᵀ�(�−�−1Q)− F/U

to perform the Gaußian integrals over the shifted loop momenta �′ := �−�−1Q as40

⎛

⎝
L∏

j=1

∫ dd�′j
iπd/2

⎞

⎠ e(�′)ᵀ��′ = (det�)−d/2 = U−d/2.

In summary, we therefore arrive at the integral representation (2.5):

I(ν1, . . . , νN ) =
(

N∏

i=1

∫ ∞

0

xνi−1
i dxi
� (νi )

)
e−F/U

Ud/2 .

We now multiply with 1 = ∫∞
0 δ(ρ −∑N

j=1 x j )dρ and substitute xa → ρxa .41 The

Jacobian ρN , the monomials xνi−1
i and δ(ρ −∑

j x j )→ δ(1−∑
j x j )/ρ contribute

39 Integral (A.7) converges only for Re(νa) > 0 and therefore restricts the domain of convergence for the
parametric integral. However, this has no consequences for algebraic relations, see Remark 4.
40 Recall that our metric has signature (1,−1, . . . ,−1), so the integrations over the d − 1 spacelike
components are Euclidean and give

√
π LU each. The timelike integrations are understood as contour

integrals and yield the same factor after rotating the integration contour to the imaginary axis, according to
the Feynman iε-prescription.
41 Much more generally, we could replace

∑N
j=1 x j in the δ-constraint with any other function as long as

it is homogeneous of degree 1 and positive on RN+ .
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the power ρ|ν|−1, whereas the homogeneity of F and U from Corollary 63 implies
that U → ρLU and F/U → ρF/U . Overall, by realizing that the integral over ρ is

∫ ∞

0
ρω−1e−ρF/Udρ = �(ω)

(U
F

)ω

,

we arrive at the first parametric formula (2.6). Similarly, we multiply the integrand of
(2.7) with 1 = ∫∞

0 δ(ρ −∑
i xi )dρ and substitute xi → ρxi . Using U → ρLU and

F → ρL+1F from Corollary 63, the integral over ρ becomes

∫ ∞

0
ρω−1(U + ρF)−d/2 = U−d/2

(U
F

)ω �(ω)�( d2 − ω)

�( d2 )

and combines with the prefactors in (2.7) to reproduce (2.7). �	

We conclude the section with the proof of Proposition 20 following Grozin [35]:

Proof of Proposition 20 The action of oij on the integrand from (2.30) is

oij f = dδi j f + f
N∑

a=1

−νa

Da
q j

∂Da

∂qi
.

According to (2.26), the chain rule gives

q j
∂

∂qi
Da = q j

∂

∂qi

∑

{k,m}∈�

A{k,m}a qkqm =
M∑

m=1
A{i,m}a (1+ δi,m)q jqm

andwe can express the scalar products q jqm with { j,m} ∈ � in terms of denominators
using (2.29). The remaining terms with j,m > L are products of external momenta,
so

oij f = dδi j f − f
N∑

a,b=1
Cbi
aj

νa

Da
(Db − λb) for 1 ≤ j ≤ L and

oij f = − f
N∑

a,b=1
Cbi
aj

νa

Da
(Db − λb)− f

N∑

a=1

M∑

m=L+1
A{i,m}a q jqm

νa

Da
if L < j ≤ M .

We conclude by noticing that multiplying the integrand f with νa/Da is equivalent to
the action of the operator â+ defined in (2.17), whereas multiplication with Db lowers
the index νb and corresponds to b−. �	
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A.2. Algebraic proof for Corollary 21

With the proof of Corollary 21 we have shown that, for every momentum space IBP
relation, there is a corresponding annihilator in Ann

(G−d/2
)
. The proof rests on the

inverse Mellin transform, which may be seen as a convenient but rather abstract argu-
ment. As a more direct alternative, we prove the statement in a purely algebraical way
by use of properties of the graph polynomials.

Lemma 64 The operators Õ
i
j from (2.36) and (2.37) corresponding to the momentum

space IBP relations annihilate the parametric integrand G−d/2:

Õ
i
j ∈ Ann

(
G−d/2

)
for all 1 ≤ i ≤ L and 1 ≤ j ≤ M .

Proof Let us first consider the case j ≤ L . After acting with Õ
i
j from (2.36) on G−d/2

and dividing by (d/2)G−d/2−1, we are left to prove the vanishing of

2Gδi, j −
∑

a,b

Cbi
a j xa

(
∂bG − λb

[
L + 1−

∑

c

xc∂c
]
G
)

= 2Gδi, j −
∑

a,b

Cbi
a j xa (∂bG − λbU) (A.8)

where we exploited the homogeneity from (A.5). Using (2.3), we note that

∂bG − λbU = ∂b

[
U

(
1+ J + Qᵀ�−1Q

)]
− λbU = G ∂bU

U + U∂b

(
Qᵀ�−1Q

)

(A.9)

because ∂b J = λb according to (A.4). In order to evaluate ∂bU with Jacobi’s formula
(∂bU)/U =∑L

r ,s=1 �−1r ,s∂b�s,r , we use (A.2) to compute

∑

b

Ab{m, j}∂b�s,r = −1+ δs,r

2

∑

b

Ab{m, j}A{s,r}b = −1+ δs,r

2
δ{m, j},{r ,s}

= −δm,rδ j,s + δm,sδ j,r

2

which restricts m to either r or s. So in particular, m ≤ L and we can use (A.2) in

∑

a,b

Cbi
a j xa∂b�r ,s = −

∑

a,m

xaA{i,m}a
1+ δi,m

2

(
δm,rδ j,s + δm,sδ j,r

)

= �i,rδ j,s +�i,sδ j,r (A.10)
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which proves that for arbitrary j (independent of whether j ≤ L or j > L)

∑

a,b

Cbi
a j xa

∂bU
U =

L∑

r ,s=1
�−1r ,s (�i,rδ j,s +�i,sδ j,r ) = 2δi, j . (A.11)

Via (A.9), this identity reduces the proof of (A.8) to showing that

∑

a,b

Cbi
a j xa∂b

(
Qᵀ�−1Q

)
=

∑

a,b

Cbi
a j xa

[
2(∂bQ)ᵀ�−1Q − Qᵀ�−1(∂b�)�−1Q

]

(A.12)

vanishes. The last term is easily evaluated with (A.10) and gives

∑

a,b

Cbi
a j xaQ

ᵀ�−1(∂b�)�−1Q = 2
L∑

r ,s=1
(�−1Q)r (�

−1Q)s�i,rδ j,s

= 2Qi (�
−1Q) j , (A.13)

whereas the derivative ∂bQ can be read off from (A.3) and the sum over b yields

∑

b

Ab{m, j}(2∂bQs) =
∑

b

Ab{m, j}
∑

r>L

A{s,r}b qr =
∑

r>L

qrδ{m, j},{s,r} =
∑

r>L

qrδm,rδs, j

(A.14)

because j ≤ L < r excludes the possibility that m = s and r = j . Thus with (A.3),

∑

a,b

Cbi
a j xa(2∂bQ)ᵀ�−1Q = (�−1Q) j

∑

a

∑

m>L

xaA{i,m}a qm = 2Qi (�
−1Q) j

(A.15)

cancels the contribution from (A.13) in (A.12) and finishes the proof in the case j ≤ L .
If instead we have j > L , then we must replace δ{m, j},{s,r} = δ j,rδm,s in (A.14) such
that

∑

a,b

Cbi
a j xa(2∂bQ)ᵀ�−1Q =

L∑

s=1

∑

a

A{i,s}a (1+ δi,s)q j (�
−1Q)s

= −2
L∑

s=1
�i,s(�

−1Q)s = −2Qiq j

where we used (A.2) once more. Now recall that (A.11) remains true and becomes
zero for j > L because δi, j = 0 since i ≤ L . For the same reason, δ j,s = 0 in (A.13)
and therefore, using (A.9),
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−
∑

a,b

Cbi
a j xa(∂bG − λbU) = −U

∑

a,b

Cbi
a j xa(2∂bQ)ᵀ�−1Q = 2UQiq j .

This is precisely cancelled by the additional contribution to (A.8) coming from Õ
i
j in

(2.37) in the case j > L: The additional term acts on G−d/2 as

−
∑

a

∑

m>L

A{i,m}a q jqmxa
[
L + 1−

∑

c

xc∂c
]
G = −Uq j

∑

a

∑

m>L

A{i,m}a xaqm

= −2Uq j Qi

after dividing by (d/2)G−d/2−1. Note that here we used (A.5) and (A.3). �	

A.3. The Baikov representation

In this section,wediscuss the representation of Feynman integrals suggested byBaikov
in [7], whose complete form (2.48) was given by Lee in [53,54]. We will give some
details on the derivation of this formula (see also [35, section 9]), which was presented
in [53] and applied in our discussion of the lowering dimension shift in Sect. 2.5.

Assume that q1, . . . , qM are vectors in a Euclidean vector space and write

Vn :=
⎛

⎜⎝
qn · qn · · · qn · qM

...
. . .

...

qM · qn · · · qM · qM

⎞

⎟⎠ = (
qi · q j

)
n≤i, j≤M and Gn := det Vn (A.16)

for their Gram matrices and determinants. Note that

Vn =
(

q2n q• · qn
qn · q• Vn+1

)
where q• · qn :=

⎛

⎜⎝
qn+1 · qn

...

qM · qn

⎞

⎟⎠ , qn · q• := (q• · qn)ᵀ

and thus, by adding −(pn · p•)V−1n+1 times the lower M − n rows to the first row,

Gn

Gn+1
= q2n −

∥∥∥pr⊥lin{qn+1,...,qM }(qn)
∥∥∥
2 =

∥∥∥pr⊥lin{qn+1,...,qM }⊥(qn)
∥∥∥
2
. (A.17)

Indeed, formula pr⊥lin{qn+1,...,qM }(v) = ∑M
i, j=n+1 qi

(
V−1n+1

)

i, j
(q j · v) for the orthog-

onal projection of v onto the space spanned by qn+1, . . . , qM shows that

∥∥∥pr⊥lin{qn+1,...,qM }(qn)
∥∥∥
2 =

M∑

i, j,k,l=n+1
(qi · qk)︸ ︷︷ ︸
(Vn+1)i,k

(
V−1n+1

)

i, j
(q j · qn)

(
V−1n+1

)

k,l
(qk · qn)
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=
M∑

j,k,l=n+1
δk, j (q j · qn)

(
V−1n+1

)

k,l
(ql · qn)

=
M∑

k,l=n+1
(qk · qn)

(
V−1n+1

)

k,l
(ql · qn)

= (qn · q•)V−1n+1(q• · qn).

Now assume our integrand f only depends on the scalar products si, j = qi · q j , and
we want to integrate out the first loop momentum q1. Let us decompose q1 = q⊥+q‖
into the component q‖ ∈ lin {q2, . . . , qM } that lies in the space spanned by the other
momenta, and the component q⊥ in its orthogonal complement. According to (A.17),
G1/2

n is the volume of the parallelotope spanned by qn, . . . , qM . Hence, changing
coordinates from q‖ to (s1,2, . . . , s1,M ) yields

∫

R
ds1,2 · · ·

∫

R
ds1,M =

√
G2

∫

RM−1
dM−1q‖.

The integral over the orthogonal component is, due to s1,1 = q21 = q2⊥+q2‖ , given by

∫

Rd−M+1
dd−M+1q⊥ = π(d−M+1)/2

�
( d−M+1

2

)
∫ ∞

0
dq2⊥

(
q2⊥

)(d−M−1)/2

= π(d−M+1)/2

�
( d−M+1

2

)
∫ ∞

q2‖
ds1,1

(
G1

G2

)(d−M−1)/2
.

Note that the lower boundary s1,1 = q2‖ corresponds to 0 = q2⊥ = G1/G2. Altogether,

∫

Rd

ddq1
πd/2 f (s) = π(1−M)/2

�
( d−M+1

2

)
∫

G1/G2>0
dMs1,• f (s)

G(d−M−1)/2
1

G(d−M)/2
2

. (A.18)

Transforming the remaining loop integrations analogously, all but two of the Gram
determinants cancel, and we conclude that

L∏

i=1

∫
dd�i
πd/2 f (s) = π−LE/2−L(L−1)/4

�
( d−L−E+1

2

) · · ·� ( d−E
2

)
∫

dN s•,• f (s) · G
(d−M−1)/2
1

G(d−E−1)/2
L+1

(A.19)

where M = L + E is the sum of the number L of loops and the number E of linearly
independent external momenta. Note that GL+1 = det(pi · p j )1≤i, j≤E is the Gram
determinant of the external momenta and independent of the integration variables.

Proof of Theorem 29 Since every denominator De is a linear combination of si, j (and
some loop momentum independent constant λe) according to (2.26), an affine change
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of variables allows us to integrate over the values ofDe’s instead of si, j ’s. This transfor-
mation only introduces a constant Jacobian c′ = det(Aa{i, j}). We set f (s) =∏

e D
−νe
e

in formula (A.19) above. The (Euclidean) integration domain is determined, according
to (A.17), by 0 < ‖pr⊥

lin{qn+1,...,qM }⊥(qn)‖2 = Gn/Gn+1 for 1 ≤ n ≤ L . Therefore, a

point on the boundary of the integration domain is determined by Gn = 0 for some
1 ≤ n ≤ L , which is equivalent to a linear dependence qn ∈ lin {qn+1, . . . , qM } and
hence implies G1 = 0.

Note that we have to analytically continue (A.19) from Euclidean to Minkowski
space in order to obtain the Feynman integral (2.1). As Wick rotation turns∫
dd�k/(iπd/2) exactly into the measure

∫
dd�k/πd/2 on the left-hand side of (A.19),

we only have to remember that, due to ourmostly-minus signature (1,− 1, . . . ,− 1) of
the Minkowski metric, the Euclidean scalar products on the right-hand side of (A.19)
receive a factor (−1). For example, the M ×M determinant G1 turns into (−1)MGr1;
similarly, GL+1 becomes (−1)EGr. Overall, analytic continuation gives an additional
factor of

(−1)N · (−1)M(d−M−1)/2

(−1)E(d−E−1)/2 = (−1)Ld/2 · (−1)N+M(M−1)/2−E(E−1)/2.

We absorb the last factor, together with the Jacobian c′, into the constant prefactor c,
and have thus finally arrived at (2.48). �	

B. The theory of Loeser–Sabbah

This section is devoted to Theorem 35, which was first stated in [59]. Beware that the
original argument is flawed; a correct (but terse) proof was given in [61]. Our aim here
is to provide a simplified and more detailed derivation.

Throughout we will consider modules M over the algebra DN
k = AN

k [x−1] of
differential operators (3.4) on the torus in some number N of variables xi , over some
field k of characteristic zero. To lighten the notation, let us abbreviate θi := xi∂i and
set

M (θi , . . . , θN ) :=M ⊗k[θi ,...,θN ] k(θi , . . . , θN ) (B.1)

for the algebraic Mellin transform [60, Section 1.2]. We begin with the finite-
dimensionality, which was proven in [60, Lemma 1.2.2]:

Lemma 65 Let M denote a holonomic DN
k -module. Then, for any 1 ≤ i ≤ N, its

algebraic Mellin transformM (θi , . . . , θN ) is a holonomic Di−1
k(θi ,...,θN )-module.

Corollary 66 The full Mellin transformM (θ1, . . . , θN ) is a finite-dimensional vector
space over the field k(θ1, . . . , θN ).

Proof of Lemma 65 Since M (θi , . . . , θN ) = [M (θi+1, . . . , θN )](θi ), it suffices (by
induction over i) to consider the case i = N . Introducing a new indeterminate ν, we
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extend the scalars from k to k[ν] to obtain a DN
k[ν]-module M [ν] := M ⊗k k[ν]. It

sits in an exact sequence

0 −→M [ν] ∂N+ν/xN−−−−−→M [ν]
∑

j ν j m j �→∑
j (−1−xN ∂N ) j m j−−−−−−−−−−−−−−−−−−→M −→ 0

of DN−1
k[ν] -modules, where M = M denotes the initial module M with the action of

ν defined as νm := −xN ∂Nm. Since k(ν) is flat, this sequence remains exact after
tensoring with k(ν) over k[ν]. Through identification of ν with−θN −1, we conclude
that

M ⊗k k(ν)

(∂N + ν/xN )(M ⊗k k(ν))
∼=M⊗k[ν] k(ν) ∼=M ⊗k[θN ] k(θN ) =M (θN )

are isomorphic as DN−1
k(ν) -modules. The left-hand side is the quotientM xν

N/∂NM xν
N

of theDN
k(ν)-moduleM xν

N :=M ⊗k k(ν) defined by the original action ofDN−1
k and

x±1N onM , but twisting the operator ∂N to act like ∂N + ν/xN .42 The holonomicity of
M implies that M xν

N is also holonomic,43 and hence its push-forward π∗(M xν
N ) =

M xν
N/∂N (M xν

N ) ∼= M (θN ), with respect the projection π : GN
m −� GN−1

m that
forgets the last coordinate, is also holonomic. �	
Now we want to relate this dimension to the de Rham complex DR(M ) = K (M ; ∂),
which is a special case of the Koszul complex:

Definition 67 For commuting k-linear endomorphisms s = (s1, . . . , sN ) of a k-vector
space M , let

K (M ; s1, . . . , sN ) := (
�•k ⊗k M [N ], d) (B.2)

denote the Koszul complex with r -forms sitting in degree r − N . The r − N cochains

Kr−N (M ; s) = �rM =
⊕

|I |=r
eI ⊗M

have natural coordinateswith respect to the basiseI := ei1∧· · ·∧eir ∈ �r k indexed by
r -sets I = {i1 < · · · < ir }. The cochain map reads d(eI ⊗m) =∑

i /∈I (ei ∧eI )⊗sim.

Remark 68 Since θ j
(∏

i∈I xi
)
m =

(∏
i∈I∪{ j} xi

)
∂ jm (for j /∈ I ), the rule

K (M ; ∂) −→ K (M ; θ), eI ⊗ m �→ eI ⊗ x Im (B.3)

42 This just encodes the natural action ∂N xν
Nm = xν

N (∂N + ν/xN )m on products of elements m of M
with the function xν

N—hence the suggestive notation M xν
N .

43 Given a good filtration �• of M , �′j (M xν
N ) := (x− j

N �2 jM ) ⊗k k(ν) defines a filtration of M xν
N

with dimk(ν) �′j (M xν
N ) ≤ dimk �2 jM ≤ c · (2 j)N for some c <∞.

123



Feynman integral relations from parametric annihilators 551

defines a cochain map. It has an inverse, defined by eI ⊗ m �→ eI ⊗ x−I m. We thus
conclude that DR(M ) = K (M ; ∂) and K (M ; θ) are quasi-isomorphic and therefore
share the same Euler characteristic.

We prove Theorem 35 by an induction over the number of variables. The base case
is

Theorem 69 ([59, Théorème 1]) IfM denotes a holonomic D1
k -module, then

dimk(θ1) M (θ1) = χ(M ) := dimk
M

∂1M
− dimk ker(∂1). (B.4)

Proof We can pick a generator ofM (by holonomicity,M is cyclic as aD1
k -module)

and extend it to a (finite) basis of M (θ1) as a vector space over k(θ1), due to Corol-
lary 66. Let N ⊂ M denote the k[θ1]-module generated by such a basis, hence
N (θ1) = M (θ1). By construction, M = A1

kN = ∑
j∈Z x j

1N is exhaustively

filtered by the finitely generated k[θ1]-modules N j :=∑ j
i=− j x

i
1N .44

SinceM (θ1) = N (θ1) = N1(θ1) is finitely generated, there is a nonzero polyno-
mial b(θ1) ∈ k[θ1] such that b(θ1)N1 ⊆ N . Therefore, using (θ1 − 1)x1 = x1θ1,

b(θ1 ∓ j)x±( j+1)
1 N = x± j

1 b(θ1)x
±1
1 N ⊆ x± j

1 b(θ1)N1 ⊆ x± j
1 N ⊆ N j

shows that the polynomials b j+1(θ1) := b(θ1+ j)b(θ1− j) ∈ k[θ1] have the property
b j+1(θ1)N j+1 ⊆ N j . Let Z = b−1(0) denote the zeroes of b1 = b2, then note that
the zeroes of b j+1 are (Z+ j)∪ (Z− j) and get pushed away from zero for increasing
j . In particular, there exists some j0 ∈ N such that b j (0) �= 0 for all j > j0. For each
such value of j , we can find u j , v j ∈ k[θ1] such that 1 = u j (θ1)b j (θ1) + v j (θ1)θ1;
then

m = 1 · m = u j (θ1)b j (θ1)m + v j (θ1)θ1m ∈ N j−1 + v j (θ1)θ1m

holds for every m ∈ N j . This proves ker(θ1) ∩ N j ⊆ N j−1 for all j > j0, and
therefore ker(θ1) ⊆ N j0 . Similarly, we conclude M /(θ1M ) ∼= N j0/(N j0 ∩ θ1M ).
But given some m = θ1x ∈ N j0 with x ∈ N j , x = u j (θ1)b j (θ1)x + v j (θ1)m ∈
N j−1 +N j0 proves that N j0 ∩ θ1(N j ) = N j0 ∩ θ1(N j−1) for all j > j0. In conse-
quence, we have proven that

ker(∂1) = ker(θ1) = ker
(
θ1|N j0

)
and

M

∂1(M )
∼= M

θ1(M )
∼= N j0

θ1(N j0)
;

in other words, the Koszul complexes DR(M ) = K (M ; ∂1) and K (N j0; θ1) are
quasi-isomorphic (see Remark 68). The statement of the theorem thus reduces to the
identity

dimk(θ1) N j0(θ1) = χ
(
K (N j0; θ1)

)

44 Due to θ1x
i
1N = xi1(θ1 + i)N ⊆ xi1N ⊆ N j , indeedN j is a k[θ1]-module.
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for a finitely generated k[θ1]-module N j0 . Since both sides are additive under short
exact sequences, this claim reduces (via a finite free resolution) to the case of a free
rank one k[θ1]-module, i.e. k[θ1], which is clear: k[θ1](θ1) = k(θ1) is of dimension one
over k(θ1), while ker(θ1) = {0} is trivial and k[θ1]/(θ1k[θ1]) = k is one-dimensional.

�	
With this starting point, we can now prove Theorem 35 by induction. In fact, the
higher-dimensional case can be seen as a straightforward corollary of the univariate
case above. In contrast to [61], our demonstration avoids any reference to higher-
dimensional lattices.

Proof of Theorem 35 Let M denote a holonomic DN
k -module, and suppose we have

proven Theorem 35 for all holonomic modules in less than N variables. In particular,
we may invoke the claim for the DN−1

k -modules ker ∂N and M /∂NM , as these are
holonomic because they are the cohomologies of the complex

0 −→M
∂N−→M −→ 0

which computes the push-forward ofM along the projection π : GN
m −→ GN−1

m that
forgets the last coordinate. So we already know that

χ

(
M

∂NM

)
= dimk′

(
M

∂NM
(θ ′)

)
= dimk′

M ′

∂NM ′

where k′ := k(θ ′) and M ′ := M (θ ′) with θ ′ := (θ1, . . . , θN−1). Analogously,
χ(ker ∂N ) = dimk′ ker(∂ ′N ), where ∂ ′N denotes the action of ∂N onM ′. In conclusion,
we know that

χ (M /(∂NM ))− χ (ker ∂N ) = dimk′ M
′/(∂NM ′)− dimk′ ker(∂

′
N ) = χ(M ′)

= dimk′(θN ) M
′(θN ) = dimk(θ) M (θ),

where we recognized the first line as the Euler characteristic of the de Rham complex
of the D1

k′ -module M ′ and applied Theorem 69 to get to the last line (M ′ =M (θ ′)
is holonomic by Lemma 65). So we only need to show that the left-hand side is equal
to χ(M ).

This iswell known and follows from theGrothendieck spectral sequence.45 Alterna-
tively, an elementary way to obtain the identity χ(M /(∂NM ))−χ(ker ∂N ) = χ(M )

is given by the long exact sequence

· · · → Hi+1(DR(ker ∂N )) → Hi (DR(M ))→ Hi (DR(M /∂NM ))

→ Hi+2(DR(ker ∂N ))→ · · · (B.5)

45 Let πN : GN
m −→ {pt} denote the projection to a point, such that πN = πN−1 ◦ π . The identity

πN+ = πN−1+ ◦π+ of the corresponding push-forwards in the derived category ofDN
k -modules implies that

χ(DR(M )) = χ(πN+ (M )) =∑
i (−1)iχ(Hi (π+M )), where H−1(π+M ) = ker ∂N and H0(π+M ) =

M /(∂NM ).
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in de Rham cohomology [12, Ch. 2, Proposition 4.13]. �	
For completeness, let us demonstrate (B.5), by following the standard construction in
the proof of Kashiwara’s theorem: First note that

N :=
{
m ∈M : ∂kNm = 0 for some k > 0

}
⊆M

defines a DN
k -submodule of M .46 The exact sequence 0 → N → M →

M /N → 0 of holonomic DN
k -modules induces a sequence of de Rham com-

plexes, 0 → DR(N ) → DR(M ) → DR(M /N ) → 0, which is also exact
(M �→ DR(M ) = �•k ⊗k M is exact by flatness of �•k). Hence, we get a long
exact sequence in cohomology:

· · · → Hi (DR(N )) → Hi (DR(M ))→ Hi (DR(M /N ))

→ Hi+1(DR(N ))→ · · · (B.6)

The key observation now is that ∂N is injective onM /N and surjective onN .47 We
thus get short exact sequences

0 −→ ker (∂N ) ↪−→ N
∂N−→ N −→ 0 and

0 −→M /N
∂N−→M /N −� M /∂NM −→ 0

ofDN−1
k -modules. The induced short exact sequences of de Rham complexes provide

quasi-isomorphisms DR(ker ∂N ) $ DR(N )[1] and DR(M /∂NM ) $ DR(M /N ),
because the de Rham complex of a DN

k -module N is the mapping cone of the map
∂N : K (N ; ∂ ′) −→ K (N ; ∂ ′). Hence we obtain (B.5) from (B.6) due to

Hi (DR(N )) ∼= Hi+1(DR(ker ∂N )) and

Hi (DR(M /N )) ∼= Hi (DR(M /(∂NM ))).

To clarify this final step, first note that separating ∂N from ∂ ′ := (∂1, . . . , ∂N−1) yields
an isomorphism of k-vector spaces

� : K •−N (N ; ∂ ′)⊕ K •−1−N (N ; ∂ ′) ∼=−→ K •−N (N ; ∂)

=
⊕

N /∈I
eI ⊗N ⊕

⊕

N∈I
eI ⊗N

x ⊕ y �→ x ⊕ (eN ∧ y).

46 One only needs to check that x±1N N ⊆ N , which follows from ∂k+1N x±1N m = [
(k + 1)(∂N x±1N ) +

x±1N ∂N )∂kNm = 0 whenever ∂kNm = 0.
47 The first statement is clear since ker ∂N ⊆ N . The second claim follows from the identity xk∂k =
(∂x − k)xk−1∂k−1 = · · · = ∏k

i=1(∂x − i), which implies 0 = xkN ∂kNm = (−1)k (k!)m mod ∂NN

whenever ∂kNm = 0.
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In this representation, the differential is given by

�−1 (d�(x ⊕ y)) = d ′(x)⊕ (∂N x − d ′(y)),

which is known as the mapping cone of ∂N : K (N ; ∂ ′) −→ K (N ; ∂ ′). Here, we
denote by d ′ the differential of K (N ; ∂ ′).

If ∂N is surjective, we can find x with ∂N x = y and hence d�(x⊕0) = �(d ′x⊕ y)
for every y. Therefore, every element of K (N ; ∂) has a representative of the form
�(x⊕0), modulo exact forms. But such a form is closed, d�(x⊕0) = 0, if and only
if x ∈ ker ∂N ∩ ker d ′.

Corollary 70 If ∂N is surjective, then K (N ; ∂) and K (ker ∂N ; ∂ ′) [1] are quasi-
isomorphic. If ∂N is injective, then K (N ; ∂) and K (N /∂NN ; ∂ ′) are quasi-
isomorphic.

The proof of the second statement is very similar to the surjective case and left as a
straightforward exercise.

C. A two-loop example

We demonstrate some main points of this article by a pedagogical example. The
complete results of this calculation can be obtained from https://doi.org/10.5287/
bodleian:2RkGjPNG0, “Annihilators of the two-loop master integral”. Consider the
massless two-loop two-point graph with five propagators, graphWS′3 in Fig. 5. To this
graph, we associate the family of integrals

I(ν1, . . . , ν5)

=
∫

ddl1
iπd/2

∫
ddl2
iπd/2

1

[−l21 ]ν1 [−l22 ]ν2 [−(l2 − p)2]ν3[−(l1 − p)2]ν4 [−(l1 − l2)2]ν5
(C.1)

with two-loop momenta q1 = l1, q2 = l2 and one external momentum q3 = p. We
normalize to −p2 = 1. The graph polynomial G = U + F is given by the Symanzik
polynomials

U = (x1 + x4)(x2 + x3)+ x5(x1 + x2 + x3 + x4) and

F = x1x2(x3 + x4)+ x3x4(x1 + x2)+ x5(x1 + x2)(x3 + x4).

By Definition 6 the modified Feynman integral

Ĩ(ν1, . . . , ν5) =M {Gs} (C.2)

is related to the Feynman integral by

I(ν1, . . . , ν5) = �(−s)
�(−s − ω)

Ĩ(ν1, . . . , ν5) (C.3)
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with ω = ν1 + ν2 + ν3 + ν4 + ν5 + 2s and s = −d/2.

C.1. From annihilators to integral relations

A set of generators of the annihilator ideal AnnA5[s] (Gs) can be derived in Singular
[25] with algorithms introduced in [4]. Using the command SannfsBM, we obtain a
set of 13 generators. To give an impression, the first five of them read

P1 = ∂1 − ∂2 + (x3 + x4 + 1)(∂3 − ∂4)+ (x3 − x4)∂5,

P2 = (x2 − 1)∂1 + (−2x1 − 3x2 − 1)∂2 + (−x4 + 1)∂3
+ (2x3 + 3x4 + 1)∂4 + (2x1 − x2
− 2x3 + x4)∂5,

P3 = (x1 + 2)∂1 + (x1 + 2x2)∂2 + x4∂3
+ (−2x3 − 3x4 − 2)∂4 + (−x1 + 2x3 − x4)∂5,

P4 = ∂1x1 + (x2 + 1)∂2 + (−x3 − x4 − 1)∂3 + (x4 + x5)∂5 − s,

P5 = (x1x3 + x1x4+x2x3+x2x4+x1+x2 + x3 + x4)∂4 + (−x1x2 − x1x3 − x1x5
− x2x3 − x2x5 − x2 − x3 − x5)∂5.

We notice that this set includes one generator which is quadratic in the differential
operators, reading

P13 = (x4 + x5 − 2)∂21 + (2x2 + x5)∂
2
2

+ (−2x23 + 2x3x4 − x3x5 + x4x5)∂
2
5 − x3x4∂3∂5

+ (2x23 + x3x4 − 2x24+2x3 − 2x4)∂4∂5+(x3 − x4+(−2x2 − x4 − 2x5+2)∂2

+ (x24 − x4)∂3 + (−x24 + 2x3 + 3x4 + 2)∂4

+ (x3x4 + x3x5 − x24 − x4x5 − 4x3 + 2x4 − x5)∂5)∂1
+ (x3x4∂3 − x3 + x4 + (−x3x4 − 2x3 − 2x4 − 2)∂4 + (−2x2x3 + 2x2x4
− x3x5 + x4x5 + 2x3 + x5)∂5 + 2)∂2 + (−x3 + x4)∂5.

Every operator in AnnA5[s] (Gs) gives rise to an integral relation. According to

Lemma 7, we just need to replace each xi by î
+
and each ∂i by −i− to obtain a shift

relation between modified Feynman integrals. For example, for the generator P1, we
obtain the shift operator

M {P1} = −1− + 2− − (3̂
+ + 4̂

+ + 1)(3− − 4−)− (3̂
+ − 4̂

+
)5−

satisfying

M {P1} Ĩ(ν1, . . . , ν5) = 0.
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For the (unmodified) Feynman integral I(ν1, . . . , ν5) we obtain the corresponding
shift relation via (2.22). From P1 we obtain the operator

O1 =
(

5∑

i=1
ni + 3s

)
(1− − 2− + 3− − 4−)

−(3̂
+ + 4̂

+
)(3− − 4−)− (3̂

+ − 4̂
+
)5− (C.4)

which satisfies

O1I(ν1, . . . , ν5) = 0. (C.5)

C.2. Linear annihilators

It is useful to consider the linear annihilators Ann1
AN [s](Gs) ⊆ AnnAN [s](Gs). Recall

that they are the annihilators which are linear differential operators, being of the form
P = q +∑N

i=1 pi∂i with p, q1, . . . , qN ∈ Q[s, x1, . . . , xN ]. We compute the gener-
ators of Ann1(Gs) as generators of the Syzygy-module of (G, ∂1G, . . . , ∂NG), using
the Singular command syz. For our example we obtain the following 8 generators:

L1 = ∂1 − ∂2 + (x3 + x4 + 1)∂3 + (−x3 − x4 − 1)∂4 + (x3 − x4)∂5,

L2 = (−x2 − 1)∂1 + (x2 + 1)∂2 + (−x4 − 1)∂3
+ (x4 + 1)∂4 + (x2 + x4 + 2x5)∂5 − 2s,

L3 = (2x1 + x2 + 1)∂1 + (x2 + 1)∂2 + (−2x3 − x4 − 1)∂3 + (−x4 − 1)∂4
+ (−x2 + x4)∂5,

L4 = (x1 + x2 + 1)∂1 + (−x1 − x2 − 1)∂2 + ∂3 − ∂4 + (x1 − x2)∂5,

L5 = −2sx4 + (x4 + x5)∂1 + (−2x2 − x4 − x5 − 2)∂2

+ (2x3x4 + x24 + 2x3 + 3x4 + 2)∂3

+ (x24 + x4)∂4 + (−x24 − 2x4 − x5)∂5,

L6 = (−x2x3 + x2x4 − x2 − x3 + 2x4 + 2x5)∂1
+ (−2x1x3 + 2x1x4 − x2x3 + x2x4 + 2x1
− 9x2 − x3 − 2x5 − 6)∂2

+ (−2x1x3 − 2x1x4 − x2x3 − x2x4 − 2x23 − 4x3x5 + 2x24
− 4x4x5 − 2x1 − x2 + 3x3 + 6x4 − 4x5 + 6)∂3
+ (2x1x3 + 2x1x4 + x2x3 + x2x4

+ 4x3x4 + 4x3x5 + 4x24 + 4x4x5 + 2x1 + x2 + x3 + 6x4 + 4x5)∂4

+ (−2x24 − 6x4
− 4x5)∂5 + s(−4x4 + 2),

L7 = (2x1x2 + 2x22 + 2x1 + 4x2 + 2)∂1
+ (x2x4 + 2x2 + x5)∂3 + (−x2x4 − 2x2 − 2x4
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− x5 − 2)∂4 + (−2x22 − x2x4 − 2x2x5 − 2x2 − x5)∂5,

L8 = (x4 + x5)∂1 + (2x1x2 + 2x1x4 + 2x1x5

+ 2x22 + 2x2x4 + 2x2x5 + 2x1 + 2x2 + x4

+ x5)∂2 + (−2x1x3 − 2x1x4 − 2x3x5 + x24 − 2x1 + 2x3 − x4)∂3

+ (−x24 − 2x4x5 − x4

− 2x5)∂4 + (−x24 − 2x4x5 − 2x25 + x5)∂5 + s(−2x2 + 2x5 − 2),

Using Singular we find that for our two-loop example every generator Pi can be
expressed as a linear combination of the linear generators Li over AnnA5[s](Gs). For
instance, the first five annihilators satisfy

P1 = L1, P2 = −2L1 − L3 + 2L4, P3 = 2L1 + L3 − L4, 2P4 = L2 + L3,

2P5 = −2(x1 + x2 + 1)L1 + (1+ x2 − x4 − x5)(L2 − L3)

− 2(x2 + x4 + x5)L4 + L5 + 2L7 − L8.

We emphasize that such a relation exists for all the Pi . In particular such a relation
also exists for the quadratic P13, which however is too long to be shown here. As
a consequence we can view AnnAN [s](Gs) as generated by the linear Li , which will
simplify the discussion in Sect. C.4.

C.3. From IBP relations to annihilators

Going in the other direction, we can derive annihilators from momentum space IBP
relations. In the usual way, inserting the differential operators

oij =
∂

∂qi
q j for i ∈ {1, 2} and j ∈ {1, 2, 3} (C.6)

we obtain six IBP relations Oi
jI = 0 with the shift operators

O1
1 = −4̂

+
1− − 5̂

+
1− + 5̂

+
2− + 4̂

+ − 2n1 − n4 − n5,

O1
2 = −1̂

+
2− + 1̂

+
5− − 4̂

+
1− − 4̂

+
3− + 4̂

+
5− − 5̂

+
1− + 5̂

+
2− + 4̂

+ − n1 + n5,

O1
3 = −s1̂

+ + s4̂
+ − 4̂

+
1− − 5̂

+
1− + 5̂

+
2− − 5̂

+
3− + 1̂

+
4− + 5̂

+
4− − n1 + n4,

O2
1 = −2̂

+
1− + 2̂

+
5− − 3̂

+
2− − 3̂

+
4− + 3̂

+
5− + 5̂

+
1− − 5̂

+
2− + 3̂

+ − n2 + n5,

O2
2 = −3̂

+
2− + 5̂

+
1− − 5̂

+
2− + 3̂

+ − 2s − 2n2 − n3 − n5

O2
3 = 2̂

+
3− − 3̂

+
2− + 5̂

+
1− − 5̂

+
2− + 5̂

+
3− − 5̂

+
4− − 2̂

+ − 3̂
+ − n2 + n3.
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Following the steps in the proof of Corollary 21, we derive for each shift operator

Oi
j a parametric annihilator Õ

i
j . We obtain

Õ
1
1 = (x1x4 + 2x1 + x4 + x5)∂1 + (x2x4 − x5)∂2

+ x3x4∂3 − 3sx4 + (x24 + x4)∂4 + (x4x5 + x5)∂5 − 2s,

Õ
1
2 = −3sx4 + (x1x4 + x1 + x4 + x5)∂1

+ (x2x4 + x1 − x5)∂2 + (x3x4 + x4)∂3 + x24∂4
+ (x4x5 − x1 − x4 − x5)∂5,

Õ
1
3 = 3sx1 − 3sx4 + (−x21 + x1x4 + x1 + x4 + x5)∂1
+ (−x1x2 + x2x4 − x5)∂2 + (−x1x3
+ x3x4 + x5)∂3 + (−x1x4 + x24 − x1 − x4 − x5)∂4 + (−x1x5 + x4x5)∂5,

Õ
2
1 = −3sx3 + (x1x3 + x2 − x5)∂1

+ (x2x3 + x2 + x3 + x5)∂2 + x23∂3 + (x3x4 + x3)∂4
+ (x3x5 − x2 − x3 − x5)∂5,

Õ
2
2 = −3sx3 + (x1x3 − x5)∂1 + (x2x3 + 2x2 + x3 + x5)∂2

+ (x23 + x3)∂3 + x3x4∂4 + (x3x5
+ x5)∂5 − 2s,

Õ
2
3 = 3sx2 − 3sx3 + (−x1x2 + x1x3 − x5)∂1

+ (−x22 + x2x3 + x2 + x3 + x5)∂2 + (−x2x3
+ x23 − x2 − x3 − x5)∂3 + (−x2x4 + x3x4 + x5)∂4 + (−x2x5 + x3x5)∂5.

These operators are useful to compare both approaches as discussed next.

C.4. Comparing annihilators and IBP operators

According to Corollary 21, every momentum space IBP relation corresponds to a
parametric annihilator. For our two-loop example, this is given by the fact that

Õ
i
j ∈ AnnA5[s]

(Gs) for i ∈ {1, 2} and j ∈ {1, 2, 3} .

Wemay furthermore ask if the reverse is true: Can every annihilator of G be derived
from IBP relations? If the answerwould be no, the approach via parametric annihilators
would provide new integral identities.While this question remains open for the general
case, we can test it for simple Feynman graphs such as the present two-loop example.

In a first attempt, we could consider the shift relations obtained from the generators
P1, . . . , P13 and try to confirm that they are combined IBP relations. If we use one of
thewell-known implementations ofLaporta’s algorithm to reproduce e.g. Eq. (C.5),we
have to fix the values of ν1, . . . , ν5 and do not answer the question for arbitrary values
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of the νi . We therefore approach the problem on the level of parametric differential
operators instead.

Wefind that actually not all parametric annihilators are contained inMom; however,
they turn out to still be consequences of the momentum space IBP relations in the
following sense: While we checked that P1 /∈ Mom, we can find a polynomial q1 ∈
Q[s, x1∂1, . . . , x5∂5] such that q1P1 ∈ Mom. Recall that, under the Mellin transform,
such a q1 corresponds to a polynomial in the dimension and in the νe. The interesting
question then is if we can find a polynomial q ∈ Q[s, x1∂1, . . . , xN ∂N ] for every
P ∈ AnnAN [s](Gs) such that qP ∈ Mom. If we can find such a qi for every generator

Pi , we can express every annihilator in terms of the Õ
i
j . The qi are the denominators

of the coefficients in such a linear combination.
In Sect. 1 we have seen for our example that AnnAN [s](Gs) is generated by the linear

annihilators Li . As a consequence, it is sufficient to show that for each Li there is a
q̃i such that q̃i Li ∈ Mom for i = 1, . . . , 8. Indeed we can construct such q1, . . . , q8
by an explicit Ansatz. For example we obtain the identity

(
2

5∑

i=1
xi∂i − 6s

)
L1 = c1Õ

1
1 + c2Õ

2
1 + c3Õ

1
2 + c4Õ

2
2 + c5Õ

1
3 + c6Õ

2
3

with

c1 = −(−2∂1 + ∂2 − ∂3 + 2∂4 + x5(∂1(s + 1)+ ∂2(−s − 1)+ ∂5s)

+ x4∂4 + x3(∂2(−s − 1)

− ∂4s + ∂5s + 3s2 + 3s + x5∂5(−s − 1)+ x4∂4(−s − 1))

+ x23∂3(−s − 1)+ x2(−∂1s

+ ∂2(−s − 1)+ ∂5s + x3∂2(−s − 1))+ x1(∂1 + x3∂1(−s − 1))),

c2 = −(−∂2 + ∂3 − 2s2 − 2s + x5∂5(2s + 1)

+ x4(−∂3s + ∂4(s + 1)+ ∂5s)+ x3∂3 + x2∂2
+ x1(∂1(s + 1)− ∂2s + ∂5s)),

c3 = −(∂1 + 1− ∂4 + s + x5(∂1(−s − 1)+ ∂2(s + 1)− ∂5s)− x4∂4
+ x3(∂2(s + 1)+ ∂4s

− ∂5s − 3s2 − 3s + x5∂5(s + 1)+ x4∂4(s + 1))

+ x23∂3(s + 1)+ x2(∂1s + ∂2(s + 1)

− ∂5s + x3∂2(s + 1))+ x1(−∂1 + x3∂1(s + 1)))

c4 = −(−∂1 + 2∂2 − 2∂3 + ∂4 + x5∂5
+ x4(−∂3 + ∂5)− x3∂3 − x2∂2 + x1(−∂2 + ∂5))

c5 = −(∂1 − ∂2 + ∂5)

c6 = −(∂1 − ∂2 − ∂5).
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Using these results and the expressions for the generators of AnnA5[s](Gs) in terms
of the Li , we can derive every annihilator from the IBP operators. We have done this
computation with the same conclusion for several further graphs of low loop-order.
These computations support our conjectures phrased in Questions 23 and 24.

C.5. The number of master integrals

The result of the previous subsection implies that the parametric approach andmomen-
tum space IBP lead to the same number of master integrals for this example. Indeed,
as mentioned in Sect. 4.1, we compute the Euler characteristic

C (G) = 3

and obtain the same number of master integrals with Azurite. The three master
integrals suggested by Azurite are

I1 = I(1, 1, 1, 1, 0), I2 = I(0, 1, 0, 1, 1) and I3 = I(1, 0, 1, 0, 1).

Notice that symmetries of the graph were not taken into account here, which in Azu-
rite is assured by setting Symmetry -> False and GlobalSymmetry ->
False. For an integral reduction in practice, one would of course make use of the
symmetry

I(ν1, ν2, ν3, ν4, ν5) = I(ν2, ν1, ν4, ν3, ν5)

and compute with one of the sets {I1, I2}, {I1, I3}.
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