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Abstract The parafermionic cosets Ck = Com(H,Lk(sl2)) are studied for nega-
tive admissible levels k, as are certain infinite-order simple current extensions Bk

of Ck . Under the assumption that the tensor theory considerations of Huang, Lep-
owsky and Zhang apply to Ck , irreducible Ck- and Bk-modules are obtained from
those of Lk(sl2). Assuming the validity of a certain Verlinde-type formula likewise
gives the Grothendieck fusion rules of these irreducible modules. Notably, there are
only finitely many irreducible Bk-modules. The irreducibleCk- and Bk-characters are
computed and the latter are shown, when supplemented by pseudotraces, to carry a
finite-dimensional representation of the modular group. The natural conjecture then
is that the Bk are C2-cofinite vertex operator algebras.
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1 Introduction

Logarithmic conformal field theory is of significant interest in both mathematics and
physics. From its earliest appearances [1,2], it has found applications in both statistical
physics and string theorywhile its characteristic feature, reducible but indecomposable
modules over a vertex operator algebra, poses significant (but rewarding) challenges
to representation theorists. As with the more familiar rational case, there are certain
logarithmic theories that may be regarded as somehow archetypal [3] including sym-
plectic fermions [4], the triplet model [5–7], bosonic ghosts [8] and admissible-level
Wess–Zumino–Witten models [9–11].

It is of fundamental importance to develop a theory of good logarithmic conformal
field theories. One very natural class consists of those that are C2-cofinite [12] (or
lisse), meaning that the corresponding vertex operator algebra only possesses finitely
many (isomorphism classes of) irreducible modules. It seems plausible that the repre-
sentation category of a C2-cofinite vertex operator algebra is a so-called log-modular
tensor category [13,14], a mild non-semisimple generalisation of the modular ten-
sor categories that arise when restricting to the rational case [15]. We would like
to gain better intuition about log-modular tensor categories. Unfortunately, the only
really well-understood examples of C2-cofinite vertex operator algebras are the triplet
algebras [16,17] and their close relatives [18,19]. In particular, the other archetypes
mentioned above are not C2-cofinite, so there is an obvious need for more examples.

The picture advocated in [20,21] for constructing new examples is as follows:

Ck = Com(H,Lk(g))

Lk(g)

Bk = Com(VL,Ek).

Ek = ⊕
σ∈S σ (Lk(g))

extension

coset

extension

coset (1.1)

Here, g is a simple Lie algebra, Lk(g) is the corresponding simple affine vertex
operator algebra at a negative admissible level k, and VL is a lattice vertex operator
algebra extending the Heisenberg vertex operator algebraH associated with the Cartan
subalgebra of g. The vertex operator algebra Ek is a simple current extension of Lk(g)
by the images of the vacuum module under a subgroup S of spectral flow functors
(see Sect. 2). Bk is then an extension of the parafermion vertex operator algebra Ck

governed by an abelian intertwining algebra. The results of [21] suggest that both Ek

and Bk have a good chance to be C2-cofinite. However, the former has the undesirable
property that its conformal weights are unbounded below, a property that is not shared
by the latter if k < 0.

Parafermionic cosetsCk with k ∈ Z≥0 were introduced independently in the physics
[22,23] and mathematics literature [24,25]. Despite the fact that physicists have long
regarded these parafermions as textbook examples of rational conformal field theo-
ries, the nature of the underlying vertex algebras (C2-cofinite and rational) has only
recently been rigorously established [26–28]. More recent work [21,29] indicates that
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the traditional methods employed by physicists to analyse parafermions can also be
made rigorous and that these methods should also be applicable to the logarithmic
parafermions that arise at admissible levels.

We mention that the physicists’ parafermion chiral algebras actually correspond to
generalised vertex operator algebras obtained as finite-order simple current extensions
of the Ck cosets with k ∈ Z≥1. In particular, the generating fields (the parafermions
themselves) for g = sl2 are Virasoro primaries of conformal weight n(1 − n

k ), where
n = 1, . . . , k − 1. When k = 1, the parafermion theory is trivial. When k = 2,
it follows that the parafermion chiral algebra is the free fermion, while C2 is the
Ising model vertex operator algebra. (This generalisation from the free fermion is
in fact the reason for the name “parafermions”.) There are, of course, other finite-
order simple current extensions of Ck , k ∈ Z≥1, that are C2-cofinite vertex operator
(super)algebras. However, these are rational and therefore have a very different flavour
to the admissible-level infinite-order extensions Bk that we study here.

For k admissible, the simplest case is, of course, g = sl2 for which Lk(sl2) is
fairly well understood [30–33]. Our objective is to better understand the extended
parafermions Bk in the case where k is also negative. In this article, we will deter-
mine (conjecturally all) the irreducible Bk-modules, as well as a few reducible but
indecomposable ones, and establish the modular properties of their characters. The
results are consistent with the Bk being C2-cofinite, but non-rational, vertex operator
algebras. In subsequent work, we plan to prove this C2-cofiniteness and study further
properties of these vertex operator algebras with the motivation being to gain a better
understanding of C2-cofinite vertex operator algebras in general.

Wemention two natural extensions of our study. First, one would like to understand
the parafermions of L−2+1/n(sl2) for positive integral n. These are non-admissible
levels, but the affine vertex operator algebras allow for large extensions that relate
to the triplet algebras via quantum hamiltonian reduction [34]. We suspect that their
parafermionic cosets also allow for interesting and possibly C2-cofinite vertex oper-
ator algebra extensions. Second, one has the closely related parafermionic cosets of
Lk(osp(1|2)) at admissible levels, also known as graded parafermions [35,36]. For
general admissible levels, Lk(osp(1|2)) is currently under investigation [37,38]. The
more familiar positive integer cases, together with their parafermionic cosets, are
addressed in [39], see also [40].

1.1 Schur–Weyl duality for Ck

Here, we summarise the relevant results of [21] concerning the Heisenberg coset
Ck = Com(H,Lk(g)), where g is a simple Lie algebra. We are mainly interested in
how the decomposition of Lk(g) into H ⊗ Ck-modules allows us to determine the
structures of the Ck-modules and, consequently, those of the Bk-modules.

We note the following assumption that we consider to be in force throughout this
paper.

Assumption 1 The vertex tensor category theory of Huang, Lepowsky and Zhang
[41] may be applied to the Ck-module categories that we study below.
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We remark that the validity of [41] has been verified for the category of ordinary
modules of Lk(sl2) at admissible level k in [42] and for the Heisenberg vertex operator
algebra H in [21]. Determining the applicability of [41] beyond C2-cofinite vertex
operator algebras is in general a very important open problem. The key conditions
to prove are the closure of a given subcategory under the P(z)-tensor product and
the convergence of products and iterates of intertwining operators. Work on the latter
condition for Ck is underway.

We now recall how the results of [21] apply to our setting.

Result 1.1 As an H ⊗ Ck-module, the simple affine vertex operator algebra Lk(g)
decomposes as

Lk(g)↓ ∼=
⊕

λ∈Q
Fλ ⊗ Cλ, (1.2)

where Q denotes the root lattice of g. Here, Fλ denotes the Fock space of H with
highest weight λ and the Cλ are irreducible Ck-modules.

Result 1.2 ([21, Thms. 2.6 and 3.1]) C0 is the vacuum module of the simple vertex
operator algebra Ck and the Cλ are simple currents whose fusion rules include

Cλ ⊗Ck
Cμ

∼= Cλ+μ. (1.3)

Throughout, we understand that a fusion rule refers to the original definition used
by physicists, namely the decomposition of the fusion product of two modules into
isomorphism classes of indecomposables. The multiplicities with which these inde-
composables appear in a given fusion product are called the fusion multiplicities.

Result 1.3 For k < 0, the decomposition (1.2) is multiplicity-free, meaning that
Cλ � Cμ whenever λ �= μ.

This last result follows [21, Sec. 3.2.1] from the fact that the conformal weights of
Lk(g) are bounded below. In fact, Result 1.3 is also true for Lk(sl2) with k > 0 and
k /∈ Z, by the criterion of [21, Sec. 3.2.2]. We are neglecting the positive k cases as
the convergence of the coset module characters is then rather subtle.

Result 1.4 If M is an indecomposable Lk(g)-module on which H acts semisimply,
then its restriction to an H ⊗ Ck-module is

M↓ ∼=
⊕

μ∈α+Q

Fμ ⊗ Dμ, (1.4)

for some α ∈ C⊗ZQ. Moreover, this decomposition is structure-preserving: IfM has
socle series 0 ⊂ M1 ⊂ · · · ⊂ M�−1 ⊂ M and we define Ck-modules Di

μ by

Mi↓ ∼=
⊕

μ∈α+Q

Fμ ⊗ Di
μ, i = 1, . . . , � − 1, (1.5)

then 0 ⊂ D1
μ ⊂ · · · ⊂ D�−1

μ ⊂ Dμ is the socle series of Dμ, for all μ ∈ α + Q.
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Result 1.5 Given an indecomposable Ck-module D, there exists α ∈ C ⊗Z Q such
that the induction

(Fμ ⊗ D)↑ = Lk(g) ⊗H⊗Ck
(Fμ ⊗ D) (1.6)

is an (untwisted) Lk(g)-module if and only if μ ∈ α + Q′.

Here, Q′ denotes the dual lattice of Q with respect to the bilinear form defined by
the operator product expansions of the generating fields of H. This form is k times
the Killing form of g, where we normalise the latter so that the length squared of the
highest root is 2.

We mention that when Fμ ⊗ D does lift to an Lk(g)-module, as in the previous
result, the lift will be irreducible if and only if D is irreducible (by Result 1.4).

Given a lattice L ⊆ C ⊗ZQ, there is a simple current extension VL of H satisfying

VL↓ ∼=
⊕

λ∈L
Fλ. (1.7)

This extension is a vertex operator algebra (superalgebra) if and only ifVL isZ-graded
( 12Z-graded) by conformal weight [25]. A theorem of Li [43] now implies that Ck has
an extension Bk satisfying

Bk↓ ∼=
⊕

λ∈L
Cλ (1.8)

as a Ck-module. Moreover, Bk is a vertex operator algebra (superalgebra) if and only
if it is Z-graded ( 12Z-graded) by conformal weight.

We now ask whether a given Ck-module D lifts to an untwisted Bk-module

D↑ = Bk ⊗Ck
D. (1.9)

Assuming that Bk is Z-graded for simplicity, the answer is that it lifts if and only if the
monodromy of Cλ andD is trivial for all λ ∈ L [20,44,45]. When these monodromies
are scalars, which happens, for example when EndD ∼= C, this triviality is decided
by conformal weight considerations alone. We record this simple conclusion for later
use.

Result 1.6 If Bk is Z-graded by conformal weight, then the liftD↑ of aCk-moduleD
with EndD ∼= C is an (untwisted) Bk-module if and only if it is Z-graded. Moreover,
ifD is irreducible as a Ck-module and it lifts, thenD↑ is irreducible as a Bk-module.

We remark that the second statement above is quite general, but must be interpreted
with care when working with simple current extensions of vertex operator superal-
gebras. Then, the statement fails if one is working over Z2-graded modules (as one
customarily does in this situation). Specific counterexamples may be found by con-
sidering the N = 1 superconformal minimal model of central charge 1 whose order 2
simple current extension is the N = 2 superconformal minimal model of level 1.
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Finally, to compute the (Grothendieck) fusion rules of Ck and Bk , we also need
the fact that the induction functor ↑ is a tensor functor of vertex tensor categories.
This is the main theorem of [29] and was previously conjectured for simple current
extensions in [46]. For this computation, we need a further assumption.

For k admissible, there is a category Ak of finite-length Lk(sl2)-modules that we
define explicitly below after Remark 2.8. If Ak is closed under fusion products and
fusing with any module defines an exact endofunctor on it, then fusion descends to
a product on the Grothendieck group of Ak (in which a module is identified with
the sum of its composition factors). We shall refer to the decomposition of a given
Grothendieck fusion product into images of irreducibles as aGrothendieck fusion rule
and to the multiplicities of said irreducibles as Grothendieck fusion coefficients.

Assumption 2 For k admissible, the Grothendieck fusion rules ofAk are well defined
and the Grothendieck fusion coefficients are computed by the standard Verlinde for-
mula of [46,47].

With this highly non-trivial assumption, theGrothendieck fusion coefficients ofLk(sl2)
have been computed in [31,32], see also Sect. 2.3. The results are consistent with the
fusion rules that have been computed [9,11] for k = − 4

3 and − 1
2 . We remark that this

assumption is actually a theorem for the category of ordinary Lk(sl2)-modules, for k
admissible, by [42, Cor. 7.7].

With this assumption, we can compute the Grothendieck fusion rules for Ck and
Bk from those of Lk(sl2) using the following result.

Result 1.7 For anyCk-modulesD and E, choose δ, ε ∈ C⊗ZQ such that (Fδ ⊗ D)↑
and (Fε ⊗ E) ↑ are Lk(g)-modules. Then,

(Fδ ⊗ D)↑ ⊗Lk(g)
(Fε ⊗ E)↑ ∼= (

Fδ+ε ⊗ (D ⊗Ck
E)
)↑. (1.10)

Moreover, if both D↑ and E↑ are Bk-modules, then

D↑ ⊗Bk
E↑ ∼= (D ⊗Ck

E)↑. (1.11)

1.2 Outline and results

We begin in Sect. 2 with a detailed review of the admissible-level simple vertex oper-
ator algebras Lk(sl2), their representation theories (categoryO and beyond), and their
Grothendieck fusion rules. This serves to fix notation and conventions aswell as collect
the various results that will be needed for what follows. We adopt here the language
of the standard module formalism (standard, typical and atypical) introduced for log-
arithmic conformal field theories in [46,47]. As it is also convenient for describing
the representation theory of the parafermion and extended parafermion coset vertex
operator algebras, we use this language throughout.

The parafermion cosetsCk , with k admissible and negative, are analysed in Sect. 3.
We first determine the decompositions of the standard and irreducible atypical Lk(sl2)-
modules as H ⊗ Ck-modules, thereby deducing the characters of the standard and
irreducible atypical Ck-modules (Propositions 3.1 and 3.3). The Grothendieck fusion
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rules of the irreducibleCk-modules are then presented (Propositions 3.9 and 3.11).We
conclude this section with a brief discussion of three “small” examples. After recalling
that C−1/2 and C−4/3 have been previously identified [48,49] with the singlet vertex
operator algebras S1,2 and S1,3, respectively, we concentrate on C−2/3 and find that
it is isomorphic to the bosonic orbifold of the N = 1 supersinglet vertex operator
superalgebra sS1,3 introduced by Adamović and Milas [19].

Section 4 then addresses the extended parafermion cosets Bk , again assuming that
k is admissible and negative. Identifying Bk as an infinite-order simple current exten-
sion of Ck , we show that the former has only finitely many irreducible modules
(Remark 4.4). After reporting on the Grothendieck fusion rules (Propositions 4.5
and 4.6) and noting that B−1/2, B−4/3 and B−2/3 coincide with certain explicitly
described orbifolds of the (super)tripletsW1,2,W1,3 and sW1,3, respectively, we com-
pute the irreducible Bk-characters (Propositions 4.7 and 4.11 and Remark 4.12).

We conclude with a detailed investigation of the modular properties of the Bk-
characters. Those of the standard modules are easily deduced (Proposition 4.8), while
those of the atypical irreducibles are much more subtle. Our main result here is The-
orem 4.17 which states that the parts of the atypical irreducible characters of modular
weight 1 define a finite-dimensional vector-valued modular form. It also gives an
explicit upper bound for the dimension that we believe is sharp. As the remaining
parts may be expressed as linear combinations of standard characters, it follows that
the irreducible Bk-characters and the objects obtained by multiplying the weight 1
parts of the atypical irreducible characters by the modular parameter τ , together span
a finite-dimensional representation of the modular group. We expect that the latter
objects correspond to pseudotraces. As this is precisely how the irreducible characters
of a C2-cofinite vertex operator algebra [50] behave under modular transformations,
we conjecture that the Bk are C2-cofinite for all k admissible and negative (noting that
this is already known for k = − 1

2 ,− 4
3 and− 2

3 ).We intend to prove thisC2-cofiniteness
in a sequel.

2 The simple vertex operator algebra Lk(sl2)

In this section, we review those aspects of the admissible-level vertex operator algebras
Lk(sl2) that will be required for our analysis of the corresponding parafermion cosets.
Our main sources for this are [30,32,33] to which we refer for additional details and
references.

2.1 Representation theory

Recall the standard basis {e, h, f } of sl2 in which the Cartan subalgebra h is spanned
by h. The nonzero commutators are specified by

[h, e] = 2e, [e, f ] = h, [h, f ] = −2 f (2.1)
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and the Killing form is normalised so that

(h, h) = 2, (e, f ) = 1. (2.2)

The affine Kac–Moody algebra ŝl2 is then defined to be the universal central extension
of the loop algebra sl2 ⊗ C[x, x−1]. We choose generators en , hn and fn in ŝl2, for
n ∈ Z, such that they project onto e ⊗ xn , h ⊗ xn and f ⊗ xn , respectively, upon
quotienting by the centre. The central element is denoted by K and its eigenvalue is
the level k.

Fix k ∈ C and consider the Verma module of ŝl2 whose highest weight is (k −
λ)ω0 + λω1, for some λ ∈ C, where ω0 and ω1 are the fundamental weights. Its
irreducible quotient will be denoted by D+

λ . When λ ∈ Z≥0, we shall also denote
this irreducible quotient by Lλ+1 to emphasise that its ground states (the states of
minimal conformal weight) form a finite-dimensional subspace of dimension λ + 1.
The irreducible ŝl2-moduleD+

0 = L1 is well known to carry the structure of a simple
vertex operator algebra, which we denote by Lk(sl2), provided that k �= −2. We
exclude this critical level from considerations.

We recall certain properties of the simple vertex operator algebra Lk(sl2) and its
modules, when the level k is admissible:

k + 2 = t = u

v
, u ∈ Z≥2, v ∈ Z≥1, gcd{u, v} = 1. (2.3)

We shall also define, for later convenience, w = −kv = 2v − u. The level k being
admissible is equivalent to the level k universal vertex operator algebra associated with
ŝl2 being non-simple. The central charge of Lk(sl2) is c = 3 − 6

t .

Theorem 2.1 (Adamović and Milas [30] and Dong et al. [51]) Let k = −2 + u
v
be

an admissible level and let

λr,s = r − 1 − ts. (2.4)

Then, the highest weight Lk(sl2)-modules are exhausted, up to isomorphism, by those
of the Lr = Lλr,0+1, for r = 1, . . . , u − 1, and theD+

r,s = D+
λr,s

, for r = 1, . . . , u − 1
and s = 1, . . . , v − 1.

Remark 2.2 Theweights (k−λr,s)ω0+λr,sω1, for r = 1, . . . , u−1 and s = 0, . . . , v−
1, are the highest weights of the admissible level-k ŝl2-modules, as defined by Kac
and Wakimoto [52]. This original definition of admissibility was motivated by the
observation that these irreducible modules admit a generalisation of the Weyl–Kac
character formula for integrable modules.

The conformal weight of the ground states of each of these highest weight Lk(sl2)-
modules is determined by its highest weight, hence by the parameters r and s.
Specifically, the conformal weight of each ground state of D+

r,s is given by


r,s = (r − ts)2 − 1

4t
= (vr − us)2 − v2

4uv
, (2.5)
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where r = 1, . . . , u − 1 and s = 0, . . . , v − 1. We note the symmetries

λu−r,v−s = −λr,s − 2, 
u−r,v−s = 
r,s . (2.6)

It turns out that for non-integer admissible levels, these being those with v > 1, it
is not sufficient to consider only highest weight modules. Instead, one is forced [9,11]
to broaden the class of modules to include, in particular, the relaxed highest weight
modules. These are defined as modules that are generated by a relaxed highest weight
vector, this being a weight vector that is annihilated by every mode with positive
index. For ŝl2, this means an eigenstate of h0 (of definite level) which is annihilated
by the positive modes en , hn and fn , n > 0. A normal highest weight vector for ŝl2 is
therefore a relaxed highest weight vector that happens to be also annihilated by e0.

Before presenting the classification of irreducible relaxed highest weight Lk(sl2)-
modules, we recall that the Cartan subalgebra-preserving automorphisms of ŝl2 define
an infinite group, isomorphic to Z2 � Z, of invertible functors acting on Lk(sl2)-
modules. This action is called twisting by the automorphism. This group is isomorphic
to the affineWeyl group, but the free part should actually be identifiedwith translations
by the dual of the root latticeQ rather than the coroot lattice [53]. The torsion part of this
group has a generator w called conjugation that may be identified with the generator
of the Weyl group of sl2. Twisting by conjugation therefore negates sl2-weights but
leaves conformal weights (and the level) unchanged.

Consider now an irreducible weight module over sl2 that is neither highest nor
lowest-weight. Identifying sl2 with the horizontal subalgebra of ŝl2, we extend this
to a module over the subalgebra generated by the modes of non-negative index by
requiring that its level is k and that the positive modes of ŝl2 act trivially. Inducing to
an ŝl2-module now results in a relaxed highest weight module that is determined by
the class λω1 + Q of its sl2-weights, modulo Q, and the conformal weight 
 of its
ground states, which is fixed by the eigenvalue of the quadratic Casimir on the original
irreducible weight module.

We shall identify the root lattice Q of sl2 with 2Z throughout and will frequently
abuse notation by identifying λ ∈ C with λω1 ∈ h∗. It follows that the level k relaxed
highest weight module just constructed is parametrised by λ + Q ∈ h∗/Q = C/2Z

and 
 ∈ C. Let Eλ;
 denote the unique irreducible quotient of this relaxed highest
weight module so that Eλ;
 = Eμ;
 if λ = μ (mod Q). It is likewise a relaxed
highest weight module.

Theorem 2.3 (Adamović and Milas [30], see also [33]) Let k = −2 + u
v
be an

admissible level. Then, the irreducible relaxed highest weight Lk(sl2)-modules are
exhausted, up to isomorphism, by the following list:

• The Lr , for r = 1, . . . , u − 1;
• The D+

r,s , for r = 1, . . . , u − 1 and s = 1, . . . , v − 1;
• The conjugates D−

r,s = w(D+
r,s), for r = 1, . . . , u − 1 and s = 1, . . . , v − 1;

• The Eλ;
r,s , for r = 1, . . . , u − 1, s = 1, . . . , v − 1 and λ ∈ h∗ with λ �=
λr,s, λu−r,v−s (mod Q).
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Apart from the identifications Eλ;
r,s = Eλ;
u−r,v−s , that follow trivially from (2.6),
and Eλ;
r,s = Eμ;
r,s , if λ = μ (mod Q), the modules in this list are all mutually
non-isomorphic.

Remark 2.4 The caveat that λ �= λr,s, λu−r,v−s (mod Q) in the classification of the
irreducible relaxed highest weight Lk(sl2)-modules arises from the fact that an E-type
module with parameters (λr,s;
r,s) or (λu−r,v−s;
r,s) must be reducible. Indeed,
the irreducible weight sl2-module from which we induced must have either a highest
or lowest-weight vector. Of course, one may also induce from reducible weight sl2-
modules. For each r = 1, . . . , u − 1 and s = 1, . . . , v − 1, one thereby arrives at two
distinct relaxed highest weight Lk(sl2)-modules, both reducible but indecomposable,
by quotienting the induced module by the (unique) maximal proper submodule whose
intersection with the space of ground states is zero. We denote these Lk(sl2)-modules
by E+

r,s = E+
λr,s ;
r,s

and E−
r,s = E−

λr,s ;
r,s
, noting that they are characterised, up to

isomorphism, by the following non-split short exact sequences:

0 −→ D+
r,s −→ E+

r,s −→ D−
u−r,v−s −→ 0,

0 −→ D−
r,s −→ E−

r,s −→ D+
u−r,v−s −→ 0. (2.7)

These exact sequences were originally stated in [33]. A rigorous justification will
appear in [54].

Remark 2.5 We observe that the Lr , r = 1, . . . , u − 1, are self-conjugate: w(Lr ) ∼=
Lr . The conjugates of the relaxed highest weight Lk(sl2)-modules are given by
w(Eλ;
r,s )

∼= E−λ;
r,s and w(E±
r,s)

∼= E∓
r,s .

While Theorem 2.3 classifies the irreducible Lk(sl2)-modules in the category of
relaxed highest weight ŝl2-modules, it is still easy to construct irreducible Lk(sl2)-
modules that are not isomorphic to those introduced so far. This construction uses the
free part of the automorphism group Z2 �Z, the elements of which are called spectral
flow automorphisms. We choose the generator σ of the free part as in [32,33] so that
wσ = σ−1w and the following isomorphisms hold.

Proposition 2.6 ([32]) Fix an admissible level k = −2 + u
v
and assume that v > 1.

Then, we have

σ (Lr ) ∼= D+
u−r,v−1, σ−1(Lr ) ∼= D−

u−r,v−1, r = 1, . . . , u − 1,

σ−1(D+
r,s) ∼= D−

u−r,v−1−s , r = 1, . . . , u − 1, s = 1, . . . , v − 2.
(2.8)

Together with the isomorphisms of Remark 2.5, these generate a complete set of iso-
morphisms among twists of the Lk(sl2)-modules introduced above.

Remark 2.7 When v = 1, so that k is a non-negative integer, the list of irreducible
relaxed highest weight Lk(sl2)-modules in Theorem 2.3 collapses to just the Lr , with
r = 1, . . . , u − 1 = k + 1. The corresponding conformal field theories are the
rational Wess–Zumino–Witten models describing strings on SU

(
2
)
[55]. In this case,

the isomorphisms involving spectral flow are generated by σ (Lr ) ∼= Lu−r .
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Because twisting by an automorphism is an invertible functor, it preserves structure.
In particular, twisting an irreducible module results in another irreducible module.
Moreover, since these automorphisms lift to automorphisms of the affine vertex
algebra, it is easy to see that each twist of an Lk(sl2)-module results in another
Lk(sl2)-module. Spectral flow therefore gives us an infinite set of new irreducible
Lk(sl2)-modules for each of the irreducible Lk(sl2)-modules listed in Theorem 2.3.

Remark 2.8 Fix an admissible level k = −2 + u
v
and assume that v > 1. Then, the

irreducible Lk(sl2)-modules of interest in this paper consist of the following:

• The σ�(D+
r,s), with � ∈ Z, r = 1, . . . , u − 1 and s = 1, . . . , v − 1;

• The σ�(Eλ;
r,s ), with � ∈ Z, r = 1, . . . , u − 1, s = 1, . . . , v − 1 and λ ∈
(R/2Z) \ {λr,s, λu−r,v−s}.

Again, aside from σ�(Eλ;
r,s ) = σ�(Eλ;
u−r,v−s ) = σ�(Eμ;
r,s ), where λ = μ

(mod Q), the modules in this list are all mutually non-isomorphic. The restriction
to real sl2 weights in R/2Z = h∗

R
/Q is physically motivated and confirmed by mod-

ular considerations [31,32].

We shall suppose throughout that we are working in the full subcategory Ak of
Lk(sl2)-modules in which the simple objects are the irreducibles of Remark 2.8 and
every object is a subquotient of the (iterated) fusion product of a finite collection of
simple objects. This, of course, presupposes that these fusion products are sufficiently
nice (for instance, we believe that they all have finite composition length) and that each
of their irreducible subquotients is isomorphic to one of the irreducibles introduced
above. For the admissible levels k = − 4

3 and − 1
2 , the explicit fusion calculations

reported in [9,11] leadus to expect that this niceness continues to hold for all admissible
levels (see Sect. 2.3 for some relevant results in this direction).

As discussed in [20], the categoryAk is interesting because it is expected to contain
the projective covers of the irreducible Lk(sl2)-modules. While rigorously identifying
these projective covers remains out of reach here (as is the case for almost all loga-
rithmic vertex operator algebras), the corresponding subcategory for theW(p)-triplet
algebras does contain all of the indecomposable projectives, according to [56,57].

Remark 2.9 For k admissible and non-integral, there are irreducible Lk(sl2)-modules
besides those listed in Theorem 2.3 and their spectral flows. In particular, there are
the Whittaker-type modules constructed in [58]. However, they seem to play no role
in the modular properties of [32] and, being non-weight, they cannot appear in fusion
products of the irreducibles of Theorem 2.3 [59]. We shall therefore ignore these
non-weight modules in what follows.

2.2 Characters and modularity

The character of an ŝl2-module M is defined to be the following formal power series
in y, z and q:

ch
[
M
](
y, z, q

) = trM ykzh0qL0−c/24. (2.9)
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At the level of characters, twisting an ŝl2-module M by conjugation or spectral flow
yields

ch
[
w(M)

](
y, z, q

) = ch
[
M
](
y, z−1, q

)
,

ch
[
σ�(M)

](
y, z, q

) = ch
[
M
](
yz�q�2/4, zq�/2, q

)
, (2.10)

assuming, of course, that M has finite-dimensional weight spaces (so that characters
exist).

For u, v ∈ Z≥2 coprime, let M(u, v) denote the Virasoro minimal model vertex

operator algebra of central charge 1 − 6(v−u)2

uv
and, for r = 1, . . . , u − 1 and s =

1, . . . , v − 1, let (r, s) denote the irreducible M(u, v)-module whose ground states
have conformal weight



M(u,v)
(r,s) = (vr − us)2 − (v − u)2

4uv
. (2.11)

The character of this module will be denoted by χ
M(u,v)
(r,s) (q). For completeness, we

give an explicit formula:

χ
M(u,v)
(r,s) (q) = 1

η(q)

∑

n∈Z

[
q(2uvn+vr−us)2/4uv − q(2uvn+vr+us)2/4uv

]
. (2.12)

Proposition 2.10 Fix an admissible level k = −2 + u
v
and assume that v > 1. Then,

we have the following character formulae:

ch
[
σ�(Eλ;
r,s )

] =
yk z�kq�2k/4χ

M(u,v)
(r,s) (q)

η(q)2

∑

μ∈λ+Q

zμq�μ/2, (2.13a)

ch
[
σ�(E+

r,s)
] =

yk z�kq�2k/4χ
M(u,v)
(r,s) (q)

η(q)2

∑

μ∈λr,s+Q

zμq�μ/2, (2.13b)

ch
[
σ�(Lr )

] =
v−1∑

s′=1

(−1)s
′−1

∞∑

m=0

(
ch
[
σ 2mv+s′+�(E+

r,s′ )
]− ch

[
σ 2(m+1)v−s′+�(E+

u−r,v−s′ )
])

,

(2.13c)

ch
[
σ�(D+

r,s)
] =

v−1∑

s′=s+1

(−1)s
′−s−1 ch

[
σ s′−s+�(E+

r,s′ )
]+ (−1)v−1−s ch

[
σv−s+�(Lu−r )

]
.

(2.13d)
If k < 0, then the infinite sum in (2.13c) converges in the sense of formal power series
in z, meaning that the coefficient of each power of z converges to a meromorphic
function of q (for |q| < 1).

Remark 2.11 The character formulae given in Eqs. (2.13b) to (2.13d) were originally
derived in [32, Prop. 4 and Prop. 8], while (2.13a) was stated without proof. Recently,
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a proof for generic values of λ, r and s was given in [58] using an explicit construction
of the modules. A full proof will appear in [54].

Remark 2.12 It is easy to check that ch
[
σ�(E−

r,s)
] = ch

[
σ�(E+

u−r,v−s)
]
using (2.7)

and the exactness of the spectral flow functor.

Remark 2.13 In the standardmodule formalism introduced in [46,47], the irreducibles
σ�(Eλ;
r,s ) are the typical Lk(sl2)-modules. The reducible but indecomposable mod-
ules σ�(E±

r,s) are examples of atypical Lk(sl2)-modules. Together, these two classes
form the standard modules of Lk(sl2). The σ�(D+

r,s) are likewise atypical, but are not
standard: their characters are expressible as infinite linear combinations of (atypical)
standard characters. However, these character formulae only converge as formal power
series if k < 0. The question of what this means for k > 0 will not be addressed here.

Remark 2.14 The character formulae given above for the irreducible atypicals were
deduced from the following resolutions [32]:

· · · −→ σ 3v−1(E+
r,v−1) −→ · · · −→ σ 2v+2(E+

r,2) −→ σ 2v+1(E+
r,1)

−→ σ 2v−1(E+
u−r,v−1) −→ · · · −→ σv+2(E+

u−r,2) −→ σv+1(E+
u−r,1)

−→ σv−1(E+
r,v−1) −→ · · · −→ σ 2(E+

r,2) −→ σ (E+
r,1) −→ Lr −→ 0,

(2.14a)

0 −→ σv−s(Lu−r ) −→ σv−1−s(E+
r,v−1) −→ · · · −→ σ 2(E+

r,s+2) −→ σ (E+
r,s+1)

−→ D+
r,s −→ 0.

(2.14b)

For s = v − 1, the latter resolution reduces to the isomorphism σ (Lu−r ) ∼= D+
r,s .

One can obtain other resolutions by applying the conjugation and/or contragredient
dual functors to (2.14), and these may lead to somewhat different looking character
formulae. For example, conjugating (2.14a) leads to

ch
[
σ�(Lr )

]

=
v−1∑

s′=1

(−1)s
′−1

∞∑

m=0

(
ch
[
σ−2mv−s′+�(E−

r,s′)
]− ch

[
σ−2(m+1)v+s′+�(E−

u−r,v−s′)
])

=
v−1∑

s′=1

(−1)s
′−1

∞∑

m=0

(
ch
[
σ−2mv−s′+�(E+

u−r,v−s′)
]− ch

[
σ−2(m+1)v+s′+�(E+

r,s′)
])

,

(2.15)

using Remarks 2.5 and 2.12.
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2.3 Fusion

The fusion rules of the admissible-level Lk(sl2)-modules have only been (partially)
computed for k = − 4

3 [9] and k = − 1
2 [11,53]. However, the Grothendieck fusion

rules are known for all k [31,32], subject to two assumptions. The first is that fusing
with an irreducibleLk(sl2)-module defines an exact functor on themodule categoryAk

(see Sect. 2.1), so that the fusion product induces a ring structure on the Grothendieck
group ofAk . The second is that the structure constants of theGrothendieck fusion prod-
uct are computed by the standard Verlinde formula of [46,47], which we understood
first in the example of Vk (gl(1|1)) [3,60]. We shall assume that these Grothendieck
fusion rules are correct and hence that the fusion rules are known up to ambiguities
involving non-trivial extensions. This was the content of Assumption 2, as stated in
Sect. 1.1.

In general, we let ⊗V denote the fusion product of a given vertex operator alge-
bra V and �V its Grothendieck fusion product. The image of a V-module M in the
Grothendieck ring of V shall be denoted by

[
M
]
.

Before stating the Lk(sl2) fusion rules, it is convenient to introduce some notation
for the fusion rules of the Virasoro minimal model vertex operator algebra M(u, v).
Let

[
(r ′′,s′′)

(r,s) (r ′,s′)
]

M(u,v)
denote the fusion coefficient involving the irreducible M(u, v)-

modules (r, s), (r ′, s′) and (r ′′, s′′), so that

(r, s) ⊗M(u,v)
(r ′, s′) ∼=

⊕

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

(r ′′, s′′). (2.16)

Here, the direct sum runs over the irreducible M(u, v)-modules (r ′′, s′′) in the Kac
table

Kac(u, v) = {1, . . . , u − 1} × {1, . . . , v − 1}
(r, s) ∼ (u − r, v − s)

. (2.17)

Inwhat follows, sums indexed by irreducibleM(u, v)-moduleswill always be assumed
to run over Kac(u, v). Note that because M(u, v) is rational, its fusion rules and
Grothendieck fusion rules coincide.

Proposition 2.15 ([32, Props. 14, 15 and 18])Fix an admissible level k = −2+ u
v
and

assume that v > 1. Given Assumption 2, the fusion rules of the irreducible Lk(sl2)-
modules with the σ�(Lr ) are then

σ�(Lr ) ⊗Lk(sl2)
σ �′

(Lr ′) ∼=
u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

σ �+�′
(Lr ′′), (2.18a)

σ�(Lr ) ⊗Lk(sl2)
σ �′

(D+
r ′,s′)

∼=
u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

σ �+�′
(D+

r ′′,s′), (2.18b)
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σ�(Lr ) ⊗Lk (sl2)
σ �′

(Eλ′;
r ′,s′ )
∼=

u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

σ �+�′
(Er−1+λ′;
r ′′,s′ ).

(2.18c)

When v = 1, the fusion rules are instead given by (2.18a) alone.

Remark 2.16 Because (1, 1) and (u − 1, 1) are simple currents ofM(u, v), it follows
from these fusion rules that the σ�(L1) and σ�(Lu−1) are simple currents of the
Lk(sl2)-module category Ak , for all � ∈ Z.

Proposition 2.17 ([32, Props. 13 and 18]) Fix an admissible level k = −2 + u
v
and

assume that v > 1. Given Assumption 2, the Grothendieck fusion rules involving the
atypicals σ�(D+

r,s) and the typicals σ�(Eλ;
r,s ) then include

[
σ�(Eλ;
r,s )

]
�Lk (sl2)

[
σ�′

(Eλ′;
r ′,s′ )
]

=
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

([
σ�+�′+1(Eλ+λ′−k;
r ′′,s′′ )

]+ [
σ�+�′−1(Eλ+λ′+k;
r ′′,s′′ )

])

+
∑

(r ′′,s′′)

([
(r ′′, s′′)

(r, s) (r ′, s′ − 1)

]

M(u,v)

+
[

(r ′′, s′′)
(r, s) (r ′, s′ + 1)

]

M(u,v)

)
[
σ�+�′

(Eλ+λ′;
r ′′,s′′ )
]
,

(2.19a)

[
σ�(Eλ;
r,s )

]
�Lk (sl2)

[
σ�′

(D+
r ′,s′ )

] =
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′ + 1)

]

M(u,v)

[
σ�+�′

(Eλ+λr ′,s′ ;
r ′′,s′′ )
]

+
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

[
σ�+�′+1(Eλ+λr ′,s′+1;
r ′′,s′′ )

]
. (2.19b)

If s + s′ < v, then we have in addition

[
σ�(D+

r,s)
]
�Lk (sl2)

[
σ�′

(D+
r ′,s′)

]

=
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

[
σ�+�′+1(Eλr ′′,s+s′+1;
r ′′,s′′ )

]

+
u−1∑

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

[
σ�+�′

(D+
r ′′,s+s′)

]
, (2.19c)

while if s + s′ ≥ v, then we have instead

[
σ�(D+

r,s)
]
�Lk (sl2)

[
σ�′

(D+
r ′,s′)

]

=
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s + 1) (r ′, s′ + 1)

]

M(u,v)

[
σ�+�′+1(Eλr ′′,s+s′+1;
r ′′,s′′ )

]
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+
u−1∑

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

[
σ�+�′+1(D+

u−r ′′,s+s′−v+1)
]
. (2.19d)

3 The parafermion coset Ck

In this section,we study theparafermionvertexoperator algebraCk = Com(H,Lk(sl2)),
where H denotes the Heisenberg vertex operator subalgebra generated by the field
h(z) ∈ Lk(sl2) and the level k is admissible and negative. We first decompose the
characters of the Lk(sl2)-modules given in Proposition 2.10 into characters ofH⊗Ck-
modules. This relies on the Schur–Weyl duality result summarised in Result 1.4. We
also obtain (Grothendieck) fusion rules for the Ck-modules, illustrating the results
with examples.

3.1 Decomposing characters

We start by recalling that the irreducible modules of the Heisenberg vertex operator
subalgebra H are the Fock spaces Fμ, μ ∈ C. Including the level, and identifying the
Heisenberg weight with the sl2-weight, the characters of the Fock spaces are given by

ch
[
Fμ

](
y, z, q

) = ykzμqμ2/4k

η(q)
, (3.1)

where η is Dedekind’s eta function. As the central charge of H is 1, that of the
parafermion vertex operator algebra Ck is c̃ = 2 − 6

t . Denoting the Virasoro zero

mode of Ck by L̃0 (which in the coset realisation is identified with L0 − 1
4k h

2
0), the

character of a Ck-module M is defined to be

ch
[
M
](
q
) = trM q L̃0−c̃/24. (3.2)

Since all the irreducible modules of Ak may be resolved in terms of the standard
Lk(sl2)-modules σ�(Eλ;
r,s ) and σ�(E+

r,s), the first natural step obtains the “coef-
ficients” of the Fock space characters in the Schur–Weyl decomposition of these
standards.

Proposition 3.1 Given Assumption 1, the standard Lk(sl2)-modules decompose into
H ⊗ Ck-modules as

σ�(Eλ;
r,s )↓ ∼=
⊕

μ∈λ+Q

Fμ+�k ⊗ C
E
μ;r,s (λ �= λr,s, λu−r,v−s (mod Q)), (3.3a)

σ�(E+
r,s)↓ ∼=

⊕

μ∈λr,s+Q

Fμ+�k ⊗ C+
μ;r,s, σ �(E−

r,s)↓ ∼=
⊕

μ∈λu−r,v−s+Q

Fμ+�k ⊗ C−
μ;r,s,

(3.3b)
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where the CE
μ;r,s are irreducible highest weight Ck-modules and the C±

μ;r,s are length
2 indecomposable Ck-modules. Their characters are given by

ch
[
C
E
μ;r,s

](
q
) = ch

[
C±

μ;r,s
](
q
) = q−μ2/4kχ

M(u,v)
(r,s) (q)

η(q)
. (3.4)

Proof Schur–Weyl duality (Result 1.4) immediately implies that

Eλ;
r,s↓ ∼=
⊕

μ∈λ+Q

Fμ ⊗ C
E
μ;r,s, (3.5)

where the CE
μ;r,s are irreducibleCk-modules. We obtain the parafermion characters by

decomposing (2.13a) (with � = 0):

ch
[
Eλ;
r,s

] = ykχM(u,v)
(r,s) (q)

η(q)2

∑

n∈Z
z2n+λ

=
∑

n∈Z

ykz2n+λq(2n+λ)2/4k

η(q)
· q

−(2n+λ)2/4kχ
M(u,v)
(r,s) (q)

η(q)

=
∑

n∈Z
ch
[
F2n+λ

]q−(2n+λ)2/4kχ
M(u,v)
(r,s) (q)

η(q)
. (3.6)

The desired result now follows by identifying 2n + λ with μ ∈ λ + 2Z = λ + Q.
Analogous decompositions hold for the σ�(Eλ;
r,s ), so it remains to show that

the parafermion modules appearing in these decompositions may be identified with
the CE

μ;r,s . This follows from the lifting condition (Result 1.5). Indeed, this condition

guarantees that there exists β ∈ Q⊗Z C = C such that Fν ⊗C
E
μ;r,s lifts to an Lk(sl2)-

module if and only if ν ∈ β + Q′, where Q′ = kZ is the dual lattice of Q = 2Z

(with respect to the natural bilinear form (h, h) = 2k induced by the operator product
expansion of h(z) and h(w)). As

(
Fμ ⊗ C

E
μ;r,s

)↑ ∼= Eλ;
r,s is an Lk(sl2)-module, we
may take β = μ.

It follows that for any � ∈ Z, the lift
(
Fμ+�k⊗C

E
μ;r,s

)↑ = ⊕
μ∈λ Fμ+�k⊗C

E
μ;r,s is an

Lk(sl2)-module and it is irreducible because CE
μ;r,s is (by Schur–Weyl duality). A cal-

culation very similar to (3.6) shows that this irreducible module has the same character
as σ�(Eλ;
r,s ); hence, they are isomorphic. This therefore establishes the decomposi-
tion (3.3a) for all � ∈ Z. The results for the atypical standard modules σ�(E±

r,s) follow
using similar arguments, the main difference being that the isomorphisms follow from
the indecomposables being completely characterised by their Loewy diagrams. (The
extension groups are 1-dimensional.) ��
Remark 3.2 We point out that this result used the fact that the irreducible Lk(sl2)-
modules are determined (up to isomorphism) by their characters. The same is
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unfortunately not true for characters derived above for the standard Ck-modules. For
example, CE

μ;r,s and C
E
−μ;r,s share the same character, despite being non-isomorphic

(for μ �= 0). We can see this inequivalence as follows. First, as Fμ ⊗C
E
μ;r,s lifts to the

Lk(sl2)-module Eμ;
r,s , the lifting condition (Result 1.5) says that the tensor product

Fν ⊗ C
E
μ;r,s lifts to an Lk(sl2)-module if and only if ν ∈ μ +Q′. If CE

μ;r,s and C
E
−μ;r,s

were isomorphic, then there would have to exist ν ∈ (μ + Q′) ∩ (−μ + Q′) which is
empty unless 2μ ∈ Q′. It follows thatCE

μ;r,s andC
E
−μ;r,s are not isomorphic if 2μ /∈ Q′.

But, if 2μ ∈ Q′ = kZ, then μ = −μ + �k, for some � ∈ Z, and any isomorphism
C
E
μ;r,s ∼= C

E
−μ;r,s would lead to

Eμ;
r,s
∼= (Fμ ⊗ C

E
μ;r,s)↑ ∼= (Fμ ⊗ C

E
−μ;r,s)↑ ∼= (F−μ+�k ⊗ C

E
−μ;r,s)↑

∼= σ�(E−μ;
r,s ), (3.7)

which is a contradiction unless � = 0, hence μ = 0.

Combining this result with the character formulae given for the atypical irre-
ducibles in Proposition 2.10 and/or the resolutions of Remark 2.14, we deduce the
latter’s decompositions into (H⊗Ck)-modules and character formulae for the result-
ing parafermion modules.

Proposition 3.3 Given Assumption 1, the atypical irreducible Lk(sl2)-modules
decompose into (H ⊗ Ck)-modules as

σ�(Lr )↓ ∼=
⊕

μ∈λr,0+Q

Fμ+�k ⊗ C
L
μ;r , σ �(D+

r,s)↓ ∼=
⊕

μ∈λr,s+Q

Fμ+�k ⊗ C
D
μ;r,s,

(3.8)

where the C
L
μ;r and C

D
μ;r,s are irreducible highest weight Ck-modules characterised

by the following resolutions:

· · · −→ C+
μ−(3v−1)k;r,v−1 −→ · · · −→ C+

μ−(2v+2)k;r,2 −→ C+
μ−(2v+1)k;r,1

−→ C+
μ−(2v−1)k;u−r,v−1 −→ · · · −→ C+

μ−(v+2)k;u−r,2 −→ C+
μ−(v+1)k;u−r,1

−→ C+
μ−(v−1)k;r,v−1 −→ · · · −→ C+

μ−2k;r,2 −→ C+
μ−k;r,1

−→ C
L
μ;r −→ 0, (3.9a)

0 −→ C
L
μ−(v−s)k;u−r −→ C+

μ−(v−1−s)k;r,v−1 −→ · · · −→ C+
μ−2k;r,s+2

−→ C+
μ−k;r,s+1 −→ C

D
μ;r,s −→ 0. (3.9b)
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Their characters are given by

ch
[
C
L
μ;r
](
q
) =

v−1∑

s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

×
∞∑

m=0

(
q−(μ−sk+2wm)2/4k − q−(μ+sk+2w(m+1))2/4k

)
,

(3.10a)

ch
[
C
D
μ;r,s

](
q
)

=
v−1∑

s′=s+1

(−1)s
′−s−1

χ
M(u,v)

(r,s′) (q)

η(q)
q−(μ−(s′−s)k)2/4k + (−1)v−1−s ch

[
C
L
μ−(v−s)k;u−r

]
.

(3.10b)

Remark 3.4 It is easy to check from these formulae that CD
μ;r,v−1 and C

L
μ−k;u−r have

the same character, consistent with the fact that these Ck-modules are isomorphic (by
(3.9b) with s = v − 1).

Remark 3.5 As an alternative to the resolutions (3.9), we present the following non-
split short exact sequences that characterise the atypical standard Ck-modules:

0 −→ C
D
μ;r,s −→ C+

μ;r,s −→ C
D
μ+k;r,s−1 −→ 0 (s �= 1), (3.11a)

0 −→ C
D
μ+k;u−r,v−1−s −→ C−

μ;r,s −→ C
D
μ;u−r,v−s −→ 0 (s �= v − 1). (3.11b)

When s = 1, the rightmost module of the first sequence should be replaced by CL
μ+k;r .

Similarly, the leftmost module of the second sequence should be replaced by CL
μ+k;u−r

when s = v − 1.

Remark 3.6 If we had started with the resolution obtained from Eq. (2.14a) by conju-
gating, then we would have instead arrived at the following character formula:

ch
[
C
L
μ;r
](
q
)

=
v−1∑

s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

∞∑

m=0

(
q−(μ+sk+2vkm)2/4k − q−(μ−sk+2vk(m+1))2/4k

)
.

(3.12)

Replacing μ by −μ and comparing with (3.10a), we conclude that CL
μ;r and C

L
−μ;r

have the same character, despite being non-isomorphic (for μ �= 0). The reason is
exactly the same argument as in Remark 3.2.

The natural category of Ck-modules to consider is thus the full subcategory whose
simple objects are the irreducibles CL

μ;r , C
D
μ;r,s and C

E
μ;r,s and whose objects are all
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realised as subquotients of the fusion product of a finite collection of simple objects.
We shall assume that no further irreducibleCk-modules are generated as subquotients
of such fusion products and hence that this category does indeed exist. It shall be
denoted by Ck .

Remark 3.7 We do not claim that the CL
μ;r , C

D
μ;r,s and C

E
μ;r,s exhaust the irreducible

Ck-modules because of theWhittaker-typeLk(sl2)-modulesmentioned inRemark 2.9.
Indeed,H acts non-semisimply on these Lk(sl2)-modules, so we cannot use Result 1.4
to easily check if decomposing into H ⊗ Ck-modules gives anything new.

For future convenience, we collect the conformal weights of the ground states of
these Ck-modules. For the Ck-module denoted by C•

μ;� (for appropriate • and �), this
weight will be denoted by δ•

μ;�.

Proposition 3.8 The conformal weights of the ground states of theCk-modules intro-
duced above are

δ
E
μ;r,s = δ±

μ;r,s = 
r,s − μ2

4k
, (3.13a)

δ
L
μ;r =

{

r,0 − μ2

4k i f |μ| ≤ λr,0,


r,0 − μ2

4k + |μ|−λr,0
2 i f |μ| ≥ λr,0,

(3.13b)

δ
D
μ;r,s =

{

r,s − μ2

4k i f μ ≤ λr,s,


r,s − μ2

4k + μ−λr,s
2 i f μ ≥ λr,s,

(s �= v − 1). (3.13c)

For s = v − 1, we have instead δ
D
μ;r,v−1 = δ

L
μ−k;u−r , by Remark 3.4.

Proof These results follow easily from the observation that any state of minimal
conformal weight in an h0-eigenspace of an ŝl2-module will be a highest weight vector
for both the Heisenberg and parafermion vertex operator subalgebras. The conformal
weight of such a state, with respect to Ck , is then its ŝl2 conformal weight minus its
Heisenberg conformal weight. ��

3.2 Fusion

Recall that we only know the (Grothendieck) fusion rules of Lk(sl2) up to the validity
of Assumption 2. To deduce the (Grothendieck) fusion rules of Ck from those of
Lk(sl2) using Result 1.7 and Proposition 3.1 and 3.3, we also need Assumption 1,
namely that the category Ck of Ck-modules forms a vertex tensor category. We recall
that this assumption is in force throughout.

To illustrate the method, consider the Lk(sl2) fusion rule (2.18a). Applying Propo-
sition 3.3 and Result 1.7, we deduce that
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(
Fμ ⊗ C

L
μ;r
)
↑ ⊗Lk (sl2)

(
Fμ′ ⊗ C

L
μ′;r ′

)
↑

∼=
u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

(
Fμ′′ ⊗ C

L
μ′′;r ′′

)
↑

�⇒
(
Fμ+μ′ ⊗

(
C
L
μ;r ⊗Ck

C
L
μ′;r ′

))
↑

∼=
(

Fμ′′ ⊗
u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

C
L
μ′′;r ′′

)

↑, (3.14)

whenever μ = r − 1 (mod Q), μ′ = r ′ − 1 (mod Q) and μ′′ = r ′′ − 1 (mod Q).
It follows that the H ⊗ Ck-modules being induced on the left- and right-hand sides
of (3.14) appear as direct summands of the same Lk(sl2)-module upon restricting to
H ⊗ Ck . As these direct summands are completely determined by their Heisenberg
weights, we can read off the Ck fusion rule by identifying μ′′ with μ + μ′.
Proposition 3.9 Given Assumptions 1 and 2, the fusion rules of the irreducible Ck-
modules with the CL

μ;r are

C
L
μ;r ⊗Ck

C
L
μ′;r ′ ∼=

u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

C
L
μ+μ′;r ′′ , (3.15a)

C
L
μ;r ⊗Ck

C
D
μ′;r ′,s′

∼=
u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

C
D
μ+μ′;r ′′,s′ , (3.15b)

C
L
μ;r ⊗Ck

C
E
μ′;r ′,s′

∼=
u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

C
E
μ+μ′;r ′′,s′ . (3.15c)

Remark 3.10 Note that the C
L
μ;1 with μ ∈ Q and the C

L
μ;u−1 with μ ∈ u + Q are

all simple currents in the Ck-module category Ck . The vacuum Ck-module C
L
0;1 is

the fusion unit, as expected. Excluding the vacuum module, the simple currents of
minimal conformal weight are either CL

±2;1 or one of C
L
0;u−1 and C

L
±1;u−1, according

as to whether u is even or odd, respectively. These minimal conformal weights are

δ
L
±2;1 = 1 + v

w
, δ

L
0;u−1 = (u − 2)v

4
, δ

L
±1;u−1 = (u − 2)v

4
+ v

4w
, (3.16)

by Proposition 3.8 (recall that w = 2v − u). The order of CL
0;u−1 is 2, assuming that

u > 2, while the other (non-vacuum) simple currents all have infinite orders.

Proposition 3.11 Given Assumptions 1 and 2, theGrothendieck fusion rules involving
the atypicals CD

μ;r,s and the typicals CE
μ;r,s include
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[
C
E
μ;r,s

]
�Ck

[
C
E
μ′;r ′,s′

]

=
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

([
C
E
μ+μ′−k;r ′′,s′′

]+ [
C
E
μ+μ′+k;r ′′,s′′

])

+
∑

(r ′′,s′′)

([
(r ′′, s′′)

(r, s) (r ′, s′ − 1)

]

M(u,v)

+
[

(r ′′, s′′)
(r, s) (r ′, s′ + 1)

]

M(u,v)

)
[
C
E
μ+μ′;r ′′,s′′

]
,

(3.17a)

[
C
E
μ;r,s

]
�Ck

[
C
D
μ′;r ′,s′

] =
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′ + 1)

]

M(u,v)

[
C
E
μ+μ′;r ′′,s′′

]

+
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

[
C
E
μ+μ′−k;r ′′,s′′

]
. (3.17b)

If s + s′ < v, then we have in addition

[
C
D
μ;r,s

]
�Ck

[
C
D
μ′;r ′,s′

] =
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

[
C
E
μ+μ′−k;r ′′,s′′

]

+
u−1∑

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

[
C
D
μ+μ′;r ′′,s+s′

]
, (3.17c)

while if s + s′ ≥ v, then we have instead

[
C
D
μ;r,s

]
�Ck

[
C
D
μ′;r ′,s′

] =
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s + 1) (r ′, s′ + 1)

]

M(u,v)

[
C
E
μ+μ′−k;r ′′,s′′

]

+
u−1∑

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

[
C
D
μ+μ′−k;u−r ′′,s+s′−v+1

]
. (3.17d)

Remark 3.12 One can also determine themodular transformations of the characters of
the irreducible Ck-modules and check that the standard Verlinde formula reproduces
theGrothendieck fusion rules given here. Thesemodular propertiesmay either be com-
puted directly or, more easily, from the known modular properties of the irreducible
Lk(sl2)- andH-modules. We will not pursue these straightforward computations here.
Instead, we shall study the much more interesting modular properties of an infinite-
order simple current extension of Ck , in Sect. 4.

3.3 Examples

The parafermion coset construction for the levels k = − 1
2 and k = − 4

3 has already
been discussed in detail [48,49] with the result being that C−1/2 and C−4/3 may be
identified as the well-known singlet vertex operator algebras S1,2 and S1,3 of central
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charges c̃ = −2 and c̃ = −7, respectively. The decomposition of Lk(sl2)-modules
into Ck-modules is given very explicitly in [61, Sec. 4], and singlet fusion rules have
been computed (within the conjectural standard module formalism) in [47,62,63]. A
rigorous computation of certain fusion coefficients for the p = 2 singlet has also
recently appeared [64]. All these computations are consistent with the (Grothendieck)
fusion rules reported here. We add that for these levels, much is known about the
category Ck of Ck-modules. In particular, it is a vertex tensor category provided that
a C1-cofiniteness condition and a finite Jordan–Hölder length condition hold, see [65,
Thm. 17].

An important family of parafermion cosets Ck are those with k = − n−1
n , for

n ∈ Z≥2. Since u = n+1 and v = n in these cases, the Virasoro characters appearing
in the parafermion characters and the Virasoro fusion coefficients appearing in the
parafermion fusion rules are those of the unitary Virasorominimal models. One reason
for this importance is their relation to the vertex operator superalgebras Lk′(sl(2|1))
with k′ a positive integer [66]. We intend to report on this in the near future. A second
reason is that it is also expected that C2-cofinite extensions of orbifolds of this family
of parafermion cosets Ck coincide with certain cosets of the minimal W-algebras of
so2(n+1) at level zero [67].

Here, we list the inequivalent irreducible C−(n−1)/n-modules explicitly, recalling
Remark 3.4:

• the CL
μ;r with r = 1, . . . , n and μ ∈ 2Z + r − 1;

• the CD
μ;r,s with r = 1, . . . , n, s = 1, . . . , n − 2 and μ + s

n ∈ 2Z + r + s − 1;

• the CE
μ;r,s with either r = 1, . . . , n

2 , s = 1, . . . , n−1 and μ± s
n /∈ 2Z+ r + s−1,

if n is even, or
r = 1, . . . , n, s = 1, . . . , n−1

2 and μ ± s
n /∈ 2Z + r + s − 1, if n is odd.

In terms of conciseness, it would be convenient to replace the C
L
μ;r by the C

D
μ;r,n−1

in the above list. However, we prefer to distinguish the L-type modules explicitly as
they include all the simple currents (including the vacuum module).

The first member, n = 2, of this family of vertex operator algebras is, as was
mentioned above, the singlet C−1/2 ∼= S1,2. The above list recovers the known [47]

module spectrum. Specifically, there are two series of L-type modules C
L
2m;1 and

C
L
2m+1;2,m ∈ Z, which are all simple currents, no (inequivalent)D-type modules and

one series of E-type modules CE
μ;1,1, μ ∈ Z + 1

2 . The minimal conformal weight is


1,1 = − 1
8 .

Amore interesting (and less familiar) example is n = 3; thus, k = − 2
3 and c̃ = − 5

2 .
This central charge matches that of the N = 1 logarithmic superconformal minimal
model sLM(1, 3) [68–70]. Up to isomorphism, we now have six families of irreducible
atypicals

C
L
2m;1 ∼= C

D
2m−2/3;3,2 C

L
2m+1;2 ∼= C

D
2m+1/3;2,2 C

L
2m;3 ∼= C

D
2m−2/3;1,2

C
D
2m+2/3;1,1 C

D
2m−1/3;2,1 C

D
2m+2/3;3,1

(m ∈ Z)

(3.18a)
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and three families of typicals

C
E
μ;1,1 ∼= C

E
μ;3,2 C

E
μ;2,1 ∼= C

E
μ;2,2 C

E
μ;3,1 ∼= C

E
μ;1,2, (3.18b)

where μ /∈ 2Z ± 2
3 , μ /∈ 2Z ± 1

3 and μ /∈ 2Z ± 2
3 , respectively. The simple currents

are the CL
2m;1 and C

L
2m;3; their conformal weights are δ

L
2m;1 = 3

2 |m|(|m| + 1), δL2m;3 =
3
2 (|m| + 1

3 )
2 + 1

3 , if m �= 0, and δ
L
0;3 = 3

2 .

The conformal weight 3
2 simple current G = C

L
0;3 has order 2: G ⊗C−2/3

G ∼=
C−2/3. As the dimension of the space of ground states of G is 1, the corresponding
simple current extension of C−2/3 contains precisely one copy of the vertex operator
superalgebra sLM(1, 3). We denote this extension by sC−2/3 so that

sC−2/3↓ ∼= C−2/3 ⊕ G. (3.19)

The character of this extended parafermionic vertex operator superalgebra is easy
to determine using (3.10a):

ch
[
sC−2/3

](
q
)

= ch
[
C
L
0;1
](
q
)+ ch

[
C
L
0;3
](
q
)

= χ
M(4,3)
(1,1) (q) + χ

M(4,3)
(1,2) (q)

η(q)

∞∑

m=0

[
q3(2m+2/3)2/8 − q3(2m+4/3)2/8

]

= 1

η(q)

√
ϑ3(1, q)

η(q)

∞∑

m=0

[
q(3m+1)2/6 − q(3m+2)2/6

]

= q−c̃/24
(
1 + q3/2 + q2 + 2q5/2 + 2q3 + 3q7/2 + 4q4 + 5q9/2 + 6q5 + · · ·

)
.

(3.20)

This shows that sC−2/3 � sLM(1, 3) because the coefficients of q5/2 and q3 in the
latter’s character are only 1. However, this extra state of conformal weight 5

2 leads us
to the decomposition

ch
[
sC−2/3

](
q
) =

∞∑

m=0

χ
sLM(1,3)
(2m+1,1)(q) = ch

[
sS1,3

](
q
)
, (3.21)

where χ
sLM(1,3)
(2m+1,1)(q) denotes the character of the irreducible sLM(1, 3)-module whose

highest weight vector has conformal weight 

sLM(1,3)
(2m+1,1) = 1

2m(3m + 2) and sS1,3

denotes the N = 1 singlet vertex operator superalgebra [19,71] of central charge − 5
2 .

It is now straightforward to verify, with the aid of a computer, that the operator
product algebras of the bosonic orbifold of the N = 1 supersinglet sS1,3 and the
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parafermion vertex operator algebra C−2/3 coincide. Since both vertex operator alge-
bras are simple, theymust be isomorphic.We therefore identify the parafermion vertex
operator algebra C−2/3 as the bosonic orbifold of the N = 1 supersinglet sS1,3 and
its simple current extension sC−2/3 as sS1,3.

We conclude this example by considering the induction of C−2/3-modules M to
(twisted) sC−2/3-modules via

M↑ = sC−2/3 ⊗C−2/3
M �⇒ (M↑)↓ ∼= M ⊕

(
G ⊗C−2/3

M
)
. (3.22)

Whether the resulting module is twisted or not (Ramond or Neveu-Schwarz) depends
only on the difference mod Z of the conformal weights ofM and G⊗C−2/3

M. Noting
that the fusion rules of Proposition 3.9 specialise to

G ⊗C−2/3
C
L
μ;r ∼= C

L
μ;4−r ,

G ⊗C−2/3
C
D
μ;r,1 ∼= C

D
μ;4−r,1,

G ⊗C−2/3
C
E
μ;r,1 ∼= C

E
μ;4−r,1, (3.23)

it easy to check that this difference is r
2 (mod Z). The nine families of irreducible

C−2/3-modules listed in (3.18) therefore lift to six families of irreducible sC−2/3-
modules in the Neveu-Schwarz sector (r odd), three of which are just parity-reversed
copies of the other three, and three families of irreducible sC−2/3-modules in the
Ramond sector (r even), each of which is isomorphic to its parity reversal.

Remark 3.13 In the earlyW-algebra literature, the vertex operator superalgebra sS1,3
is referred to as the N = 1 super-W3 algebra because the additional fields of conformal
weights 5

2 and 3 naturally form a superfield generalising the weight 3 field of the
Casimir W-algebra of sl3. It was one of the first examples found of an “exotic” W-
algebra, meaning that it only exists for a discrete set of central charges, in this case− 5

2
and 10

7 [72]. The latter central charge received much attention, see [73] and references
therein, as it corresponds to a unitary value for both the N = 1 superconformalminimal
models and the Casimir W-algebras of sl3. However, we are not aware of any detailed
study of the non-unitary (and in fact logarithmic) c̃ = − 5

2 super-W3 algebra in the
literature.

4 The extended parafermion coset Bk

We now study a larger vertex operator algebra Bk as a coset of an extension of Lk(sl2)
or, as advocated in (1.1) of Introduction, as a simple current extension of Ck . As we
shall show, the Bk are not rational, because they admit reducible but indecomposable
modules, but have a finite number of irreducibles, up to isomorphism. Moreover, the
characters of the irreducible Bk-modules will be shown to define a finite-dimensional
vector-valued modular form. We therefore conjecture that the Bk are C2-cofinite. As
in the previous section, the level k will be assumed throughout to be admissible and
negative. Throughout, Assumptions 1 and 2 are understood to be in force.
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4.1 Bk as a coset and a simple current extension

Recall that the vacuum module of Lk(sl2) is L1 and that its images σ�(L1) under
spectral flow are simple currents. We consider the module

⊕
�∈Z σα�(L1), where

α ∈ Z. It is easy to check that this simple current extension of Lk(sl2) will be a vertex
operator algebra if and only if it is Z-graded, which happens if and only if kα2 ∈ 4Z.
This implies that α needs to be an integer multiple of v and a convenient choice that
works for all admissible levels isα = 2v.We thus define the vertex operator algebraEk

as the simple current extension which decomposes into Lk(sl2)-modules as follows:

Ek↓ ∼=
⊕

�∈Z
σ 2v�(L1). (4.1)

We remark that because the conformal weights of σ�(L1) are not bounded below
whenever |�| ≥ 2, the vertex operator algebra Ek is not Z≥0-graded by its conformal
weights.

Inserting the decomposition of Proposition 3.3, Eq. (4.1) becomes

Ek↓ ∼=
⊕

�∈Z

⊕

μ∈Q
Fμ+2vk� ⊗ C

L
μ;1. (4.2)

Consider the lattice vertex operator algebra

VL =
⊕

λ∈L
Fλ, (4.3)

where L = −2vkZ = wQ (recall that w = −vk = 2v − u). By considering the
modules with μ = 0, we see that (4.2) may be rewritten as

Ek↓ ∼=
⊕

μ∈Q
Vμ+L ⊗ C

L
μ;1 =

⊕

λ∈L′/L
Vλ+L ⊗

⎡

⎣
⊕

μ∈L
C
L
λ+μ;1

⎤

⎦, (4.4)

where Vλ+L denotes the VL-module
⊕

�∈Z Fλ+2w� with λ ∈ L′ = 1
v
Z. Note that L′ is

the dual lattice of L with respect to the normalisation (h, h) = 2k induced from the
operator product expansion of h(z) and h(w).

The coset construction applied to VL ⊂ Ek now defines the vertex operator algebra
Bk = Com(VL,Ek) whose decomposition into Ck-modules takes the form

Bk↓ ∼=
⊕

μ∈L
C
L
μ;1. (4.5)

For μ ∈ L, the CL
μ;1 = C

L
2w�;1 with � ∈ Z are simple currents (Proposition 3.9), so we

conclude that Bk is also a simple current extension of Ck .
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Remark 4.1 By Proposition 3.8, the conformal dimension of the ground states of
C
L
±2w;1 and C

L
±4w;1 is:

δ
L
±2w;r =(2v − u)(v+1) and δ

L
±4w;r =2(2v − u)(2v+1) ≥ 2δL2w;r . (4.6)

It follows that the primary field of CL
±4w;1 appears in the regular terms of the operator

product algebra obtained by extending the strong generators of Ck by the primary
fields of CL

±2w;1. Generalising this observation, we see that this extended set strongly
generates Bk .

This development completes the picture described in Introduction and summarised
in the diagram (1.1). The aim of the rest of this section is to identify Bk-modules,
compute their characters and fusion rules, and then prove the modularity of the irre-
ducible characters: their linear span extends to a finite-dimensional representation of
the modular group.

Remark 4.2 The choice α = 2v, leading to L = 2vkZ = 2wZ, is not always minimal.
For instance, when k = − 4

3 , the constraint kα
2 ∈ 4Z is satisfied by α = v = 3, which

would lead to L = wZ = 4Z instead of 8Z. The upshot is that the extension B−4/3
studied here has an order two simple current of integer conformal weight. Indeed,
Proposition 3.8 gives the conformal weight of this simple current as δ

L
4;1 = 5—the

resulting simple current extension of B−4/3 is, of course, the c = −7 triplet vertex
operator algebra W1,3.

Given the decomposition (4.5), it is now straightforward to lift a Ck-module M to
a (possibly twisted) Bk-moduleM↑ using the fusion rules of Proposition 3.9. Indeed,

M↑ = Bk ⊗Ck
M �⇒ (M↑)↓ ∼=

⊕

λ∈L
C
L
λ;1 ⊗Ck

M. (4.7)

If EndM ∼= C, then this lift will be an (untwisted) Bk-module if and only if it is
Z-graded (Result 1.6). This condition is obviously satisfied for all irreducibles as well
as the atypical standards.

Let us illustrate the procedure by using the fusion rule (3.15c) to analyse the lift
of a typical Ck-module C

E
μ;r,s with r = 1, . . . , u − 1, s = 1, . . . , v − 1 and μ �=

λr,s, λu−r,v−s (mod Q):

B
E
μ;r,s = Bk ⊗Ck

C
E
μ;r,s, B

E
μ;r,s↓ ∼=

⊕

λ∈L
C
L
λ;1 ⊗Ck

C
E
μ;r,s ∼=

⊕

λ∈μ+L

C
E
λ;r,s . (4.8)

Proposition 3.8 makes it easy to check that this lift will be untwisted if and only if
μ ∈ L′ = 1

v
Z, assuming that μ �= λr,s, λu−r,v−s (mod Q). It is also simple, by

Result 1.6. We note that BE
λ;r,s coincides with B

E
λ;u−r,v−s and B

E
μ;r,s when λ = μ

(mod L).
Applying this same procedure to the atypical standard and irreducible Ck-modules

gives the decompositions of the resulting Bk-modules.
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Proposition 4.3 Given Assumptions 1 and 2, the typical Ck-modules C
E
μ;r,s lift to

irreducible highest weightBk-modules, denoted byB
E
μ;r,s , only ifμ ∈ L′. The atypical

irreducible Ck-modules C
L
μ;r and C

D
μ;r,s always lift to irreducible highest weight Bk-

modules, denoted byBL
μ;r andB

D
μ;r,s , respectively. The atypical standardCk-modules

C±
μ;r,s likewise always lift to length 2 indecomposable Bk-modules, denoted byB

±
μ;r,s .

The corresponding decompositions as Ck-modules take the unified form

B•
μ;�↓ ∼=

⊕

λ∈μ+L

C•
λ;�, (4.9)

for appropriate • and �, and we have B•
λ;� = B•

μ;� when λ = μ (mod L).

Remark 4.4 Note that the isomorphism classes of the typical Bk-modules are
parametrised by r and s, which take finitely many values, as well as (a subset of)
the finite quotient L′/L. Similarly, those of the atypical irreducibles are parametrised
by r , s and the finite quotient Q/L. We conclude that the Bk-module category Bk

obtained from Ck by simple current extension has finitely many simple objects, up to
isomorphism. It is not, however, clear if Bk has finitely many irreducible modules, up
to isomorphism. Nevertheless, we are confident that this is so (see Conjecture 4.19
below).

4.2 Fusion

Recall that in this work we are assuming that theCk-module category Ck can be given
the structure of a vertex tensor category. Combining Result 1.7 with Proposition 3.9
and 3.11 therefore immediately leads to the following (Grothendieck) fusion rules.

Proposition 4.5 Given Assumptions 1 and 2, the fusion rules of the irreducible Bk-
modules with the BL

μ;r are

B
L
μ;r ⊗Bk

B
L
μ′;r ′ ∼=

u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

B
L
μ+μ′;r ′′ , (4.10a)

B
L
μ;r ⊗Bk

B
D
μ′;r ′,s′

∼=
u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

B
D
μ+μ′;r ′′,s′ , (4.10b)

B
L
μ;r ⊗Bk

B
E
μ′;r ′,s′

∼=
u−1⊕

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

B
E
μ+μ′;r ′′,s′ . (4.10c)
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In particular, theBL
μ;1 withμ ∈ Q/L and theBL

μ;u−1 withμ ∈ u+Q/L are all simple
currents in the Bk-module category Bk .

Proposition 4.6 Given Assumptions 1 and 2, the Grothendieck fusion rules involving
the atypicals BD

μ;r,s and the typicals BE
μ;r,s include

[
B

E
μ;r,s

]
�Bk

[
B

E
μ′;r ′,s′

]

=
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

([
B

E
μ+μ′−k;r ′′,s′′

]+ [
B

E
μ+μ′+k;r ′′,s′′

])

+
∑

(r ′′,s′′)

([
(r ′′, s′′)

(r, s) (r ′, s′ − 1)

]

M(u,v)

+
[

(r ′′, s′′)
(r, s) (r ′, s′ + 1)

]

M(u,v)

)
[
B

E
μ+μ′;r ′′,s′′

]
,

(4.11a)

[
B

E
μ;r,s

]
�Bk

[
B

D
μ′;r ′,s′

] =
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′ + 1)

]

M(u,v)

[
B

E
μ+μ′;r ′′,s′′

]

+
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

[
B

E
μ+μ′−k;r ′′,s′′

]
. (4.11b)

If s + s′ < v, then we have in addition

[
B

D
μ;r,s

]
�Bk

[
B

D
μ′;r ′,s′

] =
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s) (r ′, s′)

]

M(u,v)

[
B

E
μ+μ′−k;r ′′,s′′

]

+
u−1∑

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

[
B

D
μ+μ′;r ′′,s+s′

]
, (4.11c)

while if s + s′ ≥ v, then we have instead

[
B

D
μ;r,s

]
�Bk

[
B

D
μ′;r ′,s′

] =
∑

(r ′′,s′′)

[
(r ′′, s′′)

(r, s + 1) (r ′, s′ + 1)

]

M(u,v)

[
B

E
μ+μ′−k;r ′′,s′′

]

+
u−1∑

r ′′=1

[
(r ′′, 1)

(r, 1) (r ′, 1)

]

M(u,v)

[
B

D
μ+μ′−k;u−r ′′,s+s′−v+1

]
. (4.11d)

4.3 Examples

As noted in Sect. 3.3, the parafermion coset C−1/2 is isomorphic to the singlet ver-
tex operator algebra S1,2. It is therefore not surprising that the extension B−1/2 is

isomorphic to the triplet W1,2. This is consistent with L = 2Z and δ
L
±2;1 = 3; for

more details, see [61]. We also recalled that C−4/3 is isomorphic to the singlet S1,3.
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However, B−4/3 is not W1,3: as discussed in Remark 4.2, it is rather a Z2-orbifold of
W1,3.

Consider the extended parafermion coset B−2/3, remembering thatC−2/3 has been
identified with the bosonic orbifold of the supersinglet vertex operator superalge-
bra sS1,3. Since L = 4Z and δ

L
±4;1 = 9, B−2/3 is not the bosonic orbifold of the

super-triplet vertex operator superalgebra sW1,3 [19]. Indeed, B−2/3 has three simple

currentsBL
0;3,B

L
2;1 andB

L
2;3 whose spaces of ground states have dimensions and con-

formal weights 1 and 3
2 , 2 and 5

2 , and 2 and 3, respectively. Under fusion, they form

(along with the vacuum module BL
0;1) a group isomorphic to Z2 ⊕ Z2:

B
L
μ;r ⊗B−2/3

B
L
μ′;r ′ = B

L
μ+μ′;r+r ′−1 (mod 4) (μ, μ′ ∈ {0, 2}, r, r ′ ∈ {1, 3}).

(4.12)

The simple current extension of B−2/3 by this group of simple currents is a vertex
operator superalgebra with strong generating fields of conformal dimensions 3

2 , 2,
5
2 ,

5
2 ,

5
2 , 3, 3 and 3. This vertex operator superalgebra and the super-triplet sW1,3 are thus

extensions of the same vertex operator superalgebra sS1,3 with same type of strong
generators. We expect that one can now prove that they have to coincide by using the
Jacobi identity to show that sS1,3 admits at most one such extension. We omit this
long computation and refer to the proofs of [67, Thm. 3.1] and [74, Lem. 8.2] for
similar arguments.

We shall instead demonstrate this coincidence of vertex operator superalgebras by
proving that the simple current extension of B−2/3 is a subalgebra of sW1,3. Since
both vertex operator algebras have the same type of minimal strong generating set,
they must therefore coincide. We noted in Sect. 3.3 that BL

0;3 is contained in sS1,3.
Hence, we only need find one other generator of the group of simple currents inside
sW1,3. We will now show that indeed B

L
2;1 is contained in sW1,3.

For this, we use the notation of [19], while the spirit of the proof is closer to the
arguments in [61]. Let F be the vertex superalgebra of a single free fermion. Consider
the lattice αZ ⊕ βZ, with α2 = −β2 = 3 and αβ = 0. The sW1,3-algebra is defined
[19] as the kernel of a screening operator Q acting on the tensor product of F and the
lattice vertex operator algebra VαZ:

sW1,3 = kerQ(VαZ ⊗ F) =
⊕

n∈Z
kerQ(Fnα ⊗ F). (4.13)

In particular, it is a subalgebra of VαZ⊕βZ ⊗ F.
We denote the vertex operator corresponding to the highest weight vector of the

Fock module Fnα+mβ by enα+mβ . The odd triplet fields of conformal weight 5
2 are

denoted by E , H and F in [19] and they belong to Fα ⊗ F, F0 ⊗ F and F−α ⊗ F,
respectively. Now, sW1,3 is simple [19, Cor. 10.1], so it admits a non-degenerate
invariant bilinear form [75] and thus every field of conformal weight h must possess a
conjugate field of same conformal weight such that their operator product expansion
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involves the identity field. For the super-triplet field E , the only possibility for the
conjugate field is F , so we have

E(z)F(w) ∼ a

(z − w)5
+ 0

(z − w)4
+ · · · , (4.14)

for some nonzero a. We rescale E and/or F so that a = − 2
3 .

Define now the fields e(z) = E(z)eβ ∈ Fα+β ⊗ F and f (z) = F(z)e−β ∈
F−α−β ⊗Fwhose conformal weights are both 5

2 − 3
2 = 1. Let h(z) be the Heisenberg

field of VZβ , normalised such that

h(z)e(w) ∼ 2e(w)

z − w
, h(z) f (w) ∼ −2 f (w)

z − w
so that h(z)h(w) ∼ −4/3

(z − w)2
.

(4.15)

Then, the fields e, h and f generate an affine vertex operator algebra X with g = sl2
and level k = − 2

3 . Suppose that X is not simple, hence that it has a non-trivial proper
ideal I. Let v be a vector of minimal conformal weight in I. Applying the zero-modes of
e or f if necessary, wemay assume that v has sl2-weight zero and hence belongs to the
commutant of the Heisenberg field h in X. However, we identified this commutant as
the simple supersinglet algebra sS1,3 in Sect. 3.3, which obviously has no non-trivial
proper ideals. This contradictionproves thatX is simple andhence thatX ∼= L−2/3(sl2).

We thus have the following inclusion of vertex operator algebras:

L−2/3(sl2) ⊂ kerQ(V(α+β)Z ⊗ F). (4.16)

Here, we have noted that Q annihilates both e and f . Decomposing the lattice vertex
operator algebra into Fock spaces now gives

kerQ(V(α+β)Z ⊗ F) ∼=
⊕

n∈Z
kerQ(Fnα+nβ ⊗ F) ∼=

⊕

n∈Z
kerQ(Fnα ⊗ F) ⊗ F2n,

(4.17)

while the decomposition of the affine vertex operator algebra intoH⊗C−2/3-modules
is

L−2/3(sl2) ∼=
⊕

n∈Z
C
L
2n;1 ⊗ F2n . (4.18)

It follows that CL
2n;1 ⊂ kerQ(Fnα ⊗ F), for all n ∈ Z, and so the simple current BL

2;1
satisfies

B
L
2;1 =

⊕

n∈2Z+1

C
L
2n;1 ⊂

⊕

n∈Z
C
L
2n;1 ⊂

⊕

n∈Z
kerQ(Fnα ⊗ F) = sW1,3, (4.19)
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by (4.13). This proves that the simple current extension of B−2/3 introduced above is
isomorphic to sW1,3, as claimed.

We conclude by noting that the spectrum of irreducible B−2/3-modules comprises
6 of L-type, 6 (inequivalent) of D-type and 24 of E-type. Summing over the orbits
of the group of simple currents, we arrive at 2, 2 and 8 inequivalent sW1,3-modules
(not accounting for global parities) whose properties are summarised in the following
table:

CL
0;1 CL

1;2 CD
2/3;1,1 CD

5/3;2,1 CE
0;1;1 CE

1/3;1;1 CE
1;1;1 CE

5/3;1,1 CE
0;2,1 CE

2/3;2,1 CE
1;2,1 CE

4/3;2,1

 0 15

16
1
2 − 1

16 − 1
6 − 1

8
5
24 − 1

8 − 5
48

1
16

13
48

1
16

Sector (NS, NS) (R, R) (NS, NS) (R, R) (NS, NS) (NS, R) (R, R) (NS, R) (R, NS) (R, NS) (R, R) (R, NS)

Here, 
 denotes the conformal weight of the ground states and “Sector” gives the
N = 1 and super-W3 sectors as an ordered pair.

Finally, let us remark that our construction nicely compares to the very recent
study of [58, Sec. 8]. There, the sW1,3 vertex operator superalgebra was realised as a
coset of an N = 3 superconformal algebra which is itself a simple current extension
of L−2/3(sl2) [32]. While our construction is instead to first take the coset and then
perform the simple current extension, the realisations are otherwise the same.

4.4 Standard Bk-characters and modularity

Given the decompositions (4.8), we can clearly sum the characters (3.4) of the standard
Ck-modules to obtain those of the standard Bk-modules.

Proposition 4.7 Given Assumptions 1 and 2, the characters of the standard Bk-
modules are

ch
[
B

E
μ;r,s

](
q
) = ch

[
B±

μ;r,s
](
q
) = χ

M(u,v)
(r,s) (q)

η(q)

∑

λ∈μ+L

q−λ2/4k . (4.20)

To investigate the modularity of these characters, we introduce the following theta
functions associated with the lattice L:

ϑμ+L(z, q) =
∑

λ∈μ+L

zλq−λ2/4k (μ ∈ L′). (4.21)

Writing z = e2πiζ and q = e2πiτ as usual, the modular S-transforms of these theta
functions are given by

ϑμ+L(ζ/τ | −1/τ) =
√−iτ e−2πikζ 2/τ

√|L′/L|
∑

λ∈L′/L
eiπλμ/kϑλ+L(ζ | τ). (4.22)
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To compare with characters, we shall need to set ζ = 0 (z = 1) and will then
drop ζ (or z) from the list of arguments. With this convention, it is obvious that the
theta functions are invariant under reflection about zero, ϑ−μ+L(τ ) = ϑμ+L(τ ), and
translations in L. We shall refer to these properties as the affine Weyl symmetry of the
theta functions. Moreover, if we set p = 1

2

∣
∣L′/L

∣
∣ = vw, then (4.22) becomes

ϑm/v+L(−1/τ) =
√−iτ√

2p

2p−1∑

�=0

e−iπ�m/pϑ�/v+L(τ ) = √−iτ

p∑

�=0

Sϑ
m�ϑ�/v+L(τ ),

(4.23)

where

Sϑ
m� =

⎧
⎨

⎩

√
1
2p cos

π�m
p if � ∈ pZ,

√
2
p cos

π�m
p otherwise

(4.24)

and we may restrict m to 0, 1, . . . , p.
Since the standard Bk-characters (4.20) can be written in the form

ch
[
B

E
μ;r,s

](
τ
) = χ

M(u,v)
(r,s) (τ )

η(τ )
ϑμ+L(τ ), (4.25)

it is now easy to obtain their modular S-transforms. We recall that the S-matrix of the
Virasoro minimal model M(u, v) is

SM(u,v)

(r,s) (r ′,s′) = −2

√
2

uv
(−1)rs

′+r ′s sin
vπrr ′

u
sin

uπss′

v
, (4.26)

where the entries (r, s) and (r ′, s′) run over the irreducible M(u, v)-modules of the
Kac table Kac(u, v), see (2.17). As before, sums indexed by M(u, v)-modules will
always be assumed to run over Kac(u, v).

Proposition 4.8 GivenAssumptions 1 and2, themodular S-transformsof the standard
Bk-characters are

ch
[
B

E
m/v;r,s

](−1/τ
) =

∑

(r ′,s′)

p∑

�=0

SM(u,v)

(r,s) (r ′,s′)S
ϑ
m� ch

[
B

E
�/v;r ′,s′

](
τ
)
. (4.27)

Remark 4.9 Note that the S-matrix appearing in (4.22) is symmetric while that of
(4.24) is not. This is not unexpected because the standard Bk-characters, as we have
defined them, are not linearly independent.
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4.5 Atypical Bk-characters

In principle, the decompositions of Proposition 4.3 also yield character formulae for
the irreducible atypical Bk-modules BL

μ;r and B
D
μ;r,s . For example, substituting the

resolution formulae from (3.10) results in the following expression for the former:

ch
[
B

L
μ;r
]

=
v−1∑

s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

∑

λ∈μ+L

∞∑

m=0

(
q−(λ+2mw−sk)2/4k − q−(λ+2(m+1)w+sk)2/4k

)
.

(4.28)

Consider the double sum in this expression, rewritten in the form

∑

�∈Z

∞∑

m=0

(
q−(μ−sk+2w(�+m))2/4k − q−(μ+sk+2w(�+m+1))2/4k

)
. (4.29)

This sum is clearly not absolutely convergent, so we must take care in how we manip-
ulate its terms.

Note first that the left-hand side of (4.28) is invariant under μ �→ −μ, by
Remark 3.6 and Proposition 4.3. The same must therefore be true for the right-hand
side. Replacing ch

[
B

L
μ;r
]
by 1

2 (ch
[
B

L
μ;r
] + ch

[
B

L
−μ;r

]
) transforms the double sum

into 1
2

(
Aμ+sk(q) + A−μ+sk(q)

)
, where

Aλ(q) =
∑

�∈Z

∞∑

m=0

(
q−(λ−2w(�+m))2/4k − q−(λ+2w(�+m+1))2/4k

)
. (4.30)

This will be identified (see Lemma 4.10 below) with a linear combination of the theta
functions ϑμ+L, μ ∈ L′, of (4.21) and their derivatives

ϑ ′
μ+L(z, q) = − z∂z

2w
ϑμ+L(z, q) = − μ

2w
ϑμ+L(z, q) +

∑

�∈Z
�zμ−2w�q−(μ−2w�)2/4k .

(4.31)

As usual, we may omit z (or ζ ) from the argument of these theta functions, under-
standing that it is then evaluated at z = 1 (or ζ = 0). These specialised derivatives
are affine Weyl-antisymmetric, being L-periodic and anti-invariant under reflection:
ϑ ′

−μ+L(q) = −ϑ ′
μ+L(q).

We record the following easily proven identities for the lemma that follows:

ϑμ+L(q) =
∞∑

�=0

(
q−(μ−2w�)2/4k + q−(μ+2w(�+1))2/4k

)
, (4.32a)
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ϑ ′
μ+L(q) = − μ

2w
ϑμ+L(q) +

∞∑

�=0

(� + 1)
(
q−(μ−2w�)2/4k − q−(μ+2w(�+1))2/4k

)
−

∞∑

�=0

q−(μ−2w�)2/4k .

(4.32b)

Lemma 4.10 For any λ ∈ L′, we have

Aλ(q) = 2ϑ ′
λ+L(q) +

(

1 + λ

w

)

ϑλ+L(q). (4.33)

Proof Consider first the partial sum

A+
λ (q) =

∞∑

�=0

∞∑

m=0

(
q−(λ−2w(�+m))2/4k − q−(λ+2w(�+m+1))2/4k

)
. (4.34)

Replacing m by n = � + m and swapping the order of summation gives

A+
λ (q) =

∞∑

n=0

(n + 1)
(
q−(λ−2wn)2/4k − q−(λ+2w(n+1))2/4k

)

= ϑ ′
λ+L(q) + λ

2w
ϑλ+L(q) +

∞∑

n=0

q−(λ−2wn)2/4k, (4.35)

by (4.32b).
Sending � to −�−1 and settingm = n+2�+1 in the complementary partial sum

A−
λ (q) =

−1∑

�=−∞

∞∑

m=0

(
q−(λ−2w(�+m))2/4k − q−(λ+2w(�+m+1))2/4k

)
, (4.36)

we instead arrive at

A−
λ (q) = A+

λ (q) +
∞∑

�=0

−1∑

n=−2�−1

(
q−(λ−2w(�+n))2/4k − q−(λ+2w(�+n+1))2/4k

)
.

(4.37)

Noting that for fixed �, the summand indexed by n precisely cancels that indexed by
−2� − 1 − n, we see that only the n = −2� − 1 summand contributes. We conclude
that

A−
λ (q) = A+

λ (q) + ϑλ+L(q) − 2
∞∑

�=0

q−(λ−2w�)2/4k, (4.38)

by (4.32a). Since Aλ(q) = A+
λ (q) + A−

λ (q), the proof is complete. ��
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Recalling that ϑμ+L and ϑ ′
μ+L are Weyl-symmetric and Weyl-antisymmetric,

respectively, we can use this result to express the character formula (4.28) as follows.

Proposition 4.11 Given Assumptions 1 and 2, we have

ch
[
B

L
μ;r
](
q
) =

v−1∑

s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

[

ϑ ′
μ+sk+L(q) − ϑ ′

μ−sk+L(q)

+μ − (v − s)k

2w
ϑμ+sk+L(q) − μ + (v − s)k

2w
ϑμ−sk+L(q)

]

, (4.39)

for all r = 1, . . . , u − 1 and μ = λr,0 = r − 1 (mod Q).

Remark 4.12 Equation (3.10b) and Proposition 4.3 imply that the characters of the
remaining atypical irreducible Bk-modules are given by

ch
[
B

D
μ;r,s

](
q
)

=
v−1∑

s′=s+1

(−1)s
′−s−1 ch

[
B

E
μ−(s′−s)k;r,s′

](
q
)+ (−1)v−1−s ch

[
B

L
μ−(v−s)k;u−r

](
q
)
.

(4.40)

We shall not try to simplify this expression. As the standard Bk-characters close on
themselves under modular transformations, those of the D-type Bk-characters will
transform as a linear combination of standard and L-type Bk-characters if the L-
type Bk-characters do. We therefore only need to demonstrate this result for L-type
Bk-characters.

4.6 Interlude: linear dependences

Now that we have the characters of the B
L
μ;r in terms of theta functions and their

derivatives, it is in principle straightforward to determine their modular S-transforms.
To this end, we shall analyse certain linear dependences that arise in the terms that
appear in these characters.

Wefirst note thatwemay restrict attention to the terms that involve the theta function
derivatives in the character formula (4.39)—the other termsmay be expressed in terms
of standard Bk-characters and these S-transform into one another, by Proposition 4.8.
We isolate these terms in the following definition:

�μ;r (q) =
v−1∑

s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)
[
ϑ ′

μ+sk+L(q) − ϑ ′
μ−sk+L(q)

]
, μ = r − 1 (mod Q). (4.41)
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Note that these terms constitute the part of the atypical module characters of modular
weight 1. The remaining part has modular weight 0, so there can be no (non-trivial)
linear dependences between the parts.

Lemma 4.13 Given r = 1, . . . , u − 1 and μ = r − 1 (mod Q), we have

�μ;r = �μ+2w;r ,
�μ;r = �−μ;r ,
�μ;r = (−1)v−1�w+μ;u−r ,

�μ;r = (−1)v−1�w−μ;u−r , (4.42)

where we recall that w = −vk = 2v − u.

Proof Thefirst two identities reflect the affineWeyl-antisymmetry of the theta function
derivatives. The third uses, in addition, the Kac symmetry of the Virasoro minimal
model characters:

�μ;r (q) =
s−1∑

v=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

[
ϑ ′

μ+sk+L(q) − ϑ ′
μ−sk+L(q)

]

=
s−1∑

v=1

(−1)v−s−1
χ
M(u,v)
(r,v−s)(q)

η(q)

[
ϑ ′

μ+(v−s)k+L(q) − ϑ ′
μ−(v−s)k+L(q)

]

= (−1)v−1
s−1∑

v=1

(−1)s−1
χ
M(u,v)
(u−r,s)(q)

η(q)

[
ϑ ′

μ+w+sk+L(q) − ϑ ′
μ+w−sk+L(q)

]
.

(4.43)

Note that μ = r − 1 (mod Q) implies that μ + w = r − 1 + 2v − u = u − r − 1
(mod Q), as required. The fourth is obtained by combining the second and third. ��

The first two relations of (4.42) allow us to restrict μ to a fundamental domain of
the affine Weyl group Z2 � 2wZ. We choose 0 ≤ μ ≤ w, remembering that μ must
match r − 1 in parity. Next, the fourth relation states that we can always exchange r
for u − r ; hence, we may impose r ≤ u

2 . If u is odd, then we are done. If u is even,
however, then we can slightly refine the analysis by noting that when r = u

2 , the fourth
relation lets us exchange μ for w − μ; hence, we may insist that μ ≤ w

2 in this case.
(Note that u even implies that w is also even.)

Consider the vector space Vk spanned by the �μ;r , with r = 1, . . . , u − 1 and μ =
r−1 (mod Q). The assertions above allow us to significantly reduce this spanning set.

Proposition 4.14 A spanning set of Vk is given by the elements �μ;r with

u odd: μ = 0, 1, . . . , w, r = 1, 2, . . . , 1
2 (u − 1),

u even: μ = 0, 1, . . . , w, r = 1, 2, . . . , 1
2u − 1 and

μ = 0, 1, . . . , w
2 , r = 1

2u,

subject to μ = r − 1 (mod Q).
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We let Bk denote the set of pairs (μ; r) satisfying these conditions.
Corollary 4.15

dimC Vk ≤ |Bk | =
{

1
4 (u − 1)(w + 1) if u is odd,
1
4uw − 1

2 (v − 1 − u) if u is even.

Remark 4.16 We believe that the spanning set {�μ;r : (μ; r) ∈ Bk} of Proposi-
tion 4.14 is actually a basis and hence that the upper bound of Corollary 4.15 is
actually an equality. However, we have not tried to prove this as it is not needed for
the modularity result that follows.

4.7 Modularity of atypical Bk-characters

We turn now to the modular properties of the weight 1 terms �μ;r of the characters of
the BL

μ;r , first determining the S-transform of the theta function derivatives

ϑ ′
μ+L(ζ | τ) = − ∂ζ

2π i · 2wϑμ+L(ζ | τ). (4.44)

This is easily derived by differentiating Eq. (4.22) with respect to ζ , resulting in

ϑ ′
μ+L(ζ/τ | −1/τ)

=
√−iτ
√|L′/L|e

−2πikζ 2/τ
∑

λ∈L′/L
eiπλμ/k

[

τϑ ′
λ+L(ζ | τ) − ζ

v
ϑλ+L(ζ | τ)

]

.

(4.45)

Specialising to ζ = 0 and μ = m/v therefore gives

ϑ ′
m/v+L(−1/τ)

= τ
√−iτ√
2p

2p−1∑

�=0

e−iπ�m/pϑ ′
�/v+L(τ ) = (−iτ)3/2

p−1∑

�=1

S′
m�ϑ

′
�/v+L(τ ), (4.46)

where we recall that p = vw = v(2v − u) and have set

S′
m� =

√
2

p
sin

π�m

p
. (4.47)

Because ϑ ′
�/v+L(τ ) = 0, for � = 0 or p, it is natural to restrict the range of � to

1, . . . , p − 1. However, the S-matrix entries S′
m� are 0 for both � = 0 and � = p, so

these values may be included in the summation range when convenient.
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Theorem 4.17 Given Assumptions 1 and 2, the elements of Vk define a finite-
dimensional vector-valued modular form with

�μ;r (−1/τ) = −iτ
∑

(μ′;r ′)∈Bk

S�
(μ;r)(μ′;r ′)�μ′;r ′(τ ),

�μ;r (τ + 1) = e2πi(δ
L
μ;r−c̃/24)

�μ;r (τ ), (4.48a)

where δ
L
μ;r was given in (3.13b), c̃ = 2 − 6

t , Bk was given in Proposition 4.14 and

S�
(μ;r)(μ′;r ′) = 2Aμ′;r ′√

uw
sin

πrr ′

t
cos

πμμ′

k
,

Aμ′;r ′ =
⎧
⎨

⎩

1
2 i f r ′ = u

2 and μ′ ∈ wZ,

2 i f r ′ �= u
2 and μ′ /∈ wZ,

1 otherwise.
(4.48b)

Proof The behaviour under the modular T-transform τ �→ τ +1 follows immediately
from the relation between �μ;r and the character of BL

μ;r , noting that the conformal

weights of the latter match those of CL
μ;r (up to an integer) which were given in

Proposition 3.8. We therefore turn to the S-transform.
From the definition (4.41) of theweight 1 parts of the atypical characters, we deduce

that

�μ;r (−1/τ) = −iτ

v−1∑

s=1

(−1)s−1

∑
(r ′,s′) S

M(u,v)

(r,s) (r ′,s′)χ
M(u,v)

(r ′,s′) (τ )

η(τ )

· −2√
2p

2p−1∑

�=0

e−iπ�μ/w sin
π�s

v
ϑ ′

�/v+L(τ ), (4.49)

where the modular S-matrix ofM(u, v) was given in (4.26) and we have used the first
equality of (4.46). The sum over s is easily evaluated:

v−1∑

s=1

(−1)s−1(−1)r
′s sin(π ts′s) sin π�s

v

=
v−1∑

s=1

cos(π(r ′ − 1)s) sin(−π ts′s) sin π�s

v

=
v−1∑

s=1

sin(πλr ′,s′s) sin
π�s

v
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= 1

2

v−1∑

s=1

[
cos(π(λr ′,s′ − �/v)s) − cos(π(λr ′,s′ + �/v)s)

]

= ± v
2 if �/v = ±λr ′,s′ (mod Q),

0 otherwise .
(4.50)

We mention that the case �/v = λr ′,s′ (mod Q) and �/v = −λr ′,s′ (mod Q), which
would give 0 for this sum, does not occur because it would require that 2λr ′,s′ ∈ Q
and hence that us′ ∈ 2vZ, hence s′ ∈ vZ.

The contribution to �μ;r (−1/τ) from the � satisfying �/v = λr ′,s′ (mod Q) is
therefore

− iτ
2√
uw

∑

(r ′,s′)

2p−1∑

�=0
�/v=λr ′,s′ (mod Q)

(−1)rs
′
sin

πrr ′

t
e−iπ�μ/w

χ
M(u,v)

(r ′,s′) (τ )

η(τ )
ϑ ′

�/v+L(τ ). (4.51)

As the summands are manifestly 2p-periodic in �, the �-sum is over a full period—this
is the reason we use (4.46) above instead of (4.47). Writing �/v = r ′ − 1 − ts′ =
r ′ − 1− ks′ (mod Q), we set μ′ = �/v + ks′ so that μ′ = r ′ − 1 (mod Q) and μ′ is
2w-periodic. The contribution (4.51) now becomes

− iτ
−2√
uw

∑

(r ′,s′)

2w−1∑

μ′=0
μ′=r ′−1 (mod Q)

(−1)s
′−1 sin

πrr ′

t
eiπμμ′/k χ

M(u,v)

(r ′,s′) (τ )

η(τ )
ϑ ′

μ′−s′k+L(τ ),

(4.52)

where we have noted that (−1)rs
′
e−iπs′μ = (−1)(μ−r)s′ = −(−1)s

′−1, since μ =
r − 1 (mod Q).

For the contribution from the � satisfying �/v = −λr ′,s′ (mod Q), we likewise
write μ′ = �/v − ks′ so that again μ′ = −r ′ + 1 = r ′ − 1 (mod Q) and μ′ is 2w-
periodic. This contribution now evaluates to the same form as (4.52) but multiplied
by −1, because of the sign in (4.50), and with ϑ ′

μ′−s′k+L replaced by ϑ ′
μ′+s′k+L. We

therefore conclude that

�μ;r (−1/τ) = −iτ
2√
uw

∑

(r ′,s′)
μ′=r ′−1 (mod Q)

×
2w−1∑

μ′=0

(−1)s
′−1 sin

πrr ′
t

eiπμμ′/k χ
M(u,v)

(r ′,s′) (τ )

η(τ)

[
ϑ ′

μ′+s′k+L(τ ) − ϑ ′
μ′−s′k+L(τ )

]
.

(4.53)

Suppose now that u is odd. Then, the (r ′, s′)-sum over the Virasoro Kac table
Kac(u, v) may be expressed as a double sum where r ′ ranges from 1 to 1

2 (u − 1) and
s′ ranges from 1 to v − 1. In this case,
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�μ;r (−1/τ) = −iτ
2√
uw

1
2 (u−1)∑

r ′=1

2w−1∑

μ′=0
μ′=r ′−1 (mod Q)

sin
πrr ′

t
eiπμμ′/k�μ′;r ′(τ ). (4.54)

We can write this as a sum over the spanning set Bk of Proposition 4.14 by combining
the terms with μ �= 0, w using �μ′;r ′ = �2w−μ′;r ′ , which follows from the first two
identities of (4.42). This gives the values of Aμ′;r ′ and the modular S-transform of the
theorem for u odd.

If u is even, so v is odd, then the (r ′, s′)-sum may be expressed as the sum of two
contributions, the first being a double sum with r ′ ranging from 1 to u

2 − 1 and s′
ranging from 1 to v − 1 while the second is a single sum with r ′ fixed at u

2 and s′
ranging from 1 to v−1

2 . The contribution from r ′ < u
2 is analysed as in the u odd case

with the same result. (The upper limit of the r ′-sum is now u
2 − 1.)

The analysis of the contribution from r ′ = u
2 is a little more intricate. First, note

that if r is even, then this contribution vanishes because sin(πrr ′t−1) = 0. We may
therefore assume that r is odd and hence that μ is even. We now compare the r ′ = u

2
contribution to (4.53) from a given s′ to that from v − s′. The latter is

−iτ
2√
uw

2w−1∑

μ′=0
μ′=u/2−1 (mod Q)

(−1)v−s′−1 sin
πrv

2
eiπμμ′/k χ

M(u,v)

(u/2,v−s′)(τ )

η(τ)

[
ϑ ′

μ′+(v−s′)k+L(τ ) − ϑ ′
μ′−(v−s′)k+L(τ )

]

= −iτ
2√
uw

2w−1∑

μ′=0
μ′=u/2−1 (mod Q)

(−1)s
′−1 sin

πrv

2
eiπμμ′/k χ

M(u,v)

(u/2,s′)(τ )

η(τ)

[
ϑ ′

μ′+w+s′k+L(τ ) − ϑ ′
μ′+w−s′k+L(τ )

]

= −iτ
2√
uw

2w−1∑

μ′=0
μ′=u/2−1 (mod Q)

(−1)s
′−1 sin

πrv

2
eiπμμ′/k χ

M(u,v)

(u/2,s′)(τ )

η(τ)

[
ϑ ′

μ′+s′k+L(τ ) − ϑ ′
μ′−s′k+L(τ )

]
, (4.55)

where we have used the following facts: v is odd,w andμ are even, the theta function
derivatives are 2w-periodic, and the μ′-sum is over a full period. The contributions
from s′ and v − s′ therefore coincide for r odd and r ′ = u

2 . The r
′ = u

2 contribution
to �μ;r (−1/τ) is then half that obtained by summing s′ from 1 to v − 1. It therefore
has exactly the same form as the generic case r ′ �= u

2 analysed above except for the
additional factor of 1

2 . ��
An obvious consequence of this result is that the vector space spanned by the �μ;r

and −iτ�μ;r carries a representation of the modular group. Recasting the character
formula of Proposition 4.11 in the form

ch
[
B

L
μ;r
]

= �μ;r +
v−1∑

s=1

(
μ − (v − s)k

2w
ch
[
B

E
μ+sk;r,s

]− μ + (v − s)k

2w
ch
[
B

E
μ−sk;r,s

]
)

(4.56)

123



2584 J. Auger et al.

and recalling Remark 4.12, we conclude that the direct sum of this vector space and
the span of the standard characters ch

[
B

E
μ;r,s

]
, with μ ∈ L′/L and (r, s) ∈ Kac(u, v),

contains the characters of all the irreducible Bk-modules and carries a PSL
(
2; Z

)
-

representation.

Corollary 4.18 Given Assumptions 1 and 2, it follows that the characters of the irre-
ducible Bk-modules are modular: they generate a representation of PSL

(
2; Z

)
of

dimension p(u − 1)(v − 1) + 2 dim Vk < ∞.

Conjecture 4.19 The vertex operator algebra Bk is C2-cofinite.

Remark 4.20 The C2-cofiniteness of triplet and super-triplet algebras is known
[16,19]. Moreover, orbifolds by finite abelian groups of C2-cofinite vertex opera-
tor algebras are also known to be C2-cofinite [76]. It follows that C2-cofiniteness is
established for B−1/2 because is it isomorphic to the tripletW1,2, B−4/3 because it is
isomorphic to a Z2-orbifold ofW1,3, and B−2/3 because it is isomorphic to a Z2 ⊕Z2-
orbifold of sW1,3 (assuming that the main result of [76] also holds for appropriate
vertex operator superalgebras).
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