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Abstract
We derive a local index theorem in Quillen’s form for families of Cauchy–Riemann
operators on orbifold Riemann surfaces (or Riemann orbisurfaces) that are quotients
of the hyperbolic plane by the action of cofinite finitely generated Fuchsian groups.
Each conical point (or a conjugacy class of primitive elliptic elements in the Fuchsian
group) gives rise to an extra term in the local index theorem that is proportional to the
symplectic form of a newKähler metric on the moduli space of Riemann orbisurfaces.
We find a simple formula for a local Kähler potential of the elliptic metric and show
that when the order of elliptic element becomes large, the elliptic metric converges to
the cuspidal one corresponding to a puncture on the orbisurface (or a conjugacy class
of primitive parabolic elements). We also give a simple example of a relation between
the elliptic metric and special values of Selberg’s zeta function.

Keywords Fuchsian groups · Determinant line bundles · Quillen’s metric · Local
index theorems

Mathematics Subject Classification 14H10 · 58J20 · 58J52

1 Introduction

Quillen’s local index theorem for families of Cauchy–Riemann operators [11] explic-
itly computes the first Chern form of the corresponding determinant line bundles
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1120 L. A. Takhtajan, P. Zograf

equipped with Quillen’s metric. The advantage of local formulas becomes apparent
when the families parameter spaces are non-compact. In the language of alge-
braic geometry, Quillen’s local index theorem is a manifestation of the “strong”
Grothendieck–Riemann–Roch theorem that claims an isomorphism betweenmetrized
holomorphic line bundles.

The literature on Quillen’s local index theorem is abundant, but mostly deals with
families of smooth compact varieties (see, e.g., [2,4,5,18] and many others). In this
paper, we derive a general local index theorem for families of Cauchy–Riemann
operators on Riemann orbisurfaces, both compact and with punctures, that appear
as quotients X = �\H of the hyperbolic plane H by the action of finitely generated
cofinite Fuchsian groups �. The main result (cf. Theorem 2) is the following formula
on the moduli space associated with the group �:

c1(λk, || · ||Q
k ) = 6k2 − 6k + 1

12π2 ωWP − 1

9
ωcusp

− 1

4π

l∑

j=1

m j

(
B2

({
k − 1

m j

})
− 1

6m2
j

)
ωell

j , k ≥ 1.

Here c1(λk, || · ||Q
k ) is the first Chern form of the determinant line bundle λk of the

vector bundle of square integrablemeromorphic k-differentials on X = �\H equipped
with Quillen’s metric, ωWP is a symplectic form of the Weil–Petersson metric on
the moduli space, ωcusp is a symplectic form of the cuspidal metric (also known as
Takhtajan–Zograf metric), ωell

j is the symplectic form of a Kähler metric associated

with elliptic fixpoints, B2(x) = x2 − x + 1
6 is the second Bernoulli polynomial, and

{x} is the fractional part of x ∈ Q. We refer the reader to Sects. 2.1–2.3 and 3.2 for
the definitions and precise statements. Note that the above formula is equivalent to
formula (3.13) for k ≤ 0 because the Hermitian line bundles λk and λ1−k on the
moduli space are isometrically isomorphic (see Remark 3).

Note that the case of smooth punctured Riemann surfaces was treated by us much
earlier in [14], and now we add conical points into consideration. The motivation
to study families of Riemann orbisurfaces comes from various areas of mathematics
and theoretical physics—from Arakelov geometry [9] to the theory of quantum Hall
effect [6]. In particular, the paper [9] that establishes the Riemann–Roch-type isometry
for non-compact orbisurfaces as Deligne isomorphism of metrized Q-line bundles
stimulated us to extend the results of [14] to the orbisurface setting.

The paper is organized as follows. Section 2 contains the necessary background
material. In Sect. 3, we prove the local index theorem for families of ∂̄-operators on
Riemann orbisurfaces that are factors of the hyperbolic plane by the action of finitely
generated cofinite Fuchsian groups. Specifically, we show that the contribution to
the local index formula from elliptic elements of Fuchsian groups is given by the
symplectic formof aKählermetric on themoduli space of orbisurfaces. Since the cases
of smooth (both compact and punctured) Riemann surfaces have been well understood
by us quite a while ago [14,18], in Sect. 3.2 we mainly emphasize the computation of
the contribution from conical points corresponding to elliptic elements. In Sect. 4.1,
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Local index theorem for orbifold Riemann surfaces 1121

we find a simple formula for a local Kähler potential of the elliptic metric, and in
Sect. 4.2, we show that in the limit when the order of the elliptic element tends to ∞
the elliptic metric converges to the corresponding cusp metric. Finally, in Sect. 4.3 we
give a simple example of a relation between the elliptic metric and special values of
Selberg zeta function for Fuchsian groups of signature (0;1;2,2,2).

2 Preliminaries

2.1 Hyperbolic plane and Fuchsian groups

We will use two models of the Lobachevsky (hyperbolic) plane: the upper half-plane

H = {z ∈ C
∣∣ Im z > 0} with the metric

|dz|2
(Im z)2

, and the Poincaré unit disk D =

{u ∈ C
∣∣ |u| < 1} with the metric

4|du|2
(1 − |u|2)2 . The biholomorphic isometry between

the two models is given by the linear fractional transformation u = z − z0
z − z̄0

for any

z0 ∈ H.
A Fuchsian group � of the first kind is a finitely generated cofinite discrete

subgroup of PSL(2,R) acting on H (it can also be considered as a subgroup of
PSU(1, 1) acting onD). Such � has a standard presentation with 2g hyperbolic gener-
ators A1, B1, . . . , Ag, Bg , n parabolic generators S1, . . . , Sn and l elliptic generators
T1, . . . , Tl of orders m1, . . . , ml satisfying the relations

A1B1A−1
1 B−1

1 . . . Ag Bg A−1
g B−1

g S1 . . . SnT1 . . . Tl = I ,

T mi
i = I , i = 1, . . . , l,

where I is the identity element. The set (g; n; m1, . . . , ml), where 2 ≤ m1 ≤ · · · ≤ ml ,
is called the signature of �, and we will always assume that

2g − 2 + n +
l∑

i=1

(
1 − 1

mi

)
> 0 .

We will be interested in orbifolds X = �\H (or X = �\D, if we treat � as
acting on D) for Fuchsian groups � of the first kind. Such an orbifold is a Riemann

surface of genus g with n punctures and l conical points of angles
2π

m1
, . . . ,

2π

ml
. By a

(p, q)-differential on the orbifoldRiemann surface X = �\H,we understand a smooth
function φ onH that transforms according to the rule φ(γ z)γ ′(z)pγ ′(z)q = φ(z). The
space of harmonic (p, q)-differentials, square integrable with respect to the hyperbolic
metric on X = �\H, is denoted by 	p,q(X). The dimension of the space of square
integrable meromorphic (with poles at punctures and conical points) k-differentials
on X , or cusp forms of weight 2k for �, is given by the Riemann–Roch formula for
orbifolds:
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dim	k,0(X) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2k − 1)(g − 1) + (k − 1)n +
l∑

i=1

[
k

(
1 − 1

mi

)]
, k > 1,

g, k = 1,

1, k = 0,

0, k < 0,

where [r ] denotes the integer part of r ∈ Q (see [13, Theorem 2.24]). In particular,

dim	2,0(X) = 3g − 3 + n + l.

The elements of the space	−1,1(X) are called harmonic Beltrami differentials and
play an important role in the deformation theory of Fuchsian groups (see Sect. 2.3).
To study the behavior of harmonic Beltrami differentials at the elliptic fixpoints, we
use the unit disk model. Take μ ∈ 	−1,1(X) and let T ∈ � be an elliptic element
of order m with fixpoint z0 ∈ H. The pushforward of T to D by means of the map

u = z − z0
z − z̄0

is just the multiplication by ω = e2π
√−1/m , the mth primitive root of

unity. The pushforward of μ to D (that, slightly abusing notation, we will denote by
the same symbol) develops into a power series of the form

μ(u) = (1 − |u|2)2
4

∞∑

n=2

ānūn−2.

Moreover, since μ(ωu) = μ(u)ω−2, we have an = 0 unless n ≡ 0 mod m, so that

μ(u) = (1 − |u|2)2
4

∞∑

j=1

ā jmū jm−2 . (2.1)

In particular, μ(0) = 0 for m > 2 and
∂μ

∂u
(0) = 0 for m = 2.

As in [14], for μ, ν ∈ 	−1,1(X) we put fμν̄ = (�0 + 1
2 )

−1(μν̄), where

�0 = −y2
∂2

∂z∂ z̄
, y = Im z ,

is the Laplace operator (or rather 1/4 of the Laplacian) in the hyperbolic metric acting
on 	0,0(X). The function fμν̄(u) is regular on D and satisfies

fμν̄(ωu) = fμν̄(u).

The following result is analogous to Lemma 2 in [14] and describes the behavior
of fμν̄(u) at u = 0. We will use polar coordinates on D such that u = re

√−1θ .
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Lemma 1 Let

fμν̄(u) =
∞∑

j=−∞
f jm(r)e

√−1 jmθ (2.2)

be the Fourier series of the function fμν̄(u) on D. Then,

(i) f0(r) = c0 + c2r2 + O(r4) as r → 0, where

c2 =
{
2c0, m > 2,

2c0 − 4μ(0)ν̄(0), m = 2.
(2.3)

(ii) fn(r) = O(r |n|) as r → 0;
(iii) For the constant term c0 = f0(0), we have

c0 =
∫

X

G(0, u)μ(u)ν(u)dρ(u) ,

where G(u, v) is the integral kernel of (�0 + 1
2 )

−1 on X = �\D, and dρ(u) =
2
√−1

(1 − |u|2)2 du ∧ dū.

Proof Since fμν̄(u) is a regular solution of the equation (�0 + 1
2 ) f = μν̄ at u = 0,

we have in polar coordinates

− (1 − r2)2

16

(
∂2 f

∂r2
+ 1

r

∂ f

∂r
+ 1

r2
∂2 f

∂θ2

)
(r , θ) + 1

2
f (r , θ) =

= (1 − r2)4

16

∞∑

i=1

∞∑

j=1

āimb jmr (i+ j)m−4e
√−1( j−i)mθ ,

where we used (2.1) for μ(u) and the analogous expansion

ν(u) = (1 − |u|2)2
4

∞∑

j=1

b̄ jmū jm−2. (2.4)

for ν(u). Then, for the term f0(r) of the Fourier series (2.2), we have the differential
equation

− (1 − r2)2

16

(
d2 f0(r)

dr2
+ 1

r

d f0(r)

dr

)
+ 1

2
f0(r) = (1 − r2)4

16

∞∑

j=1

ā jmb jmr2 jm−4.
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From here, we get that f0(r) = c0 + c2r2 + O(r4) as r → 0, where

c2 =
{
2c0, m > 2,

2c0 − 4μ(0)ν̄(0), m = 2.

For the coefficients fn(r) with n �= 0, we have

− (1 − r2)2

16

(
d2 fn(r)

dr2
+ 1

r

d fn(r)

dr
− n2 fn(r)

r2

)
+ 1

2
fn(r) =

= (1 − r2)4

16

∞∑

j=1

ā jmb jm+nr2 jm+n−4 ,

so that fn(r) = O(r |n|) as r → 0. This proves parts (i) and (ii) of the lemma, from
where it follows that c0 = fμν̄(0). To prove part (iii), it is sufficient to observe that

fμν̄(0) =
∫

X

G(0, u)μ(u)ν(u)dρ(u) .

�

2.2 Laplacians on Riemann orbisurfaces

Let us now switch to the properties of the Laplace operators on the hyperbolic orbifold
X = �\H, where � is a Fuchsian group of the first kind. Here we give only a brief
sketch, and the details can be found in [14,18]. Denote by Hp,q the Hilbert space of
(p, q)-differentials on X , and let ∂̄k : Hk,0 → Hk,1 be the Cauchy–Riemann operator
acting on (k, 0)-differentials (in terms of the coordinate z on H, we have ∂̄k = ∂/∂ z̄).
Denote by ∂̄∗

k : Hk,1 → Hk,0 the formal adjoint to ∂̄k and define the Laplace operator
acting on (k, 0)-differentials on X by the formula �k = ∂̄∗

k ∂̄k .

We denote by Qk(z, z′; s) the integral kernel of
(
�k + (s−1)(s−2k)

4 I
)−1

on the

entire upper half-plane H (where I is the identity operator in the Hilbert space of k-
differentials on H). The kernel Qk(z, z′; s) is smooth for z �= z′ and has an important
property that Qk(z, z′; s) = Qk(σ z, σ z′; s)σ ′(z)kσ ′(z′)k for any σ ∈ P SL(2,R).
For k ≥ 0 and s = 1, we have the explicit formula

∂

∂z
y−2k ∂

∂z′ Q−k(z, z′; 1) = − 1

π
· 1

(z − z′)2

(
z′ − z̄′

z̄ − z′

)2k

, (2.5)

where y = Im z.
Furthermore, denote by Gk(z, z′; s) the integral kernel of the resolvent(

�k + (s−1)(s−2k)
4 I

)−1
of �k on X = �\H (where I is the identity operator in

the Hilbert space Hk,0). For k < 0 and s = 1, the Green’s function Gk(z, z′; s) is a
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smooth function on X × X away from the diagonal (i.e., for z �= z′). For k = 0, we
have the following Laurent expansion near s = 1:

G0(z, z′; s) = 4

|X | · 1

s(s − 1)
+ G0(z, z′) + O(s − 1) (2.6)

as s → 1, where |X | = 2π
(
2g − 2 + n +∑l

i=1(1 − 1/mi )
)
is the hyperbolic area

of X = �\H. Then, for any integer k ≥ 0, we have

∂

∂z
y−2k ∂

∂z′ G−k(z, z′; 1) = − 1

π

∑

γ∈�

1

(z − γ z′)2

(
γ z̄′ − γ z′

z̄ − γ z′

)2k

γ ′(z′)γ ′(z̄′)−k .

(2.7)

This series converges absolutely and uniformly on compact sets for z �= γ z′, γ ∈ �.
We now recall the definition of the Selberg zeta function. Let� be a Fuchsian group

of the first kind, and let χ : � → U (1) be a unitary character. Put

Z(s, �, χ) =
∏

{γ }

∞∏

i=0

(
1 − χ(γ )N (γ )−s−i

)
, (2.8)

where {γ } runs over the set of classes of conjugate hyperbolic elements of� and N (γ )

is the norm of γ defined by the conditions N (γ ) + 1/N (γ ) = |tr γ |, N (γ ) > 1 (in
other words, log N (γ ) is the length of the closed geodesic in the free homotopy class
associated with γ ). Product (2.8) converges absolutely for Re s > 1 and admits a
meromorphic continuation to the complex s-plane.

Except for the last section, in what follows we will always assume that χ ≡ 1
and will denote Z(s, �, 1) simply by Z(s). The Selberg trace formula relates Z(s)
to the spectrum of the Laplacians on �\H, and it is natural (cf. [7,12]) to define the
regularized determinants of the operators �−k by the formula

det�−k =
{

Z ′(1), k = 0,

Z(k + 1), k ≥ 1,
(2.9)

(note that Z(s) has a simple zero at s = 1).

2.3 Deformation theory

We proceed with the basics of the deformation theory of Fuchsian groups. Let �

be a Fuchsian group of the first kind of signature (g; n; m1, . . . , ml). Consider the
space of quasiconformal mappings of the upper half-plane H that fix 0, 1 and ∞.
Two quasiconformal mappings are equivalent if they coincide on the real axis. A
mapping f is compatible with � if f −1 ◦ γ ◦ f ∈ P SL(2,R) for all γ ∈ �. The
space of equivalence classes of �-compatible mappings is called the Teichmüller
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1126 L. A. Takhtajan, P. Zograf

space of � and is denoted by T (�). The space T (�) is isomorphic to a bounded
complex domain inC3g−3+n+l . The Teichmüller modular groupMod(�) acts on T (�)

by complex isomorphisms. Denote by Mod0(�) the subgroup of Mod(�) consisting
of pure mapping classes (i.e., those fixing the punctures and elliptic points on X
pointwise). The factor T (�)/Mod0(�) is isomorphic to the moduli space Mg,n+l of
smooth complex algebraic curves of genus g with n + l labeled points.

Remark 1 Note that T (�), as well as the quotient space T (�)/Mod(�), actually
depends not on the signature of �, but rather on its signature type, the unordered
set r = {r1, r2, . . . }, where r1 = n and ri is the number of elliptic points of order
i, i = 2, 3, . . . (see [3]).

The holomorphic tangent and cotangent spaces to T (�) at the origin are isomorphic
to	−1,1(X) and	2,0(X), respectively (where, as before, X = �\H). Let B−1,1(X) be
the unit ball in 	−1,1(X) with respect to the L∞ norm and let β : B−1,1(X) → T (�)

be the Bers map. It defines complex coordinates in the neighborhood of the origin in
T (�) by the assignment

(ε1, . . . , εd) �→ �μ = f μ ◦ � ◦ ( f μ)−1,

where μ = ε1μ1 + · · · + εdμd , μ1, . . . , μd is a basis for 	−1,1(X) and f μ is a
quasiconformal mapping of H that fixes 0, 1, ∞ and satisfies the Beltrami equation

f μ
z̄ = μ f μ

z .

For μ ∈ 	−1,1(X), denote by
∂

∂εμ

and
∂

∂ε̄μ

the partial derivatives along the holomor-

phic curve β(εμ) in T (�), where ε ∈ C is a small parameter.
The Cauchy–Riemann operators ∂̄k form a holomorphic Mod(�)-invariant family

of operators on T (�). The determinant bundle λk associated with ∂̄k is a holomorphic
Mod(�)-invariant line bundle on T (�) whose fibers are given by the determinant
lines ∧max ker ∂̄k ⊗ (∧maxcoker ∂̄k)

−1. Since the kernel and cokernel of ∂̄k are the
spaces of harmonic differentials 	k,0(X) and 	k,1(X), respectively, the line bundle
λk is Hermitian with the metric induced by the Hodge scalar products in the spaces
	p,q(X) (note that each orbifold Riemann surface X = �\H inherits a natural metric
of constant negative curvature −1). The corresponding norm in λk will be denoted
by || · ||k . Note that by duality between 	k,0(X) and 	1−k,1(X) the determinant line
bundles λk and λ1−k are isometrically isomorphic.

The Quillen norm in λk is defined by the formula

|| · ||Q
k = || · ||k√

det�k
(2.10)

for k ≤ 0 and is extended for all k by the isometry λk ∼= λ1−k . The determinant det�k

defined via the Selberg zeta function is a smooth Mod(�)-invariant function on T (�).
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Local index theorem for orbifold Riemann surfaces 1127

3 Main results

Our objective is to compute the canonical connection and the curvature (or the first
Chern form) of the Hermitian holomorphic line bundle λk on T (�). By Remark 1, λk

can be thought of as holomorphic Q-line bundle on the moduli space T (�)/Mod(�).

3.1 Connection form on the determinant bundle

We start with computing the connection form on the determinant line bundle λ−k for
k > 0 relative to the Quillen metric. The following result generalizes Lemma 3 in [14,
Sect. 3]:

Theorem 1 For any integer k ≥ 0 and μ ∈ 	−1,1(X), we have

∂

∂εμ

∣∣∣
εμ=0

log det�−k

= −
∫

X
∂ y−2k∂ ′ (G−k(z, z′; 1) − Q−k(z, z′; 1))

∣∣∣
z′=z

μ(z) d2z , (3.1)

where ∂ = ∂

∂z
, ∂ ′ = ∂

∂z′ , and d2z = dz ∧ dz̄

−2
√−1

is the Euclidean area form on H.

Remark 2 The integral in (3.1) is absolutely convergent if mi > 2 for all i = 1, . . . , l.
Ifmi = 2 for some i , then this integral should be understood in the principal value sense
as follows. Let zi be the fixpoint of the elliptic generator Ti ∈ � of order 2 and consider

the mapping hi : H → D, hi (z) = z − zi

z − z̄i
. Denote by Bδ = {u ∈ D

∣∣ |u| < δ} the
disk of radius δ in D with center at 0. Since � is discrete, for δ small enough we have
h−1

i (Bδ) ∩ γ h−1
j (Bδ) = ∅ unless i = j and γ is either I or Ti . The subset

Hδ = H\(⋃{i | mi =2}
⋃

γ∈�i \� γ h−1
i (Bδ)

)

is�-invariant, where�i denotes the cyclic group of order 2 generated by Ti . The factor
Xδ = �\Hδ is an orbifold Riemann surface with holes obtained by cutting off cones
covered by small half disks with centers at the elliptic fixpoints of order 2 in H. The
integral in the right-hand side of (3.1) is then defined as

lim
δ→0

∫

Xδ

∂ y−2k∂ ′ (G−k(z, z′; 1) − Q−k(z, z′; 1))
∣∣∣
z′=z

μ(z) d2z .
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1128 L. A. Takhtajan, P. Zograf

Proof We will use the results of [14] profoundly. Repeating verbatim the proof of
Lemma 3 in [14], we get for k ≥ 0

∂

∂εμ

∣∣∣
εμ=0

log det�−k = −
∫

X

∂∂ ′(G0(z, z′; k + 1) − Q0(z, z′; k + 1)−

−
∑

γ∈�,
γ parabolic

Q0(z, γ z′; k + 1) −
∑

γ∈�,
γ elliptic

Q0(z, γ z′; k + 1)
)∣∣∣

z′=z
μ(z)d2z . (3.2)

Note that by Lemma 3 in [14] the contribution from parabolic elements to the right-
hand side of (3.2) vanishes, i.e.,

∫

X

∑

γ∈�,
γ parabolic

∂∂ ′Q0(z, γ z′; k + 1)
∣∣∣
z′=z

μ(z)d2z = 0 .

By Lemma 4 in [14], we can further rewrite (3.2) as follows:

∂

∂εμ

∣∣∣
εμ=0

log det�−k = −
∫

X

∂ y−2k∂ ′(G−k(z, z′; 1) − Q−k(z, z′; 1)

−
∑

γ∈�,
γ elliptic

Q−k(z, γ z′; 1)γ ′(z̄′)−k
)∣∣∣

z′=z
μ(z)d2z .

The integrand in the right-hand side is smooth, and the integral is absolutely convergent
(cf. (2.7)). We need to show that

∫

X

( ∑

γ∈�,
γ elliptic

∂ y−2k∂ ′Q−k(z, γ z′; 1)γ ′(z̄′)−k
)∣∣∣

z′=z
μ(z)d2z = 0 (3.3)

(if there is mi = 2, we understand this integral as the principal value, see Remark 2).
Without loss of generality, we may assume that l = 1 and � has one elliptic

generator T of order m with fixpoint z0 ∈ H. Then by (2.5), we have

−
∑

γ∈�,
γ elliptic

(
∂ y−2k∂ ′Q−k(z, γ z′; 1)γ ′(z̄′)−k

)∣∣∣
z′=z

= 1

π

∑

γ∈�,
γ elliptic

1

(z − γ z)2

(
γ z − γ z̄

z̄ − γ z

)2k

γ ′(z)γ ′(z̄)−k

= (z − z̄)2k

π

∑

γ∈�,
γ elliptic

γ ′(z)k+1

(z − γ z)2(z̄ − γ z)2k
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Local index theorem for orbifold Riemann surfaces 1129

= (z − z̄)2k

π

∑

σ∈�0\�

m−1∑

i=1

(σ−1T iσ)′(z)k+1

(z − σ−1T iσ z)2(z̄ − σ−1T iσ z)2k

= (z − z̄)2k

π

∑

σ∈�0\�

m−1∑

i=1

σ ′(z)σ ′(z̄)k(T iσ)′(z)k+1

(σ z − T iσ z)2(σ z̄ − T iσ z)2k

= 1

π

∑

σ∈�0\�

m−1∑

i=1

(σ z − σ z̄)2k(T i )′(σ z)k+1σ ′(z)2

(σ z − T iσ z)2(σ z̄ − T iσ z)2k

= 1

π

∑

σ∈�0\�
φ(σ z)σ ′(z)2 ,

where �0 ∼= Z/mZ is the cyclic group generated by T (the stabilizer of z0 in �) and

φ(z) =
m−1∑

i=1

(z − z̄)2k(T i )′(z)k+1

(z − T i z)2(z̄ − T i z)2k

Since φ(T z)T ′(z)2 = φ(z), it is easy to check that the last expression in the above
formula is a (meromorphic) quadratic differential on X . Using the standard substitution

u = z − z0
z − z̄0

, we get

(z − z̄)2k(T i )′(z)k+1

(z − T i z)2(z̄ − T i z)2k
= ωi(k+1)

(1 − ωi )2 u2 · (1 − |u|2)2k

(1 − ωi |u|2)2k

(
du

dz

)2

. (3.4)

Since μ(0) = 0 for m > 2 (see (2.1)), the integral in the left-hand side of (3.3) is
absolutely convergent, and we have

∫

X

( ∑

γ∈�,
γ elliptic

∂ y−2k∂ ′Q−k(z, γ z′; 1)γ ′(z̄′)−k
)∣∣∣

z′=z
μ(z) d2z

= 1

π

m−1∑

i=1

ωi(k+1)

(1 − ωi )2

∫

�0\D

(
1 − |u|2

1 − ωi |u|2
)2k

μ(u)

u2 d2u

= 1

4π

m−1∑

i=1

ωi(k+1)

(1 − ωi )2

∫

�0\D

(
1 − |u|2

1 − ωi |u|2
)2k

(1 − |u|2)2
∞∑

j=1

ā jmū jm−2 d
2u

u2

= 1

4π

m−1∑

i=1

ωi(k+1)

(1 − ωi )2

∞∑

j=1

ā jm

∫ 2π
m

0

∫ 1

0

(1 − r2)2k+2

(1 − ωi r2)2k
r jm−3e

√−1 jmθdrdθ

= 0,
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1130 L. A. Takhtajan, P. Zograf

which proves the theorem for m > 2 (in the last line, we used polar coordinates
u = re

√−1θ on D).
We have to be more careful in the case m = 2, since the contribution from elliptic

elements is no longer absolutely convergent and should be considered as the principal
value (seeRemark 2). Fromnowon,we assume that� acts on the unit diskD, so that�0
is generated by ω = −1. Since � is discrete, there exists minγ∈�/{±1}, γ �=±1 |γ (0)| >

0. Therefore, we can choose a small δ such that Bδ ∩ γ Bδ = ∅ unless γ = ±1. The
set Dδ = D\(∪γ∈�/{±1} γ Bδ) is �-invariant, and the factor Xδ = �\Dδ is a Riemann
surface with a hole obtained by cutting off a small cone with vertex at the conical point
of angle π . In this case, we have

∫

Xδ

( ∑

γ∈�,
γ elliptic

∂ y−2k∂ ′Q−k(z, γ z′; 1)γ ′(z̄′)−k
)∣∣∣

z′=z
μ(z) d2z

= (−1)k+1

4π

∫

Dδ/{±1}

(
1 − |u|2
1 + |u|2

)2k
μ(u)

u2 d2u

= (−1)k+1

16π

∫

(D\Bδ)/{±1}

(
1 − |u|2
1 + |u|2

)2k

(1 − |u|2)2
∞∑

j=1

ā jmū jm−2 d2u

u2

− (−1)k+1

4π

∑

γ∈�/{±1}
γ �=±1

∫

γ Bδ

(
1 − |u|2
1 + |u|2

)2k
μ(u)

u2 d2u .

For the first integral in the last line, we have

∫

(D\Bδ)/{±1}

(
1 − |u|2
1 + |u|2

)2k

(1 − |u|2)2
∞∑

j=1

ā jmū jm−2 d2u

u2 = 0

by the same reason as in the casem > 2 (in polar coordinates u = re
√−1θ , the integral

over θ vanishes). As for the sum of integrals, since the integrand is uniformly bounded
on D\Bδ and the (Euclidean) area of the union ∪γ∈�/{±1}, γ �=±1 γ Bδ tends to 0 as
δ → 0, we have

∑

γ∈�/{±1}
γ �=±1

∫

γ Bδ

(
1 − |u|2
1 + |u|2

)2k
μ(u)

u2 d2u −−−−−→
δ→0

0 ,

which proves the theorem. �
Later we will need to know the behavior of the quadratic differential

R−k(z) = −∂ y−2k∂ ′ (G−k(z, z′; 1) − Q−k(z, z′; 1))
∣∣∣
z′=z
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Local index theorem for orbifold Riemann surfaces 1131

near the elliptic fixpoints of �. Let T be an elliptic generator of � of order m with
fixpoint z0. The standard isomorphism H → D given by u = z−z0

z−z̄0
maps z0 ∈ H

to 0 ∈ D, so that T becomes the multiplication by ω = e2π
√−1/m . Slightly abusing

notation, we put R−k(u)du2 = R−k(z)dz2. Then, we have

Lemma 2 The quadratic differential R−k on D has the following asymptotics near 0:

R−k(u) = −m2

2π

(
B2

({
k

m

})
− 1

6m2

)
1

u2 + O(1) as u → 0 , (3.5)

where B2(x) = x2 − x + 1
6 is the second Bernoulli polynomial, and {x} denotes the

fractional part of x ∈ Q.

Proof Using (3.4), we easily see that

R−k(u) = 1

π

m−1∑

i=1

ωi(k+1)

(1 − ωi )2 u2 · (1 − |u|2)2k

(1 − ωi |u|2)2k
+ O(1)

= 1

π

m−1∑

i=1

ωi(k+1)

(1 − ωi )2
· 1

u2 + O(1) as u → 0.

We are going to show now that

m−1∑

i=1

ωi(k+1)

(1 − ωi )2
= −m2 − 1

12
+ k̄(m − k̄)

2
, (3.6)

where k̄ is the least nonnegative residue of k modulo m. We start with the simple
identity

m−1∑

i=1

log(x − ωi ) = log(1 + x + · · · + xm−1) .

Differentiating it once with respect to x and putting x = 1, we get

m−1∑

i=1

1

1 − ωi
= m − 1

2
, (3.7)

Differentiating it twice, putting x = 1 and applying (3.7) we get

m−1∑

i=1

ωi

(1 − ωi )2
= −m2 − 1

12
. (3.8)
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1132 L. A. Takhtajan, P. Zograf

To prove (3.6), we use the identity

xk̄+1

(1 − x)2
= x

(1 − x)2
− k̄

1 − x
+

k̄−1∑

j=0

(k̄ − j)x j

together with (3.7) and (3.8) to obtain

m−1∑

i=1

ωi(k+1)

(1 − ωi )2
= −m2 − 1

12
− k̄(m − 1)

2
+

k̄−1∑

j=0

(k̄ − j)
m−1∑

i=1

ωi j

= −m2 − 1

12
− k̄(m − 1)

2
+ k̄(m − 1) −

k̄−1∑

j=1

(k̄ − j)

= −m2 − 1

12
+ k̄(m − k̄)

2

= −m2

2

(
B2

({
k

m

})
− 1

6m2

)
,

which proves the lemma. �

3.2 The first Chern form

Our next objective is to compute the curvature, or the first Chern form c1(λ−k, ||·||Q
−k),

of the determinant line bundle λ−k endowed with Quillen’s metric (see (2.10)). To
formulate the theorem, we introduce three kinds of metrics:

• Weil–Petersson metric. For μ, ν ∈ 	−1,1(X) understood as tangent vectors to
the Teichmüller space T (�); the Weil–Petersson scalar product is defined by the
formula

〈
∂

∂εμ

,
∂

∂εν

〉

WP
=
∫

X
μ(z)ν(z)dρ(z) , (3.9)

where dρ is the hyperbolic area form on X = �\H. This metric is Kähler, and its
symplectic form will be denoted by ωWP.

• Cuspidal metric (also known as Takhtajan–Zograf metric). For the parabolic gen-
erator Si of �, this metric is defined as

〈
∂

∂εμ

,
∂

∂εν

〉cusp

i
=
∫

X
Ei (z, 2)μ(z)ν(z)dρ(z) , (3.10)

where Ei (z, s) is the i th Eisenstein series for �. By definition,

Ei (z, s) =
∑

γ∈〈Si 〉\�
Im(σ−1

i γ z)s, i = 1, . . . , n , (3.11)
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Local index theorem for orbifold Riemann surfaces 1133

where 〈Si 〉 denotes the cyclic subgroup of � generated by Si and (σ−1
i Siσ)z =

z ± 1. The series is absolutely convergent for Re s > 1, is positive for s = 2 and
satisfies the equation

�0Ei (z, s) = 1
4 s(1 − s)Ei (z, s).

For any i = 1, . . . , n, this metric is Kähler, its symplectic formwe denote byω
cusp
i

and put ωcusp =∑n
i=1 ω

cusp
i .

• Elliptic metric. For the elliptic generator Tj of � define

〈
∂

∂εμ

,
∂

∂εν

〉ell

j
=
∫

X
G(z j , z)μ(z)ν(z)dρ(z) , (3.12)

where z j is the fixpoint of Tj and G(z, z′) = G0(z, z′; 2) is the integral kernel of
(
�0 + 1

2

)−1
. As we will see later, the metrics 〈 , 〉ellj are also Kähler. Denote by

ωell
j the (1, 1)-form

ωell
j

(
∂

∂εμ

,
∂

∂εν

)
= −1

2
Im

〈
∂

∂εμ

,
∂

∂εν

〉ell

j
.

The main result of this paper is

Theorem 2 For integer k ≥ 0, we have

c1(λ−k, || · ||Q
−k) = 6k2 + 6k + 1

12π2 ωWP − 1

9
ωcusp

− 1

4π

l∑

j=1

m j

(
B2

({
k

m j

})
− 1

6m2
j

)
ωell

j , (3.13)

where, as above, B2(x) = x2 − x + 1
6 is the second Bernoulli polynomial and {x}

denotes the fractional part of x.

Remark 3 This result holds for k < 0 as well, because the Hermitian line bundles(
λk , || · ||Q

k

)
and

(
λ1−k , || · ||Q

1−k

)
are isometrically isomorphic.

Proof As before, without loss of generality we assume that l = 1 and� has one elliptic
generator T of order m with fixpoint z0 ∈ H. We start with (3.1), where for m = 2
we understand the integral in the right-hand side as the principal value as described
above. We have
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1134 L. A. Takhtajan, P. Zograf

∂2

∂εμ∂ε̄ν

∣∣∣
εμ=εν=0

log det�−k

= − ∂

∂ε̄

∣∣∣
ε=0

∫

Xεν

∂ y−2k∂ ′ (Gεν−k(z, z′; 1) − Q−k(z, z′; 1))
∣∣∣
z′=z

μεν(z) d2z

= ∂

∂ε̄

∣∣∣
ε=0

∫

Xεν

Rεν−k(z)μ
εν(z) d2z . (3.14)

Here we use the following notation:

• �εν = f εν ◦ � ◦ ( f εν)−1, where f εν : H → H is the Fuchsian deformation
satisfying the Beltrami equation

f εν
z̄ = εν f εν

z

and fixing 0, 1 and ∞,
• Gεν−k(z, z′; 1) is the Green’s function of �−k on Xεν = �εν\H, k > 0, whereas
for k = 0 the Green’s function is understood as the constant term in the Laurent
expansion of G0(z, z′; s) at s = 1, see (2.6),

• μεν ∈ 	−1,1(Xεν) is the parallel transport of μ ∈ 	−1,1(X) along the trajectory
of the tangent vector εν, and

• Rεν−k is a quadratic differential on Xεν\{ f εν(z0)} given by the formula

Rεν−k(z) = −∂ y−2k∂ ′ (Gεν−k(z, z′; 1) − Q−k(z, z′; 1))
∣∣∣
z′=z

.

For ϕεν ∈ C p,q(Xεν\{ f εν(z0)}), we define its pullback ( f εν)∗ϕεν to X\{z0} by the
formula

( f εν)∗ϕεν = ϕεν ◦ f εν( f εν
z )p( f εν

z̄ )q ∈ C p,q(X\{z0}) ,

whereC p,q(X\{z0}) denotes the space of smooth (p, q)-differentials on the punctured
at the elliptic point z0 orbisurface X\{z0}. Let �0 denote the stabilizer of z0 in H

generated by T and put Xεν
δ = Xεν\h−1

εν (Bδ), where hεν : H → D, hεν(z) =
z − f εν(z0)

z − f εν(z0)
, and Bδ unfolds to a sector of small radius δ and central angle 2π/m in

the unit disk D. Using Ahlfors’ lemma

∂

∂ε̄

∣∣∣
ε=0

| f εν
z |2

(Im f εν)2
= 0

for ν ∈ 	−1,1(X) (see [1]), we continue (3.14) as follows:

∂2

∂εμ∂ε̄ν

∣∣∣
εμ=εν=0

log det�−k

= ∂

∂ε̄

∣∣∣
ε=0

⎛

⎜⎝ lim
δ→0

∫

Xεν
δ

Rεν−k(z)μ
εν(z) d2z

⎞

⎟⎠
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Local index theorem for orbifold Riemann surfaces 1135

= ∂

∂ε̄

∣∣∣
ε=0

⎛

⎜⎝ lim
δ→0

∫

( f εν )−1(Xεν
δ )

( f εν)∗ Rεν−k(z)( f εν)∗μεν(z) d2z

⎞

⎟⎠

= lim
δ→0

∫

Xδ

(
∂

∂ε̄

∣∣∣
ε=0

( f εν)∗ Rεν−k(z)

)
μ(z) d2z

+ lim
δ→0

∫

Xδ

R−k(z)

(
∂

∂ε̄

∣∣∣
ε=0

( f εν)∗μεν(z)

)
d2z

−
√−1

2
lim
δ→0

∫

∂ Xδ

R−k(z)μ(z)

(
∂

∂ε̄

∣∣∣
ε=0

f ενdz̄ − ∂

∂ε̄

∣∣∣
ε=0

f ενdz

)

= I1 + I2 + I3 , (3.15)

where the integral I3 is due to the variation of the domain of integration ( f εν)−1(Xεν
δ )

in (3.14).
The first integral in the right-hand side of (3.15) was computed in [14], Theorem

1, Formulas (4.7) and (4.8):

I1 = Tr((−μν̄ I + (∂μ∂̄−k)�
−1
−k(∂ν̄ ∂̄

∗−k))P−k,1) + 3k + 1

12π
〈μ, ν〉WP , (3.16)

where I is the identity operator in the Hilbert spaceH−k,1(X), P−k,1 : H−k,1(X) →
	−k,1(X) is the orthogonal projector, Tr is the trace, and

∂μ∂̄−k = ∂

∂ε

∣∣∣
ε=0

( f εμ)∗ ∂̄−k(( f εμ)∗)−1,

∂ν̄ ∂̄
∗−k = ∂

∂ε̄

∣∣∣
ε=0

( f εν)∗ ∂̄∗−k(( f εν)∗)−1.

We proceed with the integral I2 in the right-hand side of (3.15). We will use
Wolpert’s formula [16]

∂

∂ε̄

∣∣∣
ε=0

( f εν)∗μεν(z) = − ∂

∂ z̄
y2

∂

∂ z̄
fμν̄,

where, as before, fμν̄ = (�0 + 1
2

)−1
(μν̄). Then, by Stokes’ theorem

I2 = − lim
δ→0

∫

Xδ

R−k(z)
∂

∂ z̄

(
y2

∂

∂ z̄
fμν̄(z)

)
d2z

=
∫

X

∂

∂ z̄
R−k(z)

∂

∂ z̄
fμν̄(z)y2d2z
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1136 L. A. Takhtajan, P. Zograf

+
√−1

2
lim

Y→∞

∫

∂ XY

R−k(z)
∂

∂ z̄
fμν̄(z)y2dz

+
√−1

2
lim
δ→0

∫

∂ Xδ

R−k(z)
∂

∂ z̄
fμν̄(z)y2dz

=I4 + I5 + I6 , (3.17)

where XY denotes the Riemann surface �\H with cusps cut off along horocycles at
level Y (see [14] for details). The first two integrals in the right-hand side of (3.17)
were computed in [14], Theorem 1. Namely,

I4 = − k Tr

(
y2
(

∂2

∂εμ∂ε̄ν

∣∣∣
εμ=εν=0

( f εμμ+ενν)∗
(

y−2
))

P−k,1

)

+ k(2k + 1)

4π
〈μ, ν〉WP (3.18)

and

I5 = −π

9
〈μ, ν〉cusp . (3.19)

To compute the integral I6, we will use the coordinate u in the unit disk D. Put
Cδ = {u = δe

√−1θ | 0 ≤ θ ≤ 2π
m } and denote for brevity

c(m, k) = −m2 − 1

12
+ k̄(m − k̄)

2
= −m2

2

(
B2

({
k

m

})
− 1

6m2

)
.

Then, by Lemma 2, we have

I6 = −
√−1

2π
lim
δ→0

∫

Cδ

c(m, k)

u2

(1 − |u|2)2
4

∂ fμν̄

∂ ū
du

= c(m, k)

16π
lim
r→0

∫ 2π
m

0

(1 − r2)2

r

(
∂

∂r
+

√−1

r

∂

∂θ

)
fμν̄(r , θ)dθ

= c(m, k)

16π
lim
r→0

∫ 2π
m

0

1

r

∂ fμν̄

∂r
dθ

= c(m, k)

8m
lim
r→0

1

r

∂ f0
∂r

= c(m, k)

4m
c2

= −m

4

(
B2

({
k

m

})
− 1

6m2

)⎛

⎝
∫

X

G(0, u)μ(u)ν(u)dρ(u) − 2μ(0)ν(0)

⎞

⎠ ,

(3.20)
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where we used the Fourier expansion for fμν̄ and Lemma 1. (Note that the term
−2μ(0)ν(0) is present only when m = 2.)

The only integral that is left to compute is I3 in (3.15). As in the case of the integral
I6, we evaluate I3 using the coordinate u in the unit disk D. We have

I3 =
√−1

2
lim
δ→0

∫

Cδ

R−k(u)μ(u)

(
∂

∂ε̄

∣∣∣
ε=0

f ενdū − ∂

∂ε̄

∣∣∣
ε=0

f ενdu

)

=
√−1

2
lim
δ→0

∫

Cδ

R−k(u)μ(u)(�(u)dū − F(u)du) ,

where we put

� = ∂

∂ε̄

∣∣∣
ε=0

f εν and F = ∂

∂ε

∣∣∣
ε=0

f εν .

Since for m > 2 we have μ(0) = 0 (cf. (2.1)) this yields I3 = 0. When m = 2, we
use Lemma 2, the fact that � is holomorphic [1], and the formulas

μu(0) = 0, F(u) = F(0) + ν(0)ū + Fu(0)u + O(u2)

and (3.5) to obtain

I3 = c(2, k)

2π
lim
r→0

∫ π

0

μ(re
√−1θ )

r

(
e−3

√−1θ �(re
√−1θ ) + e−√−1θ F(re

√−1θ )
)
dθ

= c(2, k)

2
μ(0)ν̄(0) ,

where we put u = re
√−1θ . Thus, for all m ≥ 2

I3 + I6 = −m

4

(
B2

({
k

m

})
− 1

6m2

)∫

X

G(0, u)μ(u)ν(u)dρ(u).

To complete the proof, we recall Lemma 1 in [18] (or Lemma 5 in [14]) that
computes the curvature (or the first Chern form) of the determinant line bundle λ−k

relative to the standard L2-metric || · ||−k :

c1(λ−k, || · ||−k)(μ, ν)

=
√−1

2π
Tr
(((

μν̄ + ky2
∂2

∂εμ∂ε̄ν

∣∣∣
εμ=εν=0

( f εμμ+ενν)∗
(

y−2
) )

I

− (∂μ∂̄−k)�
−1
−k(∂ν̄ ∂̄

∗−k)
)

P−k,1

)
. (3.21)

123



1138 L. A. Takhtajan, P. Zograf

Here we use the same notation as in formulas (3.16) and (3.18), and μ, ν ∈ 	−1,1(X)

are understood as tangent vectors to T (�) at the origin. Then, for the first Chern form
of λ−k relative to the Quillen metric, we have

c1(λ−k, || · ||Q
−k)(μ, ν) = c1(λ−k, || · ||−k)(μ, ν)

+
√−1

2π

∂2

∂εμ∂ε̄ν

∣∣∣
εμ=εν=0

log det�−k . (3.22)

Substituting formulas (3.15)–(3.21) into (3.22), we arrive at the assertion of the theo-
rem. �

4 Concluding remarks

4.1 Local potential for elliptic metric

Let � be a cofinite Fuchsian group, and let T be an elliptic generator of � of order m
with the fixpoint 0 ∈ D. Following [10], we are going to show that positive definite
Hermitian product (3.12)

〈
∂

∂εμ

,
∂

∂εν

〉ell
=
∫

X
G(0, u)μ(u)ν(u)dρ(u) ,

where X = �\D and has a local potential in a neighborhood of the origin in the
Teichmüller space T (�).

For the sake of simplicity, let us assume that the group � has genus 0. Let

J : D → �\D ⊃ C\{w1, . . . , wn+l−3, 0, 1}

be the corresponding Hauptmodul with ramification index m over 0 = J (0) ∈ C,
where n and l are the numbers of parabolic and elliptic generators of �, respectively.
The function J has a power series expansion in u ∈ D of the form

J (u) =
∞∑

k=1

Jk umk,

where J1 �= 0. For the density of the hyperbolic metric eϕ(w)|dw|2 on X =
C\{w1, . . . , wn+l−3, 0, 1}, we have

eϕ(w) = 4|J−1(w)′|2
(1 − |J−1(w)|2)2
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and

4|J1|− 2
m

m2 = lim
w→0

eϕ(w)|w|2− 2
m .

Take μ ∈ 	−1,1(X) and denote by Fεμ : C → C the quasiconformal map satisfying
the Beltrami equation Fεμ

w̄ = εμFεμ
w that fixes 0, 1 and ∞. Let �εμ = Fεμ ◦ � ◦

(Fεμ)−1 be the deformation of the group� in T (�) in the direction ofμ. Then, we can
think of Fεμ as a map C\{w1, . . . , wn+l−3, 0, 1} → C\{wεμ

1 , . . . , w
εμ
n+l−3, 0, 1} ∈

Xεμ, where Xεμ = �εμ\D and Fεμ(wi ) = w
εμ
i . Let us now put

hεμ = − log |J εμ
1 | 2

m = 2 logm − 2 log 2 + lim
w→0

(
ϕεμ(w) +

(
1 − m−1

)
log |w|2

)
.

Then, using Wolpert’s formula [16] for the second variation of the hyperbolic area
form and the fact that Fεμ(w) is holomorphic in ε, we get

∂2

∂ε∂ε̄

∣∣∣∣
ε=0

hεμ = 1

2
(�0 + 1

2 )
−1(|μ|2)(0)

= 1

2

∫∫

X

G(0, u)|μ(u)|2dρ(u)

= 1

2

〈
∂

∂εμ

,
∂

∂εμ

〉ell
.

In other words, hεμ is a potential of the elliptic metric 〈 , 〉ell that is defined globally
onM0,n+l for any elliptic generator T1, . . . , Tl of �.

If the group� has genus g > 0, one can use the Schottky uniformization to construct
local potentials for the elliptic metrics in exactly the same way (see [10] for details).
Thus, we have the following

Theorem 3 Let � be a finitely generated cofinite Fuchsian group of signature
(g; n; m1, . . . , ml). Then, each Hermitian metric 〈 , 〉ell1 , . . . , 〈 , 〉elll defined by (3.12)
is Kähler on the Teichmüller space T (�) (or on the moduli space T (�)/Mod(�) in
the orbifold sense).

As in the case of punctured Riemann surfaces [10,17], for each conical point z j

we consider the tautological line bundle L j on T (�), or rather a Q-line bundle on
T (�)/Mod(�). Its fibers are holomorphic cotangent lines at conical points. Then, as
in [10] (cf. also [9]), one can show that h determines a Hermitian metric in the line
bundle L and

c1(L j , h) = − 1

2π
ωell

j .
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4.2 Cuspidal and elliptic metrics

Here we will show that when the order of the elliptic generator tends to ∞, the
corresponding Hermitian product converges to the cuspidal one. Consider the family
of elliptic transformations Tm of order m of the form

Tm = Cm OmC−1
m ,

where

Om =

⎛

⎜⎜⎜⎝

cos
2π

m
sin

2π

m

− sin
2π

m
cos

2π

m

⎞

⎟⎟⎟⎠ , Cm =

⎛

⎜⎜⎝
0

√
m

2π

−
√
2π

m
0

⎞

⎟⎟⎠ ,

and m = 2, 3, . . .. Then,

Tm =

⎛

⎜⎜⎜⎝

cos
2π

m

m

2π
sin

2π

m

−2π

m
sin

2π

m
cos

2π

m

⎞

⎟⎟⎟⎠ −→
(
1 1
0 1

)

as m → ∞, and ζm =
√−1m

2π
(the fixpoint of Tm in H) tends to

√−1∞.

To compute the limit of the elliptic scalar product asm → ∞, we use Fay’s formula
[8, Theorem 3.1]

G0(z, z′; s) = 4 y1−s

2s − 1
E(z′, s) + O(e−2π y)

as y → ∞ and y > y′. Here G0(z, z′; s) stands, as before, for the integral kernel

of

(
�0 + s(s − 1)

4

)−1

on X = �\H, and E(z, s) is the Eisenstein series associated

with the parabolic subgroup generated by
(
1 1
0 1

)
. Putting s = 2, we get for m large

that

G(ζm, z) = G0(ζm, z; 2) = 8π

3m
E(z, 2) + O(e−m).

Thus, we see that

3m

8π

〈
∂

∂εμ

,
∂

∂εν

〉ell

m
−→

〈
∂

∂εμ

,
∂

∂εν

〉cusp

∞
as m → ∞ ,

where 〈 , 〉ellm is the Hermitian product associated with the elliptic generator Tm and
〈 , 〉cusp∞ is the Hermitian product associated with the parabolic generator

(
1 1
0 1

)
.
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4.3 Elliptic metric and Selberg zeta values

Here we give a simple example of a relation between the elliptic metric and Selberg
zeta values considered as functions on the Teichmüller space T (�). As � we take a
Fuchsian group of the first kind of signature (0; 1; 2, 2, 2), i.e.,

� = {S0, T1, T2, T3 | S0T1T2T3 = T 2
1 = T 2

2 = T 2
3 = I }.

Let χ : � → Z/2Z be the character defined on the generators by χ(S0) = χ(T1) =
χ(T2) = χ(T3) = −1, and let �′ = ker χ . Then, �′ is a torsion-free subgroup of �

of index 2 and signature (1;1) given by

�′ = {A1, B1, S1 | A1B1A−1
1 B−1

1 S1 = I },

where A1 = T1T2, A2 = T3T2 and S1 = S2
0 . The group �′ uniformizes a once-

punctured elliptic curve given by the lattice � = Z · 1+ Z · τ ⊂ C with Imτ > 0, so
that�′\H � �\C−{0}. The Teichmüller spaces of� and�′ are naturally isomorphic:
T (�) = T (�′) = {τ ∈ C | Imτ > 0}. Formula (3.13) applied to the determinant line
bundles λk and λ′

k on T (�) and T (�′), respectively, yields

c1(λk, || · ||Q
k ) = 6k2 − 6k + 1

12π2 ωWP − 1

9
ωcusp + (−1)k

16π
ωell , (4.1)

c1(λ
′
k, || · ||Q

k ) = 6k2 − 6k + 1

12π2 ω′
WP − 1

9
ω′
cusp (4.2)

(here we assume that k ≥ 1 and ωell = ωell
1 + ωell

2 + ωell
3 ).

Since the fundamental domain of �′ is twice the fundamental domain of �, and
the Beltrami differential corresponding to ∂/∂τ is the same for both � and �′, we
have ω′

WP = 2ωWP. Moreover, since 〈S1〉\�′ = 〈S0〉\�, the Eisenstein series for
� and �′ are equal, i.e., E(z, s;�) = E(z, s;�′), see (3.11). Therefore, we have
ω′
cusp = 2ωcusp, and comparing (4.1) and (4.2), we see that

2c1(λk, || · ||Q
k ) − c1(λ

′
k, || · ||Q

k ) = (−1)k

8π
ωell . (4.3)

For k = 1, we have

c1(λ1, || · ||Q
1 ) =

√−1

2π
∂̄τ ∂τ log

(
1

Z ′(1, �, 1)

)
,

c1(λ
′
1, || · ||Q

1 ) =
√−1

2π
∂̄τ ∂τ log

(
Imτ

Z ′(1, �′, 1)

)
,

where ∂τ and ∂̄τ are the (1,0)- and (0,1)-components of the exterior derivative operator
on the upper half-plane {τ ∈ C | Imτ > 0} and Z(s, �, χ) is defined by (2.8). By [15,
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1142 L. A. Takhtajan, P. Zograf

Theorem 3.1], we have

Z(s, �′, 1) = Z(s, �, 1) · Z(s, �, χ)

and hence Z ′(1, �′, 1) = Z ′(1, �, 1) · Z(1, �, χ) (note that Z(1, �, χ) �= 0). Substi-
tuting this expression for Z ′(1, �′, 1) into (4.3), we finally obtain that for a group �

of signature (0; 1; 2, 2, 2)
√−1ωell = −dτ ∧ dτ̄

(Imτ)2
+ 4 ∂̄τ ∂τ log

(
Z(1, �τ , χ)

Z ′(1, �τ , 1)

)
(4.4)

on T (�) = {τ ∈ C | Imτ > 0}. Here �τ = f μ ◦ � ◦ ( f μ)−1, where f μ : H → H

is the Fuchsian deformation satisfying the Beltrami equation f μ
z̄ = μ f μ

z with μ ∈
	−1,1(�\H) corresponding to the tangent vector ∂/∂τ .
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