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Abstract An embedding of the Bannai–Ito algebra in the universal enveloping alge-
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1 Introduction

This paper exhibits a direct connection between the superalgebra osp(1, 2) and the
Bannai–Ito algebra. It also offers an interpretation of the little −1 Jacobi polynomials
in this context and an integral formula for the Bannai–Ito polynomials.

The Bannai–Ito polynomials were identified in the classification [1] of orthogonal
polynomialswith theLeonard duality property. They sit at the top of one the hierarchies
of orthogonal polynomials that can be obtained under a q → −1 limit of the members
of the Askey tableau and which are hence called −1 polynomials [5,22]. The Bannai–
Ito algebra [22] is a unital associative algebra with three generators that encodes the
bispectral properties of the polynomials with the same name.

Since its introduction, the Bannai–Ito algebra has appeared in a number of con-
texts and some of its ties to osp(1, 2) have been uncovered. This algebra is in fact
the symmetry algebra of a superintegrable model with reflections on the 2-sphere [7]
and of the Dirac–Dunkl equation in three dimensions [3]; it appears in Dunkl har-
monic analysis on S2 [9] and is isomorphic to the degenerate (C∨

1 ,C1) double affine
Hecke algebra [11]. The Bannai–Ito algebra also arises in the Racah problem for
osp(1, 2). Indeed, its central extension is the centralizer of the coproduct embedding
of osp(1, 2) in the threefold direct product osp(1, 2)⊗3 of this algebra with itself, with
the intermediate Casimir operators acting as the generators [6]. A different relation
between the two algebras [the Bannai–Ito one and osp(1, 2)] will be presented in the
following.

The −1 little Jacobi polynomials are orthogonal on [−1, 1] and depend on two
parameters [23]. They are obtained as a q → −1 limit of the little q-Jacobi polyno-
mials and are eigenfunctions of a first-order differential-difference operator of Dunkl
type.

The Bannai–Ito algebra can be obtained by taking q → −1 in the Askey–Wilson
algebra AW (3), which describes the bispectral properties of the Askey–Wilson poly-
nomials [24]. See also [13–15]. It is known that AW (3) can be realized in a subalgebra
of the quantum loop sl(2) [12]. In a similar spirit, the goal here is to offer an embed-
ding of the Bannai–Ito algebra in U (osp(1, 2)), the universal enveloping algebra
of osp(1, 2)—a question that had been raised in the conclusion of Ref. [10]. This
will then be exploited in the context of the holomorphic realization. It will be found
that in this realization one generator of the Bannai–Ito algebra coincides with the
differential-difference operator that is diagonalized by the little −1 Jacobi polynomi-
als. It will moreover be seen that a second generator results from the tridiagonalization
[4] of the former. This will allow to obtain the eigenfunctions of this second genera-
tor.

As is generally understood from the theory of Leonard pairs [1,18–21], the
connection coefficients between two finite-dimensional representation bases con-
structed as eigenfunctions of either one of the Bannai–Ito generators satisfy the
three-term recurrence relation of the Bannai–Ito polynomials. The model developed
will hence allow to provide an integral formula for the (finite) Bannai–Ito polynomi-
als.

The outline is as follows. The embedding of theBannai–Ito algebra inU (osp(1, 2))
is given in Sect. 2. The holomorphic representation of osp(1, 2) is considered in Sect. 3
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where the defining operator of the little −1 Jacobi polynomials and its tridiagonal-
ization will be seen to realize the Bannai–Ito generators. The integral formula for
the Bannai–Ito polynomials is obtained in Sect. 4. Section 5 comprises concluding
remarks.

2 Embedding the Bannai–Ito algebra in U (osp(1, 2))

In this section, we present the formal embedding of the Bannai–Ito algebra in
U (osp(1, 2)). The osp(1, 2) superalgebra is generated by the elements A0, A± subject
to the relations

[A0, A±] = ±A±, {A+, A−} = 2A0,

where [x, y] = xy − yx and {x, y} = xy + yx stand for the commutator and the
anticommutator, respectively. We introduce the grade involution operator P satisfying

[A0, P] = 0, {A±, P} = 0, P2 = 1.

The above relations serve to indicate that A± are odd generators and that A0 is an even
generator. The Casimir operator Q defined as

Q = 1

2
([A−, A+] − 1)P = (A0 − A+A− − 1/2)P, (1)

commutes with A0, A± and P and generates the center of U (osp(1, 2)).
Let μ2, μ3 and μ4 be real numbers and consider the operators K1, K2, K3 ∈

U (osp(1, 2)) defined by the following expressions:

K1 = A+A0 − μ4A+P + (μ2 + μ3 + 1/2)A+ − A− + (μ4 − Q)P − 1/2,

K2 = −A+A0P − (μ2 + μ3 + 1/2)A+P + A0P + μ4A+ + μ3P,

K3 = A0P − A−P + μ2P,

(2)

where Q is the osp(1, 2) Casimir element (1). The operators (2) obey the defining
relations of the Bannai–Ito algebra. Indeed, a direct calculation shows that

{K1, K2} = K3 + ω3, {K2, K3} = K1 + ω1, {K3, K1} = K2 + ω2, (3)

where ω1, ω2, ω3 are the central elements with expressions

ω1 = 2(μ4Q + μ2μ3), ω2 = 2(μ3Q + μ2μ4), ω3 = 2(μ2Q + μ3μ4). (4)

It is verified that in the realization (2), the Casimir operator C of the Bannai–Ito
algebra, which reads

C = K 2
1 + K 2

2 + K 2
3 , (5)
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can be expressed as

C = Q2 + μ2
2 + μ2

3 + μ2
4 − 1/4. (6)

The combinations (2) thus provide a formal embedding of theBannai–Ito algebra (3) in
the universal enveloping algebra of osp(1, 2). Since the structure constants ω1, ω2, ω3
in (4) depend on the Casimir operator Q of osp(1, 2), it follows that (3) is in fact a
central extension of the Bannai–Ito algebra, where the central operator is Q.

3 Holomorphic realization and little −1 Jacobi polynomials

In this section, we establish the connection between the embedding of the Bannai–
Ito algebra in U (osp(1, 2)) detailed in the previous section and the little −1 Jacobi
polynomials using the holomorphic realization of osp(1, 2). We also discuss the rela-
tionship with tridiagonalization.

3.1 The holomorphic realization of osp(1, 2)

In the holomorphic realization of osp(1, 2), the generators A0, A± and the grade
involution are given by

A0(x) = x∂x + (μ1 + 1/2), A+(x) = x, A−(x) = D(μ1)
x , P(x) = Rx ,

(7)

where Rx f (x) = f (−x) is the reflection operator and where D(μ)
x is the A1 Dunkl

operator

D(μ)
x = ∂x + μ

x
(1 − Rx ). (8)

In the realization (7), the Casimir operator (1) acts as a multiple of the identity; more
specifically

Q f (x) = μ1 f (x). (9)

A natural basis for the irreducible representation underlying (7) is provided by the
monomials. Upon defining en(x) = xn , where n is a nonnegative integer, one has

A0(x)en(x) = (n + μ1 + 1/2)en(x), A+(x)en(x) = en+1(x),

P(x)en(x) = (−1)nen(x), A−(x)en(x) = [n]μ1en−1(x),
(10)

where
[n]μ = n + 2μ(1 − (−1)n),

are the μ-numbers.
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3.2 Differential-difference realization of Bannai–Ito generators

In light of the embedding (2) of the Bannai–Ito algebra inU (osp(1, 2)), the holomor-
phic realization (7) and the basis en(z) allow us to present an infinite-dimensional
representation of the Bannai–Ito algebra in which the generators are realized as
differential-difference operators. Let us denote by K1(x), K2(x), K3(x) the opera-
tors obtained by combining (2) with (7). One has

K1(x) = (x2 − 1)∂x + x(μ1 + μ2 + μ3 + 1) − μ1

x
(1 − Rx )

− (μ1 + μ4(x − 1))Rx − 1/2,

K2(x) = x(1 − x)∂x Rx − x(μ1 + μ2 + μ3 + 1)Rx + xμ4 + (μ1 + μ3 + 1/2)Rx ,

K3(x) = (x − 1)∂x Rx +
(μ1

x
− (μ1 + μ2 + 1/2)

)
(1 − Rx ) + (μ1 + μ2 + 1/2).

(11)

From (11), one finds that K3(x) has the action

K3(x)en(x) = λnen(x) + νnen−1(x), (12)

where λn and νn are given by

λn = (−1)n(n + μ1 + μ2 + 1/2), νn = (−1)n+1[n]μ1 . (13)

Similarly, K2(x) is seen to act bidiagonally as follows

K2(x)en(x) = κn+1en+1(x) + σnen(x), (14)

where

κn = (−1)n(n + μ1 + μ2 + μ3 + (−1)nμ4), σn = (−1)n(n + μ1 + μ3 + 1/2).
(15)

The third generator K1(x) acts in a three-diagonal fashion; one has

K1(x)en(x) = υn+1en+1(x) + ρnen(x) − ιnen−1(x) (16)

where the coefficients are given by

υn =n+μ1+μ2 + μ3 + (−1)nμ4, ρn = (−1)n(μ4 − μ1) − 1/2, ιn = −[n]μ1 .

(17)

We now proceed to construct the bases in which K2(x) and K3(x) are diagonal.
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3.3 The K3 eigenbasis

The eigenfunctions of the operator K3(x) can be constructed straightforwardly by
solving the two-term recurrence relation that stems from the action (12) of K3(x) on
the monomial basis. However, it can be seen that K3(x) directly corresponds to the
operator known to be diagonalized by the little−1 Jacobi polynomials J (α,β)

n (x) [23].
The (monic) little −1 Jacobi polynomials are defined as the three-term recurrence
relation

J (α,β)
n+1 (x) + bn J

(α,β)
n (x) + un J

(α,β)
n−1 (x) = x J (α,β)

n (x), (18)

with J (α,β)
−1 (x) = 0 and J (α,β)

0 (x) = 1 and where bn and un are given by

un =
{ n(n+α+β)

(2n+α+β)2
n even

(n+α)(n+β)

(2n+α+β)2
n odd

, bn = (−1)n
(2n + 1)α + αβ + α2 + (−1)nβ

(2n + α + β)(2n + α + β + 2)
.

(19)

In [23], it was shown that the little −1 Jacobi polynomials satisfy the eigenvalue
equation

L J (α,β)
n (x) = tn J

(α,β)
n (x), tn =

{
−2n n is even

2(α + β + n + 1) n is odd
,

where L is the differential-difference operator

L = 2(1 − x)∂x Rx +
(
α + β + 1 − αx−1

)
(1 − Rx ). (20)

Upon comparing K3(x) given by (11) with (20), one observes that K3(x) is diago-
nalized by the little −1 Jacobi polynomials with parameters α = 2μ1 and β = 2μ2.
Upon defining

ψn(x) = J (2μ1,2μ2)
n (x), (21)

one has the following eigenvalue relation

K3(x)ψn(x) = λnψn(x), (22)

where the eigenvalues λn are given by (13). It can easily be seen that K2(x) acts in
a tridiagonal fashion on the little −1 Jacobi basis. Indeed, upon denoting by X the
“multiplication by x” operator, a straightforward calculation shows that K2(x) can be
expressed as

K2(x) = τ1XK3(x) + τ2K3(x)X + τ3X + τ0, (23)
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where

τ0 = −2μ1μ3, τ1 = μ3 − 1/2, τ2 = μ3 + 1/2, τ3 = μ4.

Since the X operator acts in a three-diagonal fashion on J (α,β)
n (x) in accordance to

the recurrence relation (18), one has

K2(x)ψn(x) = (τ1λn + τ2λn+1 + τ3)ψn+1(x)

+ ((τ1 + τ2)λnbn + τ3bn + τ0)ψn(x)

+ (τ1λn + τ2λn−1 + τ3)unψn−1(x), (24)

where the coefficients un and bn are given by (19) with α = 2μ1 and β = 2μ2.

Remark 1 The expression (23) indicates that K2(x) can be obtained from K3(x) via
the tridiagonalization procedure. This procedure has been discussed in [4,16]; it here
allows to straightforwardly construct the representation of the Bannai–Ito algebra in
the basis provided by the little −1 Jacobi polynomials.

3.4 The K2 eigenbasis

We now determine the eigenbasis associated with K2(x). We first observe that, in
parallel with (23), K3(x) can be expressed in terms of K2(x) as follows:

K3(x) = β1X
−1K2(x) + β2K2(x)X

−1 + β3X
−1 + β0, (25)

where X−1 is the “multiplication by 1/x” operator and where

β0 = −2μ3μ4, β1 = μ3 − 1/2, β2 = μ3 + 1/2, β3 = μ1.

In viewof (25),we consider the changeof variable y = 1/x .Under this transformation,
K2(x) takes the form

K2(y) = (1 − y)∂y Ry +
(

μ1 + μ3 + 1/2 − μ1 + μ2 + μ3 + 1

y

)
Ry + μ4

y
.

Consider the gauge factor φε(y) defined as

φε(y) = yε |y|μ1+μ2+μ3−(−1)εμ4+1−ε,
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where ε = 0 or 1. One has

φε(y)
−1K2(y)φε(y) = (−1)ε

[
(1 − y)∂y Ry

+
(

(−1)εμ4

y
− ((−1)εμ4 − μ2 − 1/2)

)
(1 − Ry)

+ ((−1)εμ4 − μ2 − 1/2)

]
. (26)

It is seen that (26) has the same form as K3(x). It follows that the eigenfunctions of
K2(x) have the expression

χn(x) = φε(1/x) J
(−2(−1)εμ4,2μ2)
n (1/x), (27)

and that the eigenvalue equation reads

K2(x)χn(x) = �nχn(x), (28)

with the eigenvalues �n given by

�n = (−1)ε(−1)n+1(n + μ2 + (−1)ε+1μ4 + 1/2). (29)

3.5 Finite-dimensional reduction

As is clear from the action (14) of K2(x) on the monomial basis, the action of the
Bannai–Ito generators (11) does not preserve the space of polynomials of a given
degree. A finite-dimensional representation can, however, be obtained by imposing
the appropriate truncation condition on the parameters. Indeed, it is easily seen that if
one takes

μ4 → μN = (−1)N (N + μ1 + μ2 + μ3 + 1), N = 1, 2, . . . (30)

then, the action of the Bannai–Ito generators preserves the (N+1)-dimensional vector
space spanned by the monomials {e0(x), . . . , eN (x)}. Upon imposing the truncation
condition (30), the formula (21) for the eigenfunctions ψn(x) of K3(x) as well as
the eigenvalue equation (22) remains valid. For the eigenfunctions χn(x) of K2(x)
obtained in (27), onemust take ε = 0 in (27) and (28)when N is even,while taking ε =
1 in (27) and (28) when N is odd. These choices guarantee that χn(x) is a polynomial
of degree less or equal to N . It is observed that when the truncation condition (30) is
satisfied, χn(x) is in fact of the form χn(x) = c0xN + c1xN−1 + · · · + cnxN−n , as
expected from the lower-triangular shape of K2(x). We shall assume that (30) holds
from now on.
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4 Bannai–Ito polynomials

In this section, the Bannai–Ito polynomials are shown to arise as the interbasis expan-
sion coefficients between the eigenbases of K2(x) and K3(x). This leads to an integral
expression for the Bannai–Ito polynomials involving the little−1 Jacobi polynomials.

4.1 A scalar product

Let P(x) and Q(x) be real polynomials in x ; we introduce their scalar product denoted
by 〈P(x), Q(x)〉 and defined as

〈P(x), Q(x)〉 =
∫ 1

−1
ω(x)P(x)Q(x) dx,

where ω(x) is given by

ω(x) = |x |2μ1(1 − x2)μ2−1/2(1 + x).

Under this scalar product, the elements of the eigenbasis of K3(x), given by the little
−1 Jacobi polynomials, are orthogonal [23]. Indeed, one has

〈ψn(x), ψm(x)〉 = hnδnm, (31)

where the normalization coefficients hn have the expression

hn = �(μ1 + 1/2)�(μ2 + 1/2)

�(μ1 + μ2 + 1)

× (�n/2	)!(μ1 + 1/2)
n/2�(μ2 + 1/2)
n/2�(μ1 + μ2 + 1)�n/2	
(μ1 + μ2 + 1/2)2n

, (32)

where (a)n stands for the Pochhammer symbol.

4.2 Interbasis expansion coefficients

We now consider the interbasis expansion coefficients between the eigenbases of
K3(x) and K2(x). These coefficients, which shall be denoted by Bn(k), are defined
by the following expansion of the K2(x) eigenfunction in a series of little −1 Jacobi
polynomials

χk(x) =
N∑

n=0

Bn(k) ψn(x), (33)
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In light of the orthogonality relation (31) satisfied by ψn(x), one can write

Bn(k) = 1

hn
〈χk(x), ψn(x)〉 = 1

hn

∫ 1

−1
ω(x) χk(x)ψn(x) dx. (34)

We recall that the coefficientsBn(k) also depend on the three parameters μ1, μ2, μ3,
as well as on μ4 = μN . In light of the truncation condition (30), the integral in (34)
is always well defined provided that μi ≥ 0 for i = 1, 2, 3.

It is clear that the coefficientsBn(k) satisfy a three-term recurrence relation. Indeed,
upon applying K2(x) on (33), using the eigenvalue equation (28) and the action (24) of
K2(x) on ψn(x) and finally exploiting the linear independence of the little −1 Jacobi
polynomials, one finds thatBn(k) obey

�kBn(k) = E (1)
n Bn+1(k) + E (2)

n Bn(k) + E (3)
n Bn−1(k), (35)

where the recurrence coefficients are given by

E (1)
n = (τ1λn+1 + τ2λn + τ3)un+1, E (2)

n = ((τ1 + τ2)λnbn + τ3bn + τ0),

E (3)
n = (τ1λn−1 + τ2λn + τ3).

(36)

One can writeBn(k) = B0(k)Pn(�k) with P0(�k) = 1 and

B0(k) = 1

h0

∫ 1

−1
ω(x) χk(x)ψ0(x) dx. (37)

It is clear from (35) that Pn(�k) are polynomials of degree n in �k . We introduce the
normalized polynomials P̂n(�k) = E (1)

0 · · · E (1)
n−1Pn(�k), which satisfy the normal-

ized recurrence relation

�k P̂n(�k) = P̂n+1(�k) + rn P̂n+1(�k) +Un P̂n−1(�k), (38)

with coefficients

Un = E (3)
n E (1)

n−1, rn = E (2)
n .

A direct calculation shows that the coefficientsUn and rn can be expressed as follows

Un = An−1Cn, rn = μ1 + μ3 + 1/2 − An − Cn

where An and Cn are given by
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An =
⎧
⎨
⎩

(n+2μ1+1)(n+μ1+μ2+μ3−μN+1)
2(n+μ1+μ2+1) n even

(n+2μ1+2μ2+1)(n+μ1+μ2+μ3+μN+1)
2(n+μ1+μ2)

n odd
,

Cn =
⎧⎨
⎩

− n(n+μ1+μ2−μ3−μN )
2(n+μ1+μ2)

n even

− (n+2μ2)(n+μ1+μ2−μ3+μN )
2(n+μ1+μ2)

n odd
.

(39)

The coefficients (39) correspond to those of the monic Bannai–Ito polynomials in the
parametrization associated with the Racah problem (with the permutation μ1 ↔ μ2);
see [6] for details on how to relate the present parametrization to the parametrization
given in [22]. It follows that the monic Bannai–Ito polynomials admit the integral
expression

P̂n(�k) = E (1)
0 · · · E (1)

n−1

hnB0(k)

∫ 1

−1
ω(x) χk(x)ψn(x) dx, (40)

where E (1)
n is given by (36), hn by (32),B0(k) by (37), χk(x) and�k by (27) and (29),

and whereψn(x) is given by (21). In essence, (40) gives an expression for the Bannai–
Ito polynomials as an integral over the product of two little −1 Jacobi polynomials.
This is an analog of Koornwinder’s integral representation of the Wilson polynomials
[17].

5 Conclusion

In this paper, we have exhibited a direct connection between the Bannai–Ito alge-
bra and the superalgebra osp(1, 2). We have provided an explicit embedding of the
Bannai–Ito algebra inU (osp(1, 2)) and offered a new characterization of the little−1
Jacobi polynomials in the context of the holomorphic realization. We also highlighted
connections with the tridiagonalization approach to orthogonal polynomials. Finally,
we have given a new integral representation of the Bannai–Ito polynomials.

As already mentioned in Introduction, the Bannai–Ito algebra has also been seen
to arise as the algebra formed by the intermediate Casimir operators in the addition
of three osp(1, 2) superalgebras [6]. It would be of interest to see if an explicit corre-
spondence relating this connection between the Bannai–Ito algebra and osp(1, 2) and
the one identified here could be established in parallel to what was found in the case
of the Racah algebra [8]. Besides, it is known that the Askey–Wilson algebra can be
viewed as a homomorphic image of the q-Onsager algebra and that the Bannai–Ito
algebra is obtained from the former when q = −1. This suggests that the embedding
in U (osp(1, 2)) could be viewed as a subalgebra of a q-Onsager algebra for q a root
of unity, see, for instance, [2]. This would certainly be worth exploring. We plan to
look into these two questions in the future.
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