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Abstract
We prove the absence of eigenvalues of the three-dimensional Dirac operator with
non-Hermitian potentials in unbounded regions of the complex plane under small-
ness conditions on the potentials in Lebesgue spaces. Our sufficient conditions are
quantitative and easily checkable.
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1 Introduction

Let us consider a relativistic quantum particle of spin 1
2 and massm ≥ 0 inR3, subject

to an external electric field described by a potential V . The dynamics is governed by
the Dirac Hamiltonian

HV := −i α · ∇ + m α4 + V (1)

acting in the Hilbert space of spinors H := L2(R3;C4). Here α := (α1, α2, α3)

with αμ being the usual 4×4HermitianDiracmatrices satisfying the anticommutation
rules

αμαν + αναμ = 2δμν IC4 (2)
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for μ, ν ∈ {1, . . . , 4} and the dot denotes the scalar product in R
3. Motivated by a

growing interest in non-self-adjoint operators in quantum mechanics (cf. [1] for a
mathematical overview), we proceed in a greater generality by allowing V to be a
possibly non-Hermitian 4 × 4 matrix in (1).

In the traditional self-adjoint case (i.e. V is a real scalar multiple of the diagonal
matrix), the literature on spectral properties of HV is enormous and we limit ourselves
to quoting the classical Thaller’s monograph [17]. For V being matrix-valued and
possibly non-Hermitian, a systematic study of the spectrum of HV was initiated by the
pioneering work of Cuenin, Laptev and Tretter [5] in the one-dimensional setting and
followed by [2,6,8]. Some spectral aspects in the present three-dimensional situation
are covered by [3,7,15].

In the field-free case (i.e. V = 0), it is well known that σ(H0) = (−∞,−m] ∪
[+m,+∞) and that the spectrum is purely continuous. That is, the residual spectrum
is empty and there are no eigenvalues. The objective of this paper is to derive quan-
titative smallness conditions on the potential V , which guarantee that the spectrum
of HV remains purely continuous, at least in certain regions of the complex plane.
Denoting by |V (x)| the operator norm of the matrix V (x) ∈ C

4×4 for almost every
fixed x ∈ R

3, the smallness is measured through Lebesgue norms of the real-valued
function |V |.

We present two types of results in this paper. The first reads as follows:

Theorem 1 Assume |V | ∈ L3(R3). If

C f (λ,m) ‖|V |‖L3(R3) < 1 (3)

with

C :=
(π

2

)1/3 √
1 + e−1 + 2e−2 and f (λ,m) :=

√√√√1 + (�λ)2(�√
m2 − λ2

)2 ,

then λ /∈ σp(HV ).

The hypothesis (3) is essentially a smallness requirement about V . In view ofKato’s
general smoothness theory [12] (see also [14, Sec. XIII.7]), it is not surprising that a
result of this type should hold for weakly coupled potentials. For the Dirac operator
in all dimensions, a similar result has been obtained by Cuenin [3, Thm. 6.1.b] (see
also [4, Thm. 1.4.6]). The strength of our result lies in that the condition is explicit and
easy to check in applications. Notice that C ≈ 1.5 and that f (λ,m) is finite if, and
only if, λ /∈ (−∞,−m] ∪ [+m,+∞). Consequently, the condition (3) is obeyed
for such λ whenever the norm ‖|V |‖L3(R3) is sufficiently small. Let us also remark
that f (λ,m) ∼ |λ|/|�(λ)| as |�(λ)| → +∞ and in fact f (λ, 0) = |λ|/|�(λ)| in the
massless case. We illustrate the dependence of f (λ,m) on λ in Fig. 1. We leave as an
open problem whether the asymptotic double cone is optimal.

Remark 1 An analogous result holds (with an unspecified constant) provided that
L3(R3) is replaced by the Lorentz space L3,∞(R3). Since this space in particular
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Fig. 1 Graph of the surface λ �→ f (λ,m) and its contour plot for m = 5

contains the Coulomb potential VZ (x) := −Z/|x |, which creates discrete eigenvalues
in the gap (−m,+m) whenever Z > 0, cf. [17, Sec. 7.4], we see that the presence of
a λ-dependent function f (λ,m) diverging as λ → ±m is in fact unavoidable in (3).

To get a more uniform control over the spectrum and exclude possible eigenvalues
embedded in the essential spectrum (−∞,−m]∪[+m,+∞), we have to strengthen
the condition about the potential V .

Theorem 2 Assume |V | ∈ L3(R3) ∩ L3/2(R3). If

C ‖|V |‖L3(R3) + C ′ |�λ| ‖|V |‖L3/2(R3) < 1 , (4)

where C is the same constant as in Theorem 1 and

C ′ := 217/6

3π2/3 ,

then λ /∈ σp(HV ).

In this case, given a potential V with sufficiently small norm ‖|V |‖L3(R3), the
hypothesis (4) excludes the existence of eigenvalues in thin tubular neighbourhoods
of the imaginary axis, with the thinness determined by the norm ‖|V |‖L3/2(R3). Notice
that C ′ ≈ 1.1 and that the condition (4) is m-independent.

Of course, Theorems 1 and 2 can be combined to disprove the existence of eigen-
values in a union of the unbounded regions of the complex plane initially covered
by the theorems separately. From this perspective, our theorems are an improvement
upon Cuenin [3, Thm. 2.3], who disproves the existence of eigenvalues in compact
regions only. Moreover, our results are much more explicit and quantitative. On the
other hand, our method seems to be restricted to the three-dimensional situation, while
the results of [3] are stated in all dimensions greater than or equal to two.
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1476 L. Fanelli, D. Krejčiřík

Remark 2 We note that V obeys (3) (respectively, (4)) if, and only if, the adjoint V ∗
does. Noticing additionally that f (λ̄,m) = f (λ,m), we see that any λ ∈ C satisfy-
ing (3) or (4) is not in the residual spectrum of HV either. Consequently, λ is either
in the continuous spectrum or in the resolvent set of HV . Finally, let us notice that
σess(HV ) = σess(H0) = (−∞,−m] ∪ [+m,+∞) under the conditions stated in
Theorems 1 and 2.

Our approach to establish Theorems 1 and 2 is based on two ingredients. The main
technique is the Birman–Schwinger principle stating that if λ is in the point spectrum
of the differential operator HV , then −1 is in the spectrum of the (formal) integral
operator

W 1/2 (H0 − λ)−1U W 1/2 , (5)

where V = UW is the polar decomposition of V (i.e. W is the absolute value of V
and U is unitary). In this paper, we make an effort to justify the principle under the
minimal regularity assumption thatV is in a sense relatively form-boundedwith respect
to H0. Moreover, we rigorously cover the embedded eigenvalues λ ∈ (−∞,−m] ∪
[+m,+∞). Once the Birman–Schwinger principle is established, it is enough to
show that the norm of (5) is less than one in order to establish Theorems 1 and 2. To
this aim, we use the second ingredient based on a careful estimate of the resolvent
integral kernel of H0. Putting these two together, we end up with the left-hand sides
of the conditions (3) and (4) being precisely upper bounds to the norm of (5) obtained
additionally with help of Sobolev-type inequalities.

The same approach has been recently employed in [9, Sect. 2] to disprove the
existence of eigenvalues of Schrödinger operators with form-subordinated complex
potentials (cf. [9, Thm. 1]). As an additional ingredient in comparisonwith [9, Sect. 2],
here we also use the Hardy–Littlewood–Sobolev inequality [13, Thm. 4.3] to deal with
the resolvent integral kernel of H0 (see [10, Thm. 2] for a similar trick in the case of
Schrödinger operators). In the present case of Dirac operator, however, the method
does not seem to lead to uniform results in λ.

The rest of the paper consists of a precise definition of HV as a pseudo-Friedrichs
extension in Sect. 2, the analysis of the free resolvent in Sect. 3, the justification of the
Birman–Schwinger principle in Sect. 4 and its application to the proofs of Theorems 1
and 2 in Sect. 5.

2 The pseudo-Friedrichs extension

We consider HV as a perturbation of H0, the latter being the operator that acts as (1)
with V = 0 and has the domain

D(H0) :=
{
ψ ∈ H : ∇ψ ∈ H3

}
.

It is well known that H0 is self-adjoint and that C∞
0 (R3;C4) is a core of H0.

Notice that H2
0 = (−	 +m2)IC4 , where −	 +m2 is the self-adjoint Schrödinger

operator in L2(R3) with the usual domain H2(R3). The absolute value of H0 thus

123



Location of eigenvalues of three-dimensional non-self-adjoint… 1477

equals (H2
0 )1/2 = √−	 + m2 IC4 , which is again a self-adjoint operator when con-

sidered on the domain H1(R3;C4). The form domain of
√−	 + m2 equals the

fractional Sobolev space H1/2(R3), cf. [13, Sect. 7.11]. Notice that C∞
0 (R3) is dense

in H1/2(R3), cf. [13, Sect. 7.14]. Clearly,
√−	 + m2 ≥ √−	.

We always assume that |V | ∈ L2
loc(R

3) and that V is relatively form-bounded with
respect to the massless H0 in the following sense: There exist numbers a ∈ (0, 1) and
b ∈ R such that, for all ψ ∈ C∞

0 (R3),

∫

R3
|V (x)||ψ(x)|2 dx ≤ a

∫

R3
| 4
√−	 ψ(x)|2 dx + b

∫

R3
|ψ(x)|2 dx . (6)

We recall that |V (x)| denotes the operator norm of the matrix V (x) in C
4. Similarly,

|ψ(x)| denotes the norm of the vector ψ(x) ∈ C
4. The double norm ‖ · ‖X is reserved

for functional spacesX . For instance, ‖ψ‖H = ‖|ψ |‖L2(R). The symbol (·, ·)X stands
for an inner product in a Hilbert space X .

By the pseudo-Friedrichs extension [11, Thm. VI.3.11]1 (see also [18] for more
recent developments), there exists a unique closed extension HV of the operator sum
H0 + V , where V is understood as the multiplication operator by the matrix V in H
with initial domain C∞

0 (R3;C4). More specifically, the operator HV satisfies

(φ, HVψ)H = (
G1/2

0 φ, H0G
−1
0 G1/2

0 ψ
)
H +

∫

R3
φ(x)∗V (x)ψ(x) dx (7)

for all ψ ∈ D(HV ) ⊂ H1/2(R3;C4) and φ ∈ H1/2(R3;C4). Here G0 := (H2
0 )1/2 +

(a−1b + δ)IC4 with any positive δ (which does not influence the definition of HV ).
Notice that H0 and G0 commute (in the usual sense for unbounded operators), so
the first term on the right-hand side of (7) equals (φ, H0ψ)H if ψ ∈ H1(R3;C4)

Consequently, HV realises in a sense the form sum of H0 and V . We have D(HV
∗) ⊂

H1/2(R3;C4) and iη /∈ σ(HV ) for all real η with sufficiently large |η|.
Remark 3 By Kato’s inequality

√−	 ≥ (2/π)|x |−1 valid in the sense of quadratic
forms in L2(R3), cf. [11, Rem. V.5.12], we see that the potentials V satisfying the
pointwise inequality

|V (x)| ≤ a
2

π

1

|x | + b

for almost every x ∈ R
3 obey the hypothesis (6).

Another sufficient condition is given by the following proposition. (More optimal
results can be obtained by using the Lorentz spaces.)

1 Kato assumes a < 1/2 for an abstract non-symmetric operator V , but it is straightforward to check that
his proof works with a < 1 (as in the symmetric case) in our special case when V is a multiplication by
matrix and (6) is assumed.
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1478 L. Fanelli, D. Krejčiřík

Proposition 1 Let |V | = v1 + v2 with v1 ∈ L3(R3) and v2 ∈ L∞(R3) and assume
that

‖v1‖L3(R3) < (2π2)1/3 .

Then (6) holds true.

Proof For every ψ ∈ C∞
0 (R3), we have

∥∥v
1/2
1 ψ

∥∥2
L2(R3)

≤ ‖v1‖L3(R3)

∥∥ψ
∥∥2
L3(R3)

≤ (2π2)−1/3 ‖v1‖L3(R3)

∥∥ 4
√−	 ψ

∥∥2
L2(R3)

,

where the first estimate follows by Hölder inequality and the second inequality quan-
tifies the Sobolev-type embedding Ḣ1/2(R3) ↪→ L3(R3), cf. [13, Thm. 8.4]. At the
same time, ‖v1/22 ψ‖2

L2(R3)
≤ b ‖ψ‖2

L2(R3)
with some non-negative constant b. ��

Remark 4 Since (6) allows V to be merely defined through a quadratic form, one can
in principle introduce HV under the weaker hypothesis |V | ∈ L1

loc(R
3).

3 The free resolvent

Using the well-known trick

(H0 − z)−1 = (H0 + z)(H2
0 − z2)−1

and the knowledge of the integral kernel of the free Schrödinger operator −	 + m2,
the integral kernel of the free resolvent (H0 − z)−1 can be written down explicitly:

(H0 − z)−1(x, x ′)

= e−√
m2−z2 |x−x ′|

4π |x − x ′|
(
iα · (x − x ′)

|x − x ′|2 +
√
m2 − z2

iα · (x − x ′)
|x − x ′| + mα4 + z

)
(8)

for every z /∈ σ(H0). Here and in the sequel, we choose the principal branch of the
square root. From now on, we also usually suppress writing the identity operators in
the formulae; therefore, we simply write z instead of z IH (respectively, z IC4 ) on the
left-hand (respectively, right-hand) side of (8) and elsewhere.

Given any matrix M ∈ C
4×4, we use the notation |M |HS := √

tr(M∗M) for the
Hilbert–Schmidt (or Frobenius) norm of M . Recall that |M | ≤ |M |HS.
Lemma 1 (Hilbert–Schmidt norm) For almost every x, x ′ ∈ R

3, one has

∣∣(H0 − z)−1(x, x ′)
∣∣2
HS

= 4
e−2�√

m2−z2 |x−x ′|

(4π)2|x − x ′|4
(
1 + 2�

√
m2 − z2 |x − x ′|

+ 2
[(�

√
m2 − z2

)2 + (�z)2
]
|x − x ′|2

)
.

123



Location of eigenvalues of three-dimensional non-self-adjoint… 1479

Proof Writing

∣∣(H0 − z)−1(x, x ′)
∣∣2
HS = e−2�√

m2−z2 |x−x ′|

(4π)2|x − x ′|6 tr(A∗A) ,

where
A := a · α + a4α4 + a0 IC4 (9)

with

a := i
(
1 +

√
m2 − z2 |x − x ′|

)
(x − x ′), a4 := m |x − x ′|2 , a0 := z |x − x ′|2 ,

the proof reduces to straightforward manipulations with the Dirac matrices. Using the
anticommutation relations (2), we immediately arrive at

A∗A = (|a|2 + a24 + |a0|2)IC4 + B ,

where

B := b · α + b4 α4 + c · iαα4

with

b := 2�(aa0)(x − x ′)

= 2
[
�z − (�z �

√
m2 − z2 + �z �

√
m2 − z2

)|x − x ′|
]
|x − x ′|2(x − x ′) ,

b4 := 2a4�(a0) = 2m �z |x − x ′|4 ,

c := − 2�(a)a4(x − x ′) = −2m
(
1 + �

√
m2 − z2 |x − x ′|)|x − x ′|2(x − x ′) .

Since tr(αμ) = 0 for μ ∈ {1, . . . , 4} as well as tr(α4αk) = 0 for k ∈ {1, . . . , 3} and
tr(IC4) = 4, we see that also the matrix B is traceless. Consequently, using in addition
the explicit expressions for a1, a2 and a3, we obtain

1

4
tr(A∗A) = (|z|2 + m2)|x − x ′|4 +

∣∣∣1 +
√
m2 − z2 |x − x ′|

∣∣∣2 |x − x ′|2

=
(
|z|2 + m2 + |m2 − z2|

)
|x − x ′|4 + +2�

√
m2 − z2 |x − x ′|3 + |x − x ′|2 .

It remains to use the identity |z|2 + m2 + |m2 − z2| = 2
[(�√

m2 − z2
)2 + (�z)2

]
.

��
The present paper extensively uses the following explicit bound on the Hilbert–

Schmidt norm of the free resolvent.

Lemma 2 For almost every x, x ′ ∈ R
3, one has

∣∣(H0 − z)−1(x, x ′)
∣∣2
HS ≤ c21

1

|x − x ′|4 + c22 (�z)2
e−2�√

m2−z2 |x−x ′|

|x − x ′|2 ,
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1480 L. Fanelli, D. Krejčiřík

where

c1 :=
√
1 + e−1 + 2e−2

2π
, c2 :=

√
2

2π
.

Proof The estimate follows from Lemma 1 by using the elementary bounds re−r ≤
e−1 and r2e−r ≤ 4e−2 valid for every r ≥ 0. ��

4 The Birman–Schwinger principle

For almost every x ∈ R
3, let us introduce the matrix W (x) := (V (x)∗V (x))1/2, the

absolute value of V (x). Using the polar decomposition for matrices, we have

V (x) = U (x)W (x) = U (x)W (x)1/2W (x)1/2 ,

where U (x) is a unitary matrix on C
4. Notice that |V (x)| = |W (x)| = |W (x)1/2|2,

where we recall that | · | stands for the operator norm of a matrix.
Given any z /∈ σ(H0), we introduce the Birman–Schwinger operator

Kz := [
W 1/2G−1/2

0

][
G0(H0 − z)−1][(UW 1/2)∗G−1/2

0

]∗
, (10)

where G0 is the shifted absolute value of H0 introduced in (7). With an abuse of
notation, we denote by the same symbols W 1/2 and U the maximal multiplication
operators inH generated by thematrix-valued function x �→ W (x)1/2 and x �→ U (x),
respectively. It follows from (6) that, for every ψ ∈ H,

‖W 1/2ψ‖2H ≤ a ‖G1/2
0 ψ‖2H and ‖(UW 1/2)∗ψ‖2H ≤ a ‖G1/2

0 ψ‖2H .

Consequently, ‖W 1/2G−1/2
0 ‖2H→H ≤ a and ‖(UW 1/2)∗G−1/2

0 ‖2H→H ≤ a. Hence,
Kz is a well-defined bounded operator on H (as a composition of three bounded
operators) and one has the rough bound

‖Kz‖H→H ≤ a ‖G0(H0 − z)−1‖H→H ≤ a sup
ξ∈(−∞,−m)∪(+m,∞)

|ξ | + a−1b + δ

|ξ − z| .

(11)
Using the commutativity of H0 and G0, the operator Kz admits the familiar form (5)
provided that V is bounded. But we insist working under the minimal regularity
assumption (6) in this section.

By ϕ ∈ L2
0(R

3;C4) in the lemma below we mean ϕ ∈ L2(R3;C4) and that suppϕ

is compact.

Lemma 3 (Birman–Schwinger principle) Assume (6). Let HVψ = λψ with some
λ ∈ C and ψ ∈ D(HV ), and set φ := W 1/2ψ . One has φ ∈ H and φ �= 0 if ψ �= 0.
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(i) If λ /∈ σ(H0), then Kλφ = −φ.
(ii) If λ ∈ σ(H0), then lim

ε→0±(ϕ, Kλ+iεφ)H = −(ϕ, φ)H for every ϕ ∈ L2
0(R

3;C4).

Proof By (6), φ ∈ H if ψ ∈ D(HV ) ⊂ H1/2(R3;C4). From (7) we deduce that
HVψ = H0ψ provided that φ = 0. But then λ is an eigenvalue of H0 (which is
impossible) unless ψ = 0.

If λ /∈ σ(H0), then

(ϕ, Kλφ)H = ([W 1/2G−1/2
0 ]∗ϕ, [G0(H0 − λ)−1][(UW 1/2)∗G−1/2

0 ]∗φ)
H

= ([UW 1/2)∗G−1/2
0 ][G0(H0 − λ)−1]∗[W 1/2G−1/2

0 ]∗ϕ,W 1/2ψ
)
H

=
∫

R3
η(x)∗V (x)ψ(x) dx

for every ϕ ∈ Hwith η := G−1/2
0 [G0(H0−λ)−1]∗[W 1/2G−1/2

0 ]∗ϕ ∈ H1/2(R3;C4) .

Using (7), it follows that

(ϕ, Kλφ)H = (η, HVψ)H − (
G1/2

0 η, H0G
−1
0 G1/2

0 ψ
)
H

= λ(η,ψ)H − (
G1/2

0 η, H0G
−1
0 G1/2

0 ψ
)
H

= λ
(
G1/2

0 η,G−1
0 G1/2

0 ψ
)
H − (

G1/2
0 η, H0G

−1
0 G1/2

0 ψ
)
H

= −(
G1/2

0 η, (H0 − λ)G−1
0 G1/2

0 ψ
)
H

= −([W 1/2G−1/2
0 ]∗ϕ,G0(H0 − λ)−1(H0 − λ)G−1

0 G1/2
0 ψ

)
H

= −([W 1/2G−1/2
0 ]∗ϕ,G1/2

0 ψ
)
H

= −(
ϕ,W 1/2ψ

)
H = −(ϕ, φ)H

for every ϕ ∈ H. This proves that Kλφ = −φ and therefore (i).
If λ ∈ σ(H0), then there exists ε0 > 0 such that λ + ε /∈ σ(H0) for all real ε

satisfying 0 < |ε| < ε0. Now let us assume that ϕ ∈ L2
0(R

3;C4). As above, we have

(ϕ, Kλ+iεφ)H = −([W 1/2G−1/2
0 ]∗ϕ,G0(H0 − λ − iε)−1(H0 − λ)G−1

0 G1/2
0 ψ

)
H

= −(ϕ, φ)H − iε
([W 1/2G−1/2

0 ]∗ϕ,G0(H0 − λ − iε)−1G−1
0 G1/2

0 ψ
)
H

= −(ϕ, φ)H − iε
(
ϕ,W 1/2(H0 − λ − iε)−1ψ

)
H

for every ϕ ∈ H. Let us show that the last inner product vanishes as ε → 0. Using
Lemma 2, we have

∣∣(ϕ,W 1/2(H0 − λ − iε)−1ψ
)
H

∣∣ ≤ c1 I1 + c2 |λ| I2(ε) ,
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1482 L. Fanelli, D. Krejčiřík

where

I1 :=
∫

R3×R3

|ϕ(x)| |W (x)|1/2 |ψ(x ′)|
|x − x ′|2 dx dx ′ ,

I2(ε) :=
∫

R3×R3
|ϕ(x)| |W (x)|1/2 e−�

√
m2−(λ+iε)2 |x−x ′|

|x − x ′| |ψ(x ′)| dx dx ′ .

The first integral is estimated as follows:

I1 ≤ (2π)2/3‖|ϕ||W |1/2‖L1(R3)‖|ψ |‖L3(R3)

≤ (2π)2/3‖|ϕ||W |1/2‖L1(R3) (2π2)−1/6
∥∥ 4
√−	 |ψ |∥∥L2(R3)

≤ (2π)2/3‖|ϕ|‖L2(R3) ‖χ�|V |‖1/2
L1(R3)

(2π2)−1/6
∥∥ 4
√−	 |ψ |∥∥L2(R3)

with � := suppϕ. Here, the first bound is due to the Hardy–Littlewood–Sobolev
inequality [13, Thm. 4.3], the second estimate is a Sobolev-type inequality [13,
Thm. 8.4] quantifying the embedding Ḣ1/2(R3) ↪→ L3(R3) and the last bound is
the Schwarz inequality. Notice that the integrals on the last line are all finite, in partic-
ular because ψ ∈ H1/2(R3;C4) and |V | ∈ L1

loc(R
3). To estimate the second integral,

we proceed as in [9, proof of Lem. 2]:

I2(ε) ≤ ‖|ϕ|‖L2(R3)‖Mε‖L2(R3)→L2(R3)‖|ψ |‖L2(R3) ,

where Mε is the integral operator with kernel

Mε(x, x
′) := χ�(x) |W (x)|1/2 e−�

√
m2−(λ+iε)2 |x−x ′|

|x − x ′| .

Using the Hilbert–Schmidt norm, we have

‖Mε‖2L2(R3)→L2(R3)
≤ ‖Mε‖2HS =

∫

�×R3
|V (x)| e

− 2�
√

m2−(λ+iε)2 |x−x ′|

|x − x ′|2 dx dx ′

= 2π

�√
m2 − (λ + iε)2

∫

�

|V (x)| dx ,

where the integral is again finite because of the local integrability of V . It remains to
realise that

�
√
m2 − (λ + iε)2 ∼

{
|ε|1/2 if λ2 = m2 & m �= 0 ,

|ε| otherwise.
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Hence, ε I2(ε) = O(|ε|1/2) as ε → 0. Putting the estimates together, we have proved

|(ϕ, Kλ+iεφ + φ)H|
‖ϕ‖H

≤ ε ‖χ�|V |‖1/2
L1(R3)

‖|ψ |‖H1/2(R3)

(
c12

1/2π1/3 + c2|λ|(2π)1/2(�
√
m2 − (λ + iε)2

)1/2
)

−−−→
ε→0

0

for every given ϕ ∈ L2
0(R

3;C4). This shows (ii) and concludes the proof of the lemma.
��

The preceding lemma is a precise statement of one side of the Birman–Schwinger
principle under the minimal regularity assumption (6). It says that if λ is an eigenvalue
of HV , then −1 is an eigenvalue of an integral equation related to Kλ. If λ /∈ σ(H0)

the converse implication also holds, but it is not generally true if λ ∈ σ(H0), cf. [16,
Sec. III.2], and it is not needed for the purpose of this paper. In fact, we exclusively
use the following corollary of Lemma 3.

Corollary 1 Assume (6) and let λ ∈ σp(HV ).

(i) If λ /∈ σ(H0), then ‖Kλ‖ ≥ 1.
(ii) If λ ∈ σ(H0), then lim inf

ε→0± ‖Kλ+iε‖H→H ≥ 1.

Proof Let λ ∈ σp(HV ), let ψ be a corresponding eigenfunction and set φ = W 1/2

ψ �= 0.
If λ /∈ σ(H0), then the statement (i) of Lemma 3 implies

‖φ‖2H ‖Kλ‖H→H ≥ |(φ, Kλφ)H| = ‖φ‖2H ,

from which the claim (i) immediately follows.
If λ ∈ σ(H0), we set φn := ξnφ for every positive n, where ξn(x) := ξ(x/n) and

ξ ∈ C∞
0 (R3) is a usual cut-off function satisfying ξ(x) = 1 for |x | ≤ 1 and ξ(x) = 0

for |x | ≥ 2. As above, we write

‖φn‖H‖φ‖H ‖Kλ+iε‖H→H ≥ |(φn, Kλ+iεφ)H| ,

Taking the limit ε → 0±, the statement (ii) of Lemma 3 implies

‖φn‖H‖φ‖H lim inf
ε→0± ‖Kλ+iε‖H→H ≥ |(φn, φ)H| .

The desired claim (ii) then follows by taking the limit n → ∞. ��

To disprove the existence of eigenvalues in a complex region, it is thus enough to
show that the norm of the Birman–Schwinger operator is strictly less than one there.
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5 Proofs

To implement the above idea, we first strengthen our hypotheses about V and establish
a more precise estimate on the norm of Kz as compared to (11).

Lemma 4 Let |V | ∈ L3(R3). For every z /∈ σ(H0),

‖Kz‖H→H ≤
(π

2

)1/3 √
1 + e−1 + e−2

√√√√1 + (�z)2(�√
m2 − z2

)2 ‖|V |‖L3(R3) .

Proof By the elementary bound r2e−r ≤ 4e−2 valid for every r ≥ 0, we get from
Lemma 2 the estimate

∣∣(H0 − z)−1(x, x ′)
∣∣2
HS ≤

(
c21 + c̃22

(�z)2(�√
m2 − z2

)2
)

1

|x − x ′|4

for almost every x, x ′ ∈ R
3 with c̃2 := c2e−2 = √

2e−2/(2π). Consequently, for
every φ,ψ ∈ H,

|(φ, Kzψ)H|

≤
√√√√c21 + c̃22

(�z)2(�√
m2 − z2

)2
∫

R3×R3

|V (x)|1/2 |φ(x)| |V (x ′)|1/2 |ψ(x ′)|
|x − x ′|2 dx dx ′

≤
√√√√c21 + c̃22

(�z)2(�√
m2 − z2

)2 22/3π4/3 ‖|V |‖L3(R3) ‖φ‖H‖ψ‖H ,

where the second estimate is due to the Hardy–Littlewood–Sobolev inequality with
optimal constants [13, Thm. 4.3] together with the Hölder inequality. We eventually
use c̃2 ≤ c1, just to make the final result look more elegant. ��

Further strengthening hypothesis about V , we can also get a bound which is inde-
pendent of the mass m and has a different behaviour in z.

Lemma 5 Let |V | ∈ L3(R3) ∩ L3/2(R3). For every z /∈ σ(H0),

‖Kz‖H→H ≤
(π

2

)1/3 √
1 + e−1 + e−2 ‖|V |‖L3(R3) + 217/6

3π2/3 |�z| ‖|V |‖L3/2(R3) .

Proof For every φ,ψ ∈ H, we have

|(φ, Kzψ)H|
≤

∫

R3×R3
|V (x)|1/2 |φ(x)|

(
c1

|x − x ′|2 + c2 |�z|
|x − x ′|

)
|V (x ′)|1/2 |ψ(x ′)| dx dx ′

≤
(
c1 2

2/3π4/3 ‖|V |‖L3(R3) + c2 |�z| 210/3

3π1/3 ‖|V |‖L3/2(R3)

)
‖φ‖H‖ψ‖H .
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Here, the first inequality follows by Lemma 2 (where the exponential is estimated
by 1) and the second estimate is due to the Hardy–Littlewood–Sobolev inequality
with optimal constants [13, Thm. 4.3] together with the Hölder inequality. ��

Theorem 1 (respectively, Theorem 2) follows as a consequence of Corollary 1 and
Lemma 4 (respectively, Lemma 5).
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