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1 Introduction

The Seiberg–Witten theory [2,3] provides an illuminating geometrical description of
the Coulomb branch of the moduli space of vacua Mvacua of the four-dimensional
N = 2 gauge theory: the space Mvacua is the base of a certain algebraic integrable
system associated to the 4dN = 2 gauge theory [4–7]. The abelian varieties appearing
in the fibers of the algebraic integrable system can be realized as Jacobian (Prym)
varieties of certain spectral algebraic curve called Seiberg–Witten curve.

A typical example of an integrable system associated toN = 2 gauge theory is the
affinen-particleTodamodel associated to the pure vectorN = 2U (n)gaugemultiplet.
Another example is the classical limit of SU (2) rational r -matrix spin chain, which is
associated to U (n) theory with nf = 2n fundamental matter hypermultiplets [8].

For N = 2 gauge theory with the gauge group ×iU (ni ), and with matter hyper-
multiplets in the fundamental and bifundamental representations, encoded by a quiver
graph�, the corresponding integrable system is the integrable system ofmonopoles on
R
2 × S1 with gauge group G� , whose Dynkin diagram is given by the graph � [9,10].

Quantization of this integrable system is described by means of the Yangian algebra
Y(g�), which is also underlying symmetry algebra of rational r -matrix g� spin chain.

Similarly, the correspondence holds for 5d �-quiver gauge theory compactified on
S1, or 6d �-quiver gauge theory compactified on T 2: the respective integrable system
is the integrable system of G�-monopoles on R × T 2 (integrable g�-spin chains
with trigonometric r -matrix) or G�-monopoles on T 3 (integrable g�-spin chains with
elliptic r -matrix).

The quantization of the algebraic integrable system with Planck parameter h̄ cor-
responds to the equivariant deformation R

4
ε1,ε2

of the space-time of the gauge theory
[11,12] in the limit (ε1, ε2) = (h̄, 0), and the supersymmetric vacua of the gauge
theory onR4

h̄,0 are identified with the spectrum of quantum integrable system [13,14].
After quantization the classical spectral curve (Seiberg–Witten curve) is promoted

to theBaxter’s TQ-relation (for linear chain quivers), or,more generally, to the equation
that states that the q-character [15] evaluated on a certain element of quantum affine
algebra is a polynomial function of the spectral parameter [16]. The polynomiality
conjecture of [15] has been proven in [17].

The polynomial equation still holds for generic equivariant parameters (ε1, ε2) if
the q-character is replaced by a certain algebraic object. This object is called q1q2-
character in [18], and in [1] this object was shown to be a generating current of
Wq1,q2(g�) algebra of [19], a generalization of q-Virasoro algebra of [20,21]. (See
also [22] for realization of qq-character as a defect partition function).
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Quiver elliptic W-algebras 1385

The gauge theory construction naturally involves bifundamental mass parameter
μe assigned to each quiver edge e ∈ �1. The cohomology class [μ] ∈ H1(�,C×) is
a non-trivial parameter of the algebra (not considered in [19]).

The construction of the algebra Wq1,q2(slr+1) associated to quiver gauge theory
with r nodes explains the 5d version [23] of the AGT relation [24] for linear slr+1-
type quivers, with U (n)r gauge group, when combined with r ↔ n duality [25] of
topological string partition function computed by topological vertex [26–29]. (See also
manifestation of the above duality as a spectral duality of integrable systems [30].)

In this paper, we generalize our construction [1] to the case of elliptic W-algebra
using a six-dimensional quiver gauge theory compactified on a two-torus Ť 2. Equiva-
lently, under the T-duality for an affine ADE quiver �, this gauge theory is realized on
a stack of fractional D3 branes in IIB string theory onR4 × T 2 ×R

4/�̃. HereR4/�̃ is
the ADE singularity where �̃ ⊂ SU (2) is McKay associated discrete subgroup, and
T 2 is the dual torus to Ť 2; see [10] for more details. The complex integrable system
remembers only the complex structure of the torus T 2. We denote by p = e2π ıτ the
multiplicative modulus of the underlying elliptic curve, so that as a complex vari-
ety the compactification torus T 2 is isomorphic to C

×/pZ or to C/(Z + Zτ). The
multiplicative spectral parameter x ∈ C

×/pZ is periodic

x � px (1.1)

Our construction is similar to the case of the 5d gauge theory compactified on a
circle S1 [1], and thus is applicable to generic quiver in principle. However, because
of the modular anomalies, we find satisfactory physical interpretation only for ‘con-
formal’ quivers, those are the quivers for which the corresponding 4d N = 2 theory
is conformal.

Recently, the elliptic deformation of W-algebra for A-type quivers has been also
discussed in the context of topological string and supersymmetric gauge theory in [31,
32] and in [33–36]. See also [37–40] for elliptic generalizations. Our construction
generalizes these results to generic quiver.

2 Elliptic quiver gauge theory

2.1 Quiver

We use the notations of [1].
Let � be a quiver with the set of nodes �0 and the set of edges �1. The nodes are

typically labeled by i, j ∈ �0. For an edge e we denote its source node by s(e) and its
target node by t (e) or write e : i → j .

A quiver � defines |�0| × |�0| matrix (ci j )

ci j = 2δi j − #(e : i → j) − #(e : j → i) , (2.1)

called the quiver Cartan matrix, which is symmetric. If there are no loops, all the
diagonal elements are equal to 2, and such a matrix defines Kac–Moody algebra g(�)

with Dynkin diagram �.
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1386 T. Kimura, V. Pestun

2.2 Elliptic index

The six-dimensionalNekrasov’s partition function is defined by the elliptic index of the
instanton moduli space. Let τ be the modulus of the torus on which a six-dimensional
theory is compactified, and put p = e2πιτ . The elliptic index functor Ip converts
additive Chern character class to the multiplicative elliptic class

Ip

[∑
i

xi

]
=
∏
i

θ(x−1
i ; p) (2.2)

where the short Jacobi theta function is

θ(x; p) = (x; p)∞(px−1; p)∞ = exp

⎛
⎝−
∑
m �=0

xm

m(1 − pm)

⎞
⎠. (2.3)

Weassume p < 1 in this paper.Notice that our conventions are different fromRef. [16],
which uses another version of theta function

θ1(x; p) = ιp
1
8 (p; p)∞x− 1

2 θ(x; p). (2.4)

The index functor behaves under the reflection as follows,

Ip
[
X∨] =

{
(−1)rkX (detX) Ip [X] (θ -version)

(−1)rkXIp [X] (θ1-version)
(2.5)

because of

θ(x; p) = (−x) θ(x−1; p). (2.6)

In the 5d limit the two versions correspond to the Dolbeault vs Dirac conventions. In
this paper we will use the Dolbeault convention.1 In the limit p → 0, the 6d index is
reduced to the 5d index

lim
p→0

θ(x−1; p) = 1 − x−1 . (2.7)

For conformal quivers the two versions are equivalent.
To construct W-algebras from quiver gauge theory, we need to incorporate the

higher time variables [47], so that the gauge theory partition function becomes a
generating function of the observables. The fixed points are labeled by partitions
(λi,α,k)α∈[1...ni ], k∈[1...∞]. We introduce a set of variables

1 The Dirac convention is also often used in the literature, for example, [16,41–44], while Refs. [31,32,
45,46] use the Dolbeault.
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Quiver elliptic W-algebras 1387

Xi = {xi,α,k}α∈[1...ni ], k∈[1...∞] , xi,α,k = νi,αq
k−1
1 q

λi,α,k
2 , X =

⊔
i∈�0

Xi

(2.8)

where ni ∈ Z≥1 is the rank of gauge group U (ni ) assigned to the node i ∈ �0, and
(νi,α)i∈�0, α∈[1...ni ] are the exponentiatedCoulombmoduli parameters. Let i : X → �0
be the node label such that i(x) = i for x ∈ Xi . The time variables give rise to the
potential term in the partition function

exp

( ∞∑
m=1

t (±)
i,m Y[±m]

i

)
(2.9)

where Y[m]
i are fundamental observables of the quiver gauge theory [10,16]

Y[m]
i = 1 − qm1

1 − pm
∑
x∈Xi

xm . (2.10)

with the notation Y[−m]
i = (Y[m]

i )∨. Notice that we need to introduce twice as many
time higher time variables compared to the 5d case [1], which is reflected by the extra
plus/minus label. This is the specifics of the elliptic algebras [45,48].

2.3 Partition function

The extended partition function ZT(t) can be computed using the localization formula
for theT-fixed points in themoduli spaceM, characterized by a set of partitions λ [12]:

ZT(t) =
∑

X∈MT

exp

⎛
⎝−

∑
(xL ,xR)∈�2X

∑
m �=0

1 − qm1
m(1 − pm)(1 − q−m

2 )

(
c+
i(xL ),i(xR)

)[m] xmR
xmL

⎞
⎠

× exp

(∑
x∈X

(
log qi(x) logq2

x

x̊
+

∞∑
m=1

(
1 − qm1
1 − pm

t (+)

i(x),m xm + 1 − q−m
1

1 − p−m
t (−)

i(x),m x−m

)))

(2.11)

where qi is the coupling constant for the node i ∈ �0, and x̊i,α,k = νi,αq
k−1
1 ∈ X0

denotes the ground configuration corresponding to the empty partition λ = ∅. The
factor logq2

(
x/x̊
)
counts the number of boxes in the partition λ. The ‘positive’ part

of the Cartan matrix is defined to be

c+
i j = δi j −

∑
e:i→ j

μ−1
e (2.12)

where the multiplicative bifundamental mass parameters μe ∈ C
× are assigned to

edges e ∈ �1, and
(
c+
i j

)[m]
is obtained by replacing μe with μm

e , which is the m-th
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1388 T. Kimura, V. Pestun

Adams operation. In particular, the vector and bifundamental hypermultiplet contri-
butions are given by

Zvec
i =

∏
(x,x ′)∈Xi×Xi

�
(
q
x

x ′ ; q2, p
)−1

�
(
q2

x

x ′ ; q2, p
)

, (2.13)

Zbf
e:i→ j =

∏
(x,x ′)∈Xi×X j

�
(
μ−1
e q

x

x ′ ; q2, p
)

�
(
μ−1
e q2

x

x ′ ; q2, p
)−1

, (2.14)

where the elliptic gamma function is defined

�(x; p, q) = exp

⎛
⎝∑

m �=0

xm

m(1 − pm)(1 − qm)

⎞
⎠ . (2.15)

Fundamental matter can be realized by a shift of higher time variables. To add a
fundamental factor with mass parameter μ ∈ C

× to the node i ∈ �0 one should shift

t (±)
i,m −→ t (±)

i,m ± μ∓mq±m

m(1 − q±m
1 )(1 − q±m

2 )
. (2.16)

As mentioned in Sect. 3.5, this shift of t-variables is equivalent to inserting a vertex
operator. See also [31,49].

In contrast to 4d and 5d theories, the matter content of 6d theory is restricted due to
the gauge anomaly, which is directly related to the modularity of elliptic theory. The
theory is anomaly free if for all nodes i ∈ �0

ci jn j = nfi + ñfi (2.17)

where ci j is the Cartan matrix associated with the quiver diagram � (2.1), and nfi and
ñfi are the numbers of fundamental and antifundamental multiplets for the node i . The
phase space of the algebraic integrable system associated to the Coulomb branch of the
6d theory compactified on Ť 2 is the moduli space of G�-monopoles with singularities
on T 2× S1. The Dirac singularities are associated to the fundamental mass multiplets,
and the total monopole charge is associated to the rank of the gauge group. On a
compact space T 2 × S1, because of the vanishing theorem, the total monopole charge
is necessarily balanced by the charge ofDirac singularities, and this leads to the balance
Eq. (2.17).

We introduce an order � on the set of eigenvalues X , which is essentially the
radial order in CFT. Then the sum over (xL , xR) ∈ �2X in the partition function is
decomposed into the sum over the pairs (xL � xR) and (xL ≺ xR), and the diagonal
terms (xL = xR). Since the diagonal part gives factors independent of the coupling
constant, the Coulomb moduli, and so on, we will omit it. Then, using the reflection
relation (2.5), the partition function is presented as a sum over the pairs (xL � xR)
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Quiver elliptic W-algebras 1389

ZT(t) =
∑

X∈MT

exp

⎛
⎝−

∑
(xL�xR)

((
c+
i(xL ),i(xR)

)[0]
β log

xR
xL

+
∑
m �=0

1 − qm1
m(1 − pm)(1 − q−m

2 )

(
ci(xL ),i(xR)

)[m] xmR
xmL

⎞
⎠
⎞
⎠

× exp

(∑
x∈X

(
log qi(x) logq2

x

x̊

+
∞∑

m=1

(
1 − qm1
1 − pm

t (+)

i(x),m xm + 1 − q−m
1

1 − p−m
t (−)

i(x),m x−m

)))
(2.18)

where β = −ε1/ε2 and the mass-deformed Cartan matrix is [1]

ci j = c+
i j + c−

i j , c−
i j = q−1(c+

j i )
∨,

ci j = (1 + q−1)δi j −
∑
e:i→ j

μ−1
e −

∑
e: j→i

μeq
−1 , (2.19)

obeying the transpose relation

c ji = q−1c∨
i j . (2.20)

The Cartan matrix (2.1) is reproduced in the limit q → 1, μe → 1.

3 Operator formalism

3.1 Z-state

The gauge theory partition function ZT(t) (2.18) can be interpreted as a state in
the Fock space for the infinite-dimensional Heisenberg algebra H generated by
(t (±)
i,m , ∂

∂t (±)
i,m

)i∈�0,m∈Z>0 . The Fock space is generated from the vacuum state |1〉 by

the action of the operators t (±)
i,m . The vacuum state |1〉 is annihilated by the operators

∂

∂t (±)
i,m

.

The Z -state is presented as an ordered product of vertex operators Si(x),x acting on
the vacuum

|ZT〉 =
∑

X∈MT

�∏
x∈X

Si(x),x |1〉 , (3.1)
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1390 T. Kimura, V. Pestun

where

Si,x = : exp
⎛
⎝si,0 log x + s̃i,0 + κi

2

(
log2q2 x − logq2 x

)
+
∑
m �=0

(
s(+)
i,m x−m + s(−)

i,m x+m
)⎞⎠ :

(3.2)

The κi factor, which plays a similar role to the Chern–Simons term, is needed to obtain
the agreement between the gauge theory definition and the operator formalism. As
mentioned in Sect. 2.2, we need two sets of time variables for elliptic theory, denoted
by (t (+)

i,m )i∈�0,m∈Z>0 and (t (−)
i,m )i∈�0,m∈Z>0 . Then we introduce free field modes

s(±)
i,−m

m>0= 1 − q±m
1

1 − p±m
t (±)
i,m , si,0 = ti,0 , s(±)

i,m
m>0= ∓ 1

m(1 − q∓m
2 )

c[±m]
j i

∂

∂t (±)
j,m

.

(3.3)

The commutation relations are

[
s(±)
i,m , s(±)

j,m′
]

= ∓ 1 − q±m
1

m(1 − p±m)(1 − q∓m
2 )

c[±m]
j i δm+m′,0, (3.4)

For the zero mode si,0 we set by definition s(±)
i,0 = si,0 and

[
s̃i,0 , s(±)

j,m

]
= −β δm,0 c

[0]
j i . (3.5)

In the 5d limit p → 0, the modes s(−)
i,m become trivial because

− 1

1 − p−m
= pm

1 − pm
−→ 0 (p → 0). (3.6)

The Z -state (3.1) coincideswith the gauge theory definition of the partition function
(2.18) evaluated with the coupling constant

logq2 qi = β + ti,0 + n j

(
c−
j i

)[logq2 ] − logq2
(
(−1)n j ν j

) (
c−
j i

)[0]
(3.7)

where

νi =
ni∏

α=1

νi,α ,
(
c−
i j

)[logq2 ] = δi j logq2 q
−1 −

∑
e: j→i

logq2

(
q−1μe

)
, (3.8)

and the coefficients at all the nodes i ∈ �0 satisfy

κi = n j

(
c−
j i

)[0]
. (3.9)
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Quiver elliptic W-algebras 1391

3.2 Screening charge

The sum over the set of fixed pointsMT in the partition function (3.1) can be replaced
by the sum over ZX0 (see [1]):

|ZT〉 =
∑

X∈ZX0

�∏
x∈X

Si(x),x |1〉 . (3.10)

Define ‘the screening charge operator’ to be:

Si,x̊ =
∑
k∈Z

Si,qk2 x̊
, (3.11)

Then the state |ZT〉 is obtained by the action of the ordered product of Si on the
vacuum state

|ZT〉 =
�∏

x̊∈X0

Si(x̊),x̊ |1〉 . (3.12)

The vacuum |1〉 of the Heisenberg algebra H is represented by a constant function
of the time variables t (±)

i,m , and is annihilated by all the ‘positive’ oscillators s(±)
i,m for

m > 0. The dual 〈1| to the vacuumstate is the linear formon the Fock space represented
by the evaluation of the functions of t (±)

i,m at t (±)
i,m = 0.

Thus the non-t-extended partition function can be presented as the correlator of the
screening charges [1] (and see also [49–51])

ZT(t = 0) = 〈1|ZT〉 = 〈1|
�∏

x̊∈X0

Si(x̊),x̊ |1〉 . (3.13)

3.3 Trace formula

Thinking in terms of the q-CFT on the torus, the correlator for 6d theory (3.13) can be
written in the trace form in terms of the operators of the 5d theory (up to a normalization
factor, which can be absorbed by redefinition of the gauge coupling constant)

ZT(t = 0) = Tr

⎡
⎣pL0

�∏
x̊∈X0

S5d
i(x̊),x̊

⎤
⎦ . (3.14)

Here the trace is taken over the Fock space of H with respect to the 5d time variables
{ti,m}i∈�0,i∈Z>0 , and the screening charge is also defined with the oscillators used in
5d theory [1]. The energy operator L0 is
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1392 T. Kimura, V. Pestun

L0 =
∑
i∈�0

∞∑
m=1

m ti,m
∂

∂ti,m
. (3.15)

The trace formula (3.14) can be obtained as follows.
Recall that the screening current correlatorwhich gives the 5d gauge theory partition

function is [1]

〈
S5di,x S

5d
j,x ′
〉
= exp

(
−

∞∑
m=1

1

m

1 − qm1
1 − q−m

2

c[m]
j i

x ′m

xm

)
. (3.16)

Here we omit the zero modes for brevity. There are two options to deform the 5d index
computed by (2.7) to the elliptic 6d index computed by (2.2).

The first option is to modify the oscillator algebra in such a way that the normal
ordering produces the elliptic correlation function, as defined in Sect. 3.1,

〈
S6di,x S

6d
j,x ′
〉
= exp

⎛
⎝−

∞∑
m �=0

1 − qm1
m(1 − pm)(1 − q−m

2 )
c[m]
j i

x ′m

xm

⎞
⎠ . (3.17)

The second option is to keep the free field oscillator commutation relations of the
5d theory of the correlator, but change the definition of the correlation function to the
trace as follows 〈

S5di,x S
5d
j,x ′
〉
torus

= Tr
[
pL0 S5di,x S

5d
j,x ′
]
. (3.18)

The proof of the equivalence

〈
S6di,x S

6d
j,x ′
〉
= Tr

[
pL0 S5di,x S

5d
j,x ′
]
, (3.19)

is in ‘Appendix A’. Then the trace formula (3.14) follows.
The physical meaning is as follows. For the 5d gauge theory we use the cylindrical

space-time for the q-Toda to compute the partition function, as shown in the top
panel of Fig. 1. For the 6d gauge theory we use the toric space-time for the q-Toda
obtained by the identification (1.1), illustrated in the LHS of Fig. 1 (bottom). This
corresponds to (3.13), and is actually equivalent to taking the trace with the operator
pL0 inserted. This trace version (3.14) also agrees with the spectral duality for elliptic
theory [31,32,34] because the dual theory isN = 2∗ theory (or cyclic quiver theory),
whose partition function is given by the torus conformal block via the q-version of
the AGT relation [24].

3.3.1 Connection to elliptic quantum group

It has been known that the q-deformation ofW-algebra has a close connection with the
elliptic quantum algebraUq,p (̂g): The screening current ofWq1,q2(g) obeys essentially
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× ×

× ×1 || 1
x̊∈X0

S5d
i(̊x),̊x

= ×

×1| Z5d
T

······

······

=

=××1 || 1
x̊∈X0

S6d
i(̊x),̊x

p−1x x px

Tr pL0 ×

(3.14)

Fig. 1 Conformal blocks as the partition function of 5d (top) and 6d theory (bottom). The 6d block has
two equivalent expressions

the same relation to the elliptic currents ei (z) and fi (z) of Uq,p (̂g) [52]. See [53] for
the relations for generic g. We see from (3.16) that the 5d screening currents yields

S5di,x S
5d
j,x ′ = S5dj,x ′ S5di,x × exp

⎛
⎝−
∑
m �=0

1

m

1 − qm1
1 − q−m

2

c[m]
j i

(
x ′

x

)m⎞⎠ (3.20)

where we omitted the zero mode factors for simplicity. One can rewrite the OPE
factor using the theta function (2.3). Swapping q1 ↔ q2 corresponds to swapping the
currents ei (z) ↔ fi (z).

From (3.17), on the other hand, we obtain exactly the same relation for the 6d
screening currents

S6di,x S
6d
j,x ′ = S6dj,x ′ S6di,x × exp

⎛
⎝−
∑
m �=0

1

m

1 − qm1
1 − q−m

2

c[m]
j i

(
x ′

x

)m⎞⎠ (3.21)

This coincidence implies that both the q-deformationWq1,q2(g) and the elliptic defor-
mation Wq1,q2,p(g) belong to the same realization of the elliptic quantum algebra
Uq,p (̂g).

3.4 Y-operator

To construct W-algebras we introduce Y-operators, corresponding to the doubled
potential term (2.9)
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Yi,x = q ρ̃i
1 : exp

⎛
⎝yi,0 − (c̃ j i )[0] κ j log x +

∑
m �=0

(
y(+)
i,m x−m + y(−)

i,m x+m
)⎞⎠ : ,

(3.22)

where ρ̃i is the Weyl vector defined by ρ̃i = ∑ j∈�0
c̃[0]
j i , and c̃i j is the inverse of

mass-deformed Cartan matrix ci j . The affine case with det(c
[0]
i j ) = 0 will be discussed

in Sec. 4.5. In the following, we set κi = 0 for ∀i ∈ �0 for simplicity.
The oscillators y(±)

i,m are defined in terms of t (±)
i,m and ∂

∂t (±)
i,m

y(±)
i,−m

m>0= (1 − q±m
1 )(1 − q±m

2 )

1 − p±m

(
c̃[∓m])

j i
t (±)
j,m , (3.23)

y(±)
i,m

m>0= ∓ 1

m

∂

∂t (±)
i,m

, (3.24)

yi,0 = −t j,0c̃
[0]
j i log q2. (3.25)

They satisfy the commutation relation:

[
y(±)
i,m , y(±)

j,m′
]

= ∓ 1

m

(1 − q±m
1 )(1 − q±m

2 )

1 − p±m
(c̃[∓m])i j δm+m′,0 . (3.26)

In terms of the free field s(±)
i,m , we have

y(±)
i,m

m �=0= (1 − q∓m
2 )c̃[±m]

j i s(±)
j,m , yi,0 =

(
log q−1

2

)
c̃[0]
j i s j,0 , (3.27)

hence the [y, s] commutation relations are

[
y(±)
i,m , s(±)

j,m′
]

= ∓ 1

m

1 − q±m
1

1 − p±m
δm+m′,0δi j ,

[
s̃i,0 , y j,0

] = −δi j log q1 . (3.28)

This leads to the normal ordered product (with the ordering |x | > |x ′|)

Yi,x Si,x ′ = θ(x ′/x; p)
θ(q1x ′/x; p) : Yi,x Si,x ′ : , Yi,x S j,x ′ = : Yi,x S j,x ′ : for i �= j .

(3.29)

The expectation value of the Y-function has infinitely many poles at x = x ′q1 pn for
∀n ∈ Z for each configuration X ∈ MT that labels the insertion of the screening
currents:

〈1|Yi,x

�∏
x ′∈X

Si(i),x ′ |1〉 = q ρ̃i
1

⎛
⎝ ∏

x ′∈Xi

θ(x ′/x; p)
θ(q1x ′/x; p)

⎞
⎠ 〈1|

�∏
x ′∈X

Si(i),x ′ |1〉 . (3.30)
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On the other hand, for |x | < |x ′|, we have

Si,x ′Yi,x = q−1
1

θ(x/x ′; p)
θ(q−1

1 x/x ′; p) : Yi,x Si,x ′ : . (3.31)

Therefore the commutator gives

[
Yi,x , Si,x ′

] =
(

θ(x ′/x; p)
θ(q1x ′/x; p) − q−1

1
θ(x/x ′; p)

θ(q−1
1 x/x ′; p)

)
: Yi,x Si,x ′ :

= θ(q−1
1 ; p)

(p; p)2∞
δ(q1x

′/x) : Yi,x Si,x ′ : . (3.32)

The last expression is due to the identity [45]

θ(az; p)
θ(z; p) = θ(a; p)

(p; p)2∞
∑
n∈Z

zn

1 − apn
, (3.33)

which is obtained by using Ramanujan’s summation formula with the delta function
defined

δ(x) =
∑
n∈Z

xn . (3.34)

This means that, in the limit q1 → 1, the Y-operator commutes with the screening
current, and it reproduces a commutative algebra [16].

3.5 V-operator

We can incorporate the (anti)fundamental matter contribution in the operator formal-
ism by considering another vertex operator,

Vi,x = : exp
⎛
⎝∑

m �=0

(
v

(+)
i,m x−m + v

(−)
i,m x+m

)⎞⎠ : . (3.35)

To reproduce the t-variable shift (2.16), the oscillators are taken to be

v
(±)
i,−m

m>0= − 1

1 − p±m
c̃[±m]
j i t (±)

j,m , v
(±)
i,m

m>0= ± 1

m

1(
1 − q±m

1

) (
1 − q±m

2

) ∂

∂t (±)
i,m

,

(3.36)

and the commutation relation[
v

(±)
i,m , s(±)

j,m′
]

= ± 1

m(1 − p±m)(1 − q±m
2 )

δm+m′,0δi j . (3.37)
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We remark

v
(±)
i,m = − 1(

1 − q±m
1

) (
1 − q±m

2

) y(±)
i,m . (3.38)

The product of V and S operators behaves

Vi,xSi,x ′ = �

(
x ′

x
; p, q2

)
: Vi,xSi,x ′ : , (3.39)

Si,x ′Vi,x = �
( x
x ′ ; p, q2

)−1 : Vi,xSi,x ′ : , (3.40)

which corresponds to the fundamental and antifundamental matter factors, respec-
tively, while theOPEofV andV does not yield dynamical contribution. The t-extended
partition function with the (anti)fundamental matter factors is given by

|ZT〉 =
⎛
⎝∏

x∈Xf

Vi(x),x

⎞
⎠
⎛
⎝ �∏

x̊∈X0

Si(x̊),x̊

⎞
⎠
⎛
⎝∏

x∈X̃f

Vi(x),x

⎞
⎠ |1〉 (3.41)

where Xf = {μi, f }i∈�0, f ∈[1,...,nfi ] and X̃f = {μ̃i, f }i∈�0, f ∈[1,...,ñfi ] are sets of
(anti)fundamental mass parameters. This mass parameter characterizes the pole on
the elliptic curve at x = μi, f , which is added by the vertex operator Vi(x),x with
x ∈ Xf and X̃f.

We again remark that, for the modular invariance of the non-extended partition
function 〈1|ZT〉, which is a conformal block of W (�)-algebra, we have to take into
account the conformal condition (2.17), although the Z -state (3.41) is not necessarily
modular invariant by itself.

4 Elliptic W-algebra

To construct quiver ellipticW-algebraswe build holomorphic qq-character currents [1,
18] (see also [54,55]).

4.1 A1 quiver

For the simplest quiver � = A1, the qq-character is

T1,x = Y1,x + Y−1
1,q−1x

. (4.1)

Let us show that T1,x commutes with the screening charge S1,x ′ , which assures the
regularity of the qq-character.
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Here are the possible terms appearing in the commutation relation between the
qq-character and the screening current,

Y1,x S1,x ′ = θ(x ′/x; p)
θ(q1x ′/x; p) : Y1,x S1,x ′ : , (4.2)

S1,x ′Y1,x = q−1
1

θ(x/x ′; p)
θ(q−1

1 x/x ′; p) : S1,x ′Y1,x : , (4.3)

Y−1
1,q−1x

S1,x ′′ = θ(qq1x ′′/x; p)
θ(qx ′′/x; p) : Y−1

1,q−1x
S1,x ′′ : , (4.4)

S1,x ′′Y−1
1,q−1x

= q1
θ(q−1q−1

1 x/x ′′; p)
θ(q−1x/x ′′; p) : S1,x ′′Y−1

1,q−1x
: . (4.5)

As shown in (3.29), the first two terms possibly have infinitely many poles at x =
x ′q1 pn for n ∈ Z, while the last two terms involve poles at x = x ′′qpn . These poles
are actually canceled with each other because the screening charge is defined as a sum
over the screening current under the q2-shift: there is a term S1,x ′′ with x ′ = q2x ′′ for
every S1,x ′ . Using the relation

q−1
1 : Y1,xY1,q−1x : = : S1,q−1x S

−1
1,q−1

1 x
: , (4.6)

we can show that the residue of the first term (4.2) at x = x ′q1 pn coincides with that
of the fourth term (4.5) at x = x ′′qpn for ∀n ∈ Z with x ′ = x ′′q2,

Res
x→x ′q1 pn

[
Y1,x S1,x ′

]
= Res

x→x ′q1 pn

[
S1,x ′q−1

2
Y−1
1,xq−1

]
. (4.7)

Similarly we have a coincidence of (4.3) and (4.4),

Res
x→x ′q1 pn

[
S1,x ′Y1,x

]
= Res

x→x ′q1 pn

[
Y−1
1,xq−1 S1,x ′q−1

1

]
. (4.8)

This shows that the regularity of the qq-character for elliptic A1 theory

∂x̄ T1,x |ZT〉 = 0 , (4.9)

which is equivalent to the commutativity of the holomorphic current with the screening
charge, [

T1,x , S1,x ′
]

= 0 . (4.10)

The commutant of the screening charge is a well-defined conserved current, which
provides time-independent modes

T1,x =
∑
m∈Z

T1,m x−m . (4.11)
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The modes of this conserved current define the elliptic algebra Wq1,q2,p(A1) as the
subalgebra of the Heisenberg algebra H (the A1 case was discussed in [31,32]).

4.2 Higher weight current and collision

We can compute the higher weight current T [w]
i,x using the free field representation of

the vertex operator. For A1 quiver, the degree two current plays an important role in
the definition of the elliptic algebra Wq1,q2,p(A1). The product is given by

T1,w1x T1,w2x =
(
Y1,w1x + Y−1

1,w1xq−1

) (
Y1,w2x + Y−1

1,w2xq−1

)
= f (w2/w1)

−1
(

: Y1,w1xY1,w2x :
+ S(w1/w2) : Y1,w1xY

−1
1,w2xq−1 : + S(w2/w1) : Y1,w2xY

−1
1,w1xq−1 :

+ : Y−1
1,w1xq−1Y

−1
1,w2xq−1 :

)
(4.12)

where the scalar factor

f (w) = exp

⎛
⎝∑

m �=0

(1 − qm1 )(1 − qm2 )

m(1 − pm)(1 + qm)
wm

⎞
⎠ (4.13)

which appears in the algebraic relation of the elliptic Virasoro algebra Wq1,q2,p(A1)

[32], and the permutation factor

S(w) = θ(q1w; p)θ(q2w; p)
θ(w; p)θ(qw; p) . (4.14)

Notice the relation

f (w) f (qw) = S(w) . (4.15)

We obtain the commutation relation for the elliptic Virasoro generators, defined as the
modes of the holomorphic current, from the product expression

f (w2/w1)T1,w1x T1,w2x − f (w1/w2)T1,w2x T1,w1x

= θ(q1; p)θ(q2; p)
(p; p)2∞θ(q; p)

(
δ

(
q

w1

w2

)
− δ

(
q

w2

w1

))
. (4.16)

The degree n current with the weight (w1, . . . , wn) is computed in a similar way

T [w]
1,x = : Y1,w1xY1,w2x · · ·Y1,wn : + · · ·

=
∑

I∪J={1...n}

∏
i∈I, j∈J

S

(
wi

w j

)
:
∏
i∈I

Y1,wi x

∏
j∈J

Y−1
1,w j xq−1 : . (4.17)
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Algebraically, this expression is exactly the same as in theWq1,q2(A1)-algebra [1,18],
except that the factor S(w) is replaced by the elliptic index version.

In addition, we can consider the collision limit of the currents which produces
derivative terms. For example, the product of the currents Y1,xY1,wx in the limit
w → 1 gives

S (w) : Y1,wxY
−1
1,xq−1 : + S

(
w−1
)

: Y1,xY
−1
1,wxq−1 :

w→1−→ : Y1,xY
−1
1,xq−1

(
c(q1, q2, p) − θ(q1; p)θ(q2; p)

(p; p)2∞θ(q; p) x∂x log
(
Y1,xY1,xq−1

)) : .

(4.18)

The coefficient is given by

c(q1, q2, p) = lim
w→1

(
S(w) + S(w−1)

)
, (4.19)

which is finite, although the factor S(w) itself has a pole at w = 1.

4.3 Generic quiver

Now we have an algorithm to compute the qq-character for generic quiver. The fun-
damental qq-character corresponding to the node i ∈ �0 starts with Yi,x , and the
following terms are generated by the iWeyl reflection [1,10,16,18]:

Ti,x = Yi,x + : Y−1
i,xq−1

∏
e:i→ j

Y j,μ−1
e x

∏
e: j→i

Y j,μeq−1x : + · · · . (4.20)

If there is a product of the same Y-operators in a term, we apply the permutation
factor (4.14). We can prove the regularity of this current, and the commutativity with
the screening charge in exactly the same way as in [1],

[
Ti,x , Si,x ′

]
= 0 . (4.21)

Similarly, the holomorphic current Ti,x generates well-defined modes, which define
the elliptic algebra Wq1,q2,p(�).

4.4 Ar quiver

We consider an example of a linear quiver Ar , which leads to the elliptic algebra
Wq1,q2,p(Ar ). The iWeyl reflection computes the qq-character for each node i ∈ �0,

Ti,μ−1
1⇒i x

=
∑

1≤ j1<···< ji≤r+1

:
i∏

k=1

� jk ,q−i+k x : (4.22)
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where

�i,x = Yi,μ−1
1⇒i x

Y−1
i−1,μ−1

1⇒i−1q
−1x

(4.23)

with Y0,x = Yr+1,x = 1 and the mass product defined

μ1⇒i := μ1→2μ2→3 · · ·μi−1→i =
i−1∏
j=1

μ j→ j+1 . (4.24)

Remark that

:
r+1∏
i=1

�i,qi−1x := 1 . (4.25)

This is the mass-deformed quantum Miura transformation of Ar theory. For example,
the first character, corresponding to the fundamental representation, is given by

T1,x =
r+1∑
i=1

�i,x

= Y1,x+ : Y2,μ−1
1⇒2x

Y−1
1,q−1x

: + · · · + : Y−1
r,μ−1

1⇒r q
−1x

: . (4.26)

4.5 ̂A0 quiver

So far we have assumed that there is no self-connecting edge (a loop) in a quiver. Let
us now study an example having a single node with a self-connecting edge, called Â0
quiver (corresponding to 4d N = 2∗ gauge theory), whose Cartan matrix is (0) and
its mass-deformation is given by [1]

c = 1 + q−1 − μ−1 − μq−1 . (4.27)

where μ ∈ C
× is the multiplicative adjoint mass. Then the commutation relation for

the free field y(±)
i,m (3.26) becomes

[
y(±)
1,m , y(±)

1,m′
]

= ∓ 1

m

(1 − q±m
1 )(1 − q±m

2 )

(1 − p±m)(1 − μ±m)(1 − μ∓mq±m)
δm+m′,0 . (4.28)

The generating current is obtained from the iWeyl reflection

Y1,x + q S(μ−1) : Y−1
1,xq−1Y1,μ−1xY1,μq−1x : , (4.29)
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which provides a closed formula

T1,x =
∑
λ

q|λ|Z Â0
λ (q̃1, q̃2, ν̃, μ̃) :

∏
s∈∂+λ

Y1,qx/x̃(s)

∏
s∈∂−λ

Y−1
1,x/x̃(s) : , (4.30)

where ∂+λ and ∂−λ are the outer and inner boundary of the partition λ, and we define

x̃(s) = (μ−1q)s1−1μs2−1q . (4.31)

The factor Z Â0
λ (q̃1, q̃2, ν̃, μ̃) is the elliptic Nekrasov function for Â0 quiver (N = 2∗

theory) withU (1) gauge node, evaluated at the partition λwith the ‘dual’ variables [1,
16]

q̃1 = μ−1q , q̃2 = μ , μ̃ = q2 , ν̃ = q , (4.32)

so that (4.31) leads to the dual of x-variable x̃(k, λk +1) = x̃k ∈ X̃ where (k, λ+1) ∈
∂+λ.

The current (4.30) is an infinite sum over partitions. Notice that for degenerate
Cartan matrix it is not possible to absorb the zero mode coupling constant q to the
definition of the Y, and q appears explicitly in the expression for T1,x . For |q| < 1 the
infinite sum over the partitions converges by the same argument as the convergence of
the generating function for the number of partitions

∑∞
k=0 nkq

k =∏∞
p=1(1 − qp)−1.

We define the affine elliptic algebra Wq1,q2,p( Â0) as generated by the modes T̃1,n of

current T1,x = ∑∞
n=−∞ T̃1,nx−n . For a current T [w]

1,x of higher weight w1 the sum is
labeled by w-colored partitions [1,18].
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Appendix A: Proof of trace formula (3.19)

In this Appendix we prove the equivalence (3.19) using the coherent state basis.

A.1 Coherent state basis

The argument in this part is essentially parallel to the textbook [56].
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For oscillator algebra generated by (t, ∂t )with [∂t , t] = 1 we consider the coherent
state basis in the Fock space

|n〉 = tn√
n! |0〉 , 〈n| = 〈0| ∂n√

n! , |z) = ezt |0〉 , (z| = 〈0| ez∗∂ (A.1)

The normalization is

〈n|m〉 = δn,m , (z|w) = ez
∗w . (A.2)

The states in (A.1) are eigenstates of the filling number operator t∂ |n〉 = n |n〉 and
the annihilation/creation operators ∂|z) = z|z), (z|t = (z|z∗. Notice that the operator
at∂t acts on the states |z) and (z| as,

at∂t |z) = |az) , (z|at∂t = (a∗z| . (A.3)

The identity operator can be expressed in terms of the coherent state basis:

1 = 1

π

∫
d2z |z)e−|z|2(z| (A.4)

where

〈n|1|m〉 = δn,m , (A.5)

so that the trace of an operator is

TrO = 1

π

∫
d2z e−|z|2(z|O|z) . (A.6)

Then we find [57]

Tr
[
at∂eb∂ect

]
= 1

1 − a
exp

(
abc

1 − a

)
(A.7)

because

1

π

∫
d2z e−|z|2(z|at∂t ebt ec∂t |z) = 1

π

∫
d2z e−(1−a)|z|2+abz∗+cz . (A.8)

A.2 Torus correlation function

Let us compute the torus correlation function (3.18). The product of the 5d screening
currents is given by

S5di,x S
5d
j,x ′ = exp

(
−

∞∑
m=1

1

m

1 − qm1
1 − q−m

2

c[m]
j i

x ′m

xm

)
: S5di,x S5dj,x ′ : . (A.9)
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Then we compute the trace part

Tr
[
pL0 : S5di,x S5dj,x ′ :

]

= Tr

[⎛⎝∏
i ′∈�0

∞∏
n=1

pnti ′,n∂i ′,n

⎞
⎠ exp

( ∞∑
n=1

(1 − qn1 )
(
xnti,n + x ′nt j,n

))

× exp

( ∞∑
n=1

− 1

n(1 − q−n
2 )

(
x−nc[n]

ki ∂k,n + x ′−nc[n]
l j ∂l,n

))]

= exp

( ∞∑
n=1

(
− 1 − qn1
n(1 − q−n

2 )

pn

1 − pn
c[n]
j i

x ′n

xn
+ 1 − q−n

1

n(1 − qn2 )

1

1 − p−n
c[−n]
j i

xn

x ′n

))

× const (A.10)

where we have used the formulas (A.7) and (2.20), and the constant term does not
contain x nor x ′. Thus we obtain the torus correlator

Tr
[
pL0 S5di,x S

5d
j,x ′
]

= exp

⎛
⎝−
∑
n �=0

1 − qn1
n(1 − q−n

2 )(1 − pn)
c[n]
j i

x ′n

xn

⎞
⎠ . (A.11)

This is equivalent to (3.17), and proves the relation (3.19).
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