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1 Introduction

In the seminal paper [2], it was shown that any connection operator ∂u − M(u), where
∂u = d

du and M(u) is a N × N matrix smoothly depending on the parameter u, can
be reduced by means of the gauge transformations

∂u − M(u) �→ g(u)(∂u − M(u))g(u)−1 = ∂u − g(u)M(u)g(u)−1 + g(u)∂u(g(u)−1)

to the form ∂u − Mcan(u), where Mcan(u) looks like (3.2). Also, the authors of [2]
found that the reduced Poisson structure can be identified with the second Gelfand–
Dickey one. Lately, the reduced Poisson structure was also identified withW -algebras
(see [3]).

Hereafter, matrices of the form (3.2) (or transposed to them) will be called matrices
of canonical or, more precisely, second canonical form. The ground field is assumed
to be C.

A q-counterpart of theDrinfeld–Sokolov (DS) reductionwas defined in [4,5]. There
the operator Dq f (x) = f (qx), q �= 1 was considered instead of ∂u , and the gauge
transformations above were replaced by

Dq − M(u) �→ g(qu)(Dq − M(u))g(u)−1.

It was shown that the operator Dq − M(u) can be reduced to that Dq − Mcan(u),
where Mcan(u) is similar to (3.2) [(mutatis mutandis, since the authors deal with
SL(N )-valued functions M(u)].

Emphasize that all these results are “operator analogs” of the reduction procedure
for numerical matrices (independent of parameters). According to a theorem by Frobe-
nius, such a matrix M can be reduced to the second canonical form by transformations
M �→ g M g−1.

However, if a matrix M ∈ Mat(A) has entries belonging to a noncommutative
algebra A, for instance, to the enveloping algebra U (gl(N )), such a reduction is not
possible. Nevertheless, if M ∈ Mat(U (gl(N )) is a specially chosen matrix (namely,
the generating matrix of this algebra, see below), its reduction to the second canonical
form is possible in the sense of [1]. This reduction consists in the following: For a
given matrix M ∈ Mat(A), there is defined another matrix Mcan of the form (3.2) with
entries expressed via these ofM with a subsequent demonstration of similarity of these
two matrices. This similarity means that there exists a nontrivial matrix C ∈ Mat(A),
such that M C = C Mcan.

A reduction of operators in the spirit of [1] is defined in the same way. Namely,
in this sense, the operator ∂u − M(u), where M(u) is the Lax matrix for the Gaudin
model, has been reduced to the operator ∂u − Mcan(u) in [1].

The main objective of the present note is to generalize this result to the generating
matrices of some quantum algebras, namely the Reflection Equation (RE) algebras,
associated with even skew-invertible involutive or Hecke symmetries (see the next
section) and the braided Yangians, recently introduced by two of us [10]. As a by-
product, we get a similar reduction for the generating matrices of the enveloping
algebras U (gl(N )).
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Our method is based on the Cayley–Hamilton (CH) identity for the generating
matrices of the RE algebras and braided Yangians, established in [6,10] respectively.
Emphasize that this CH identity enables us to relate quantum analogs of some sym-
metric elements, namely the power sums and elementary symmetric polynomials.
Note that the power sums in the RE algebras are defined by TrRLk , where TrR is
the so-called R-trace associated with the initial involutive or Hecke symmetry R. In
the braided Yangians, the quantum power sums are defined by similar formulae but
with shifted arguments u. Namely, the use of the R-trace instead of the usual one is
a specific feature of these algebras. Another feature is that the CH identities in these
algebras are more similar to the classical ones.

Note that the mentioned quantum symmetric elements constitute commutative sub-
algebras in the braided Yangians (called Bethe subalgebras). This property enables us
to generate quantum integrable systems. Their explicit construction will be published
in a separate paper. To conclude Introduction, we emphasize that the present note deals
with a quantum counterpart of the first step of the DS reduction. Namely, we present
the canonical forms of generating matrices and establish the mentioned similarity of
the corresponding operators. The main results are formulated in Theorems 7 and 8,
Sect. 4. We do not consider a quantum version of the second step of this reduction.
We plan to define a new version of the “q-W-algebras” based on the RE algebras and
braided Yangians in our next publications.

2 Quantum matrix algebras

Let us briefly describe the quantum algebras under consideration. First, recall that by
a current R-matrix, one usually means an operator R(u, v) depending on parameters
u and v and subject to the so-called quantum Yang–Baxter equation

R12(u, v)R23(u, w)R12(v,w) = R23(v,w)R12(u, w)R23(u, v),

where R12(u, v) = R(u, v) ⊗ I and R23(u, v) = I ⊗ R(u, v). If R is independent of
the parameters, it is also called a braiding. In this case, we shall assume the operator
R : V⊗2 → V⊗2 to be either involutive R2 = I or to satisfy the Hecke condition

(q I − R)(q−1 I + R) = 0, q ∈ C, q2 �= 1.

Here, V is a vector space of the dimension N (over the field C). These braidings are,
respectively, called involutive and Hecke symmetries.

The best known are the Hecke symmetries coming from the quantum groups
Uq(sl(N )). However, there are known numerous examples of involutive and Hecke
symmetries which are deformations neither of usual nor of super-flips (see [7] and the
references therein).

All symmetries R, we are dealing with, are assumed to be even and skew-invertible.
The term even means that there exists a natural m > 0 such that R has the bi-rank
(m|0).
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For the definitions of the notions “skew-invertible” and “bi-rank,” the reader is
referred to [10,11]. We want only to mention that for a skew-invertible braiding R, an
R-trace

TrR : End(V ) → C

in a sense coordinated with R can be defined. Moreover, for any matrix A, the expres-
sion TrR A is also well-defined. The properties of such an R-trace can be found in
[7,16].

Let us, respectively, define two quantum matrix algebras by the following systems
of relations on their generators

R T1 T2 − T1 T2 R = 0, T = ‖t ji ‖1≤i, j≤N (2.1)

R L1 R L1 − L1 R L1 R = 0, L = ‖l ji ‖1≤i, j≤N (2.2)

where R is assumed to be a skew-invertible involutive or Hecke symmetry. The former
algebra is called an RTT one, and the latter one is called a Reflection Equation (RE)
algebra. Their detailed consideration can be found in [7]. Here, we only observe that if
R is a deformation of the usual flip P , the dimensions of the homogenous components
of both algebras are classical, i.e., equal to those in Sym(gl(N )) (if R is a Hecke
symmetry, the value of q is assumed to be generic).

Now, let us exhibit Yangian-like algebras associated with current R-matrices. First,
observe that the current R-matrices, we are dealing with, are constructed from invo-
lutive or Hecke symmetries via the so-called Baxterization procedure described in
[10,11]. This procedure results in the following current R-matrix

R(u, v) = R − g(u, v)I, where g(u, v) = 1

u − v
or g(u, v) = (q − q−1)u

u − v
.

(2.3)
If R is an involutive symmetry, g(u, v) is defined by the former formula. If R is a
Hecke symmetry, g(u, v) is defined by the latter one.

The corresponding Yangian-like algebras introduced in [10,11] are also of two
types. They are, respectively, defined by the following systems:

R(u, v) T1(u) T2(v) = T1(v) T2(u) R(u, v), (2.4)

R(u, v) L1(u) R L1(v) = L1(v) R L1(u) R(u, v), (2.5)

where the generating matrices T (u) and L(u) are assumed to be series

T (u) =
∑

k≥0

T [k]
uk

, L(u) = I +
∑

k>0

L[k]
uk

.

We call the former (resp., latter) algebra a Yangian of RTT type (resp., a braided
Yangian). Note that the braided Yangians are defined similarly to the RE algebras, but
with the current R-matrices at the outside positions.
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Let us introduce the following notation:

L1(u) = L1(u), Lk(u) = Rk−1Lk−1(u)R−1
k−1, k ≥ 2, (2.6)

where we write Ri instead of Ri i+1 (recall that Ri i+1 stands for the operator R
acting at the i-th and i + 1-th positions in the tensor product V⊗k , i + 1 ≤ k). In
the RE algebras, we employ the same notation for the generating matrix L which is
independent of parameters.

By using this notation, we can present the defining relations of RE algebras under
the form

R1 L1 L2 − L1 L2 R1 = 0,

which looks like that in RTT algebras.
Moreover, in this algebra, the following holds:

Rk Lk Lk+1 − Lk Lk+1 Rk = 0, ∀ k ≥ 1.

This notation enables us to define analogs of symmetric polynomials in the RTT
and RE algebras in a uniform way. Thus, the power sums are, respectively, defined as
follows:

pk(T ) = TrR(12...k)Rk−1Rk−2 . . . R2R1T1 T2 . . . Tk,

pk(L) = TrR(12...k)Rk−1Rk−2 . . . R2R1L1L2 . . . Lk . (2.7)

Here, the notation TrR(12...k) means that the R-traces are applied at the positions
1, 2, . . . , k. Note that in the RE algebra, the formula (2.7) can be simplified to pk(L) =
TrRLk , whereas for the power sums pk(T ) in the RTT algebra, such a simplification
is not possible.

In a similar manner, the “quantum powers” of the matrices T and L can be defined:

T [k] := TrR(2...k)Rk−1Rk−2R2 . . . R1T1T2 . . . Tk,

L [k] := TrR(2...k)Rk−1Rk−2 . . . R2R1L1L2 . . . Lk .

However, if the former formula cannot be simplified, the latter one can be reduced to
the usual one: L [k] = Lk .

Also, exhibit analogs of elementary symmetric polynomials in both algebras

e0(T ) = 1, ek(T ) := TrR(1...k)(A(k)T1 T2 . . . Tk), k ≥ 1,

e0(L) = 1, ek(L) := TrR(1...k)(A(k)L1 L2 . . . Lk), k ≥ 1. (2.8)

Here, A(k) : V⊗k → V⊗k , k ≥ 1 are the skew-symmetrizers (i.e., the projectors of
skew-symmetrization) which are recursively defined by

A(1) = I, A(k) = 1

kq
A(k−1)

(
qk−1 I − (k − 1)q Rk−1

)
A(k−1), k ≥ 2, (2.9)
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Hereafter, we use the standard notation: kq = qk−q−k

q−q−1 .

Note that if R is even of bi-rank (m|0), m ≥ 2, the skew-symmetrizers A(k) are
trivial for k > m and the rank of the skew-symmetrizer A(m) is equal to 1.

Analogs of matrix powers, power sums, and elementary symmetric polynomials
can be also defined for the generalized Yangians of both classes, see [10,11] (below,
we define these objects in the braided Yangians). Besides, in all these algebras, there
exist quantum analogs of the CH identity. However, in the RTT algebras and Yangians
of RTT type, the CH identity is not similar to its classical form. This prevents us from
performing a reduction of the generating matrices of these algebras in the spirit of [1].

In [14], there are introduced more general matrix algebras, which are associated
with couples of braidings. If one of these braidings is a symmetry (involutive orHecke),
quantum analogs of elementary symmetric polynomials and power sums can be also
defined. They also commute with each other. Moreover, similar quantum symmetric
elements can be defined in the so-called half-quantum algebras as defined in [13].
However, in general, the corresponding quantum symmetric elements do not commute
with each other.

3 Reduction in RE algebras

Let R be again an even skew-invertible involutive orHecke symmetry of bi-rank (m|0).
Denote the RE (2.2) by L(R). As was shown in [6], the generating matrix L of the
algebra L(R) meets the quantum CH identity Q(L) = 0, where the characteristic
polynomial Q(t) reads

Q(t) = tm − qtm−1e1(L) + q2tm−2e2(L) + · · · + (−q)m−1tem−1(L)

+ (−q)mem(L) = 0.
(3.1)

Here, the factors ek(L) are the quantum elementary symmetric polynomials defined
by (2.8).

Remark 1 We stress a very important property of the polynomial (3.1): Its coefficients
belong to the center Z(L(R)) of the algebra L(R). Let us introduce “eigenvalues”
{μi }1≤i≤m of the matrix L in a natural way

e1(L) = μ1 + · · · + μm, . . . , em(L) = μ1 · · · · · μm .

These “eigenvalues” are elements of an algebraic extension of the center Z(L(R)).
Consider the quotient algebra

L(R)/〈e1(L) − α1, . . . , em(L) − αm〉, αi ∈ C,

where < I > stands for the ideal generated by a set I ⊂ L(R). This quotient is a
quantum analog of an orbit (or a union of orbits) in the coadjoint representation of the
group GL(N ). In [9], there was considered the problem: for which values of αi , this
quotient is an analog of a regular orbit. If it is so, we introduce the diagonal matrix
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diag(μ1, . . . , μm), where the elementsμi solve the system e1(L) = α1, . . . , em(L) =
αm , and treat this matrix as the first canonical form of the generating matrix L .

Let us define the second canonical form of the matrix L:

Lcan =

⎛

⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . 1
am am−1 am−2 . . . a1

⎞

⎟⎟⎟⎟⎠
, (3.2)

where

ak = −(− q)kek(L).

Following [1], we show that the matrices L and Lcan are in a sense similar. Let
v ∈ V be an arbitrary nontrivial vector written as a one-rowmatrix. Then, we introduce
the following N × N matrix

C =

⎛

⎜⎜⎝

v

vL
. . .

vLm−1

⎞

⎟⎟⎠ . (3.3)

Proposition 2 The matrices L and Lcan are similar in the following sense:

CL = LcanC. (3.4)

Proof is straightforward and is left to the reader. ��
Remark 3 In order to justify the term “similar,” it would be desirable to show that at
least for some vectors v, the matrix C is invertible in the skew-field of the algebra
L(R). A similar problem is also open for the braided Yangians considered below.

Along with the RE algebra L(R), define its quadratic–linear deformation L̂(R) by
the following system

R L̂1 R L̂1 − L̂1 R L̂1 R = R L̂1 − L̂1 R, L̂ = ‖l̂ ji ‖1≤i, j≤N . (3.5)

The algebra L(R) is a braided analog of the algebra Sym(gl(N )), whereas L̂(R) is
a braided analog of the enveloping algebraU (gl(N )). More precisely, if R is a Hecke
symmetry which is a deformation of the usual flip (for instance, that coming from the
quantum group Uq(sl(N ))), the algebras L(R) and L̂(R) turn into Sym(gl(N )) and
U (gl(N )), respectively, as q → 1. By using the fact that the algebras L(R) and L̂(R)

are isomorphic to each other provided that q �= ±1, it is possible to get a characteristic
polynomial Q̂(t) for the generating matrix L̂ of the algebra L̂(R). Namely, we have
(see [12])

123



2310 D. Gurevich et al.

Q̂(t) = qm TrR(1...m)

(
A(m)(t I − L̂1)((q

2t − q)I − L̂2) . . .

((q2(m−1)t − qm−1(m − 1)q)I − L̂m)
)

.

Note that the polynomial Q̂(t) is monic.

Proposition 4 In the algebra L̂, the matrix identity Q̂(L) = 0 takes place.

Passing to the limit q → 1, we get the characteristic polynomial for the generating
matrix1 M of the algebra U (gl(N )) (here N = m)

Q(t) = Tr(1...N )

(
A(N )(t I − M1)((t − 1)I − M2) . . . ((t − N + 1)I − MN )

)
,

where A(N ) is the usual skew-symmetrizer in V⊗N and Tr is the usual trace.

Proposition 5 In the algebra U (gl(N )), the following relation holds Q(M) = 0.

Note that the famous Capelli determinant is defined by a similar formula. The same
claim is valid for any algebra L̂ provided R be an involutive symmetry, which can be
approximated by Hecke symmetries.

Besides, it is possible to introduce the second canonical forms L̂can and Mcan for
the matrices L̂ and M , respectively, generating the algebras L̂(R) andU (gl(N )), and
to perform a reduction of the matrices L̂ and M in a way suggested in [1]. Upon
replacing the matrix L in (3.3) by L̂ and M , respectively, we get formulae similar to
(3.4).

Remark 6 There are other matrices with entries from the algebras under consideration
for which quantum analogs of the CH identity exist. First, consider the enveloping
algebraU (gl(N )). Its generatingmatrixM belongs to the so-calledKirillov’s quantum
family algebra (see [15])

(U (gl(N )) ⊗ End(V ))gl(N ). (3.6)

Upon replacing V by other irreducible U (gl(N ))-modules, we get other quantum
family algebras. For their generating matrices, characteristic polynomials can be also
found. Note that in the algebra L̂(R), a q-analog of (3.6) is

(L̂ ⊗ End(V ))Uq (sl(N )).

1 Note that the defining relations on the generators m j
i of the algebra U (gl(N ))

m j
i m

l
k − ml

k m
j
i = ml

i δ
j
k − m j

k δ
l
i ,

can be written in a matrix form with the use of the generating N × N matrix M = ‖m j
i ‖:

P M1 P M1 − M1 P M1 P = P M1 − M1 P.
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Changing L̂ for L, we get a “q-family algebra” for the algebra L(R).

4 DS reduction in braided Yangians

Now, consider a braided Yangian (2.5). Using notation (2.6), we can represent the
defining system of this algebra as follows:

R(u, v) L1(u) L2(v) = L1(v) L2(u) R(u, v).

First, we assume R to be an involutive symmetry of bi-rank (m|0) and the corre-
sponding R-matrix R(u, v) to be given by the first formula (2.3).

In this case, we get the recurrence formula defining the skew-symmetrizers A(k)

by putting q = 1 in (2.9). Thus, we have

A(k) = 1

k
A(k−1) (I − (k − 1)Rk−1)A(k−1).

Let us, respectively, introduce the quantum elementary symmetric elements and the
quantum matrix powers of L(u) as follows:

e0(u) = 1, ek(u) = TrR(1...k)

(
A(k)L1(u)L2(u − 1) . . . Lk(u − (k − 1))

)
, k ≥ 1,

L [0](u) = I, L [k](u) = L(u − (k − 1)) . . . L(u − 1)L(u), k ≥ 1.

Then, the following CH identity is valid for the generating matrix L(u) (see [10,11])

m∑

k=0

(−1)k L [m−k](u − k)ek(u) = 0. (4.1)

Consider the operator L(u)e∂u , where ∂u = d
du . Our current aim is to give an explicit

canonical form Lcan(u)e∂u of this operator and to show that the operators L(u)e∂u and
Lcan(u)e∂u are similar in the sense of formula (3.4).

Note that as Lcan(u), we use the matrix transposed to (3.2). This is motivated by the
fact that the coefficients ep(u) in the CH identity (4.1) are on the right-hand side from
the factors L [k](u). (Note that in the RE algebras, these canonical forms are equivalent
due to the centrality of the coefficients σk(L).)

So, the matrix Lcan(u) reads

Lcan(u) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 am(u)

1 0 . . . 0 0 am−1(u)

0 1 . . . 0 0 am−2(u)

. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 a2(u)

0 0 . . . 0 1 a1(u)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.2)

123



2312 D. Gurevich et al.

Let again v ∈ V be an arbitrary nontrivial vector. Constitute an N × N matrix

C(u) =
(
v, L(u)v, L [2](u + 1)v . . . L [k](u + k − 1))v . . . L [m−1](u + m − 2)v

)

where v stands for the corresponding column.

Theorem 7 The following relation holds true

L(u)e∂uC(u) = C(u)Lcan(u)e∂u , (4.3)

provided the entries ak(u) are of the form:

ak(u) = (−1)k+1 ek(u + m − 1).

Proof By using the evident relation

e∂u f (u) = f (u + 1)e∂u ,

and canceling the operator e∂u , we can present (4.3) in the form

L(u)C(u + 1) = C(u)Lcan(u). (4.4)

The equality of the corresponding matrix columns in (4.4), except for the last ones,
immediately follows from the relation

L(u)L [k](u + k) = L [k+1](u + k). (4.5)

As for the last columns, their equality follows from the CH identity (4.1). ��
Now, assume R(u, v) to be defined by the second formula (2.3). Let us, respectively,

define the quantum elementary symmetric elements and quantum matrix powers by

e0(u) = 1, ek(u) = TrR(1...k)

(
A(k)L1(u)L2(q

−2u) . . . Lk(q
−2(k−1)u)

)
, k ≥ 1,

L [0](u) = I, L [k](u) = L(q−2(k−1)u)L(q−2(k−2)u) . . . L(u), k ≥ 1.

Then, the following form of the CH identity is valid for the generating matrix L(u)

(see [10,11])
m∑

k=0

(− q)k L [m−k](q−2ku)ek(u) = 0. (4.6)

Consider the operator L(u)q2u∂u and constitute the following matrix:

C(u) =
(
v, L(u)v, L [2](q2u)v . . . L [k](q2(k−1)u)v . . . L [m−1](q2(m−2)u)v

)
, (4.7)

where v stands for the corresponding column.
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Theorem 8 The following identity holds

L(u)q2u∂uC(u) = C(u)Lcan(u)q2u∂u , (4.8)

where the matrix Lcan(u) is given by (4.2) provided the entries ak(u) are defined by

ak(u) = − (−q)k ek(q
2(m−1)u).

Proof Now, we use the following relation:

q2u∂u f (u) = f (q2u)q2u∂u .

Then, upon canceling the factor q2u∂u , we rewrite (4.8) as

L(u)C(q2u) = C(u)Lcan(u). (4.9)

Also, instead of (4.5), we use the relation

L(u)L [k](q2ku) = L [k+1](q2ku).

This relation entails the equality of the corresponding matrix columns in (4.9), except
for the last ones. The equality of the last columns follows from (4.6). ��

In conclusion, we want to remark that if R is an involutive or Hecke symmetry
of bi-rank (m|n) with n �= 0, the quantum analogs of all symmetric elements can
also be defined and the CH identities can be found in the corresponding RTT and
RE algebras (see [8]). The reduction formulae for the generating matrices of the RE
algebras [analogous to (3.4)] can be also established. The peculiarity of bi-rank (m|n)

case with n �= 0 is that the coefficients of the canonical matrix Lcan (3.2) are ratios of
the symmetric Schur polynomials. As for the braided Yangians connected with such
symmetries R, the corresponding Schur polynomials are not constructed yet. This fact
is the main obstacle to constructing the corresponding CH identity and DS reduction.
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