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Abstract We express covariance of the Batalin–Vilkovisky formalism in classical
mechanics by means of the Maurer–Cartan equation in a curved Lie superalge-
bra, defined using the formal variational calculus and Sullivan’s Thom–Whitney
construction.Weuse this framework to construct aBatalin–Vilkovisky canonical trans-
formation identifying the Batalin–Vilkovisky formulation of the spinning particle with
an AKSZ field theory.
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1 Introduction

In the Batalin–Vilkovisky formalism, a classical field theory is specified by a solution
of the classical master equation

1
2

∫
(S, S) = 0. (1)

Alexandrov et al. [1] have studied a particularly important class of solutions of this
equation, known as AKSZ field theories. An AKSZ field theory in dimension d is a
non-linear sigma-model in which the target is a graded supermanifold M with a shifted
symplectic form of ghost number d − 1. There is a function W on M of ghost number
d satisfying the Maurer–Cartan equation
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188 E. Getzler

1
2 {W, W } = 0.

Thus, W determines aHamiltonian vector field Q( f ) = {W, f } on M of ghost number
1 and odd parity, which is cohomological:

Q2 = 1
2 [Q, Q] = 0.

Important examples of AKSZ field theories are Chern–Simons theory (Axelrod and
Singer [2]) and the Poisson sigma-model (Cattaneo and Felder [4,5]).

In this paper, we restrict attention to field theories with d = 1, in other words,
classical mechanics. Our main constructions should have analogues in all dimensions,
but our application, showing that the particle and spinning particle possess hidden
AKSZ field theories, only requires the formalism in d = 1, and we will focus our
attention on that case.

In Sect. 2 and 3, we recall some needed background results on curved Lie algebras
and the formal variational calculus.

In Sect. 4, we show that an AKSZ field theory with d = 1, associated to a graded
supermanifold M and an exact symplectic formω = dν, gives rise to aMaurer–Cartan
element for a certain curved Lie superalgebra: we call such Maurer–Cartan elements
(classical) covariant field theories.

To incorporate covariant field theories with topological terms, where the symplectic
form ω is no longer exact, we introduce the Thom–Whitney totalization for cosimpli-
cial curved Lie superalgebras in Sect. 5. The Thom–Whitney totalization replaces the
rather rigid homotopies of piecewise linear topologywith themore flexible homotopies
of de Rham theory. In this setting, we associate a covariant field theory to a graded
supermanifold M together with the following data: a symplectic form ω ∈ Ω2(M), a
cover U = {Uα} of M , and one-forms να ∈ Ω1(Uα) such that dνα = ω.

Topological terms of this type do not occur in AKSZmodels when d > 1, since the
target symplectic form has ghost number d − 1, and hence is exact. Our motivation
for introducing the Thom–Whitney totalization in Sect. 4 is the hope that using it,
the superstring may be understood as a generalized AKSZ model, in the sense that it
extends to a covariant field theory. In [12], we study this problem in the setting of the
toy model of the superparticle (though admittedly still with d = 1).

After a Batalin–Vilkovisky canonical transformation, the covariant field theory for
a particle moving in a curved spacetime may be identified with the AKSZ model
introduced in [11]. In the introduction, we explain this in the special case of a particle
moving in a flat background. The Lagrangian of this theory is as follows:

S0 = pμ∂xμ − 1
2η

μνepμ pν . (2)

The fields (xμ, pμ)1≤μ≤n are the coordinates of the flat space in which the particle
moves, and their conjugate momenta. The remaining (non-propagating) field of the
theory is the graviton, a nowhere-vanishing one-form e on the world-line.

The solution to the Batalin–Vilkovisky master equation for the particle, extending
the Lagrangian (2), incorporates an additional field, the ghost c. This is a fermionic
field of ghost number one, transforming as aworld-line vector field, and is associated to
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the covariance of the theory under diffeomorphism of the world-line. The correspond-
ing antifield c+ is a bosonic field of ghost number −2 transforming as a world-line
quadratic differential. Introduce the expression

D = x+
μ ∂xμ + p+μ∂pμ − e∂e+ + c+∂c,

of ghost number −1. Consider the Lagrangian S = S0 + S1, where S1 = cD. It is
straightforward to check that the action

∫
S dt satisfies the classical master equation

(1). Form the graded Lie superalgebra of polynomials in a variable u of degree 2 with
coefficients in the Batalin–Vilkovisky graded Lie superalgebra. The element u

∫
D lies

in the centre of this graded Lie algebra, and we may form the curved Lie superalgebra
with the same underlying graded Lie algebra but with nonzero curvature u

∫
D. Then

∫
S = ∫

(S + uc+) (3)

is a Maurer–Cartan element in this curved Lie algebra, in other words, a covariant
field theory. This means that it satisfies the perturbation of the classical master Eq. (1)

1
2

∫
(S, S) = −u

∫
D.

This field theory bears some resemblance to a Chern–Simons field theory. Recall
that the Batalin–Vilkovisky extension of the Lagrangian for Chern–Simons theory
(Axelrod and Singer [2]) may be expressed in terms of a composite field

A = c + A + A+ + c+.

Here, A is the Chern–Simons field, a connection form on the 3-manifold M for the
Lie algebra g, c ∈ Ω0(M,g) is the ghost field for local gauge transformations, and
A+ ∈ Ω2(M,g) and c+ ∈ Ω3(M,g) are their respective antifields. The top degree
component of the differential form

1
2 〈A, dA〉 + 1

6 〈A, [A, A]〉,

is the Batalin–Vilkovisky Lagrangian S = S0 + S1 of the Chern–Simons theory:

S0 = 1
2 〈A, dA〉 + 1

6 〈A, [A, A]〉 S1 = 〈A+, dc + [A, c]〉 + 1
2 〈c+, [c, c]〉.

In order to see that the complete action
∫

S of the particle has a hidden AKSZ
structure, we apply to it a sequence of canonical transformations. Consider the flowΦτ

associated to the Hamiltonian cx+
μ p+μ: this is the solution to the ordinary differential

equation
d(Φ∗

τ f )

dτ
= (cx+

μ p+μ, f ),
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and is given by the explicit formula

Φ∗
τ (xμ) = xμ + τcp+μ Φ∗

τ (x+
μ ) = x+

μ

Φ∗
τ (pμ) = pμ − τcx+

μ Φ∗
τ (p+μ) = p+μ

Φ∗
τ (e) = e Φ∗

τ (e+) = e+

Φ∗
τ (c) = c Φ∗

τ (c+) = c+ + τ x+
μ p+μ

Under this flow, the densities S0 and S1 transform as follows:

Φ∗
τS0 = S0 − τc(x+

μ ∂xμ + p+μ∂pμ) + τ∂(cp+μ pμ)

+ τ 2c∂cx+
μ p+μ + τημνecpμx+

ν

Φ∗
τS1 = S1 − τc∂cx+

μ p+μ.

Let Φ be the canonical transformation obtained by evaluating the flow Φτ at τ = 1:
we see that

Φ∗S = S0 + ec(ημν pμx+
ν − ∂e+) + c+c∂c + ∂(cpμ p+μ).

Next, consider the canonical transformation Ψ which leaves the fields xμ and pμ

and their antifields fixed, and acts on the remaining fields by the formulas

Ψ ∗e = e Ψ ∗e+ = e+ + e−1c+c Ψ ∗c = e−1c Ψ ∗c+ = ec+.

Formally, this is the value of the flow Ψt generated by the Hamiltonian log(e)c+c at
τ = 1. The canonical transformation Ξ = Φ ◦ Ψ obtained by composing Φ and Ψ

transforms the complete Lagrangian S as follows:

Ξ∗S = Ψ ∗Φ∗S = S0 + c
(
ημν pμx+

ν − ∂e+) + ∂
(
c(pμ p+μ + ee+)

)
.

After this transformation, the Maurer–Cartan element (3) becomes

∫
Ξ∗S = ∫ (

pμ∂xμ − 1
2η

μνepμ pν + c
(
ημν pμx+

ν − ∂e+) + u(x+
μ p+μ + ec+)

)
.

In terms of the composite fields

xμ = xμ + dt p+μ pμ = pμ − dt x+
μ

c = c − dt e b = e+ + dt c+

we see that Ξ∗S equals the coefficient of dt in the differential form

pμdxμ + cdb + 1
2η

μνcpμpν,
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Covariance in the Batalin–Vilkovisky formalism… 191

modulo total derivatives. In summary, the particle embeds, by an explicit canonical
transformation, in an AKSZ field theory with fields {xμ, pμ, c, b}. A similar transfor-
mation, for three-dimensional gravity, has been studied by Cattaneo, Schiavina and
Selliah [8].

In passing, we note that the canonical transformation Ξ is the value at τ = 1 of the
flow Ξτ associated to the Batalin–Vilkovisky Hamiltonian

log(e)

e − 1
c
(
(x+

μ p+μ + ec+) − c+)
. (4)

In Sect. 6, we will show that the above remarks may be generalized to a general
covariant field theory coupled to the gravity multiplet (e, c). In particular, this includes
the case of a particle in a curved spacetime with a background electromagnetic field.

In Sect. 7, we turn to the spinning particle, which we have previously studied in
the Batalin–Vilkovisky formalism [11]. The spinning particle is a toy model for a
supersymmetric sigma-model coupled to supergravity, in which the world-line (or
spacetime) is reduced from two to one dimensions. (The corresponding quantum sys-
tem has Hamiltonian the square of the Dirac operator.) The fields of this model, in
addition to {xμ, pμ, e, c}, comprise fermionic fields ψμ and χ and the bosonic ghost
γ , supersymmetric partners to xμ, e and c, respectively. In a flat background, the
Lagrangian of the spinning particle equals

S0 = p∂x + 1
2ψ∂ψ − 1

2ep2 + χpψ,

and the associated solution to the classical master equation is

S = S0 + c(x+∂x + p+∂p + ψ+∂ψ − e∂e+ + c+∂c − χ∂χ+ + γ +∂γ )

− γ (∂χ+ − pψ+ + ψx+ + 2χe+)

+ e−1γ 2(c+ − x+ p+ − 1
2ψ

+ψ+ − χγ +). (5)

Let Ξτ be the flow associated to the Batalin–Vilkovisky Hamiltonian

log(e)

e − 1
c
(
(x+

μ p+μ + 1
2η

μνψ+
μ ψ+

ν + ec+ + χγ +) − c+)

generalizing (4), and let Ξ = Ξτ=1 be the value of the flow at τ = 1. After trans-
formation by the Batalin–Vilkovisky canonical transformation Ξ , the Lagrangian (5)
becomes the AKSZ field theory

Ξ∗S = S0 − c(∂e+ − px+) − γ (∂χ+ − pψ+ + ψx+ + 2χe+) + γ 2c+.

In addition to the previous composite fields (x, p, c, b) associated to the particle, we
now have the additional composite fields

ψμ = ψμ + dt ημνψ+
ν γ = −γ + dt χ β = χ+ + dt γ +.
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192 E. Getzler

Up to a total derivative, the Lagrangian Ξ∗S equals the coefficient of dt in the expres-
sion

pμdxμ − 1
2ημνψ

μdψν + cdb + γ dβ + 1
2η

μνcpμpν + γ pμψμ + bγ 2.

In Sect. 7, we carry out the above construction for a more general class of covariant
field theories coupled to the supergravity multiplet (e, c, χ, γ ): this class of theories
includes the spinning particle with curved target, as in [11].

2 The Maurer–Cartan equation in a curved Lie superalgebra

Let L• be a Z-graded superspace: adopting the language of theoretical physics, we
say that an element x ∈ Lk has ghost number k, and write gh(x) = k. Furthermore,
Lk has a Z/2-grading, making it into a superspace: we call this grading the parity, and
write p(x) ∈ {0, 1}. We will also say that x is even (respectively, odd) if p(x) = 0
(respectively, 1). A graded vector space is a special case of a graded superspace, in
which the ghost number and parity are congruent modulo 2.

A 1-shifted curved Lie superalgebra is a graded superspace with the following data
(all of which have odd parity):

1. an element R ∈ L1 (the curvature);
2. a linear operation d : Lk → Lk+1 (the differential);
3. a bilinear operation (−,−) : Lk × L� → Lk+�+1 (the antibracket).

The axioms are as follows:

(a) (the Bianchi identity) d R = 0;
(b) (the curvature identity) for all x ∈ L•,

d2x = (R, x);

(c) (the Leibniz identity) for all x, y ∈ L•,

d(x, y) = (dx, y) + (−1)p(x)+1(x, dy);

(d) (antisymmetry) for all x, y ∈ L•,

(y, x) = −(−1)(p(x)+1)(p(y)+1)(x, y);

(e) (the Jacobi rule) for all x, y, z ∈ L•,

(x, (y, z)) = ((x, y), z) + (−1)p(x)+1(y, (x, z)).

All curved Lie superalgebras considered in this paper are 1-shifted.
Let L• be a curved Lie superalgebra. If x ∈ Lk , we denote the operation

y 	→ (x, y) : L• → L•+k+1
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Covariance in the Batalin–Vilkovisky formalism… 193

by ad(x). A curved Lie superalgebra L is nilpotent if, for every odd element x ∈ L•,
the endomorphism ad(x) is nilpotent.

A Maurer–Cartan element in a curved Lie algebra is an even element x ∈ L0 such
that the following equation holds:

R + dx + 1
2 (x, x) = 0.

The set of all Maurer–Cartan elements is denotedMC(L). The importance of Maurer–
Cartan elements stems from the following result.

Lemma 1 If x ∈ MC(L), the operator d + ad(x) : L• → L•+1 is a differential (a
graded derivation of square zero).

Proof It is evident that d + ad(x) is a graded derivation. Moreover, we have

(d + ad(x))2y = (d + ad(x))(dy + (x, y))

= d2y + d(x, y) + (x, dy) + (x, (x, y))

= (R, y) + (dx, y) + (x, (x, y)).

The proof is completed by observing that (x, (x, y)) = 1
2 ((x, x), y). 
�

In the special case in which the curvature is zero, we recover the definition of
Maurer–Cartan elements in a differential graded Lie superalgebra.

If L is a curved Lie superalgebra, the space of odd elements of L−1 form a Lie
algebra. If L is nilpotent, there is a gauge action of this Lie algebra on the set of
Maurer–Cartan elements, given by the equation

x • y = x +
∞∑

n=0

(−ad(y))n(dy + (x, y))

(n + 1)! .

Informally, this formula expresses the conjugation of the differential d + ad(x) by the
gauge transformation ead(y)

d + ad(x • y) = e−ad(y) ◦ (d + ad(x)) ◦ ead(y).

This explains why the action preserves solutions of the Maurer–Cartan equation. In
particular, if dy = 0, then x • y = e−ad(y)x .

In order to derive the formula for x • y, one introduces a parameter s, and considers
the ordinary differential equation

d ad(x • sy)

ds
= d

ds
e−ad(sy)(d + ad(x))ead(sy)

= [d + ad(x • sy), ad(y)]
= ad(dy + (x • sy, y)).
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194 E. Getzler

This leads to the consideration of the ordinary differential equation

d(x • sy)

ds
= dy + (x • sy, y), (6)

with initial condition x • sy = x at s = 0, whose solution is

x • sy = x + s
∞∑

n=0

(−sad(y))n(dy + (x, y))

(n + 1)! .

The Baker–Campbell–Hausdorff formula gives an expression for the composition
of two gauge transformations. For a proof, see Tao [16, Section 1.2].

Proposition 1 If y, z are odd elements of L−1 and x ∈ MC(L), we have x • y • z =
x • (y ∗ z), where

y ∗ z = y +
∫ 1

0

ad(y ∗ t z)

1 − e−ad(y∗t z)
z dt

is the solution of the equation ead(y∗z) = ead(y)ead(z).

3 Formal variational calculus and the classical Batalin–Vilkovisky
master equation

Let M be a graded supermanifold, with coordinates {ξa}a∈A, where ξa has ghost
number gh(ξa) ∈ Z and parity p(ξa) ∈ Z/2. Introduce the shifted cotangent bundle
T ∗[−1]M , whose coordinates are the coordinates {ξa}a∈A of M , and dual coordinates
{ξ+

a }a∈A, of ghost number
gh(ξ+

a ) = gh(ξa) − 1,

and parity
p(ξ+

a ) = 1 − p(ξa).

In the Batalin–Vilkovisky formalism, the coordinates ξa are called fields, and the
coordinates ξ+

a are called antifields. However, this division is somewhat arbitrary,
since wemay just as well exchange the rôles of field ξa and antifield ξ+

a . In the work of
Batalin and Vilkovisky, it was assumed that the fields have nonnegative ghost number
and the antifields have negative ghost number, but this proves to be too restrictive in
the setting of AKSZ field theories.

Let A (M) be the graded commutative superalgebra generated over O∞(M) by
(graded) polynomials in the derivatives {∂kξ+

a }k≥0 of the antifields. (In fact, one should
take a certain completion of this algebra whereby we allow infinite sums of terms with
decreasing ghost number, but we will be sloppy and neglect this subtlety here, as
we did in [10,11]. Working with this completion would not affect the conclusions of
those papers.) This is the graded commutative superalgebra of functions on the jet
space J∞T ∗[−1]M .

Let O(M) be the graded commutative superalgebra of functions on M (which
may be polynomial, rational, analytic, or differentiable, depending on the setting).
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Covariance in the Batalin–Vilkovisky formalism… 195

Let O∞(M) be the graded superspace of all differential expressions in the fields and
antifields, graded by total ghost number, that is, (graded) polynomials over O(M) in
the formal derivatives {∂kξa}k>0 of the coordinates with respect to a formal parameter
t . In other words,O∞(M) is the graded commutative superalgebra of functions on the
jet space J∞M of M . Note that for now we only consider expressions that carry no
explicit dependence on the variable t .

Introduce the abbreviations

∂k,a = ∂

∂(∂kξa)
: A j → A j−gh(ξa), ∂a

k = ∂

∂(∂kξ+
a )

: A j → A j−gh(ξ+
a ).

Let ∂ be the total derivative with respect to t :

∂ =
∞∑

k=0

(
(∂k+1ξa)∂k,a + (∂k+1ξ+

a )∂a
k

)
.

Let φ : M0 → M1 be an étale map (local embedding) of graded supermanifolds,
where M0 has coordinates {ξa}a∈A and M1 has coordinates {ηb}b∈B : such a map is
determined by functions

yb(ξ) ∈ O(M0)

such that φ∗ηb = yb(ξ). This defines a morphism of algebras φ∗ : O(M1) → O(M0),
which extends to a morphism

φ∗ : O∞(M1) → O∞(M0) (7)

by the requirement that ∂φ∗ = φ∗∂ , so that

φ∗∂kηb = ∂k yb(ξ).

In particular,
φ∗∂ηb = J (ξ)b

a∂ξa,

where J (ξ)b
a is the Jacobian of φ,

J (ξ)b
a = ∂yb(ξ)

∂ξa
.

Since φ is étale, J is invertible. The morphism (7) extends to a morphism

φ∗ : A (M1) → A (M0),

on setting φ∗η+
b = J−1(ξ)a

bξ
+
a , and

φ∗∂kη+
b = ∂k(J−1(ξ)a

bξ
+
a

)
.
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An evolutionary vector field is a graded derivation of the graded commutative
superalgebra A (M) that commutes with ∂ . In other words, it is a vector field of the
form

pr
(
Xa∂a + Xa∂a) =

∞∑

k=0

(
(∂k Xa)∂k,a + (∂k Xa)∂a

k

)
.

The evolutionary vector field associated to the expression Xa∂a + Xa∂a by the above
formula is called its prolongation.

The Soloviev antibracket on A (M) is defined by the formula

(( f, g)) = (−1)(p( f )+1) p(ξa)
∞∑

k,�=0

(
∂�(∂a,k f ) ∂k(∂a

� g) + (−1)p( f )∂�(∂a
k f ) ∂k(∂a,�g)

)
.

(8)
It satisfies the axioms for a graded Lie superalgebra, is linear over ∂ ,

((∂ f, g)) = (( f, ∂g)) = ∂(( f, g)),

and invariant under étale changes of coordinates [9, Theorem 4.1]:

((φ∗ f, φ∗g)) = φ∗(( f, g)).

The superspace F = A /∂A of functionals is the graded quotient of A by the
subspace ∂A of total derivatives. Denote the image of f ∈ A in F by

∫
f . The

Soloviev antibracket (( f, g)) descends to an antibracket

∫
( f, g)

on F , called the Batalin–Vilkovisky antibracket. Denote by δa : F j → A j−gh(ξa)

and δa : F j → A j−gh(ξ+
a ) the variational derivatives

δa =
∞∑

k=0

(−∂)k ◦ ∂k,a δa =
∞∑

k=0

(−∂)k ◦ ∂a
k .

Lemma 2 The Batalin–Vilkovisky antibracket is given by the formula

∫
( f, g) = (−1)(p( f )+1) p(ξa)

∫
(
(δa f ) (δag) + (−1)p( f )(δa f ) (δag)

)
.

The (Batalin–Vilkovisky) Hamiltonian vector field associated to an element
∫

f ∈
F is the evolutionary vector field given by the formula

H f =
∞∑

k=0

(−1)(p( f )+1) p(ξa)
(
∂k(δa f ) ∂a

k + (−1)p( f )∂k(δa f ) ∂k,a
)
.

Despite the notation, H f only depends on f through its image
∫

f inF .
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The following theorem is proved, though not in precisely these terms, in Olver [14],
but we give here a simpler proof, taken from [11].

Theorem 1 The map f 	→ H f is a morphism of graded Lie superalgebras from F
to the evolutionary vector fields.

Recall the higher Euler operators of Kruskal et al. [13]:

δk,a =
∞∑

�=0

(k+�
k

)
(−∂)�∂k+�,a, δa

k =
∞∑

�=0

(k+�
k

)
(−∂)�∂a

k+�.

When k = 0, δ0,a = δa and δa
0 = δa are the classical variational derivatives.

If f ∈ A , the differential operator ad( f ) = (( f,−)) associated to f by the Soloviev
antibracket is given by the formula [11, Proposition 2.1]

ad( f ) =
∞∑

k=0

∂k f(k), (9)

where f(k) is the sequence of evolutionary vector fields

f(k) = (−1)(p( f )+1) p(ξa) pr
((

δk,a f
)
∂a + (−1)p( f )

(
δa

k f
)
∂a

)
.

In particular, f(0) = H f .
The proof of Theorem 1 relies on [11, Theorem 2.1], which we reformulate for

convenience.

Lemma 3 Let tk , k ≥ 0, be a sequence of evolutionary vector fields such that tk = 0,
k � 0, and ∞∑

k=0

∂k tk = 0.

Then tk = 0 for all k ≥ 0.

Proof We prove by downward induction in k that the vector fields tk vanish. Let K
be the largest integer such that tK is nonzero. Let ξ be one of the fields of the theory
having even parity, and take the (K + 1)-fold commutator of the left-hand side of (3)
with ξ . We obtain

(K + 1)! (∂ξ)K tK (ξ) = 0.

It follows that tK (ξ) = 0.
Next, we take the commutator with the antifield ξ+ followed by the K -fold com-

mutator with ξ : we obtain the equation

K ! (∂ξ)K−1(∂ξ tK (ξ+) + K ∂ξ+ tK (ξ)
) = K ! (∂ξ)K tK (ξ+) = 0.

We conclude that tK (ξ+) = 0.
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198 E. Getzler

The vanishing of tK (ξ) and tK (ξ+) may be proved for fields ξ of odd parity by
exchanging the rôles of ξ and its antifield ξ+ in the above argument. In this way, we
see that tK = 0. Arguing by downward induction, we conclude that tk = 0 for all
k ≥ 0, proving the lemma. 
�
Proof (Proof of Theorem 1) If (( f, g)) = h, it follows from (9) that

∞∑

k=0

k∑

�=0

∂k[f(�),g(k−�)] =
∞∑

k=0

∂kh(k).

Consider the evolutionary vector fields

tk =
k∑

�=0

[f(�),g(k−�)] − h(k).

We are in the situation of Lemma 3: it follows that tk = 0 for all k ≥ 0, and in
particular,

t0 = [H f ,Hg] − H(( f,g)) = 0.

Since
∫
(( f, g)) = ∫

( f, g), we see that the map H is a morphism of graded Lie super-
algebras. 
�

The following lemma shows that the kernel of the Hamiltonian map f 	→ H f

vanishes except in ghost number 0, where it equals the constant multiples of 1.

Theorem 2 If H f = 0, then f is the sum of a constant and a total derivative.

Proof (Proof (Olver [14, Theorem 4.7])) We must show that if δa f = δa f = 0, then
f is the sum of a constant and a total derivative. For 0 ≤ s ≤ 1, let fs be the rescaled
quantity

fs(ξ, ∂ξ, . . . ) = f (sξ, s∂ξ, . . . ).

It is an exercise in binomial coefficients to show that an evolutionary vector field may
be written in terms of the higher Euler operators:

pr
(
Xa∂a + Xa∂a) =

∞∑

k=0

∂k(Xaδk,a + Xaδa
k

)
.

It follows that

d fs

ds
= pr(ξa ∂a + ξ+

a ∂a) fs

=
∞∑

k=0

∂k(ξa δk,a f + ξ+
a δa

k f )s .
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Integrating over s from 0 to 1, we see that

f = f0 +
∞∑

k=0

(∫ 1

0
∂k(ξa δk,a fs + ξ+

a δa
k fs) ds

)

.

In particular, if δa f = δa f = 0, we see that

f = f0 +
∞∑

k=1

∂

(∫ 1

0
∂k−1(ξa δk,a fs + ξ+

a δa
k fs) ds

)

,

proving the lemma. 
�
A Maurer–Cartan element of F is a solution

∫
S ∈ F 0 of the classical Batalin–

Vilkoviskymaster equation (1). In theBatalin–Vilkovisky formalism, aMaurer–Cartan
element

∫
S determines a classical field theory.

There is a more precise formulation of the classical master equation, obtained by
lifting a solution in the space of functionalsF to a resolution of this space. We review
the details of this construction, taken from [11] .

Introduce the quotient complex ˜A of A by the constants:

˜A j =
{
A 0/C, j = 0,

A j , j �= 0.

The space of functionals F has a resolution

B j = A j ⊕ ˜A j+1ε,

where the symbol ε is understood to have odd parity and ghost number −1, so that the
parities of the superspace ˜A j+1 are reversed inB j . The differential d : B j → B j+1

equals
d
(

f + gε
) = (−1)p(g) ∂g. (10)

The Soloviev antibracket extends to B by the formula

(( f0 + g0ε, f1 + g1ε)) = (( f0, f1)) + (( f0, g1)) ε + (−1)p( f1)+1 ((g0, f1)) ε. (11)

We have
d((a, b)) = ((da, b)) + (−1)p(a)+1((a, db)),

and the differential graded Lie superalgebra (B, d) is a resolution of the graded Lie
superalgebra F .

If
∫

S is a solution of the classical master equation (1), there is an element S̃ ∈ A 1

of odd parity such that
1
2 ((S, S)) = ∂ S̃.
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The classical master equation (1) may be recast as the Maurer–Cartan equation

dS + 1
2 ((S,S)) = 0 (12)

inB, where
S = S + S̃ε ∈ B0.

This refinement of the classical master equation is closely related to the modified
classical master equation of Cattaneo, Mnëv and Reshitikhin [6, Proposition 3.1].

Let s be the Hamiltonian vector field HS: this is an evolutionary vector field of
degree 1. By Theorem 1, we see that a solution of the classical master equation (12)
yields an odd Hamiltonian vector field s, of degree 1, satisfying the relation s2 = 0.
The differential graded Lie superalgebraB with differential d +s is a resolution of the
differential graded Lie superalgebra F , with differential

∫
(S,−). The cohomology

of this complex is the Batalin–Vilkovisky cohomology of the classical field theory S.

4 Covariant field theories in one dimension: local case

AKSZfield theories are a class of solutions of the classicalmaster equation, introduced
by Alexandrov et al. [1]. Here, we only consider the case of one-dimensional AKSZ
field theories: these include the main model of interest to us in this paper, the spinning
particle in a curved background. (The focus in [1] is rather on the two and three-
dimensional cases.) An AKSZ field theory is associated with a symplectic form ω on
the graded supermanifold whose coordinates are the fields of the theory.

In this section, we define a curved Lie superalgebra whoseMaurer–Cartan elements
consist of a solution of the master equation (12), together with additional structure
that expresses covariance with respect to time translation. In the case of an AKSZ
field theory, the additional structure involves the Poisson tensor π = ω−1, and thus
incorporates the nondegeneracy of the symplectic form.

Let u be a variable of ghost number 2. We consider the graded Lie algebras of
power series in u with coefficients in the graded Lie algebras F and B, such that

∫
(u f, g) = ∫

( f, ug) = u
∫
( f, g),

respectively
((u f, g)) = (( f, ug)) = u(( f, g)).

The element
D = ξ+

a ∂ξa ∈ A (M)

is invariant under changes of coordinates, and its image
∫
D in F lies in the centre,

that is, ad(
∫
D) = 0. Consider the curved Lie superalgebra F [[u]] with vanishing

differential and curvature u
∫
D. A Maurer–Cartan element of F [[u]] is a solution∫

Su ∈ F [[u]], of ghost number 0, of the equation

1
2

∫
(Su, Su) = −u

∫
D. (13)
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Expand Su in powers of u

Su = S0 + uS1 + u2S2 + · · ·

TheMaurer–Cartan equation (13) is equivalent to the classical master equation (1) for
S = S0, the equation ∫

(S0, S1) = −∫
D,

and, for n > 1, the sequence of equations

n∑

k=0

∫
(Sk, Sn−k) = 0.

In [10,11], such a structure was found in the case of the spinning particle: in those
papers, S0 was called S, S1 was called G, while Sn vanished for n > 1.

The operator ad(D) : A • → A • is given by the explicit formula

ad(D) = ∂ pr(ξ+
a ∂a) − ∂.

Introduce the graded derivation ι onB, of degree −1,

ι
(

f + gε
) = (−1)p( f )

(
pr(ξ+

a ∂a) f − f
)
ε.

It is easily seen that dι + ιd = ad(D) and ι2 = 0. Let B[[u]] be the curved Lie
superalgebra with graded derivation du = d + uι and curvature uD.

The following definition is central to this paper.

Definition 1 A (one-dimensional) covariant field theory is a Maurer–Cartan element
Su ∈ B[[u]], that is, an element of ghost number 0 and even parity such that

duSu + 1
2 ((Su,Su)) = −uD. (14)

As in the case of the classical master equation, any solution of (13) gives rise to a
solution of (14).

Proposition 2 Let
∫

Su ∈ F [[u]] be a solution of (13), and choose a lift of
∫

Su to
an element Su ∈ A [[u]]. Let S̃u ∈ ˜A [[u]] be the element determined by the equation

1
2 ((Su, Su)) = −uD + ∂ S̃u .

Then
Su = Su + S̃u ε ∈ B[[u]]

is a solution of (14).
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Proof We have

uD + duSu + 1
2 ((Su,Su)) = uD − ∂ S̃u + uι(Su) + 1

2 ((Su + S̃uε, Su + S̃uε))

= uι(Su) + ((Su, S̃u))ε.

We would like to show that the right-hand side has the form a constant times ε: it
suffices to verify that on applying ∂ to it, we obtain zero. But we have

u∂ι(Su) + ∂((Su, S̃u))ε = (
((Su,−uD + ∂ S̃u))

)
ε

= 1
2 ((Su, ((Su,Su))))ε = 0.

It follows that uι(Su) + ((Su, S̃u))ε represents zero inB[[u]]. 
�
Let Su be a covariant field theory. Expanding Su in powers of u, we obtain a series

of elements Sn ∈ B−2n :

Su =
∞∑

n=0

unSn .

Let sn be the Hamiltonian vector field HSn : this is an evolutionary vector field of
degree 1−2n. By Theorem 1, we see that a covariant field theory yields a sequence of
Hamiltonian vector fields sn , of degree 1− 2n, such that s0 is the Batalin–Vilkovisky
differential, satisfying the relation s20 = 0, s1 is a homotopy for the operator ∂ , in the
sense that

[s0, s1] = −∂,

and for n > 1,
n∑

k=0

[sk, sn−k] = 0.

All of the examples considered in this paper satisfy Sn = 0, n > 1; in particular,
s21 = 0.

An odd element H ∈ B[[u]] of ghost number −1 generates a flow on the space of
covariant field theories by gauge action on the curved Lie superalgebra:

Su,τ = Su • τ H.

We may also consider twists of covariant field theories, by which we mean the flow
associated to a Hamiltonian in B((u)) = B[[u]][u−1] such that the Maurer–Cartan
element Su • τ H remains in B[[u]]. The class of twists discussed in the following
proposition are the ones of importance to the study of AKSZ field theories.

If Su is a covariant field theory, the operator

d = du + ad(Su) (15)

is a differential on B[[u]].

123



Covariance in the Batalin–Vilkovisky formalism… 203

Proposition 3 Consider an element W ∈ O(M) of ghost number 1 and odd parity
such that dW is divisible by u and ((dW, W )) = 0. Then the twist Su • u−1W of Su

by u−1W is a covariant field theory, given by the formula

Su • u−1W = Su + u−1dW.

Let us now show how these formulas capture AKSZ field theories in the one-
dimensional case. The de Rham complex Ω•(M) of the graded supermanifold is
generated over O(M) by the one-forms d f , f ∈ O(M), of parity p( f ) + 1, subject
to the Leibniz relation

d( f g) = d f g + (−1)p( f ) f dg.

We adopt the sign convention that one-forms graded commute:
Let

ν = νa(ξ) dξa ∈ Ω1(M)

be a one-form on M of ghost number 0 and odd parity; in other words, gh(νa) =
− gh(ξa) and p(νa) = p(ξa). The two-form ω = dν equals

ω = 1
2 dξ

a ωab(ξ) dξb ∈ Ω2(M)

= 1
2 (−1)(p(ξa)+1) p(ξb) ωab(ξ) dξa dξb,

where
ωab = ∂aνb − (−1)p(ξa) p(ξb)∂bνa . (16)

In particular, gh(ωab) = − gh(ξa) − gh(ξb) and p(ωab) = p(ξa) + p(ξb).
Denote the frame of the tangent bundle T M dual to the frame dξa of the cotangent

bundle by τa = ∂/∂ξa . The two-formω induces amorphism of vector bundles T M →
T ∗M , which is denoted X 	→ X � = X � ω, or in terms of the frames {τa} and {dξa},

τ �
a = ωab dξ

b.

Likewise, a bivector fieldπ on M induces amorphismof vector bundles T ∗M → T M ,
denoted θ 	→ θ� = π � θ . The two-form ω is symplectic if there is a bivector field π

such that (X �)� = X . Expanding the bivector field in the local frame {τa},

π = 1
2 τa πab(ξ) τb ∈ Γ (M,Sym2(T [−1]M))

= 1
2 (−1)(p(ξa)+1) p(ξb) πab(ξ) τa τb,

the relationship between ω and τ becomes

(−1)p(ξa) πabωbc = δa
c . (17)

Note that the coefficients πab possess the same symmetry as ωab, namely

πab = −(−1)p(ξa) p(ξb) πba .
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Lemma 4 If ω and π are inverse to each other in the above sense, then ω is closed if
and only if the bivector field π is a Poisson tensor:

πab ∂bπ
cd = (−1)p(ξa) p(ξ c) πcb ∂bπ

ad . (18)

Let M be a graded supermanifold, and let ν be a one-form of ghost number 0 and
odd parity such that ω = dν is a symplectic form. The following theorem follows by
a lengthy but straightforward calculation based on (16), (17) and (18).

Theorem 3 The elements of B[[u]]

S0 = (−1)p(ξa) νa(ξ) ∂ξa,

S1 = 1
2 ξ+

a πab(ξ) ξ+
b + (−1)p(ξa) νa(ξ) πab(ξ) ξ+

b ε

= 1
2 (ξ

+
a − νaε)πab(ξ+

b − νbε),

of ghost number 0 and −2, respectively, and even parity, are independent of the
coordinate system {ξa}. Their sum

Su = S0 + uS1 ∈ B[[u]],

satisfies (14), and hence defines a covariant field theory.

Let ν and ν′ be two one-forms such that

dν = dν′ = ω,

and in particular, ν − ν′ is closed. If M is simply connected, then ν − ν′ is exact: there
is a function μ ∈ O(M) such that

ν − ν′ = dμ.

It follows that

S0 − S′
0 = (−1)p(ξa) ∂aμ(ξ) ∂ξa

= ∂μ(ξ),

and in particular, ∫
S0 = ∫

S′
0

and ∫
Su = ∫

S′
u .

Thus, locally in M , the choice of ν is unimportant in the definition of the field theory: it
is onlywhen theworld-line has nonempty boundary (or M has nonzero first homology)
that this ambiguity comes into play. This is one of the reasons that we have introduced
the resolution B of F
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The Poisson bracket associated to the symplectic form ω is the bilinear form on
O(M) given by the formula

u{ f, g} = (−1)p( f )((d f, g))

= (−1)(p( f )+p(ξa)) p(ξb)u πab∂a f ∂bg,

where d is the differential introduced in (15).

Lemma 5 The Poisson bracket satisfies the graded symmetry condition

{ f, g} = −(−1)p( f ) p(g) {g, f }.

Proof We have (( f, g)) = 0, hence

0 = d(( f, g)) = ((d f, g)) + (−1)p( f )+1 (( f,dg))

= ((d f, g)) − (−1)(p( f )+1)(p(g)+1) ((dg, f )).


�
The following lemma generalizes to graded supermanifolds the proof of the Jacobi

rule for the Poisson bracket associated to a Poisson tensor.

Lemma 6 The Poisson bracket satisfies the graded Jacobi identity

{ f, {g, h}} = {{ f, g}, h} + (−1)p( f ) p(g) {g, { f, h}}.

Proof We have

u2{{ f, g}, h} = (−1)p(g) ((d((d f, g)), h))

= (−1)p( f )+p(g) ((((d f,dg)), h))

= (−1)p( f )+p(g)
(
((d f, ((dg, h)))) − (−1)p( f ) p(g) ((dg, ((d f, h))))

)

= u2({ f, {g, h}} − (−1)p( f ) p(g) {g, { f, h}}).


�
If W ∈ O(M) is a function on M of ghost number 1 and odd parity, then

dW = u
(−ξ+

a πab ∂bW + (−1)p(ξa) νa πab ∂bWε + Wε
)

is divisible by u, and ((dW, W )) = u{W, W } vanishes if and only if

{W, W } = 0,

in other words, precisely when the Hamiltonian vector field associated to W is coho-
mological. Applying Proposition 3, we obtain the following result.
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Theorem 4 Let M be a graded supermanifold, and let ν ∈ Ω1(M) be a one-form of
ghost number 0 and odd parity such that ω = dν is a symplectic form. Let π be the
Poisson tensor associated to ω.

Let W ∈ O(M) be a function on M of ghost number 1 and odd parity, such that
{W, W } = 0. Then the twist Su • u−1W of the covariant field theory Su by u−1W ,
given by the formula

Su + u−1dW = (−1)p(ξa)νa ∂ξa + Wε

+ 1
2u(ξ+

a − u−1∂a W − νaε)πab(ξ+
b − u−1∂bW − νbε),

is a covariant field theory.

5 Covariant field theories in one dimension: global case

The formalism of the last section only applies when the symplectic form ω on the
graded supermanifold M is exact. When this condition is not satisfied, the best we can
do is to choose a cover

U = {Uα}α∈I

of M , where each Uα is an open subspace of the graded supermanifold M , such that
the restriction of ω to each Uα is exact:

ω|Uα = dνα.

The nerve NkU of the cover is the sequence of graded supermanifolds indexed by
k ≥ 0

NkU =
⊔

α0...αk∈I k+1

Uα0...αk ,

where
Uα0...αk = Uα0 ∩ · · · ∩ Uαk .

Denote by ε : N0U → M the map which on each summand Uα equals the inclusion
U ↪→ M .

The collection ν = {να}α∈I gives a one-form on N0U , such that

dν = ε∗ω.

For all α0, α1 ∈ I , the one-form

να0 |Uα0α1
− να1 |Uα0α1

∈ Ω1(Uα0α1)

is closed. Assume the cover U is chosen such that this form is exact for all (α0, α1):
there exists functions μα0α1 ∈ Ω0(Uα0α1) such that

dμα0α1 = να0 |Uα0α1
− να1 |Uα0α1

.
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Assemble the functions {μα0α1}α0α1∈I into a single function μ on N1U . Let δ0, δ1 :
N1U → N0U be the morphisms which on Uα0α1 are, respectively, the inclusions
into Uα1 and Uα0 (sic). We have

dμ = δ∗
1ν − δ∗

0ν.

The collection of differential forms

(ν, μ) ∈ Ω1(N0U ) × Ω0(N1U )

will serve as a replacement for the non-existent one-form ν ∈ Ω1(M) solving the
equation ω = dν. In order to repeat the discussion of the last section, we must extend
the definition of the Soloviev bracket, and the curved Lie algebraB[[u]], from graded
supermanifolds M to sequences of graded supermanifolds of the form {NkU }. Since
we will use the formalism of simplicial and cosimplicial objects in our discussion, we
now review their definition.

Let Δ be the category whose objects are the totally ordered sets

[k] = (0 < · · · < k), k ∈ N,

and whose morphisms are the order-preserving functions. A simplicial graded
supermanifold M• is a contravariant functor from Δ to the category of graded super-
manifolds. (We leave open here whether we are working in the smooth, analytic or
algebraic setting.) Here, Mk is the value of M• at the object [k], and f ∗ : M� → Mk is
the action of the arrow f : [k] → [�] of Δ. The arrow di : [k] → [k + 1] which takes
j < i to j and j ≥ i to j +1 is known as a facemap, while the arrow si : [k] → [k−1]
which takes j ≤ i to j and j > i to j − 1 is known as a degeneracy map.

The simplicial graded supermanifolds used in this paper are the Čech nerves N•U
of covers U = {Uα}α∈I . The face map δi = d∗

i : Nk+1U → NkU corresponds to
the inclusion of the open subspace

Uα0...αk+1 ⊂ Nk+1U

into the open subspace
Uα0...̂αi ...αk+1 ⊂ NkU ,

and the degeneracy map σi = s∗
i : Nk−1U → NkU corresponds to the identification

of the open subspace
Uα0...αk−1 ⊂ Nk−1U

with the open subspace
Uα0...αi αi ...αk ⊂ NkU .

Any simplicial map f ∗ : M� → Mk is the composition of a sequence of face maps
followed by a sequence of degeneracy maps. In particular, we see that in the case
M• = N•U of the nerve of a cover, all of these maps are étale.

A covariant functor X• fromΔ to a category C is called a cosimplicial object of C .
These arise as the result of applying a contravariant functor to a simplicial space: for
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example, applying the de Rham functor Ω•(−) to the simplicial graded supermani-
fold N•U , we obtain the cosimplicial differential graded commutative superalgebra
Ω•(N•U ). We will also be interested in the cosimplicial graded Lie superalgebra

F (N•U )

with theBatalin–Vilkovisky antibracket, the cosimplicial differential gradedLie super-
algebra

B(N•U )

with the Soloviev antibracket and differential d, and the cosimplicial curved Lie super-
algebra

B(N•U )[[u]]

with the Soloviev antibracket, differential du and curvature uD.
Associated to a cosimplicial superspace V • is a graded superspace N •(V ), called

the normalized cochain complex, defined as follows:

N k(V ) =
k−1⋂

i=0

ker
(
si : V k → V k−1).

This is a complex, with differential

δ =
k+1∑

i=0

(−1)i di : N k(V ) → N k+1(V ).

If the superspacesV k makingup the cosimplicial superspace are themselves complexes
V k = V •k , with differential d : V jk → V j+1,k , we obtain a double complex,
with external differential δ : N k(V j ) → N k+1(V j ) and internal differential d :
N k(V j ) → N k(V j+1): the totalization of V •• is the graded superspace

|V |n =
∞∏

k=0

N k(V n−k),

with differential dTot = δ + (−1)kd.
The de Rham complex of the simplicial graded supermanifold N•U is the totaliza-

tion |Ω•(N•U )| of the de Rham complex of N•U . There is a morphism N•U → M
of simplicial graded supermanifolds from N•U to the constant simplicial graded
supermanifold M , which induces a quasi-isomorphism of complexes
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Ω•(M) → |Ω•(N•U )|.

We have dν = ε∗ω and δν + dμ = 0. Let [ω] ∈ Ω0(N2U ) be the Čech differential
of μ ∈ Ω0(N1U ):

[ω]α0α1α2 = μα0α1 |Uα0α1α2
− μα0α2 |Uα0α1α2

+ μα1α2 |Uα0α1α2
.

We have d[ω] = dδμ = δdμ = −δ2μ = 0, hence [ω] is a locally constant Čech
2-cocycle. By the formula

dTot(ν + μ) = ε∗ω − [ω],

we see that [ω] represents the cohomology class of ω in the Čech complex.
The cocycle [ω] is irrelevant in classical mechanics, since being locally constant, it

does not contribute to the Euler–Lagrange equations. It assumes great importance in
quantum mechanics, since it measures shifts in the phase of the Feynman integrand.

The construction of |Ω•(N•U )| behaves well under refinement of covers. A refine-
ment V = {Vβ}β∈J of a coverU = {Uα}α∈I is determined by a function of indexing
sets φ : J → I , such that for all β ∈ J , Vβ is a subset of Uφ(β). There is a morphism
of cosimplicial differential graded superalgebras Φ∗ : Ω•(N•U ) → Ω•(N•V ),
obtained by restricting differential forms on Uφ(α0)...φ(αk ) to differential forms on
Vα0...αk . Applying the totalization functor, we obtain a morphism of complexes

Φ∗ : |Ω•(N•U )| → |Ω•(N•V )|.

If we have a further refinement W = {Wγ }γ∈K of V = {Vβ}β∈J with ψ : K → J ,
we may define a composition of these refinements φψ : K → I , and we obtain a
commuting triangle of morphisms of complexes

|Ω•(N•U )|

|Ω•(N•V )| |Ω•(N•W )|
Φ∗ Ψ ∗Φ∗

Ψ ∗

In the special case where the cover U = {M} has just one element, the whole space
M , we obtain the commutative diagram

Ω•(M)

|Ω•(N•V )| |Ω•(N•W )|
Ψ ∗

We now generalize the classical master equation of Batalin–Vilkovisky theory to
a Maurer–Cartan equation for the cosimplicial graded Lie superalgebra F (N•U ).
We might expect this generalization to simply be the Maurer–Cartan equation for the
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totalization |F (N•U )|, but |F (N•U )| is not a differential graded Lie superalgebra.
(This problem is related to the absence of a natural graded commutative product on
the singular cochains of a topological space.) To circumvent this difficulty, we use a
technique introduced in rational homotopy theory by Sullivan [15] (see also Bousfield
and Guggenheim [3]), the Thom–Whitney normalization.

Let Ωk be the free graded commutative algebra with generators ti of degree 0 and
dti of degree 1, and relations

t0 + · · · + tk = 1

and dt0 + · · · + dtk = 0. There is a unique differential δ on Ωk such that δ(ti ) = dti ,
and δ(dti ) = 0.

The differential graded commutative algebrasΩk are the components of a simplicial
differential graded commutative algebra Ω• (that is, contravariant functor from Δ to
the category of differential graded commutative algebras): the arrow f : [k] → [�] in
Δ acts by the formula

f ∗ti =
∑

f ( j)=i

t j , 0 ≤ i ≤ n.

The Thom–Whitney normalization of a cosimplicial superspace is an example of
the categorical construction called an end:

N •
TW(V ) =

∫

Δ

Ω• ⊗ V •.

In other words, N •
TW(V ) is the equalizer of the maps

∞∏

k=0

Ωk ⊗ V k
∞∏

k,�=0

∏

f :[k]→[�]
Ωk ⊗ V �

1⊗ f∗

f ∗⊗1

In [17], Whitney defines an injective morphism between the two normalizations

w : N (V ) → NTW(V )

compatible with the differentials. The Whitney map takes a Čech k-cochain (να0...αk )

to

w(ν) = 1

k + 1

∑

α0,...,αk∈I

k∑

i=0

(−1)i tαi dtα0 . . . d̂tαi . . . dtαk ⊗ να0...αk .

The differential δν is taken by this map to

w(δν) = 1

k + 2

∑

α0,...,αk+1∈I

k+1∑

j=0

k+1∑

i=0

(−1)i+ j tαi dtα0 . . . d̂tαi . . . dtαk+1 ⊗ να0...̂α j ...αk+1 .
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Only the terms with i = j contribute, and we obtain

w(δν) =
∑

α1,...,αk+1∈I

dtα1 . . . dtαk+1 να1...αk+1 .

On the other hand, we have

δw(ν) =
∑

α0,...,αk∈I

dtα0 . . . dtαk ⊗ να0...αk ,

and we conclude that
δw(ν) = w(δν). (19)

If the superspaces V k making up the cosimplicial superspace are themselves
graded V k = V •k , with differential d : V jk → V j+1,k , we obtain a double com-
plex, with external differential δ : N k

TW(V j ) → N k+1
TW (V j ) and internal differential

d : N k
TW(V j ) → N k

TW(V j+1): the Thom–Whitney totalization of V •• is the graded
superspace

‖V ‖n =
∞∏

k=0

N k
TW(V n−k),

with differential dTW = δ + (−1)kd. The Whitney map w induces an injective mor-
phism of graded superspaces

w : |V |• → ‖V ‖•.

By (19), this is a morphism of complexes. For the cosimplicial superspaces which
we consider in this paper, w is a quasi-isomorphism. (This is proved using a spectral
sequence, andwemust impose additional hypotheses in order for the spectral sequence
to converge. It is sufficient to assume that V • is the (graded super)space of sections
of a sheaf over the Čech nerve of a cover U of bounded dimension; that is, Uα0...αk

is empty if the cardinality of the set of indices {α0, . . . , αk} is sufficiently large. In
particular, this condition holds if the cover is finite.)

Applying this construction to the cosimplicial complex Ω•(N•U ), we obtain the
Thom–Whitney totalization ‖Ω•(N•U )‖, and an injective morphism of complexes

|Ω•(N•U )| ↪→ ‖Ω•(N•U )‖.

The advantage of Sullivan’s Thom–Whitney normalization is that it takes cosimpli-
cial differential graded commutative superalgebras to differential graded commutative
superalgebras. (Its disadvantage is that its use is restricted to characteristic zero.) The
reason is very simple: if V k is a differential graded commutative superalgebra, then
so is Ωk ⊗ V k . The differential on Ωk ⊗ V k is

d(α ⊗ v) = δα ⊗ v + (−1)iα ⊗ dv, α ∈ Ω i
k, v ∈ V jk,
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and the product is

(α1 ⊗ v1)(α2 ⊗ v2) = (−1)i2 p(v1) α1α2 v1v2,

where α� ∈ Ω
i�
k and v� ∈ V j�k . The Thom–Whitney totalization ‖V ‖ is a subspace

of the product of differential graded commutative superalgebras Ωk ⊗ V k , and this
subspace is preserved by the differential and by the product. In this way, we see that by
expanding |Ω•(N•U )| to the larger complex ‖Ω•(N•U )‖, we obtain a construction
which associates to the cover U a differential graded commutative superalgebra.

The Thom–Whitney totalization also takes cosimplicial curved Lie superalgebras to
curved Lie superalgebras. In particular, if L• is a cosimplicial curved Lie superalgebra,
the antibracket on ‖L‖ is given by the formula

(α1 ⊗ v1, α2 ⊗ v2) = (−1) j2(p(v1)+1) α1α2 (v1, v2).

The Thom–Whitney totalization ‖V ‖ is a subspace of the product curved Lie super-
algebra

∏
k Ωk ⊗ V k , which is preserved by the antibracket. In the curved case, the

curvatures of the curved Lie superalgebras V k assemble to an element of degree 1 in
|V | ⊂ ‖V ‖, which is easily seen to be a curvature element for the Thom–Whitney
totalization.

In particular, the Thom–Whitney totalizations ‖F (N•U )‖ and

‖B(N•U )‖

are differential gradedLie superalgebras. The differential of ‖F (N•U )‖ is induced by
the differentials δ of the algebrasΩk , while the differential of‖B(N•U )‖ also involves
the internal differential ofB(N•U ). The antibracket of ‖F (N•U )‖ is induced by the
Batalin–Vilkovisky antibracket onF (N•U ), while the antibracket of ‖B(N•U )) is
induced by the Soloviev antibracket. Similarly, the Thom–Whitney totalization

‖B(N•U )[[u]]‖ ∼= ‖B(N•U )‖[[u]]

is a curved Lie superalgebra, whose differential is the sum the differential du of
B(N•U )[[u]], with curvature D, and δ, and whose antibracket is induced by the
Soloviev antibracket.

Given a refinement V of a cover U , and a refinement W of V , we obtain a com-
muting diagram of Thom–Whitney totalizations

‖F (N•U )‖

‖F (N•V )‖ ‖F (N•W )‖
Φ∗ Ψ ∗Φ∗

Ψ ∗
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The arrows in this diagram are morphisms of differential graded Lie algebras. There
are also commuting triangles of differential graded Lie superalgebras

‖B(N•U )‖

‖B(N•V )‖ ‖B(N•W )‖
Φ∗ Ψ ∗Φ∗

Ψ ∗

and of curved Lie superalgebras

‖B(N•U )[[u]]‖

‖B(N•V )[[u]]‖ ‖B(N•W )[[u]]‖
Φ∗ Ψ ∗Φ∗

Ψ ∗

The analogue of the classical master equation (12) in the global setting is the
Maurer–Cartan equation for the differential graded superalgebra ‖B(N•U )‖:

dTWS + 1
2 ((S,S)) = 0.

Here, S is a collection of elements S j
α0...αk ∈ Ω

j
k ⊗ B− j (Uα0...αk ) of total degree 0,

simplicial, in the sense that for each f : [k] → [�],

( f ∗ ⊗ 1)S j
� = (1 ⊗ f∗)S j

k ,

which satisfies the sequence of Maurer–Cartan equations

δS j−1 + (−1) j dS j + 1

2

j∑

i=0

((Si ,S j−i )) = 0.

This makes the following definition natural. The graded derivation on the curved Lie
superalgebra ‖B(N•U )[[u]]‖ is

dTW,u = dTW + uι.

Definition 2 Let M be a graded supermanifold M . A global covariant field theory
for M is a solution of the Maurer–Cartan equation for the curved Lie superalgebra
‖B(N•U )[[u]]‖, where U is a cover of M :

dTW,uSu + 1
2 ((Su,Su)) = −uD.
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Since the Maurer–Cartan set MC(L) is a functor on the category of curved Lie
superalgebras, there is a commutative diagram of sets

MC(‖B(N•U )[[u]]‖)

MC(‖B(N•V )[[u]]‖) MC(‖B(N•W )[[u]]‖)
Φ∗ Ψ ∗Φ∗

Ψ ∗

We see that if Su is a covariant field theory with respect to a cover U of M , then it
induces a covariant field theory with respect to any refinement of U .

We now come to the main result of this section.

Theorem 5 Let M be a graded supermanifold with symplectic form ω. Let U be a
cover of M, and let (ν, μ) ∈ |Ω•(N•U )| be a one-form such that dν = ε∗ω and
δν = dμ.

Let Su ∈ Č0(U ,B[[u]]) be the Čech cochain which over Uα equals the local
covariant field theory Sα,u associated to the one-form να .

The element Su = w(Su +με) is a global covariant field theory, that is, a Maurer–
Cartan element in the curved Lie superalgebra ‖B(N•U )[[u]]‖.

This result is proved by lengthy calculation. One subtle point is that

δw(με) = w(δμε) ∈ Č2(U ,B[[u]])

vanishes. Indeed,
δμ ∈ Č2(U ,O)

is locally constant and by definition constant multiples of ε vanish in the sheafB.
Over the set Uα0...αk , the covariant field theory Su is given by the explicit formula

Su =
k∑

i=0

tαi ⊗ Sαi ,u
∣
∣
Uα0 ...αk

+1

2

k∑

i, j=0

(tαi dtα j − tα j dtαi ) ⊗ μαi α j

∣
∣
Uα0 ...αk

ε.

Let W ∈ O(M) be a function on M of degree 1 and odd parity such that {W, W } = 0.
As in the local case, we may twist this global covariant field theory by u−1W :

Su • u−1W = Su + u−1(du W + ((Su, W ))
)

= Su + Wε + u−1
k∑

i=0

tαi ⊗ ((Sαi ,u, W ))
) ∣

∣
Uα0 ...αk

.

More generally, W might be any Čech cocycle W ∈ Č•(U ,O) of degree 1 and odd
parity, such that {w(W ),w(W )} = 0.

We close this section with a discussion of how the global covariant field theory
associated to the class (ν, μ) changes under an equivalence of theories. The type of
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equivalence we have in mind is a homotopy of the form ν̃ ∈ Č0(U ,Ω0) between a
pair of classes (νi , μi ), i = 0, 1:

ν1 − ν0 = dν̃ μ1 − μ0 = δν̃.

Proposition 4 Let Si,u be the global covariant field theory associated to (νi , μi ).
Then S0,u and S1,u are gauge equivalent:

S0,u • w(ν̃ε) = S1,u .

Proof We have

dTW,uw(ν̃ε) = w(δν̃ε) + ∂w(ν̃)

= w(μ1 − μ0) + (−1)p(ξa)w((ν1,a − ν0,a)∂ξa)

and, for i = 0, 1,

((Si,u,w(ν̃ε))) = −uw(ξ+
a πab∂bν̃ε)

= −uw(ξ+
a πab(ν1,b − ν0,b)ε).

Adding these two equations, we see that

dTW,uw(ν̃ε) + ((Si,u,w(ν̃ε))) = S1,u − S0,u .

Taking the difference of these two equations, we see that

((S1,u − S0,u,w(ν̃ε)))) = 0.

We see that
S0,u • w(ν̃ε) = S0,u + (

S1,u − S0,u
) = S1,u,

proving the result. 
�
It follows from this proposition that the global covariant field theorySu is invariantly

associated, up to refinement of the cover U over which it is defined and a gauge
transformation, to an element of the Deligne cohomology group

Ȟ
2(U ,R → Ω0 d−→ Ω1).

Quantization of this model requires lifting the two-cocycle δμ ∈ Č2(U ,R) to
Č2(U ,Z). With this constraint, the global covariant field theory is classified by an
element of the Deligne cohomology group

Ȟ
2(U ,Z → Ω0 d−→ Ω1)

which classifies Hermitian line bundles with connection on M which are trivialized
on restriction to the cover U .
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6 The particle as a covariant field theory

In this section, we couple certain covariant field theories to gravity on the world-line.
Of course, one-dimensional gravity carries no propagating fields: instead, the effect
of coupling to gravity is to render the covariant field theory generally covariant.

The gravitational field in one dimension consists of a nowhere-vanishing one-form
e on the world-line, whose square is the metric along the world-line. Its antifield e+ is
a fermionic scalar field of ghost number−1. In addition, there is a ghost field c, which
is a fermionic field that transforms as a vector field on the world-line, and has ghost
number 1: its antifield c+ is a bosonic field that transforms as a quadratic differential
on the world-line, and has ghost number −2.

Consider the graded manifold T ∗
R[−1] ∼= R[−1] × R[1], with fermionic coordi-

nates b and c, respectively, of ghost number −1 and 1. We consider the covariant field
theory Xu associated to the one-form ν = −c db, given by the explicit formula

Xu = X0 + uX1 = c∂b + u(b+c+ + c+cε).

Consider the Batalin–Vilkovisky Hamiltonian flow generated by the Hamiltonian

log(b+)c+c,

defined in a neighbourhood of the locus where b+ = 1. The covariant field theory Xu

flows to

Xu • τ log(b+)c+c = (b+)τ−1c(b+∂b + τc+∂c) + u(b+)τ−1c+ + (1 − τ)uc+cε,

and, setting τ = 1, we see that

Xu • log(b+)c+c = c(b+∂b + c+∂c) + uc+.

We may identify b+ as the gravitational field e. The antifield e+ of e is the field −b,
and the action in these coordinates becomes

Xu • log(b+)c+c = c(−e∂e+ + c+∂c) + uc+.

Let Su = S0 + uS1 be a covariant field theory with Si = 0, i > 1; denote by uD
its curvature. The product of the covariant field theories Su and Xu is associated to the
symplectic graded manifold M × T ∗

R[−1]:

Su + Xu = S0 + c∂b + u(S1 + b+c+ + c+cε).

The following theorem shows that after a further gauge transformation, generated by
the Hamiltonian cS1, this model is transformed into a theory minimally coupled to
the background gravitational field.
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Theorem 6 Let M be a graded supermanifold, and let ν be a one-form on M such
that dν is a symplectic form. Let Su be the associated covariant field theory. Then we
have

(Su + Xu) • log(b+)c+c • cS1 = S0 + c(D + b+∂b + c+∂c) + cιS0 + uc+.

Corollary 1 Let V ∈ O(M) be a function on M of ghost number 0 and even parity,
and let W = cV . After successively applying the gauge transformations generated by
log(b+)c+c and cS1, the twisted covariant field theory

(Su + Xu) • u−1W

is transformed into the covariant field theory

(Su+Xu)•u−1W •log(b+)c+c•cS1 = S0−b+V +c(D+b+∂b+c+∂c)+cιS0+uc+.

Proof We have du(u−1W ) = cV ε,

((Su, u−1W )) = ((S1, cV )) = −((cS1, V ))

and
((Xu, u−1W )) = −b+V − cV ε.

It follows that

(Su + Xu) • u−1W = Su + Xu − b+V − ((cS1, V ))

and that

(Su + Xu) • u−1W • log(b+)c+c = (
Su + Xu − b+V − ((cS1, V ))

) • log(b+)c+c

= Su + c(b+∂b + c+∂c) + uc+

−b+V − ((cS1, b+V )).

We see that

(Su + Xu) • u−1W • log(b+)c+c • cS1 = (Su + c(b+∂b + c+∂c) + uc+) • cS1

− e−ad(cS1)(b+V + ((cS1, b+V ))).

Since b+V + ((cS1, b+C)) = ead(cS1)b+V , the corollary follows. 
�
Remark 1 Theorem 6 generalizes to the global case without any difficulties: if Su

satisfies the hypotheses of Theorem 5, we have

(Su + Xu) • log(b+)c+c • cS1 = S0 + c(D + b+∂b + c+∂c) + cιS0 + uc+.

123



218 E. Getzler

Remark 2 After coupling to gravity, the covariant field theory Su , which is only
defined if the two-form ω = dν is symplectic, is seen to be equivalent to a covariant
field theory which is defined for any one-form ν on M , without any condition that dν
is nondegenerate.

Theorem 6 may be restated in the following suggestive way.

Proposition 5 We have

(Su + Xu) • log(b+)c+c • cS1 = (Su + Xu) • (log(b+)c+c ∗ cS1),

where

log(b+)c+c ∗ cS1 = log(b+)

b+ − 1

(
c(S1 + X1) − c+c

)
.

Proof Suppose that for all n ≥ 0, we have

ad(z)ad(y)nz = 0. (20)

It follows that
e−tad(z)e−ad(y)z = e−ad(y)z,

and hence that
ad(y ∗ t z)z = ad(y)z.

By Proposition 1, we see that

y ∗ z = y +
∫ 1

0

ad(y ∗ t z)

1 − e−tad(z)e−ad(y)
z dt

= y +
∫ 1

0

ad(y)

1 − e−ad(y)
z dt

= y + ad(y)

1 − e−ad(y)
z.

Let y = log(b+)c+c and z = cS1. We have

ad(log(b+)c+c)ncS1 = (− log(b+))ncS1,

and the hypothesis (20) is satisfied. Thus, we have

log(b+)c+c ∗ cS1 = log(b+)c+c + ad(log(b+)c+c)

ead(log(b+)c+c) − 1
cS1

= log(b+)c+c + log(b+)cS1

b+ − 1
,

and the lemma follows. 
�
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UsingCorollary 1,we can generalize the discussion of the particle in a flat spacetime
discussed in the introduction, allowing a curved target with a magnetic field. Let U
be an open subset of Rn , with coordinates {xμ}1≤μ≤n . Let

g = gμν(x)dxμ ⊗ dxν

be a pseudo-Riemannian metric on U , and let A = Aμdxμ be an electromagnetic
potential on U . Let M = T ∗U be the manifold with coordinates {xμ} and {pμ}. We
consider the covariant field theory Su associated to the one-form

ν = (pμ + Aμ)dxμ.

The corresponding symplectic form ω = dν equals

ω = dpμ dxμ + 1
2 Fμν(x)dxμ dxν,

where
Fμν(x) = ∂μ Aν(x) − ∂ν Aμ(x)

is the electromagnetic field. The associated Poisson bracket is

{ f, g} = ∂ f

∂xμ

∂g

∂pμ

− ∂ f

∂pμ

∂g

∂xμ
+ Fμν(x)

∂ f

∂pμ

∂g

∂pν

,

and the covariant field theory, after coupling to gravity, equals

Su + Xu = (pμ + Aμ)∂xμ + b∂c

+ u
(
x+
μ p+μ + 1

2 Fμν p+μ p+ν + b+c+) + u
(
(pμ + Aμ)p+μ + c+c

)
ε.

The field theory describing the particle is obtained by twisting this field theory by
u−1cV , where

V = 1
2gμν pμ pν .

The proof of Theorem 6 occupies the remainder of the section.We use the following
formulas, whose proofs are similar to the proof that Su is a covariant field theory:

du(cS1) + ((Su, cS1)) = c(D + ιSu) (21)

and

((du(cS1) + ((Su, cS1)), cS1)) = 2c∂c . (22)

Let us calculate (Su + c(b+∂b + c+∂c) + uc+) • τcS1. We have
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(Su + c(b+∂b + c+∂c) + uc+) • τcS1

= Su + c(b+∂b + c+∂c) + uc+ +
∞∑

n=0

(−τ)n+1

(n + 1)! ad(cS1)
nd(cS1),

where
d(cS1) = du(cS1) + ((Su + c(b+∂b + c+∂c) + uc+, cS1)).

It follows from (21) that

d(cS1) = c(D + ιSu) − c∂cS1 − uS1.

Since c2 = 0, we see that both ((c∂cS1, cS1)) and ((cιS1, cS1)) vanish. By (22), we
see that

((d(cS1), cS1)) = ((c(D + ιSu), cS1)) − u((S1, cS1))

= 2c∂cS1 − 2ucιS1.

It is clear that
((((d(cS1), cS1)), cS1)) = 0.

In summary, we have

(Su + c(b+∂b + c+∂c) + uc+) • τcS1

= S0 + c(b+∂b + c+∂c) + u(S1 + c+)

+τ
(
c(D + ιSu) − c∂cS1 − uS1

) + τ 2

2

(
2c∂cS1 − 2ucιS1

)

= S0 + c(τD + b+∂b + c+∂c) + τcιS0 + uc+

+(1 − τ)
(

uS1 + τucιS1 − τc∂cS1

)
.

Setting τ = 1, we obtain Theorem 6.

7 The spinning particle as a covariant field theory

In this section, we study a supersymmetric version of the results of the last section.
Supergravity in one dimension has as its fields the graviton e and a fermionic field χ ,
the gravitino, which like e is transforms as a one-form on the world-line. In addition
to the ghost c, there is also a superghost γ , which is a bosonic field of ghost number
1 that transforms as a world-line scalar.

Consider the graded manifold T ∗ΠR[−1] ∼= ΠR[−1] × ΠR[1], with bosonic
coordinates β and γ , respectively, of ghost number −1 and 1. Consider the covariant
field theory Ξu associated to the one-form ν = γ dβ:

Ξu = Ξ0 + uΞ1 = γ ∂β + u(β+γ + + γ +γ ε).
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Theorem 6, applied to the graded supermanifold M × T ∗ΠR[−1], shows that

(Su + Ξu + Xu) • log(b+)c+c • c(S1 + Ξ1) = S0

+c(D + β+∂β + γ +∂γ + b+∂b + c+∂c + ι(S0 + γ ∂β)) + γ ∂β + uc+.

In order to obtain the supersymmetric analogue of the particle, called the spinning
particle, we choose a function Q ∈ O(M) of ghost number 0 and odd parity. We twist
the covariant field theory Su + Ξu + Xu by an element u−1W , where W is given by
the formula (cf. Cattaneo and Schiavina [7, Section 6.3], and [11, Eq. (5)])

W = 1
2c{Q, Q} + γ Q − bγ 2. (23)

The term linear in b is chosen in such a way as to guarantee that {W, W } = 0.
Applying the twist u−1W to the covariant field theory Su + Ξu + Xu gives the

twisted covariant field theory

(Su + Ξu + Xu) • u−1W = Su + Ξu + Xu

− 1
2b+{Q, Q} + 1

2 (({Q, Q}, cS1)) − β+Q + γ ((S1, Q))

+ c+γ 2 − 2bβ+γ + bγ 2ε.

Gauging by log(b+)c+c followed by cΞ1, we obtain

(Su + Ξu + Xu) • u−1W • log(b+)c+c • cΞ1

= Su + c(β+∂β + γ +∂γ + b+∂b + c+∂c − γ ∂βε) + uc+

− 1
2b+{Q, Q} + 1

2 ((b
+{Q, Q}, cS1)) − β+Q + (γ + cβ+ − cγ ε)((S1, Q))

+(b+)−1(c+ − Ξ1)γ
2 − 2bβ+γ − (b+)−1(c+ − Ξ1)cγ

2ε.

Gauging by cS1, and observing that cΞ1 ∗ cS1 = c(S1 + Ξ1), we obtain

(Su + Ξu + Xu) • u−1W • log(b+)c+c • c(S1 + Ξ1)

= S0 + c(D + β+∂β + γ +∂γ + b+∂b + c+∂c + ιS0 − γ ∂βε) + uc+

− 1
2b+{Q, Q} − β+Q + γ ((S1, Q))

+(b+)−1(c+ − S1 − Ξ1)γ
2(1 − cε) − 2bβ+γ.

Substituting the graviton field e for b+ and the gravitino field χ for β+, and projecting
toF , we obtain the action of the spinning particle:

∫
(Su + Ξu + Xu) • u−1W • log(e)c+c • c(S1 + χγ +)

= ∫ (
(−1)p(ξa)νa∂ξa − 1

2e{Q, Q} − χ Q

+c(D − χ∂χ+ + γ +∂γ − e∂e+ + c+∂c)

+γ
(−ξ+

a πab∂b Q + 2e+χ) + e−1γ 2(c+ + γ ∂χ+ − 1
2ξ

+
a πabξ+

b )
)
. (24)
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Solutions of the classical master equation (1) are classified by their rank, that is,
their degree as functions of the antifields. Gauge theories whose symmetries close
off-shell have rank 1, but the action of the spinning particle (24) has rank 2, owing to
the presence of term

− 1
2

∫
e−1γ 2ξ+

a πabξ+
b .

It is possible that by adjoining auxiliary fields, this covariant field theorymay be shown
to be equivalent to a covariant field theory whose action is of rank 1.

We close this section by showing how, as an application of the above formulas, the
spinning particle may be expressed as a covariant field theory. We discuss only the
local case, leaving its globalization, which uses Theorem 5, to the reader.

We work, as in the last section, with an open subsetU ofRn , with coordinates {xμ},
pseudo-Riemannian metric

g = gμν(x)dxμ ⊗ dxν,

and electromagnetic field A = Aμ dxμ.
Denote the basis of V = R

n by {ea}, and let ηab = η(ea, eb) be an inner product
on V , of the same signature as the metric gμν on U . Let

θa = θa
μ dxμ ∈ Ω1(U, V )

be a moving frame, that is, a one-form defining an isometry between TxU and V at
each point x ∈ U , so that

gμν = ηabθ
a
μθb

ν .

Denote by θ
μ
a the inverse of θa

μ, in the sense that

θa
μθ

μ
b = δa

b .

The connection one-formωa
b = ωμ

a
b dxμ ∈ Ω1(U,End(V )) is the antisymmetric

matrix of one-forms on U characterized by two conditions: it is compatible with the
metric η,

ωb
a = −ηaã ηbb̃ωã

b̃,

and satisfies the first Cartan structure equation

dθa + ωa
b θb = 0.

Let M be the supermanifold T ∗U × ΠV , with coordinates (xμ, pμ,ψa), and
consider the one-form

ν = (pμ + Aμ)dxμ + 1
2ηabψ

adψb.

The symplectic form dν on M equals

dν = dpμ dxμ + 1
2 Fμνdxμdxν + 1

2ηabdψ
adψb.
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The associated Poisson bracket is

{ f, g} = ∂ f

∂xμ

∂g

∂pμ

− ∂ f

∂pμ

∂g

∂xμ
+ Fμν(x)

∂ f

∂pμ

∂g

∂pν

+ (−1)p( f )ηab ∂ f

∂ψa

∂g

∂ψb
,

and the covariant field theory, after coupling to supergravity, equals

Su + Ξu + Xu = (pμ + Aμ)∂xμ − 1
2ηabψ

a∂ψb + β∂γ + b∂c

+u
(
x+
μ p+μ + 1

2 Fμν p+μ p+ν + 1
2η

abψ+
a ψ+

b + β+γ + + b+c+)

+u
(
(pμ + Aμ)p+μ + c+c

)
ε.

Let
p̃μ = pμ + 1

2ωμabψ
aψb.

The spinning particle in a curved background [11] is the twisted covariant field theory

(Su + Ξu + Xu) • u−1( 12c{Q, Q} + γ Q + bγ 2),

where Q = θ
μ
a ψa p̃μ. Observe that the quantization of Q is is the Dirac operator on

U . The proof of Lichnerowicz’s formula for the square of the Dirac operator shows
that

{D,D} = θμ
a (x)θν

b (x)
(
ηab p̃μ p̃ν − 1

2 Fμν(x)ψaψb).
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