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Abstract In this paper, we investigate the problem of the cohomological classification
of “Quaternionic” vector bundles in low dimension (d � 3). We show that there
exists a characteristic class κ , called the FKMM-invariant, which takes value in the
relative equivariantBorel cohomology and completely classifies “Quaternionic” vector
bundles in low dimension. The main subject of the paper concerns a discussion about
the surjectivity of κ .
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1 Introduction

At a topological level, “Real” and “Quaternionic” vector bundles are complex vector
bundles defined over spaces with involution and endowed with a homeomorphism of
the total space which cover the involution and acts anti-linearly between conjugate
fibers. Let us be a little bit more precise: An involution τ on a topological space X is
a homeomorphism τ : X → X of period 2, i. e. , τ 2 = IdX . We will refer to the pair
(X, τ ) as an involutive space. The fixed point set of the involutive space (X, τ ) is by
definition

X τ := {x ∈ X | τ(x) = x} .

We are interested in (topological) complex vector bundles E → X endowed with
an extra homeomorphism � : E → E such that � : E |x → E |τ(x) acts anti-
linearly between the fibers over conjugated points x and τ(x). The pair (E ,�) defines
a “Real” vector bundle (also called R-bundle) over the involutive space (X, τ ) if
the square �2 := � ◦ � acts as the identity in each fiber of E , or equivalently if
�2 = +1 (with a small abuse of notation). In the opposite case when �2 = −1 one
says that (E ,�) is a “Quaternionic” vector bundle (orQ-bundle) over (X, τ ). “Real”
vector bundles were first defined by Atiyah in [5], while the notion of “Quaternionic”
vector bundle has been introduced by Dupont in [28] (under the name of symplectic
vector bundle). “Real” and “Quaternionic” vector bundles provide new categories of
topological objects which are significantly different from the categories of complex
or real vector bundles. For these reasons, the problem of the classification of “Real”
or “Quaternionic” vector bundles over a given involutive space requires the use of
appropriate tools which can differ, even significantly, from the tools usually used to
classify vector bundles in the complex or real category. This paper mostly concerns
with the problem of the classification of Q-bundles over low-dimensional Z2-CW-
complexes. Henceforth, we will assume that:

Assumption 1.1 (Z2-CW-complex) X is a topological space which admits the struc-
ture of a Z2-CW-complex. The dimension d of X is, by definition, the maximal
dimension of its cells and we say that X is low dimensional if 0 � d � 3.
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The FKMM-invariant in low dimension 1227

For the sake of completeness, let us recall that an involutive space (X, τ ) has the
structure of a Z2-CW-complex if it admits a skeleton decomposition given by gluing
cells of different dimensions which carry a Z2-action. For a precise definition of
the notion of Z2-CW-complex, the reader can refer to [18, Section 4.5] or [4,53].
Assumption 1.1 allows the space X to be made by several disconnected component.
However, in the case ofmultiple components,wewill tacitly assume that vector bundles
built over X possess fibers of constant rank on the whole X . Let us recall that a space
with a CW-complex structure is automatically Hausdorff and paracompact, and it is
compact exactly when it is made by a finite number of cells [39]. Almost all the
examples considered in this paper will concern with spaces with a finite CW-complex
structure.

It is well known that equivalence classes of rankm complex (resp. real) vector bun-
dles over a topological space X can be classified bymeans of homotopy classes ofmaps
from X into the Grassmannian Gm(C∞) (resp. Gm(R∞)). This can be summarized
by

VecmF
(
X
) � [

X,Gm(F∞)
]
, F = R, C (1.1)

where on the left-hand side one has the set of equivalence classes of F-vector bundles
and on the right-hand side one has the set of homotopy classes of maps from X
into the related Grassmannian. Unfortunately, the computation of homotopy classes
of maps between topological spaces is an extremely hard problem. For this reason,
people started to face the problem of the classification of vector bundles by using
the characteristic classes [56]. Due to the fact that a rank m complex vector bundle is
associated, up to isomorphisms, with amapϕ : X → Gm(C∞) one can pull back viaϕ

the cohomology ring of the Grassmannian into that of X , i. e. , ϕ∗ H•(Gm(C∞), Z) →
H•(X, Z). This procedure selects a set of cohomology classes c j (E ) ∈ H2 j (X, Z)

called the Chern classes of E . A similar procedure for real vector bundles leads to
the definition of the Stiefel-Whitney classes w j (E ) ∈ H j (X, Z2). The relevant role
of the characteristic classes in the classification of complex and real vector bundles
is a well-established fact. For instance, Peterson [58] proved in 1959 that the Chern
classes completely classify complex vector bundles over CW-complexes in the stable
rank regime. In particular, for low-dimensional CW-complexes the result by F. P.
Peterson says that the first Chern class c1 suffices to classify complex vector bundles
independently of the rank of the fibers:

c1 : Vecm
C
(X)

�−→ H2(X, Z
)
, ∀ m ∈ N if dim(X) � 3. (1.2)

AlsoR andQ-bundles over (X, τ ) can be classified by means of homotopy classes
ofmaps in the same spirit of (1.1). ForR-bundles, the homotopy classification theorem
is due to Edelson [29] (see also [18, Theorem 4.13]) and says that VecmR(X, τ ) is clas-
sified, up to Z2-homotopy equivalences, by Z2-equivariant maps between (X, τ ) and
the GrassmannianGm(C∞) endowedwith the involution induced by the complex con-
jugation. In much the same way for the “Quaternionic” case one has that Vec2mQ (X, τ )

is classified by Z2-equivariant maps from (X, τ ) into the Grassmannian G2m(C∞)

endowed with the quaternionic involution (see [19, Theorem 2.4] and related details).
However, as in the real or complex case, the use of the homotopy classification theo-
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1228 G. De Nittis, K. Gomi

rem to compute VecmR(X, τ ) or Vec2mQ (X, τ ) is not practicable due to insurmountable
complications in the calculation of the equivariant homotopy classes. For these rea-
sons, one is naturally pushed to develop a theory of characteristic classes for R and
Q-bundles. In the case of the “Real” category, the associated theory of characteristic
classes has been introduced by Kahn in 1959 [43]. He defined the notion of “Real”
Chern classes cRj (E ,�) ∈ H2 j (X, Z( j)) of the R-bundle (E ,�) over (X, τ ) just
by mimicking the standard procedure used for the construction of the usual Chern
classes. The main difference with the complex case is the election of the cohomology
theory that in the “Real” case turns out to be the equivariant Borel cohomology of
the involutive space (X, τ ) with local coefficient system Z( j) (see “Appendix A” and
references therein for more details). The “Real” Chern classes provide a powerful tool
for the classification ofR-bundles overZ2-CW-complexes. First of all, theKahn’s iso-
morphism says that the “Real” Picard group PicR(X, τ ) := Vec1R(X, τ ) is classified
exactly by H2

Z2

(
X, Z(1)

)
[43, Proposition 1] (see also [34, Corollary A.5]). Moreover,

if one combines the Kahn’s isomorphism with the splitting due to the stable condition
[18, Theorem 4.25], one obtains that

cR1 : VecmR(X, τ )
�−→ H2

Z2

(
X, Z(1)

)
, ∀ m ∈ N if dim(X) � 3, (1.3)

namely the first “Real” Chern class cR1 turns out to be a complete invariant for the clas-
sification of R-bundles in low dimension. It is interesting to note the close similarity
between Eqs. (1.2) and (1.3).

And what about the theory of characteristic classes in the “Quaternionic” cate-
gory? At the best of our knowledge, a completely satisfactory theory of characteristic
classes forQ-bundles is not yet available in the literature. Of course attempts to define
“Quaternionic” Chern classes already exist, see, e. g. , [27,52]. However, these topo-
logical objects do not seem to be flexible enough to reproduce in an “easy way”
classification results of the type (1.2) or (1.3). A different approach was introduced
first by Furuta et al. [32] and then improved in [19] and generalized in [22]. The core
of the construction is to properly define a map

κ : Vec2mQ
(
X, τ

) −→ H2
Z2

(
X |X τ , Z(1)

)
, (1.4)

called the FKMM-invariant, which associates with each Q-bundle (E ,�) over
(X, τ ) a cohomology class κ(E ,�) in the relative equivariant cohomology group
H2
Z2

(X |X τ , Z(1)) (cf. “Appendix A” for more details). The definition of the map κ is

based on two important observations: (1) each cohomology class in H2
Z2

(X |X τ , Z(1))
can be uniquely associated with a pair (L , s) given by anR-line bundle along with a
trivializing section s : X τ → L ; (2) each even-rank Q-bundle canonically defines a
pair (L , s) through the determinant functor. The details of the construction of κ are
summarized in Sect. 3.5.

In [22]we proved that κ is a characteristic class in the sense that it can be obtained as
the pullback of a universal class. Moreover, when the base space has dimension d � 3
the map κ turns out to be injective. These two properties suggest a parallel between
the FKMM-invariant (1.4) and the first Chern class as in (1.2) or the first “Real” Chern
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The FKMM-invariant in low dimension 1229

class as in (1.3). However, the injectivity of κ , although is an important property, is
not sufficient to reduce the classification of Vec2mQ (X, τ ) to the mere computation of
a cohomology group at least until one can say something about the surjectivity of κ .
The analysis of the surjectivity of the FKMM-invariant in low dimension is the main
achievement of this paper.

Before stating our main results, let us point out a quite obvious fact: The FKMM-
invariant κ , like c1 in (1.2) or cR1 (1.3), generally fails to be surjective in dimension
d � 4where other invariants (e. g. , the secondChern class) start to enter in the problem
of the classification (see, e. g. , [19, Theorem 1.4 & Theorem 5.2]). For this reason, a
classification theory only based on κ can be effective only in low dimension d � 3.

Let us start with the analysis of the case of an involutive space (X, τ ) with
a free involution, namely X τ = Ø. This is the only situation which allows the
existence of odd-rank Q-bundles. The classification of odd-rank Q-bundles in low
dimension is quite simple. First of all one notices that the set of Q-line bundles
PicQ(X, τ ) := Vec1Q(X, τ ) is not a group as in the “Real” case but only a torsor under
the action of PicR(X, τ ). This fact leads to the following dichotomy: PicQ(X, τ ) = Ø
or PicQ(X, τ ) � PicR(X, τ ) (cf.Theorem 3.5). When one combines this result with
the stable condition for odd-rank Q-bundles in Proposition 3.8 one obtains that the
topological classification of the odd-rank Q-bundles in the regime of low dimension
is completely specified by PicQ(X, τ ):

Theorem 1.2 (Classification of odd-rank Q-bundles in low dimension) Let (X, τ )

be a low-dimensional involutive space in the sense of Assumption 1.1. Assume that
X τ = Ø. Then

Vec2m−1Q

(
X, τ

) �
{
Ø if PicQ(X, τ ) = Ø

H2
Z2

(
X, Z(1)

)
if PicQ(X, τ ) 	= Ø

∀ m ∈ N

and in the second case the bijection is induced (not canonically) by the first “Real”
Chern class.

This result deserves two important observations: First of all in the absence of
fixed points the FKMM-invariant can be always reduced to the first “Real” Chern
class mainly due to the natural isomorphism H2

Z2
(X |Ø, Z(1)) � H2

Z2

(
X, Z(1)

)

(cf. Proposition 3.14); second of all the “ambiguity” in the normalization of the
FKMM-invariant just depends on the election of a particular (reference)Q-line bundle
Lref which generates the whole PicQ(X, τ ) under the action of PicR(X, τ ) (cf. [22,
Definition 3.3]).

The topological classification for the even-rank case rests on [22, Theorem 4.7]
which proves the injectivity of the FKMM-invariant (see Proposition 3.17) along with
an analysis of the surjectivity of κ . In summary one has:

Theorem 1.3 (Classification of even-rank Q-bundles in low dimension) Let (X, τ )

be a low-dimensional involutive space in the sense of Assumption 1.1. Then:

(1) If X τ 	= Ø and d = 0, 1, 2 the FKMM-invariant provides a bijection

κ : Vec2mQ
(
X, τ

) �−→ H2
Z2

(
X |X τ , Z(1)

)
, ∀ m ∈ N
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1230 G. De Nittis, K. Gomi

and for d = 3 the map

κ : Vec2mQ
(
X, τ

)
↪→ H2

Z2

(
X |X τ , Z(1)

)
, ∀ m ∈ N.

is in general only an injection;

(2) If X τ = Ø the FKMM-invariant (identified as in Proposition 3.14) provides a
bijection

κ : Vec2mQ
(
X, τ

) �−→ H2
Z2

(
X, Z(1)

)
, ∀ m ∈ N.

The proof of (1) and (2) in the cases d = 0, 1 follows by combining the injectivity of
κ with the computations

H2
Z2

(
X |X τ , Z(1)

) = 0 if X has dimension d = 0, 1 and X τ 	= Ø, (1.5)

or
H2
Z2

(
X, Z(1)

) = 0 if X has dimension d = 0, 1 and X τ = Ø, (1.6)

both proved in Proposition 4.1. In both cases d = 0, 1, the isomorphism established
by the FKMM-invariant turns out to be trivial in view of the fact

Vec2mQ
(
X, τ

) = 0, ∀ m ∈ N if dim(X) � 1.

Then in dimension d = 0, 1 the only possible even-rank Q-bundle is, up to isomor-
phisms, the trivial one (cf.Proposition 3.7). The proof in dimension d = 2 for the
cases (1) and (2) is contained in Proposition 4.9. The proof of item (2) is completed by
Proposition 4.11 which proves the surjectivity of κ in the free case for d = 3. Finally,
the absence of surjectivity in d = 3 in the case of a non-free involution is shown by
the concrete example discussed in Sect. 5 (cf.Corollary 5.8).

Theorems 1.2 and 1.3 allow to compare the map (1.4) with (1.2) and (1.3). It turns
out that the FKMM-invariant κ shares all the virtues of the first Chern class or of
the first “Real” Chern class at least up to dimension d = 2. This fact gives us the
motivation to claim that:

“The FKMM-invariant is the first (or fundamental) characteristic class for the
category of “Quaternionic” vector bundles; The one which classifies “Quaternionic”
vector bundles in low dimension.”

The last sentence can be considered as the main (meta-)result of this paper. Of
course, as already mentioned, starting from d = 4 the invariant κ cannot suffice to
produce a complete classification by itself and higher characteristic classes are needed
(see, e. g. , [19, Theorem 5.2]).

Let us spend few words about the case d = 3. Theorem 1.3 (1) says that in this case
κ is generally only injective but not surjective. In any case, the property of being injec-
tive says that the invariant κ is strong enough to distinguish between non-equivalent
Q-bundles. However, with the failure of the surjectivity one loses the possibility of
classifying all the possible inequivalent realizations ofQ-bundles over (X, τ ) just by
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The FKMM-invariant in low dimension 1231

means of the computation of H2
Z2

(X |X τ , Z(1)) which is usually an algorithmic prob-
lem. Anyway, does not seem “trivial” to find examples of three-dimensional involutive
spaces on which κ fails to be surjective. For instance, we already know that:

• Let (X, τ ) be a Z2-CW-complex of dimension d = 3 such that X τ = Ø. Then κ

is bijective as a consequence of Theorem 1.3 (2);
• Let (X, τ ) be an FKMM-space of dimension d = 3 (cf.Definition 3.15). Then κ

is bijective as proved in Proposition 4.13.
• Let Sp,q ⊂ R

p+q the p+ q − 1-dimensional sphere of radius 1 endowed with the
involution

(x1, . . . , xp, xp+1, . . . , xp+q) �−→ (x1, . . . , xp,−xp+1, . . . ,−xp+q).

Then κ is bijective in all the cases S4−n,n with n = 0, 1, 2, 3, 4, see [22, Sec-
tion 4.4].

• Consider the involutive tori

Ta,b,c :=
(
S2,0

)×a ×
(
S1,1

)×b ×
(
S0,2

)×c
. (1.7)

Then κ is bijective in all the casesTa,b,c with a+b+ c = 3, see [22, Section 4.5].

Finally, the bijectivity on three-dimensional FKMM-spaces can be generalized to:

Theorem 1.4 Let (X, τ ) be a three-dimensional compact manifold without boundary
equipped with a smooth involution such that the fixed point set X τ 	= ∅ consists of a
finite number of points. Then the FKMM-invariant is bijective.

The Proof of this result is postponed to Sect. 4.5.
To find an involutive space of dimension d = 3 on which the FKMM-invariant

fails to be surjective is quite laborious. In Sect. 5, we present an explicit example. For
q > 0, we consider the three-dimensional lens space L2q := S3/Z2q endowed with
the involution τ induced by the complex conjugation on S3 ⊂ C

2. The fixed point set
is then the disjoint union of two circles. On this space, one can explicitly construct all
the Q-bundles by means of the equivariant version of the clutching construction for
vector bundles. This provides Vec2mQ (L2q , τ ) � Z2q (Proposition 5.7). On the other
hand, an explicit computation shows that H2

Z2
(L2q |Lτ

2q , Z(1)
) � Z4q (Proposition

5.4) and the immediate consequence is that κ cannot be surjective (Corollary 5.8).
This paper is organized as follows: In Sect. 2, we provide some physicalmotivations

related to the problem of the classification of (low dimensional) Q-bundles and we
discuss the related literature. In Sect. 3, for the benefit of the reader, we recall all the
most important notions related to the theory of Q-bundles. In particular, we describe
the construction of the FKMM-invariant in the generalized version introduced in [22].
Section 4 contains all the technical results necessary for the proof of the surjectivity
of the FKMM-invariant in all the situations considered in Theorems 1.2 and 1.3. In
Sect. 5, we describe the classification ofQ-bundles over the lens space L2q providing
a family of examples in dimension d = 3 where the FKMM-invariant fails to be
surjective. Finally, “Appendix A” provides a “crash introduction” to the theory of the
equivariant Borel cohomology.
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1232 G. De Nittis, K. Gomi

2 Physical motivation and related literature

Before entering in the core of themathematical results proved in this paper, let us briefly
mention the relevance of the problemof the classification of “Real” and “Quaternionic”
vector bundles for a certain class of mathematical physical applications.

In its simplest incarnation, a Topological Quantum System (TQS) is a continuous
matrix-valued map

X  x �−→ H(x) ∈ MatN(C) (2.1)

defined on a “nice” topological space X . Although a precise definition of TQS requires
some more ingredients (see, e. g. , [18–21]), one can certainly state that the most
relevant feature of these systems is the nature of the spectrum which is made by N
continuous “energy” bands (taking into account possible degeneracies). It is exactly
this peculiar band structure, along with the structure of the related eigenspaces, which
may encode information that are of topological nature. More precisely, let assume that
it is possible to selectm < N bands that do not cross the other N−m bands. Then, it is
possible to construct a continuous projection-valued map X  x �→ P(x) ∈ MatN(C)

such that P(x) is the rank m spectral projection of H(x) associated with the spectral
subspace selected by them energy bands at the point x . Due to the classical Serre–Swan
construction [60,61], one can associate with x �→ P(x) a unique (up to isomorphisms)
rankm complex vector bundle E → X sometimes called the spectral bundle (see [18,
Section 2] or [25, Section 4] for the details of the construction). The considerable
consequence of the duality between gapped TQSs and spectral bundles is that one can
classify the possible topological phases of a TQS by means of the elements of the set
Vecm

C
(X) of isomorphismclasses of rankm complex vector bundles over X . As a result,

one is allowed to translate the problem of the enumeration of the possible topological
phases of aTQS into the classical problem in topology of the classification ofVecm

C
(X).

The important result due to Peterson [58] establishes that this classification can be
achieved in a computable way by using the Chern classes which take values in the
cohomology groups H2 j (X, Z). In particular, in low dimension the classification is
completely specified by the first Chern class c1 according to (1.2).

TQSs of type (2.1) are ubiquitous in mathematical physics (see, e.g., the rich mono-
graphs [11,16]). They can be used to model systems subjected to cyclic adiabatic
processes in classical and quantum mechanics [9,57] or in the description of the
magnetic monopole [23,65] and the Aharonov–Bohm effect [1] or in the molecular
dynamics in the context of the Born–Oppenheimer approximation [7], just to mention
few important examples. Probably the most popular example of a TQS comes from
the Condensed Matter Physics and concerns the dynamics of (independent) electrons
in a crystalline periodic background. In this case, the Bloch–Floquet formalism [3,50]
allows to decompose the Schrödinger operator in a parametric family of operators like
in (2.1) labeled by the points of a torus X = Td (d = 1, 2, 3), usually known as the
Brillouin zone. In this particular case, the classification of the topological phases is
completely specified by H2(Td , Z) due to (1.2), and the different topological phases
are interpreted as the distinct quantized values of the Hall conductance by means of
the celebrated Kubo–Chern formula [10,63]. The last result provides the theoretical
explanation of the quantum Hall effect which is the prototypical example of topo-
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The FKMM-invariant in low dimension 1233

logical insulating phases. Nowadays, the study of topologically protected phases of
topological insulators is a “hot topic” in Condensed Matter Physics. Due to the vast-
ness of the bibliography about topological insulators, we refer to two recent reviews
[38] and [2] for an almost complete overview on the subject.

The problem of the classification of the topological phases becomes more inter-
esting, and challenging, when the TQS is constrained by the presence of certain
(pseudo-)symmetries like the time-reversal symmetry (TRS). A system like (2.1) is
said to be time-reversal symmetric if there is an involution τ : X → X on the base
space and an anti-unitary map � such that

{
� H(x) �∗ = H

(
τ(x)

)
, ∀ x ∈ X

�2 = ε 1N ε = ±1 (2.2)

where 1N denotes the N × N identity matrix.
The case ε = +1 corresponds to an even (sometimes called bosonic) TRS. In this

case, the spectral bundle E turns out to be equipped with the additional structure of
an R-bundle as shown in [18, Section 2]. Therefore, in the presence of an even TRS
the classification problem of the topological phases of a TQS is reduced to the study
of the set VecmR(X, τ ) and, at least in low dimension, the isomorphism (1.3) induced
by the first “Real” Chern class cR1 completely answers the question.

The case ε = −1 describes an odd (sometimes called fermionic) TRS. Also in this
situation the spectral vector bundle E acquires an additional structure which converts
E in aQ-bundle. Then, the topological phases of a TQS with an odd TRS are labeled
by the set VecmQ(X, τ ) and it becomes relevant for the study of these systems to have
proper tools able to classify equivalence classes of Q-bundles.

The study of systems with an odd TRS is more interesting, and for several reasons
also harder, than the case of an even TRS. Historically, the fame of these fermionic
systems begins with the seminal papers Fu et al. [30,46]. The central result of these
works is the interpretation of a physical phenomenon called quantum spinHall effect as
the evidence of a non-trivial topology for TQSconstrained by an oddTRS. Specifically,
the papers [30,46] are concerned about the study of systems like (2.1) (with N = 4
and m = 2) where the base space is an involutive torus of type T0,d,0 with d = 2, 3
(compare with (1.7) for the notation). The distinctive aspect of this special involutive
Brillouin zone is the existence of a fixed point set formed by 2d isolated points. The
latter plays a crucial role in the classification scheme proposed in [30,46] where the
different topological phases are distinguished by the signs that a particular function
dE (essentially the inverse of a normalized Pfaffian constructed from a particular
frame of E ) takes on the 2d fixed points. These Z2-numbers are usually known as
Fu–Kane–Mele indices.

In the last years, the problem of the topological classification of systemswith an odd
TRS has been discussedwith several different approaches. As amatter of fact, many (if
not almost all) of these approaches focus on the particular casesT0,2,0 andT0,3,0 with
the aim of reproducing in different way the Z2-invariants described by the Fu–Kane–
Mele indices. From one hand, there are classification schemes based on K-theory and
KK-theory [8,31,44,47,49,59,62] or equivariant homotopy techniques [45,51]which
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are extremely general. In the opposite side, there are constructive procedures based
on the interpretation of the topological phases as obstructions for the construction of
global time-reversal symmetric frames (see [35] for the case T

0,2,0 and [33,55] for
the generalization to the case T

0,3,0) or as spectral-flows [17,26] or as index pairings
[37]. All these approaches, in our opinion, present some limitations. The K -theory
is unable to distinguish the “spurious phases” (possibly) present outside of the stable
rank regime. The homotopy calculations are non-algorithmic and usually extremely
hard. The use of the KK -theory up to now is restricted only to the non-commutative
version of the involutive Brillouin tori T0,2,0 and T

0,3,0. A similar consideration holds
for the recipes for the “handmade” construction of global frames which are strongly
dependent of the specific form of the involutive spaces T

0,2,0 and T
0,3,0 and thus

are difficult to generalize to other spaces and higher dimensions. Finally, none of
these approaches clearly identifies the invariant which labels the different phases as
a topological characteristic class, as it happens in the cases of systems with broken
TRS (cf.Eq. (1.2)) or with even TRS (cf.Eq. (1.3)).

As already discussed, TQS of type (2.1) is ubiquitous in mathematical physics and
there is no reason to focus the interest only on the special examples coming from
the physics of periodic electronic systems (a.k.a topological insulators). Usually, one
can think to the space X as a configuration space for parameters which describe
an adiabatic action of external fields on a system governed by the instantaneous
Hamiltonian H(x). The phenomenology of these systems can be enriched by the
presence of certain symmetries like a TRS as in (2.2). Models of adiabatic topological
systems of this type have been recently investigated in [14,15,36]. In particular, in
[36] the authors consider the adiabatically perturbed dynamics of a classic rigid rotor
and a classical particle on a ring. In the first case, the classical phase space turns out to
be S0,3, namely a two-dimensional sphere endowed with the antipodal free involution
induced by the TRS. In the second case, the phase space is a two-dimensional torus of
type T

1,1,0 which has a fixed point set of co-dimension one. None of these two cases
can be treated with the technology developed for topological insulator due to the fact
that the Fu–Kane–Mele index is just ill-defined when the fixed point set is empty or
of dimension higher than zero. The main result of [36] consists in the classification of
Q-bundles over the involutive spaces S0,3 and T

1,1,0, and it is based on the analysis of
the obstruction for the “handmade” construction of a global frame. As a payoff, they
obtained a classification which is not based onZ2-invariants, a fact that seems obvious
from a geometric point of view but which seems to be “revolutionary” if compared
to the literature on TR-symmetric topological insulators which is entirely focused on
Z2-type invariants.

The technique used in [36] is hard (and tricky) to extend to higher dimensions
or to involutive spaces different from S0,3 and T

1,1,0. Conversely, the classification
provided by the map (1.4) turns out to be extremely effective and versatile. In fact the
invariant κ is intrinsic, universal and algorithmically computable! As an example the
formula (1.4) allowed us to classify Q-bundles over a big class of involutive spheres
and tori up to dimension three extending, in this way, the results in [36], see [22,
Table 1.1, Table 1.2 & Table 1.3]. As a final remark, let us mention that recently the
classification technique based on the FKMM-invariant has been successfully used in
[64] in order to classify Weyl semimetals with TRS.
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In conclusion, in our opinion, the identification of the FKMM-invariant κ as the
first (or fundamental) characteristic class for the category of “Quaternionic” vector
bundles can be of big utility in many questions of classification of topological phases
arising from concrete physical problems.

3 “Quaternionic” vector bundles from a topological perspective

This section is devoted to the readers which are not familiar with the theory of “Quater-
nionic” vector bundles. We provide here the main definitions, discuss the possibility
ofQ-line bundles, describe the stable rank splitting ofQ-bundles and finally introduce
the FKMM-invariant.

3.1 Basic facts about “Quaternionic” vector bundles

In this section, we recall some basic facts about the topological category of “Quater-
nionic” vector bundles and we refer to [19,22,28] for a more systematic presentation.

Definition 3.1 (“Quaternionic” vector bundles) A “Quaternionic” vector bundle, or
Q-bundle, over (X, τ ) is a complex vector bundle π : E → X endowed with a
(topological) homeomorphism � : E → E such that:

(Q1) The projection π is equivariant in the sense that π ◦� = τ ◦ π ;
(Q2) � is anti-linear on each fiber, i. e. , �(λp) = λ �(p) for all λ ∈ C and p ∈ E

where λ is the complex conjugate of λ;
(Q3) �2 acts fiberwise as the multiplication by −1, namely �2|Ex = −1Ex .
Let us recall that it is always possible to endowE with an essentially unique equivariant
Hermitian metricmwith respect to which� is an anti-unitarymap between conjugate
fibers [19, Proposition 2.5]. We recall that equivariant means that

m
(
�(p1),�(p2)

) = m
(
p2, p1

)
, ∀ (p1, p2) ∈ E ×π E

where E ×π E := {(p1, p2) ∈ E × E | π(p1) = π(p2)}.
A vector bundle morphism f between two vector bundles π : E → X and π ′ :

E ′ → X over the same base space is a continuous map f : E → E ′ which is fiber
preserving in the sense that π = π ′ ◦ f and that restricts to a linear map on each
fiber f |x : Ex → E ′x . Complex vector bundles over X together with vector bundle
morphisms define a category, and the symbol Vecm

C
(X) is used to denote the set of

equivalence classes of isomorphic vector bundles of rank m. Also Q-bundles define
a category with respect to Q-morphisms. A Q-morphism f between two Q-bundles
(E ,�) and (E ′,�′) over the same involutive space (X, τ ) is a vector bundlemorphism
commuting with the involutions, i. e. , f ◦� = �′ ◦ f . The set of equivalence classes
of isomorphic Q-bundles of rank m over (X, τ ) will be denoted by VecmQ(X, τ ).

Remark 3.2 (“Real” vector bundles) By changing condition (Q3) in Definition 3.1
with
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(R) �2 acts fiberwise as the multiplication by 1, namely �2|Ex = 1Ex

one ends in the category of “Real” (or R) vector bundles. Isomorphism classes of
rank m R-bundles over the involutive space (X, τ ) are denoted by VecmR(X, τ ). For
more details, we refer to [5,18]. �

In the case of a trivial involutive space (X, IdX ), one has isomorphisms

Vec2mQ
(
X, IdX

) � VecmH
(
X
)
, VecmR

(
X, IdX

) � VecmR
(
X, IdX

)
, m ∈ N

(3.1)
where VecmF

(
X
)
is the set of equivalence classes of vector bundles over X with typical

fiber Fm and H denotes the skew field of quaternions. The proof of these isomor-
phisms is easy, and interested reader can find them in [19, Proposition 2.2] and in [18,
Proposition 4.5] for instance. These two results justify the names “Quaternionic” and
“Real” for the related categories.

Let x ∈ X τ and Ex � C
m be the related fiber. In this case, the restriction �|Ex ≡ J

defines an anti-linear map J : Ex → Ex such that J 2 = −1Ex . Said differently the
fiber Ex over each fixed point x ∈ X τ is endowedwith a quaternionic structure (cf. [19,
Remark 2.1]). This fact has an important consequence:

Proposition 3.3 ([19, Proposition 2.1]) If X τ 	= Ø then every “Quaternionic” vector
bundle over (X, τ ) has necessarily even-rank.

The set Vec2mQ (X, τ ) is non-empty since it contains at least the trivial element in the
“Quaternionic” category.

Definition 3.4 (“Quaternionic” product bundle) The rank 2m “Quaternionic” prod-
uct bundle over the involutive space (X, τ ) is the complex vector bundle

X × C
2m −→ X

endowed with the product Q-structure

�0(x, v) = (τ (x), Q v), (x, v) ∈ X × C
2m

where the matrix Q is given by

Q :=
(
0 − 1
1 0

)
⊗ 1m =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 − 1
1 0

. . .

. . .

0 − 1
1 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

. (3.2)

A “Quaternionic” vector bundle is called Q-trivial if and only if it is isomorphic to
the “Quaternionic” product bundle in the category ofQ-bundles. Let us point out that
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when X τ = Ø the sets Vec2m+1Q (X, τ ) can be non-empty but in general there is no
obvious candidate for the trivial “Quaternionic” vector bundle in the odd-rank case
(see, e. g. , [22, Example 3.8]).

A section of a complex vector bundle π : E → X is a continuous map s : X → E
such that π ◦ s = IdX . The set of sections 
(E ) has the structure of a left C(X)-
module with multiplication given by the pointwise product ( f s)(x) := f (x)s(x) for
any f ∈ C(X) and s ∈ 
(E ) and for all x ∈ X . If (E ,�) is a Q-bundle over (X, τ )

then 
(E ) is endowed with a natural anti-linear anti-involution τ� : 
(E ) → 
(E )

given by

τ�(s) := � ◦ s ◦ τ .

The compatibility with the C(X)-module structure is given by

τ�( f s) = τ∗( f ) τ�(s) , f ∈ C(X) , s ∈ 
(E )

where the anti-linear involution τ∗ : C(X) → C(X) is defined by τ∗( f )(x) :=
f (τ (x)). The triviality of a “Quaternionic” vector bundle can be characterized in
terms of global Q-frames of sections [19, Definition 2.1 & Theorem 2.1].

Q-bundles are locally trivial in the category of vector bundles over involutive spaces
(that isQ-locally trivial) [19, Proposition 2.4] and fulfill the homotopy property with
respect to equivariant homotopy deformations [19, Theorem 2.3]. Let us just recall
that given two involutive spaces (X1, τ1) and (X2, τ2) one says that a continuous map
φ : X1 → X2 is equivariant if and only if φ ◦ τ1 = τ2 ◦ φ. An equivariant homotopy
between equivariant maps φ0 and φ1 is a continuous map F : [0, 1] × X1 → X2 such
that φt (·) := F(t, ·) is equivariant for all t ∈ [0, 1]. The set of the equivalence classes
of equivariant maps between (X1, τ1) and (X2, τ2) with respect to the relation given
by the equivariant homotopy is denoted by [X1, X2]Z2 . The equivariant homotopy
property is the basis of the homotopy classification for “Quaternionic” vector bundles
[19, Theorem 2.4], namely

Vec2mQ
(
X, τ

) � [
X, Ĝ2m(C∞)

]
Z2

(3.3)

where Ĝ2m(C∞) := (G2m(C∞), ρ) is the Grassmann manifold of 2m-planes inside
C
∞ endowed with a suitable quaternionic involution ρ (see [19, Section 2.4] for

more details). The “direct” classification of Vec2mQ (X, τ ) through the calculation of

[X, Ĝ2m(C∞)]Z2 is an extraordinarily difficult task. For this reason, one needs to
develop other tools for classifyingQ-bundles. An effective way (at least in low dimen-
sion) is through the use of the FKMM-invariant described in Sect. 3.5.

3.2 “Real” and “Quaternionic” line bundles

Let us introduce

PicR
(
X, τ

) ≡ Vec1R
(
X, τ

)
, PicQ

(
X, τ

) ≡ Vec1Q
(
X, τ

)
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which are the sets of isomorphism classes of “Real” and “Quaternionic” line bundles
on (X, τ ), respectively. As a matter of factQ-bundles of odd-rank can be defined only
over involutive base spaces (X, τ ) with a free involution (meaning that X τ = Ø) [19,
Proposition 2.1]. On the other hand, there is no restriction for the definition ofR-line
bundles and the set PicR(X, τ ) gives rise to an abelian group under the tensor product
which is known as the “Real” Picard group. This group is classified by the Kahn’s
isomorphism [43] (see also [34, Corollary A.5])

cR1 : PicR(X, τ )
�−→ H2

Z2

(
X, Z(1)

)
(3.4)

where in the right-hand side there is the Borel equivariant cohomology group of
X with local coefficients Z(1) (we refer to “Appendix A” for more details) and the
characteristic class cR1 which realizes the isomorphism is called the first “Real” Chern
class.

On the other hand, PicQ(X, τ ), when definable, does not possess a group structure
under the tensor product. However, under the essential assumption that PicQ(X, τ ) 	=
Ø, one can use the tensor product to define a left group-action of PicR(X, τ ) on the
set PicQ(X, τ ):

PicR(X, τ ) × PicQ(X, τ ) −→ PicQ(X, τ )

([LR], [LQ]) �−→ [LR ⊗ LQ].

It turns out that this action defines a torsor. According to [22, Theorem 3.1 & Corol-
lary 3.2], one has that:

Theorem 3.5 (“Quaternionic” Picard torsor) Let (X, τ ) be an involutive space with
free involution, i. e. , X τ = Ø. Assume that PicQ(X, τ ) 	= Ø. Then, PicQ(X, τ ) is a
torsor under the group-action induced by PicR(X, τ ) and one has a bijection of sets

PicQ(X, τ ) � PicR(X, τ ) � H2
Z2

(
X, Z(1)

)
.

In [22, Section 3.2], the interested reader can find various examples of non-trivial
“Quaternionic” Picard torsors defined over spheres with free antipodal involutions.

3.3 Stable range

The stable rank condition expresses the pretty general fact that the non-trivial topology
of a vector bundle can be concentrated in a sub-vector bundle of “minimal rank.” This
minimal value depends on the dimensionality of the base space and on the category
of vector bundles under consideration. For complex (as well as real or quaternionic)
vector bundles, the stable rank condition is a well-known result (see, e. g. , [42, Chapter
9, Theorem1.2]), based on an obstruction-type argument [42, Chapter 2, Theorem7.1].
The key argument can be generalized to vector bundles over spaces with involution
by means of the notion of Z2-CW-complex [4,53] (see also [18, Section 4.5]). This
allows to determinate the stable rank condition in the case of the “Real” and the
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“Quaternionic” categories. In the “Real” case, the stable rank condition is described
by the following result.

Proposition 3.6 (Stable condition for R-bundles) Let (X, τ ) be an involutive space
such that X has a finite Z2-CW-complex decomposition of dimension d. Assume that:
(a) X τ = Ø; or (b) X τ is a Z2-CW-complex of dimension zero. Then,

VecmR
(
X, τ

) � Vecσ
R(X, τ ) ∀ m � d + 1

2
(3.5)

where σ := [ d2 ] (here [x] denotes the integer part of x ∈ R). In particular, in low
dimension one obtains:

VecmR
(
X, τ

) = 0 if d = 0, 1 ∀ m ∈ N (3.6)

VecmR
(
X, τ

) � PicR
(
X, τ

)
if 2 � d � 3 ∀ m ∈ N. (3.7)

For the proof of this result, the reader can refer to [18, Theorem 4.25] and [22,
Remark 4.3]. Let usmention that the situation turns out to be quite different when X τ is
a Z2-CW-complex of dimension higher than zero as pointed out in [18, Remark 4.24].

In the case of Q-bundles, it is easier to consider separately the even-rank case and
the odd-rank case which necessarily requires X τ = Ø.

Proposition 3.7 (Stable condition for Q-bundles: even-rank) Let (X, τ ) be an invo-
lutive space such that X has a finite Z2-CW-complex decomposition of dimension d.
Then,

Vec2mQ
(
X, τ

) � Vec2σQ
(
X, τ

) ∀ m � d + 3

4
(3.8)

where σ := [ d+24 ]. In particular, in low dimension one obtains:

Vec2mQ
(
X, τ

) = 0 if d = 0, 1 ∀ m ∈ N (3.9)

Vec2mQ
(
X, τ

) � Vec2Q
(
X, τ

)
if 2 � d � 5 ∀ m ∈ N. (3.10)

The proof of this result has been given first in [19, Theorem 2.5] under certain condi-
tions for the fixed point set X τ and then generalized in [22, Theorem 4.2].

The odd-rank case is slightly different and strongly depends on the existence of a
Q-line bundle. Consider an involutive space (X, τ ) such that X τ = Ø. Then one can
show that

Vec2m+1Q

(
X, τ

) 	= Ø ⇔ PicQ
(
X, τ

) 	= Ø.

and in the interesting case PicQ(X, τ ) 	= Ø there are bijections of sets

VecmQ
(
X, τ

) � VecmR
(
X, τ

) ∀ m ∈ N.
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These last two facts are proved in [22, Lemma 4.4] and are key arguments for the
determination of the stable condition in the odd-rank case [22, Theorem 4.5].

Proposition 3.8 (Stable condition for Q-bundles: odd-rank) Let (X, τ ) be an invo-
lutive space such that X has a finite Z2-CW-complex decomposition of dimension d,
X τ = Ø and PicQ(X, τ ) 	= Ø. Then

Vec2m+1Q

(
X, τ

) � Vecσ
Q

(
X, τ

) ∀ m � d − 1

4

where σ := [ d2 ]. In particular, in low dimension one obtains:

Vec2m+1Q

(
X, τ

) � PicQ
(
X, τ

) = 0 if d = 0, 1 ∀ m ∈ N (3.11)

Vec2m+1Q

(
X, τ

) � PicQ
(
X, τ

)
if d = 2, 3 ∀ m ∈ N (3.12)

Vec2m+1Q

(
X, τ

) � Vec2Q
(
X, τ

)
if d = 4, 5 ∀ m ∈ N. (3.13)

We point out that the 0 in the (3.11) refers to the existence of a unique element which
could also be different from the (trivial) product Q-bundle. This is in contrast with
the even-rank case where the condition Vec2mQ (X, τ ) 	= Ø is always guaranteed by the
existence of the trivial element described in Definition 3.4.

3.4 The determinant functor

LetV be a complex vector space of dimension n. The determinant ofV is by definition
det(V ) := ∧n V where the symbol

∧n denotes the top exterior power of V (i. e. ,
the skew-symmetrized n-th tensor power of V ). This is a complex vector space of
dimension one. IfW is a secondvector space of the samedimensionn and T : V → W
is a linear map, then there is a naturally associated map det(T ) : det(V ) → det(W )

which in the special caseV = W coincides with the multiplication by the determinant
of the endomorphism T . This determinant construction is a functor from the category
of vector spaces to itself and by a standard argument [42, Chapter 5, Section 6] induces
a functor on the category of complex vector bundles over an arbitrary space X . More
precisely, for each rank n complex vector bundle E → X , the associated determinant
line bundle det(E )→ X is the rank 1 complex vector bundle with fibers

det(E )x = det(Ex ) x ∈ X. (3.14)

To each local trivializing frame of sections {s1, . . . , sn} of E over an open set U ⊂ X
one can associate the section s1 ∧ . . . ∧ sn which provides a trivialization of det(E )

over the same U. For each map ϕ : X → Y , one has the isomorphism det(ϕ∗(E )) �
ϕ∗(det(E )) which is a special case of the compatibility between pullback and tensor
product. Finally, if E = E1 ⊕ E2 in the sense of Whitney, then det(E ) = det(E1) ⊗
det(E2).

Let (E ,�) be a rank 2m Q-bundle over (X, τ ). The associated determinant line
bundle det(E ) inherits an involutive structure given by the map det(�) which acts
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anti-linearly between the fibers det(E )x and det(E )τ(x) according to det(�)(p1 ∧
. . . ∧ pn) = �(p1) ∧ . . . ∧�(pn). Clearly det(�)2 is a fiber preserving map which
coincides with the multiplication by (−1)2m = 1. Therefore (cf.Remark 3.2) one
concludes that:

Lemma 3.9 Let (E ,�) be a rank 2m Q-bundle over (X, τ ). The associated determi-
nant line bundle det(E ) endowed with the involutive structure det(�) is a “Real” line
bundle over (X, τ ).

Assume that the rank 2m Q-bundle (E ,�) over (X, τ ) has an equivariant Her-
mitian metric m. The latter fixes a unique Hermitian metric mdet on det(E ) which
is equivariant with respect to the induced R-structure det(�). More explicitly, if
(pi , qi ) ∈ E ×π E , i = 1, . . . , 2m then,

mdet
(
p1 ∧ . . . ∧ p2m, q1 ∧ . . . ∧ q2m

) :=
2m∏

i=1
m(pi , qi ).

TheR-line bundle (det(E ), det(�)) endowed withmdet isR-trivial if and only if there
exists an isometric R-isomorphism with X × C, or equivalently, if and only if there
exists a global R-section s : X → det(E ) of unit length (cf. [18, Theorem 4.8]). Let
us recall that an R-section meets the condition det(�) ◦ s ◦ τ = s. Let

S
(
det(E )

) := {p ∈ det(E ) | mdet(p, p) = 1}

be the circleR-bundle underlying to (det(E ), det(�)). Then theR-triviality of det(E )

can be rephrased as the existence of a globalR-section S(det(E ))→ X . One has the
following important result:

Proposition 3.10 ([19, Lemma 3.3]) Let (E ,�) be a Q-bundle over a space X with
trivial involution τ = IdX . Then, the associated determinant line bundle det(E )

endowed with the “Real” structure det(�) isR-trivial and admits a unique canonical
trivialization hcan : det(E ) → X × C compatible with the “Real” structure:

(
hcan ◦ det(�)

)
(p) = hcan(p) ∀ p ∈ det(�).

This trivialization fixes a unique canonical R-section scan : X → S(det(E )) defined
by

scan(x) := h−1can(x, 1) ∀ x ∈ X.

If X τ 	= Ø the restricted vector bundle E |Xτ → X τ can be seen as a Q-bundle over
a space with trivial involution. Preposition 3.10 assures that the restricted line bundle
det(E |Xτ ) is R-trivial with respect to the restricted “Real” structure det(�|Xτ ) and
admits a distinguished R-section

sE : X τ → S
(
det(E )|Xτ

)
(3.15)

which will be called the canonical section over X τ associated with (E ,�).

123



1242 G. De Nittis, K. Gomi

3.5 The FKMM-invariant and related properties

In this section, we recall the construction and the main properties of the FKMM-
invariant. Formore details on this argument, we refer to [19,22] and references therein.

Let (X, τ ) be an involutive space and Y ⊆ X a closed τ -invariant subspace τ(Y ) =
Y (it is not required thatY ⊆ X τ ). Consider pairs (L , s) consisting of: (a) a “Real” line
bundleL → X with a given “Real” structure� and aHermitianmetricm; (b) a “Real”
section s : Y → S(L |Y ) of the circle bundle associatedwith the restrictionL |Y → Y
(or equivalently a trivialization h : L |Y → Y ×C). Two pairs (L1, s1) and (L2, s2)
built over the same involutive base space (X, τ ) and the same invariant subspace Y
are said isomorphic if there is an R-isomorphism of line bundles f : L1 → L2
(preserving the Hermitian structure) such that f ◦ s1 = s2.

Definition 3.11 (Relative “Real” Picard group) For an involutive space (X, τ ) and a
closed τ -invariant subspace Y ⊆ X , we define Vec1R(X |Y, τ ) to be the abelian group
of the isomorphism classes of pairs (L , s), with group structure given by the tensor
product

(L1, s1) ⊗ (L2, s2) � (L1 ⊗L1, s1 ⊗ s2).

The relative “Real” Picard group can be described in terms of the relative equivariant
cohomology of the pairY ⊆ X . A short introduction about the equivariant cohomology
is provided in “Appendix A.”

Proposition 3.12 ([22, Proposition 2.7]) There is a natural isomorphism of abelian
groups

κ̃ : Vec1R(X |Y, τ )
�−→ H2

Z2

(
X |Y, Z(1)

)
.

By combining Propositions 3.10 and 3.12, one can define an intrinsic invariant for
the category of “Quaternionic” vector bundles.

Definition 3.13 (Generalized FKMM-invariant) Let (E ,�) be an even-rank “Quater-
nionic” vector bundle over the involutive space (X, τ ) and consider the pair
(det(E ), sE ) where det(E ) is the determinant line bundle associated with E endowed
with the “Real” structure det(�) and sE the canonical section (3.15). The FKMM-
invariant of (E ,�) is the cohomology class κ(E ,�) ∈ H2

Z2

(
X |X τ , Z(1)

)
defined

by

κ(E ,�) := κ̃
([(det(E ), sE )])

where [(det(E ), sE )] ∈ Vec1R(X |X τ , τ ) is the isomorphism class of the pair
(det(E ), sE ) and κ̃ is the group isomorphism described in Proposition 3.12.

The FKMM-invariant

κ : Vec2mQ (X, τ ) −→ H2
Z2

(
X |X τ , Z(1)

)
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defined above meets the following properties:

(α) Isomorphic Q-bundles define the same FKMM-invariant;
(β) The FKMM-invariant is natural under the pullback induced by equivariant maps;
(γ ) If (E ,�) is Q-trivial, then κ(E ,�) = 0;
(δ) The FKMM-invariant is additivewith respect to theWhitney sum and the abelian

structure of H2
Z2

(X |X τ , Z(1)). More precisely

κ(E1 ⊕ E2,�1 ⊕�2) = κ(E1,�1)+ κ(E2,�2)

for each pair ofQ-bundles (E1,�1) and (E2,�2) over the same involutive space
(X, τ );

(ε) The FKMM-invariant is the image under the pullback induced by the classifying
map of a universal FKMM-invariant.

Properties (α)–(δ) follow immediately from the definition. Property (ε) requires some
work. First of all one has to define the universal FKMM-invariant over the universal
Q-bundle which provides the homotopy classification (3.3). Then one has to prove
that the FKMM-invariant, as introduced in Definition 3.13 coincides with the pullback
induced by ϕ ∈ [X, Ĝ2m(C∞)]Z2 of the universal invariant. In this work, wewill never
use property (ε) and the interested reader is referred to [22, Section 2.6].

In the free involution case X τ = Ø, one has that the relative cohomology group
H2
Z2

(X |X τ , Z(1)) reduces to H2
Z2

(X, Z(1)).Moreover, as a consequence of theKahn’s
isomorphism (3.4) one has the following result [22, Corollary 2.12.]:

Proposition 3.14 Let (E ,�) be an even-rank “Quaternionic” vector bundle over the
involutive space (X, τ ). If X τ = Ø, then the FKMM-invariant κ(E ,�) agrees with
the first “Real” Chern class cR1 (det(E )) of the associated determinant line bundle.

A second interesting case concerns involutive spaces with only a finite number of
fixed points. The next definition encloses a large class of interesting involutive spaces.

Definition 3.15 (FKMM-space [19]) Let (X, τ ) be an involutive space which meets
Assumption 1.1. We say that (X, τ ) is an FKMM-space if:

(a) The fixed point set X τ is not empty and consists of a finite number of points;
(b) H2

Z2

(
X, Z(1)

) = 0.

In the case that (X, τ ) is an FKMM-space, the following isomorphism

H2
Z2

(
X |X τ , Z(1)

) � [
X τ , Ũ(1)

]
Z2

/
[
X, Ũ(1)

]
Z2
� Map

(
X τ , {±1})/[X, Ũ(1)

]
Z2

(3.16)

holds true [19, Lemma 3.1]. Here Ũ(1) denotes the unitary groupU(1) endowed with
the involution induced by the complex conjugation and [X, Ũ(1)]Z2 is the set of classes
of Z2-homotopy equivalent equivariant maps between (X, τ ) and the space Ũ(1).
The action of [X,U(1)]Z2 on [X τ ,U(1)]Z2 is given by the pointwise multiplication
followed by the restriction to X τ . The second isomorphism is justified by

[
X τ , Ũ(1)

]
Z2
= [

X τ ,±1] = Map
(
X τ , {±1}) � {±1}|Xτ |
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1244 G. De Nittis, K. Gomi

where Map
(
X τ , {±1}) is the set of the maps from X τ to {±1} and |X τ | ∈ N is the

cardinality of the finite set X τ . By combining Definition 3.13 with the isomorphism
(3.16), one concludes that:

Proposition 3.16 Let (E ,�) be a “Quaternionic” vector bundle over the FKMM-
space (X, τ ). Then, the FKMM-invariant κ(E ,�) can be represented by

[sE ] ∈ Map
(
X τ , {±1})/[X, Ũ(1)

]
Z2

where sE is the canonical section (3.15).

In other words, over an FKMM-space the FKMM-invariant κ(E ,�) is given by the
canonical section sE modulo the action (multiplication and restriction) of an equiv-
ariant map s : X → Ũ(1) which can be seen as a global trivialization of the trivial
line bundle det(E ). The result in Proposition 3.16 agrees with the old definition of
FKMM-invariant given in [19, Definition 3.2]. Proposition 3.16 says that the FKMM-
invariant κ(E ,�) of a Q-bundle (E ,�) over an FKMM-space can be described by
any representative φ ∈ Map(X τ , {±1}) in the class of [sE ]. This description allows
to compare the FKMM-invariant κ with the Fu–Kane–Mele indices in the case of the
involutive spheres S1,d and the involutive tori T0,d,0, d = 1, 2, 3, 4, as discussed in
[19].

Finally, we describe the injectivity of the FKMM-invariant in low dimension, which
is the source of the “half” of the Theorem 1.3.

Proposition 3.17 [22, Theorem 4.7] Let (X, τ ) be a low-dimensional involutive space
in the sense of Assumption 1.1. Then the FKMM-invariant

κ : Vec2mQ (X, τ ) −→ H2
Z2

(
X |X τ , Z(1)

)

is injective for all m ∈ N.

4 The surjectivity of the FKMM-invariant in low dimension

This technical section is devoted to the proof of various results that, all together,
provide the justification of Theorem 1.2. Many of the arguments that will be presented
here are based on the fact that the involutive space (X, τ ) has the structure of aZ2-CW-
complex, namely it admits a skeleton decomposition given by gluing cells of different
dimensions which carry Z2-actions. For a detailed presentation of the theory of G-
equivariant CW-complex, we refer to [4,53]. Here we recall some basic notions and
we introduce the relevant notation (cf. [18, Section 4.5]) that will be used repeatedly
in the remainder of the section.

Let (X, τ ) be a Z2-CW-complex X of dimension d. This means that X consists
of free and fixed Z2-cells of dimension at most d glued together through equivariant
attaching maps. A fixed Z2-cell of dimension k is given by the space ek := {∗}×Dk �
Dk whereDk := {t ∈ R

k | ‖t‖ � 1} denotes the closed unit ball (or disk) inR
k and the

Z2-action on ek is trivial on the two factors {∗} and Dk . A free k-dimensional Z2-cell
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The FKMM-invariant in low dimension 1245

is described by ẽk := Z2 ×Dk where the group Z2 is identified with the space {±1}
endowed with the free flipping involution. The overall Z2-action on ẽk is obtained
by combining the free action on Z2 with the trivial action on Dk , namely it is given
by (±1, t) ↔ (∓1, t) for all t ∈ Dk As usual, let Xk ⊂ X , k = 0, 1, . . . , d, be the
k-skeleton of X . In particular, Xk−1 is the union of all the Z2-cells of dimension less
than k and Xk is obtained by gluing a certain number of k-dimensional cells ekλ and
ẽkλ to Xk−1:

Xk := Xk−1 ∪φk

⎡

⎢
⎣

⎛

⎜
⎝

⊔

λ∈�k
fixed

ekλ

⎞

⎟
⎠ �

⎛

⎜
⎝

⊔

λ∈�k
free

ẽkλ

⎞

⎟
⎠

⎤

⎥
⎦ . (4.1)

In the last expression, �k
fixed and �k

free are index sets (possibly infinite in the case that
X is not a finite complex) and φk is the equivariant gluing map which attaches the
k-dimensional cells to the (k − 1)-skeleton. The involutive space (X, τ ) has a free
Z2-action if and only if �k

fixed = Ø for all k � d. Finally, let us point out that for the
very definition of CW-complex one always has that X0 	= Ø.

4.1 Surjectivity in d = 0, 1

The aim of this section is to provide the proof for Eq. (1.5).

Proposition 4.1 Let (X, τ ) be an involutive space which verifies Assumption 1.1. Let
its dimension be d = 0 or d = 1. Then

H2
Z2

(
X |X τ , Z(1)

) = 0.

Proof (Free case) Let us start with the case X τ = Ø. An inspection of the exact
sequence [34, Proposition 2.3]

. . . −→ Hk
Z2

(
X, Z

) −→ Hk(X, Z
) −→ Hk

Z2

(
X, Z(1)

) −→ Hk+1
Z2

(
X, Z

) −→ . . .

(4.2)
along with the vanishing of Hk(X, Z) = 0 and Hk

Z2
(X, Z) = Hk(X/Z2, Z) = 0 for

all k � 2, assures that Hk
Z2

(X, Z(1)) = 0 for all k � 2. In this case, the claim follows

by observing that H2
Z2

(X |X τ , Z(1)) = H2
Z2

(X, Z(1)) due to the assumption X τ = Ø.
(Non-free case) Let assume now X τ 	= Ø and consider first the case d = 0. The

full space splits as X = X τ � Xfree where X τ is the disjoint union of τ -invariant points
{∗} and Xfree is a collection of free involutive spaces Z2. Since X τ ∩ Xfree = Ø the
Mayer–Vietoris exact sequence implies

123



1246 G. De Nittis, K. Gomi

Hk
Z2

(
X, Z(1)

) � Hk
Z2

(
X τ , Z(1)

) ⊕ Hk
Z2

(
Xfree, Z(1)

)

� Hk
Z2

(
X τ , Z(1)

)
, k = 1, 2

where the last isomorphism is justified by the exact sequence (4.2) along with the
fact that Xfree is a zero-dimensional space with a free involution. Recalling that
Hk
Z2

({∗}, Z(1)) is trivial when k is even (see [18, Section 5.1]) it follows by the

additivity axiom in equivariant cohomology that H2
Z2

(X, Z(1)) = 0. In this particular
case, the exact sequence (A.6) reads

H1
Z2

(
X τ , Z(1)

) r−→ H1
Z2

(
X τ , Z(1)

) δ1−→ H2
Z2

(
X |X τ , Z(1)

) δ2−→ 0,

with r , the restriction from X to X τ , being evidently an isomorphism. Hence
H2
Z2

(X |X τ , Z(1)) = 0. For the case d = 1 let us start with the exact sequence
(A.6)

H1
Z2

(
X, Z(1)

) r−→ H1
Z2

(
X τ , Z(1)

) δ1−→ H2
Z2

(
X |X τ , Z(1)

) δ2−→ H2
Z2

(
X, Z(1)

)

r−→ H2
Z2

(
X τ , Z(1)

)
.

In order to prove the claim, it is enough to show that: (i) the map r : H1
Z2

(X, Z(1)) →
H1
Z2

(X τ , Z(1)) is surjective; (ii) the map r : H2
Z2

(X, Z(1)) → H2
Z2

(X τ , Z(1)) is
injective. To do that let U be a closed neighborhood of X τ such that: (a) U is Z2-
equivariantly homotopy equivalent to X τ ; (b) let V := X\U . Then U ∩ V is Z2-
equivariantly homotopy equivalent to the disjoint union of several copies of the free
involutive space Z2. The reason why such a closed neighborhood U exists relies on
the following construction: The fixed point set X τ consists of all the fixed Z2-cells of
dimension 0 and 1. The zero-dimensional free Z2-cells in X are disjoint to X τ , and
X is obtained by gluing the remaining one-dimensional free Z2-cells to X τ or to the
zero-dimensional freeZ2-cells. The typical one-dimensional freeZ2-cell has the form
ẽ1 := Z2×[0, 1] endowed with the freeZ2-action implemented by (±1, t) ↔ (∓1, t)
for all t ∈ [0, 1]. The Z2 boundary of ẽ

1 is ∂ ẽ1 := Z2×{0, 1}. If ∂ ẽ1 ∩ X τ = Ø, then
ẽ1 is attached to a zero-dimensional free Z2-cell and forms part of a free involutive
space which does not intersect X τ . In this case, we can take U such that U ∩ ẽ1 = Ø.
If ∂ ẽ1 intersects X τ in a single point we can assume, without loss of generality,
that the attachment is along the Z2-left boundary {±1} × {0} ∈ ẽ1 and we can take
{±1}× [0, 1/3] as the intersection between ẽ1 andU . Finally, if ∂ ẽ1 ⊂ X τ , namely if
the Z2 boundary of ẽ1 is attached to X τ , we can take {±1} × ([0, 1/3] ∪ [2/3, 1]) as
the intersection between ẽ1 andU . The proof of the property (i) follows by inspecting
the Mayer–Vietoris exact sequence

. . . −→ H1
Z2

(
X, Z(1)

) (ı∗U ,ı∗V )−→ H1
Z2

(
U, Z(1)

)⊕ H1
Z2

(
V, Z(1)

)

−→ H1
Z2

(
U ∩ V, Z(1)

) −→ . . .
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where ı∗U and ı∗V are the maps induced by the inclusion ıU : U → X and ıV : V → X .

Lemma A.1 assures that H j
Z2

(Z2, Z(1)) = 0 for all j � 1 and by additivity it holds

that H1
Z2

(U ∩ V, Z(1)) = 0. Moreover, by construction, one has H j
Z2

(U, Z(1)) �
H j
Z2

(X τ , Z(1)) and under this identification the map ı∗U can be replaced by the map

r : H1
Z2

(X, Z(1)) → H1
Z2

(X τ , Z(1)). Putting these facts together, one obtains from
the Mayer–Vietoris exact sequence that the map

H1
Z2

(
X, Z(1)

) (r,ı∗V )−→ H1
Z2

(
X τ , Z(1)

)⊕ H1
Z2

(
V, Z(1)

)

is surjective, and in particular (i) is proved. In order to prove (ii) we need a second
part of the Mayer–Vietoris exact sequence

0 −→ H2
Z2

(
X, Z(1)

) (ı∗U ,ı∗V )−→ H2
Z2

(
U, Z(1)

)⊕ H2
Z2

(
V, Z(1)

) −→ 0

wherewe already plugged in H1
Z2

(U∩V, Z(1)) = H2
Z2

(U∩V, Z(1)) = 0. Since V is a

free involutive space of dimension at most 1, we already know that H2
Z2

(V, Z(1)) = 0.

Moreover, in view of the isomorphism H j
Z2

(U, Z(1)) � H j
Z2

(X τ , Z(1))we finally get

0 −→ H2
Z2

(
X, Z(1)

) (r,ı∗V )−→ H2
Z2

(
X τ , Z(1)

)⊕ 0 −→ 0

which means that r : H2
Z2

(X, Z(1)) → H2
Z2

(X τ , Z(1)) is an isomorphism, therefore
injective as required by (ii). ��

In view of Proposition 3.17, we immediately get the following corollary to Propo-
sition 4.1 which proves Theorem 1.3 for d = 0, 1.

Corollary 4.2 Let (X, τ ) by an involutive space which verifies Assumption 1.1. Let
its dimension be d = 0, 1. Then the FKMM-invariant

κ : Vec2mQ
(
X, τ

) �−→ H2
Z2

(
X |X τ , Z(1)

)
, ∀ m ∈ N

induces a (trivial) bijection.

4.2 The relative FKMM-invariant

In this section, we want to construct a “relative” version of the FKMM-invariant that
will be useful to derive some crucial results in Sect. 4.3. Let us start with a definition.

Definition 4.3 Let (X, τ ) be an involutive space and Y ⊆ X a closed and τ -invariant
subspace τ(Y ) = Y (it is not required that Y ⊂ X τ ). We denote by Vec2mQ (X |Y, τ

)

the set of isomorphism classes of pairs (E , h) given by:

(a) (E ,�) is a “Quaternionic” vector bundle of rank 2m over (X, τ ) such that the
restriction E |Y is trivial in the category of “Quaternionic” vector bundles;
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1248 G. De Nittis, K. Gomi

(b) h : E |Y → Y × C
2m is a “Quaternionic” trivialization of E |Y .

Two pairs (E , h) and (E ′, h′) are called isomorphic if there exists a “Quaternionic”
isomorphism f : E → E ′ such that h′ ◦ f |Y = h.

The existence of aQ-trivialization h forE |Y is equivalent to the existence of aQ-frame,
namely of a set of nowhere vanishing sections (s1, s2, . . . , s2m−1, s2m) ⊂ 
(E |Y )

with the property that s2 j = τ�(s2 j−1) (cf. [19, Theorem 2.1]). Since any Q-bundle
(on a paracompact space) admits an essentially unique invariant Hermitian metric
[19, Proposition 2.1] we can assume, without loss of generality, that the Q-frame
(s1, s2, · · · , s2m−1, s2m) representing the trivialization h is orthonormal. In the case
Y = Ø one has the obvious identification Vec2mQ (X |Ø, τ ) ≡ Vec2mQ (X, τ ). There is
also the natural map Vec2mQ (X |Y, τ ) → Vec2mQ (X, τ

)
which forgets the trivialization

over Y .
Given the involutive space X and the closed τ -invariant subspace Y ⊆ X let X/Y

be the “new” involutive space obtained by collapsing Y to a single point {∗} and

π : X −→ X/Y

the equivariant projection which maps π : Y → {∗} ∈ (X/Y )τ ⊂ X/Y .

Lemma 4.4 The pullback under π induces the natural bijection

π∗ : Vec2mQ (X/Y |{∗}, τ )
�−→ Vec2mQ (X |Y, τ ).

Proof (sketch of) In order to prove the claim, it is enough to show that the pullbackmap
π∗ admits an inverse map. For a complex vector bundle E → X with a trivialization
h : E |Y → Y × C

2m , there is a classical construction which associate a complex
vector bundle E /h over X/Y and the isomorphism class of E /h only depends on the
homotopy class of h [6, Lemma 1.4.7]. This construction can be naturally generalized
to the “Quaternionic” category in such away thatE /h inherits aQ-structure�/h from
(E ,�). Moreover, under this construction theQ-trivialization h over Y is mapped in
a Q-trivialization h̃ : E /h|{∗} → C

2m over the fixed point {∗}. The map (E , h) �→
(E /h, h̃) provides the inverse of the pullback map π∗. ��

Given an element (E , h) ∈ Vec2mQ (X |Y, τ ) one can apply the determinant functor
described in Sect. 3.4 in order to obtain a element (det(E ), det(�)) ∈ PicR(X, τ )

of the “Real” Picard group. Moreover, det(h) : det(E )|Y → Y × C provides an
R-trivialization over Y which can be used to define the section sh : Y → det(E )|Y
through the prescription sh(x) := h−1(x, 1). It turns out that sh = s1 ∧ s2 ∧ · · · ∧
s2m−1∧s2m if (s1, s2, . . . , s2m−1, s2m) is any orthonormalQ-frame associatedwith the
trivialization h. Let sE : X τ → det(E )|Xτ be the canonical section of E described in
Sect. 3.4. By construction, on the intersection Y ∩X τ one has that sh |Y∩Xτ = sE |Y∩Xτ

by the unicity of the canonical section. This implies that theR-section sh ∪ sE is well
defined on the union Y ∪ X τ . After all these premises, we are in a position to give the
following:
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Definition 4.5 (Relative FKMM-invariant) Consider the chains of maps

Vec2mQ
(
X |Y, τ

) ζ−→ Vec1R(X |Y ∪ X τ , τ )
κ̃−→ H2

Z2

(
X |Y ∪ X τ , Z(1)

)

where ζ is defined by ζ : (E , h) �→ (det(E ), sh ∪ sE ) and the isomorphism κ̃ is
described in Proposition 3.12. The relative FKMM-invariant of an element (E , h) in
Vec2mQ (X |Y, τ ) is the cohomology class κrel[(E , h)] in H2

Z2
(X |Y ∪X τ , Z(1)) obtained

as

κrel[(E , h)] := (κ̃ ◦ ζ )[(E , h)].

Themap f which forgets the role of the space Y gives rise to the commutative diagram

Vec2Q
(
X |Y, τ

) f � Vec2Q
(
X, τ

)

H2
Z2

(
X |Y ∪ X τ , Z(1)

)

κrel
�

� H2
Z2

(
X |X τ , Z(1)

)
.

κ
�

(4.3)

If Y 	= Ø, by naturality and using Lemma 4.4, one obtains the commutative diagram

Vec2Q(X/Y |{∗}, τ )
π∗
� � Vec2Q

(
X |Y, τ

) f � Vec2Q
(
X, τ

)

H2
Z2

(
X/Y |{∗} ∪ (X/Y )τ , Z(1)

)

κπ
rel

�
π∗
�� H2

Z2

(
X |Y ∪ X τ , Z(1)

)

κrel
�

� H2
Z2

(
X |X τ , Z(1)

)
.

κ
�

(4.4)
Also the homomorphism π∗ among the cohomology groups in the bottom row turns
out to be bijective as well. This fact can be proven, for example, along the same lines
of Lemma 4.4 using the geometric representation for the relative cohomology groups
described in Proposition 3.12.

4.3 Surjectivity in d = 2

In this section, we will prove that the FKMM-invariant is surjective in dimension
d = 2. We will prove this fact first for a very special type of involutive space and
then we will extend the proof to general spaces with a Z2-CW-complex structure of
dimension d = 2.

Let XN∗ be a Z2-CW-complex with the 0-skeleton made by a single invariant point
(XN∗ )0 = {∗}, the 1-skeleton which agrees with the 0-skeleton (absence of 1-cells) and
the 2-skeleton (i. e. , the full space) obtained bygluing N freeZ2-cells ẽ

2
λ, N ∈ N∪{∞},

to {∗}. The skeleton decomposition of XN∗ is
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XN∗ := {∗} ∪φ2

(
N⊔

λ=1
ẽ2λ

)

�
N∨

λ=1
ẽ2λ �

N∨

λ=1
Ṽ2

λ (4.5)

where∨ denotes thewedge sum (or one-point union) of a family of topological spaces.
The last identification in (4.5) follows by observing that Ṽ2

λ := ẽ2λ/∂ ẽ
2
λ � S2 ∨ S2

is the wedge sum of two spheres endowed with the Z2-action which flips the two
spheres and fixes only the joining point {∗}. Clearly XN∗ has a fixed point set made by
the unique invariant point (XN∗ )τ = (XN∗ )0 = {∗}.

Let ıλ : Ṽ2
λ → XN∗ be the inclusion map. By means of the additivity of the

equivariant cohomology, one has the commutative diagram

Vec2mQ
(
XN∗ , τ

) (ı∗λ)

� �
N∏

λ=1
Vec2mQ

(
Ṽ2

λ

)

H2
Z2

(
XN∗ |{∗}, Z(1)

)

κ

�
(ı∗λ)

��
N∏

λ=1
H2
Z2

(
Ṽ2

λ|{∗}, Z(1)
)

(κλ) �

�

(4.6)

wherewe used the symbol of the product
∏

instead the of the sum⊕ for the equivariant
cohomology since, in principle, XN∗ is not a finite CW -complex meaning that N can
be infinite. The bijectivity of the horizontal arrow in the bottom of the diagram follows
from the observation that

H2
Z2

(
Ṽ2

λ|{∗}, Z(1)
) ≡ H̃2

Z2

(
Ṽ2

λ, Z(1)
) � H2

Z2

(
Ṽ2

λ, Z(1)
)

(4.7)

where H̃•
Z2

denotes the reduced equivariant cohomology (cf. “Appendix A”) and the
second isomorphism comes from the combination of the splitting (A.7) and the com-
putation (A.8) which provides

H2
Z2

(
Ṽ2

λ, Z(1)
) � H̃2

Z2

(
Ṽ2

λ, Z(1)
) ⊕ H2

Z2

({∗}, Z(1)
) � H̃2

Z2

(
Ṽ2

λ, Z(1)
)
.

Since the reduced equivariant cohomology of awedge sumof spaces equals the product
of the reduced equivariant cohomology of each space (just an application of theMayer–
Vietoris exact sequence) one obtains

N∏

λ=1
H2
Z2

(
Ṽ2

λ|{∗}, Z(1)
) ≡

N∏

λ=1
H̃2
Z2

(
Ṽ2

λ, Z(1)
) � H̃2

Z2

(
N∨

λ=1
Ṽ2

λ, Z(1)

)

≡ H2
Z2

(
XN∗ |{∗}, Z(1)

)
,
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namely the bijectivity of the horizontal arrow in the bottom of the diagram (4.6). The
bijectivity of the other two arrows is proved in the following lemma.

Lemma 4.6 With reference to the commutative diagram (4.6) it holds that:

(1) The map

(ı∗λ) : Vec2Q
(
XN∗ , τ

) −→
N∏

λ=1
Vec2Q

(
Ṽ2

λ

)

is bijective;
(2) The FKMM-invariant

κ : Vec2Q
(
Ṽ2) −→ H2

Z2

(
Ṽ2|{∗}, Z(1)

)

is bijective;

Proof (1) By using the skeleton decomposition of XN∗ in Eq. (4.5) (first equality) we
can express XN∗ as the union XN∗ = U1∪U2 whereU1 andU2 are two closed invariant
subspaces which satisfy the Z2-equivariant homotopy equivalences

U1 � {∗}, U2 �
N⊔

λ=1
ẽ2λ �

N⊔

λ=1
Z2, U1 ∩U2 �

N⊔

λ=1
∂ ẽ2λ �

N⊔

λ=1

(
Z2 × S1

)
.

(4.8)
More preciselywe can takeU1 as a “small” closed invariant neighborhood of X τ = {∗}
in X and U2 as the complement of the interior of U1. As a consequence of Lemma
A.1, the additivity of the equivariant cohomology and H2(S1, Z) = 0 it holds that
H2
Z2

(U2, Z(1)) = H2
Z2

(U1 ∩ U2, Z(1)) = 0. Then, the absence of non-trivial Q-
bundles in dimension 0 and the injectivity of the FKMM-invariant in low dimension
(Proposition 3.17) imply that

Vec2Q
(
U1

) = Vec2Q
(
U2

) = Vec2Q
(
U1 ∩U2

) = 0.

The “Quaternionic” version of the clutching construction assures that any rank 2 Q-
bundle over XN∗ can be constructed by gluing together the trivial Q-bundles over U1
and U2 by means of a clutching function g : U1 ∩ U2 → U(2) with the equivariant
property g(τ (x)) = μ(g(x)) where μ : U(2)→ U(2) is the involution given by

μ(U ) := −Q U Q, U ∈ U(2) (4.9)

where Q is the 2×2 matrix (3.2). SinceZ2-equivariantly homotopy equivalent clutch-
ing functions generate isomorphic Q-bundles, one obtains

Vec2Q
(
XN∗ , τ

) � [
U1 ∩U2, Û(2)

]
Z2

(4.10)
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1252 G. De Nittis, K. Gomi

where the first isomorphism is due to Proposition 3.7 and Û(2) denotes the spaceU(2)
endowed with the involution μ. Let us remark that the second isomorphism in (4.10)
is correct in view of the vanishings [U1, Û(2)]Z2 = 0 and [U2, Û(2)]Z2 = 0 which
ensure that the left and right coset actions on [U1 ∩U2, Û(2)]Z2 are trivial (compare
(4.10) with the general type of isomorphism described in [18, Lemma 4.18]). The first
vanishing is indeed justified by

[
U1, Û(2)

]
Z2
� [{∗}, Û(2)

]
Z2
� [{∗}, SU(2)

] � 0

being SU(2) the fixed point set of the involutive space Û(2). The second vanishing
follows from [U2, Û(2)]Z2 �

∏
λ[Z2, Û(2)]Z2 along with

[
Z2, Û(2)

]
Z2
� [{∗},U(2)] � 0.

One also has

[
Z2 × S1, Û(2)

]
Z2
� [

S1,U(2)
] det� [

S1,U(1)
] deg� Z

where the second isomorphism is induced by the determinant and is equivalent to the
well-known fact π1(U(2)) � π1(U(1)). The third isomorphism is given by the degree
and coincides with π1(U(1)) � Z. The last computation along with (4.10) provides

Vec2Q
(
XN∗ , τ

) �
N∏

λ=1

[
Z2 × S1, Û(2)

]
Z2
�

N∏

λ=1

[
S1,U(1)

] � Z
N . (4.11)

On the other hand, let U1,λ and U2,λ be two closed invariant subspaces such that
Ṽ2

λ = U1,λ ∪U2,λ and

U1,λ � {∗}, U2,λ � ẽ2λ, U1,λ ∩U2,λ � ∂ ẽ2λ

in analogy with (4.8). The equivariant clutching construction applied to Ṽ2
λ immedi-

ately provides

Vec2Q
(
Ṽ2

λ

) � [
Z2 × S1, Û(2)

]
Z2
� [

S1,U(1)
] � Z (4.12)

for each λ = 1, . . . , N . By combining the expressions (4.11) and (4.12) one deduces
the bijectivity of the (collection of) maps (ı∗λ).
(2) Equation (4.7) says that the FKMM-invariant of aQ-bundle over Ṽ2

λ can be com-
puted by means of the “Real” Chern class of the associate determinant line bundle. In
fact one has

det : Vec2mQ
(
Ṽ2

λ

) −→ PicR
(
Ṽ2

λ

) � H2
Z2

(
Ṽ2

λ, Z(1)
)
. (4.13)
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The Kahn’s isomorphism (3.4), along with Lemma A.1 and Eq. (A.7), assures that

PicR
(
U1,λ

) = PicR
(
U2,λ

) = PicR
(
U1,λ ∩U2,λ

) = 0.

This allows us to constructR-line bundles over Ṽ2
λ bymeans of the clutching construc-

tion providing a classification for PicR(Ṽ2
λ) of the type described by [18, Lemma4.18].

More precisely, let Ũ(1) be the unitary group endowed with the involution given by
the complex conjugation. One has that

[
U1,λ, Ũ(1)

]
Z2
� [{∗}, Ũ(1)

]
Z2
� [{∗}, {±1}] � Z2

and

[
U2,λ, Ũ(1)

]
Z2
� [

Z2, Ũ(1)
]
Z2
� [{∗},U(1)

] � 0.

Then, by using the same construction of [18, Lemma 4.18], one has that

PicR
(
Ṽ2

λ

) � [
U1,λ ∩U2,λ, Ũ(1)

]
Z2

/
[
U1,λ, Ũ(1)

]
Z2
� [

Z2 × S1, Ũ(1)
]
Z2

/Z2
(4.14)

where the Z2-action on a class [ϕ] ∈ [Z2 × S1, Ũ(1)]Z2 is given by the sign-flipping
[ϕ] �→ [−ϕ]. Evidently,

[
Z2 × S1, Ũ(2)

]
Z2
� [

S1,U(1)
] deg.� Z

where the last isomorphism is provided by the degree map. Since the degree of the
map ϕ : S1 → U(1) agrees with that of the map −ϕ it follows that the Z2-action in
(4.14) is trivial and so

PicR
(
Ṽ2

λ

) � [
Z2 × S1, Ũ(1)

]
Z2
� [

S1,U(1)
] deg.� Z. (4.15)

A comparison between (4.12) and (4.15) shows that the determinant mapping (4.13)
can be rewritten as

det : [
Z2 × S1, Û(2)

]
Z2

�−→ [
Z2 × S1, Ũ(1)

]
Z2

. (4.16)

The isomorphism in (4.16) is a consequence of [18, Lemma 4.19] which states that

[
Z2 × S1, Û(2)

]
Z2
� [

Z2 × S1, Û(2) ∩ SU(2)
]
Z2

�
[
Z2 × S1, Ũ(1)

]
Z2

where � denotes the semidirect product. The vanishing of [Z2 × S1, Û(2) ∩
SU(2)]Z2 = 0, due to the fact that Û(2)∩ SU(2) is the fixed point set of the involutive
space Û(2) and Z2 × S1 is a free involution space, completes the argument for the
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1254 G. De Nittis, K. Gomi

isomorphism (4.16). In conclusion, the mapping (4.13) turns out to be an isomorphism
and this fact can be reformulated by saying that the FKMM-invariant

κλ : Vec2Q
(
Ṽ2

λ

) −→ H2
Z2

(
Ṽ2

λ|{∗}, Z(1)
) � H2

Z2

(
Ṽ2

λ, Z(1)
)

provides a bijection. ��
The commutativity of the diagram 4.6 immediately implies:

Proposition 4.7 Let X N∗ be the involutive space described by (4.5). Then the FKMM-
invariant

κ : Vec2Q
(
XN∗ , τ

) �−→ H2
Z2

(
XN∗ |{∗}, Z(1)

)

induces a bijection.

The next steps are devoted to extending the validity of Proposition 4.7 to any Z2-
CW-complex (X, τ ) of dimension d = 2. The quotient space X/X1, obtained by
collapsing the 1-skeleton to a single invariant point {∗}, still has the structure of a
Z2-CW-complex given by the equivariant identification of the boundaries of all the
two-dimensional Z2-cells of X with {∗}. More precisely one has that

X/X1 �
⎛

⎜
⎝

∨

λ∈�2
fixed

e2λ

⎞

⎟
⎠ ∨

⎛

⎜
⎝

∨

λ∈�2
free

ẽ2λ

⎞

⎟
⎠ �

⎛

⎜
⎝

∨

λ∈�2
fixed

V2
λ

⎞

⎟
⎠ ∨

⎛

⎜
⎝

∨

λ∈�2
free

Ṽ2
λ

⎞

⎟
⎠ (4.17)

where the notation is the same as used in (4.5) and V2
λ := e2λ/∂e

2
λ � S2 is a

two-dimensional sphere with trivial involution. The following result follows from
Proposition 4.7.

Corollary 4.8 Let (X, τ ) be a Z2-CW-complex of dimension d = 2 and consider the
quotient space X/X1. Then the FKMM-invariant

κ : Vec2Q
(
X/X1, τ

) �−→ H2
Z2

(
X/X1|(X/X1)

τ , Z(1)
)

induces a bijection.

Proof Themain idea of the proof is to reduce the case to that considered in Proposition
4.7. Let us define the subspace ZX ⊂ X/X1 defined as

ZX :=
∨

λ∈�2
free

ẽ2λ �
∨

λ∈�2
free

Ṽ2
λ.

Clearly ZX is exactly of the type considered in Proposition 4.7. In particular Z τ
X = {∗}

and

κZ : Vec2Q
(
ZX , τ

) �−→ H2
Z2

(
ZX |{∗}, Z(1)

)
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is a bijection. Let us introduce two closed invariant subspaces U1 and U2 such that
U1 ∪U2 = X/X1 and that meet the following Z2-equivariant homotopy equivalences

U1 � ZX , U2 �
⊔

λ∈�2
fixed

e2λ �
⊔

λ∈�2
fixed

{∗}, U1 ∩U2 �
⊔

λ∈�2
fixed

S1, (4.18)

where the involution on S1 is trivial. Now, by observing that

Vec2Q
(
U2

) �
∏

λ∈�2
fixed

Vec2Q
({∗}) = 0

and

[
U1 ∩U2, Û(2)

]
Z2
�

∏

λ∈�2
fixed

[
S1, SU(2)

] = 0 ,

one concludes from the clutching construction with respect to the decomposition
U1 ∪U2 = X/X1 that the inclusion ı : ZX → X/X1 induces a bijection

ı∗ : Vec2Q
(
X/X1, τ

) �−→ Vec2Q
(
ZX , τ

)
.

The Mayer–Vietoris exact sequence for the decomposition U1 ∪ U2 = X/X1, along
with the vanishings Hk

Z2
(U2|U τ

2 , Z(1)) = 0 = Hk
Z2

(U1 ∩ U2|(U1 ∩ U2)
τ , Z(1)) due

to the equalities U2 = U τ
2 and U1 ∩U2 = (U1 ∩U2)

τ , implies the isomorphism

0 −→ H2
Z2

(
X/X1|(X/X1)

τ , Z(1)
) ı∗−→ H2

Z2

(
ZX |Z τ

X , Z(1)
) −→ 0.

In conclusion, one has by naturality the commutative diagram

Vec2Q(X/X1, τ )
ı∗
� � Vec2Q(ZX , τ )

H2
Z2

(
X/X1|(X/X1)

τ , Z(1)
)

κ
�

ı∗
�� H2

Z2

(
ZX |(ZX )τ , Z(1)

)

κZ �
�

which shows that κ is bijective. ��
Weare now in the position to prove themain result of this section, which is Theorem

1.3 for d = 2.

Proposition 4.9 Let (X, τ ) by an involutive space which verifies Assumption 1.1. Let
its dimension be d = 2. Then the FKMM-invariant

κ : Vec2mQ
(
X, τ

) �−→ H2
Z2

(
X |X τ , Z(1)

)
, ∀ m ∈ N

induces a bijection.
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Proof Because of Proposition 3.17, we only need to prove the surjectivity of κ . In
addition, it is enough to consider the surjectivity in the case of m = 1, which leads to
the surjectivity in the case of m > 1 in view of the isomorphism (3.10). Let us start
with the commutative diagram (4.4) specialized for Y = X1 ⊃ X0 	= Ø;

Vec2Q(X/X1|{∗}, τ )
π∗
� � Vec2Q

(
X |X1, τ

) f � Vec2Q
(
X, τ

)

H2
Z2

(
X/X1|{∗} ∪ (X/X1)

τ , Z(1)
)

κπ
rel �

π∗
�� H2

Z2

(
X |X1 ∪ Xτ , Z(1)

)

κrel
�

ı∗
surj.
� H2

Z2

(
X |Xτ , Z(1)

)

κ
�

(4.19)
where the surjectivity of ι∗ is shown as follows. Let X τ

1 := X1 ∩ X τ and consider the
triad (X; X1, X τ ). The long exact sequence in the equivariant cohomology associated
with this triad reads [48, Theorem 2.2]

. . . H1
Z2

(
X1|X τ

1 , Z(1)
) −→ H2

Z2

(
X |X1 ∪ X τ , Z(1)

) ı∗−→ H2
Z2

(
X |X τ , Z(1)

)

−→ H2
Z2

(
X1|X τ

1 , Z(1)
)

. . .

and the homomorphism ı∗ : H2
Z2

(X |X1 ∪ X τ , Z(1)) → H2
Z2

(X |X τ , Z(1)) is induced

by the inclusion ı : X τ → X1 ∪ X τ . Since H2
Z2

(X1|X τ
1 , Z(1)) = 0 in view of

Proposition 4.1 it follows that the homomorphism ı∗ is surjective. As a result, κ is
surjective if and only if κπ

rel is surjective. By observing that {∗} ∈ (X/X1)
τ ⊂ X/X1,

one concludes that {∗} ∪ (X/X1)
τ = (X/X1)

τ and one has the commutative diagram

Vec2Q(X/X1|{∗}, τ )
f

surj.
� Vec2Q(X/X1, τ )

H2
Z2

(
X/X1|{∗} ∪ (X/X1)

τ , Z(1)
)

κπ
rel

�
= H2

Z2

(
X/X1|(X/X1)

τ , Z(1)
)

κ �
�

(4.20)

where the surjectivity of f is due to the local triviality of Q-bundles, and the bijec-
tivity of the right-hand side vertical arrow κ is due to Corollary 4.8. Summarizing,
the commutative diagram (4.20) assures that κπ

rel is a surjection and so one gets the
surjectivity of the map κ in (4.19). ��

4.4 Surjectivity in d = 3: the case of a free involution

In this section, we will prove that in case of a free involutive space (X, τ ) the FKMM-
invariant, identified with the first “Real” Chern class of the associate determinant line
bundle, is surjective in dimension d = 3.

The skeleton decomposition (4.1), adapted for the case of a free involution, suggests
that we can express X as the union X = U1 ∪ U2 where U1 and U2 are two closed
invariant subspaces which satisfy the Z2-equivariant homotopy equivalences
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U1 � Xd−1, U2 �
⊔

λ∈�

ẽdλ �
⊔

λ∈�

Z2, U1 ∩U2

�
⊔

λ∈�

∂ ẽdλ �
⊔

λ∈�

(
Z2 × Sd−1

)
. (4.21)

More precisely we can takeU1 as a “small” closed invariant neighborhood of Xd−1 in
X andU2 as the complement of the interior ofU1. Let us prove the following technical
result.

Lemma 4.10 Let U1 and U2 as in (4.21) with d � 3. Then the inclusions U1 ∩U2
j1→

U1
ı1→ X induce the exact sequence

0 −→ H2
Z2

(
X, Z(1)

) ı∗1−→ H2(U1, Z(1)
) j∗1−→ H2

Z2

(
U1 ∩U2, Z(1)

)
. (4.22)

Moreover, for d � 4 it holds that

H2
Z2

(
U1 ∩U2, Z(1)

) = 0 (4.23)

and consequently one has the isomorphism

H2
Z2

(
X, Z(1)

) ı∗1� H2(U1, Z(1)
)
. (4.24)

Proof Consider the Mayer–Vietoris exact sequence for the pair {U1,U2}

H1
Z2

(
U1 ∩U2, Z(1)

) −→ H2
Z2

(
X, Z(1)

) (ı∗1 ,ı∗2 )−→ H2
Z2

(
U1, Z(1)

)⊕ H2
Z2

(
U2, Z(1)

)

j∗1−j∗2−→ H2
Z2

(
U1 ∩U2, Z(1)

)

where ı∗j and j∗j are the maps induced by the inclusions ı j : Uj → X and j j :
U1∩U2 → Uj , respectively. By using the additivity axiom in equivariant cohomology,
one obtains

H2
Z2

(
U2, Z(1)

) �
⊕

λ∈�

H2
Z2

(
Z2, Z(1)

) � 0 (4.25)

where the last equality is justified by Lemma A.1. Similarly, again in view of the
additivity axiom, one has that

Hk
Z2

(
U1 ∩U2, Z(1)

) �
⊕

λ∈�

Hk
Z2

(
Z2 × Sd−1, Z(1)

)

�
⊕

λ∈�

Hk(Sd−1, Z
)
, k = 1, 2. (4.26)
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where the last isomorphism follows from Lemma A.1. Since Hk(Sd−1, Z) = 0 when-
ever 0 < k < d − 1 one obtains that

H1
Z2

(
U1 ∩U2, Z(1)

) = 0 ∀ d � 3

H2
Z2

(
U1 ∩U2, Z(1)

) = 0 ∀ d � 4.
(4.27)

The result is proved by plugging in (4.25) and (4.27) in the Mayer–Vietoris exact
sequence. ��

The exactness of the sequence (4.22) enters crucially in the proof of the following
result.

Proposition 4.11 (Surjectivity for d = 3) For any free Z2-CW-complex (X, τ ) of
dimension d = 3 the FKMM-invariant κ , identified according to Proposition 3.14, is
surjective.

Proof The exact sequence (4.22) and the FKMM-invariant can be combined to the
following commutative diagram:

Vec2mQ
(
X
) ı∗1 � Vec2mQ

(
U1

) j∗1� Vec2mQ
(
U1 ∩U2

)

H2
Z2

(
X, Z(1)

)

κ
�

ı∗1
inj.
� H2

Z2

(
U1, Z(1)

)

κ �
�

j∗1� H2
Z2

(
U1 ∩U2, Z(1)

)

κ �
�

(4.28)

where the ı∗1 and j∗1 are the maps induced by the inclusions ı1 : U1 → X and
j1 : U1 ∩U2 → U1, respectively. The injectivity of the horizontal arrow ı∗1 is due to
Lemma 4.10, and the bijectivity of the last two vertical arrows is due to Proposition 4.9,
since both U1 and U1 ∩U2 are at most two-dimensional. Now, let a ∈ H2

Z2
(X, Z(1))

be a given class, ı∗1 (a) its image in H2
Z2

(U1, Z(1)) and E1 → U1 a “Quaternionic”
vector bundle in the equivalence class determined by κ(E1) = ı∗1 (a). Due to the
commutativity of the diagram one has

κ
(
E1|U1∩U2

) = κ
(
j∗1 (E1)

) = j∗1
(
κ(E1)

) = j∗1
(
ı∗1 (a)

) = 0

where the last equality is a consequence of the exactness of (4.22) that forces j∗1 ◦ ı∗1 =
0. Since κ

(
E1|U1∩U2

) = 0 one concludes that E1|U1∩U2 → U1∩U2 must be the trivial
Q-bundle. Let E2 = U2 × C

2m be the trivial Q-bundle over U2. By gluing E1 and E2
alongU1 ∩U2 one obtains aQ-bundle E := E1 ∪E2 over X . By construction it holds
that

ı∗1
(
κ(E )

) = κ
(
ı∗1 (E )

) = κ
(
E |U1

) = κ
(
E1

) = ı∗1
(
a
)

and the injectivity of ı∗1 implies that κ(E ) = a. This proves that for each class a ∈
H2
Z2

(
X, Z(1)

)
there is an element [E ] ∈ Vec2mQ

(
X
)
such that κ(E ) = a, namely the

FKMM-invariant is surjective. ��
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4.5 Surjectivity in d = 3: the case of a finite fixed point set

In this section, we will provide the proof of Theorem 1.4, namely we will show the
surjectivity of the FKMM-invariant in the case of an involutive space (X, τ ) which
satisfies the following assumption:

Assumption 4.12 Let (X, τ ) be an involutive space and assume that

(a) X is a compact manifold without boundary of dimension d = 3;
(b) The involution τ is smooth.
(c) The fixed point set X τ consists of a finite collection of points.

Let us observe that a space X which fulfills Assumption 4.12 is a closed manifold
and the pair (X, τ ) automatically admits the structure of a Z2-CW-complex (see, e. g. ,
[54, Theorem 3.6]). Moreover, under the extra assumption H2

Z2
(X, Z(1)) = 0 an

involutive space (X, τ ) of the type described in Assumption 4.12 is also an FKMM-
space (cf.Definition 3.15) of dimension d = 3. Let us point out that for this type of
spaces H2

Z2
(X |X τ , Z(1)) has a geometric representation provided by Eq. (3.16). This

is a crucial ingredient in the following results.

Proposition 4.13 Let (X, τ ) be an involutive space which meets Assumption 4.12.
Assume in addition that (X, τ ) is an FKMM-space, namely H2

Z2
(X, Z(1)) = 0. Then

the FKMM-invariant

κ : Vec2mQ
(
X, τ

) �−→ H2
Z2

(
X |X τ , Z(1)

)

� Map
(
X τ , {±1})/[X, Ũ(1)

]
Z2

, ∀ m ∈ N

induces a bijection.

Proof Let X τ = {x1, . . . , xn}. In view of the geometric representation of H2
Z2

(X |X τ , Z(1)) it is enough to show that for each i = 1, . . . , n we can construct a rank 2
Q-bundle Ei → X such that its FKMM-invariant κ(Ei ) is represented by an equivari-
ant map φi : X τ → {±1}which verifies φi (xi ) = − 1 and φi (x j ) = 1 for all j 	= i . To
construct such Ei , we invoke the slice theorem [40, Chapter I, Section 3] which allows
us to choose a τ -invariant three-dimensional closed disk D3

i centered in xi which can
be equivariantly identified with the unit ball in R

3 endowed with the antipodal invo-
lution x �→ −x . Moreover, it is always possible to choose these disks in such a way
that D3

i ∩ D3
j = Ø if i 	= j . Let D := ⋃n

i=1D3
i , ∂D := ⋃n

i=1 ∂Di � ⋃n
i=1 S0,3 its

boundary and X ′ := X\D . We know from [19, Lemma 5.2] that [S0,3, Û(2)]Z2 � Z

and ϕ : S0,3 → Û(2) is an equivariant map in the class labeled by k if and only if
deg(ϕ) = k and det(ϕ) = (−1)k . Let [ξ ] ∈ [S0,3, Û(2)]Z2 be the generator, namely let
ξ be an equivariant map such that deg(ξ) = 1 and det(ξ) = −1. Let�i : ∂D → Û(2)
be the equivariant map defined as follows:

�i |∂D j :=
{

ξ if j = i

12 if j 	= i
.
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By means of the equivariant clutching construction, we can define the Q-bundles

Ei :=
(
X ′ × C

2) ∪�i

(
D × C

2), i = 1, . . . , n.

Since Ei |Xτ = {x1, . . . , xn} × C
2 is trivial it follows that the canonical section sEi ,

defined according (3.15), agrees with the constant map sEi : X τ → {+1}. To prove
that the FKMM-invariant of Ei can be represented by the function φi we need to find
an equivariant section ti : X → det(Ei ) such that ti |Xτ = φi . In fact Proposition
3.16 assures that the FKMM-invariant of Ei can be seen as the difference between the
canonical section sEi and any other equivariant sections of det(Ei ). These equivariant
sections are in one-to-one correspondence with a pair of equivariant maps uX ′ : X ′ →
Ũ(1) and uD : D → Ũ(1) such that uX ′(x) := det(�i ) uD (x) for all x ∈ X ′ ∩ D .
With the specific choice uX ′ ≡ 1 and

uD |D j :=
{
− 1 if j = i

+ 1 if j 	= i

one can check that ti |Xτ = φi and this concludes the proof.

The proof of Theorem 1.4 requires the next preliminary result.

Lemma 4.14 Let (X, τ ) be an involutive space which meets Assumption 4.12. Then,
for anyR-line bundleL , there exists aQ-bundle E of rank 2 such that det(E ) � L .

Proof LetD ⊂ X and X ′ = X\D be as in the proof of Proposition 4.13. Suppose that
a “Real” line bundleL → X is given. On the one hand, we have H2

Z2
(D, Z(1)) = 0,

because of the Z2-homotopy equivalence D � X τ . This implies that L |D is trivial.
Hence, if ED � D × C

2 is the product Q-bundle one has then det(ED ) � L |D . On
the other hand, X ′ admits the structure of a three-dimensional Z2-CW-complex with
free involution. Therefore, Proposition 4.11 provides aQ-bundle EX ′ → X ′ of rank 2
such that det(EX ′) � L |X ′ . Notice that

det
(
EX ′

)|X ′∩D � (
L |X ′

)|X ′∩D = (
L |D

)|X ′∩D � det
(
ED

)|X ′∩D .

We then have an isomorphism EX ′ |X ′∩D � ED |X ′∩D by Proposition 4.9, since X ′ ∩D
is a two-dimensionalZ2-CW-complex.Consequently,we can glueEX ′ andED together
along X ′ ∩D to form a Q-bundle E = EX ′ ∪ ED of rank 2 such that

det
(
E
) � det

(
EX ′ ∪ ED

) � det
(
EX ′

) ∪ det
(
ED

) � L |X ′ ∪ L |D � L .

This completes the proof. ��
Proof of Theorem 1.4 Because of Proposition 3.17, it suffices to prove the surjectivity
of

κ : Vec2Q
(
X, τ

) −→ H2
Z2

(
X |X τ , Z(1)

)
.
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Let (L , s) be a pair representing a given element in H2
Z2

(
X |X τ , Z(1)

)
. Lemma 4.14

ensures that there is a rank 2 Q-bundle E ′ such that det(E ′) � L . Let φ : X τ → Z2
be a map such that s = sE ′ ·φ, where sE ′ is the canonical section of E ′. Following the
proof of Proposition 4.13 one concludes that it is possible to find another Q-bundle
E ′′ of rank 2 such that theR-bundle det(E ′′) is trivial and sE ′′ agrees with φ under the
isomorphism det(E ′′) � X × C of R-bundles. For the direct sum E ′ ⊕ E ′′, one has

(
det(E ′ ⊕ E ′′), sE ′⊕E ′′

) � (
det(E ′)⊗ det(E ′′), sE ′ ⊗ sE ′′

)

� (
det(E ′), sE ′ · φ

) � (L , s).

Proposition 3.7 allows to find a rank 2 Q-bundle E such that the direct sum of E and
the product Q-bundle X × C

2 is isomorphic to E ′ ⊕ E ′′. Since κ(E ) = κ(E ′ ⊕ E ′′),
the proof is completed.

5 “Quaternionic” vector bundles over the three-dimensional lens space

The aim of this section is to classify the “Quaternionic” vector bundles over the three-
dimensional lens space endowed with its natural involution. The explicit computation
of the relative equivariant cohomology of this involutive space which has a non-empty
fixed point set will provide an explicit example where the FKMM-invariant fails to be
surjective.

5.1 The three-dimensional lens space with its natural involution

The three-dimensional sphere can be parametrized as the unit sphere in C
2,

S3 ≡ {
(z0, z1) ∈ C

2 | |z0|2 + |z1|2 = 1
} ⊂ C

2. (5.1)

This representation allows u ∈ U(1) to act on S3 through the mapping (z0, z1) �→
(uz0, uz1). This action of U(1) on S3 is evidently free. The inclusion of Zp ⊂ U(1),
given by the fact that Zp can be identified with the set of the p-th roots of the unity,
implies that one can define a free action of every cyclic groupZp on S3.More precisely
we can let k ∈ Zp act on S3 through the rotation

k : (z0, z1) �−→
(
e i 2π

k
p z0, e

i 2π k
p z1

)
.

The quotient space

L p := S3/Zp

is called the (three-dimensional) lens space (see [13, Example 18.5] or [39, Exam-
ple 2.43] for more details) and sometime is denoted with the symbol L(1; p). By
combining the facts that S3 is simply connected and the Zp-action on S3 is free one
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concludes that S3 is the universal cover of L p. The last observation turns out to be
relevant for the calculation of the homotopy groups:

π1
(
L p

) � Zp, π j
(
L p

) � π j
(
S3

)
, j � 2.

The well-known fiber sequence

U(1) ↪→ S3 → S3/U(1) � CP1

says that S3 can be seen as the total space of a principalU(1)-bundle over CP1 whose
Chern number is 1. Similarly, after observing that U(1)/Zp � U(1), one obtains the
fiber sequence

U(1) � U(1)/Zp ↪→ L p → S3/U(1) � CP1 (5.2)

which tells us that L p is the total space of a principal U(1)-bundle over CP1 with
typical fiber U(1)/Zp. The Chern number of this bundle can be computed to be p.
The above fiber sequence can be used for the computation of the cohomology of L p

which turns out to be [13, Example 18.5]

Hk(L p, Z
) �

⎧
⎨

⎩

Z k = 0, 3
Zp k = 2
0 otherwise.

(5.3)

The parametrization (5.1) allows to equip S3 ⊂ C
2 with the involution induced by

the complex conjugation (z0, z1) �→ (z0, z1). The computation

e i 2π
p−k
p = e− i 2π k

p = e i 2π
k
p , k ∈ Zp

shows thatZp ⊂ U(1) is preserved by the complex conjugation. Therefore, the involu-
tion on S3 descends to an involution τ on L p. The involutive space (L p, τ ) inherits the
structure of a smooth (three-dimensional) manifold with a smooth involution; hence,
it admits a Z2-CW-complex structure [54, Theorem 3.6]. Let us point out that it is
possible to think of L p → CP1 as a “Real” principal U(1)-bundle where the “Real”
structure on the total space is provided by τ and the involution τ ′ on the base space
CP1 is still given by the complex conjugation τ ′ : [z0, z1] �→ [z0, z1].

Let us focus now on the case p = 2q > 0.

Lemma 5.1 The fixed point set of L2q under the involution τ has the form

Lτ
2q = S0 � S1 � S1 � S1

where

S0 :=
{[

cos θ, sin θ
] ∈ L2q

∣∣ θ ∈ R
}

S1 :=
{[

e− i π
2q cos θ, e− i π

2q sin θ
]
∈ L2q

∣∣∣ θ ∈ R

}
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and S0 � S1 � S1.

Proof A point [z0, w0] ∈ X is a fixed point under the involution if and only if z0 =
ζ k z0 and z1 = ζ k z1 for some k = 0, 1, . . . , 2q−1, where ζ = e i

π
q . For convenience,

let us introduce the following subset for each k:

Sk :=
{[z0, z1] ∈ L2q

∣∣ (z0, z1) ∈ S3, z0 = ζ k z0, z0 = ζ k z1
}

,

so that Lτ
2q is the union of S0, S1, . . . , Sp−1. It is clear that:

S0 =
{[

cos θ, sin θ
] ∈ L2q

∣∣ θ ∈ R
} � S1.

Suppose here that k is even, so that k = 2�. Then S0 = S2�. Actually, [z0, z1] ∈ S2� if
and only if [ζ �z0, ζ �z1] ∈ S0. Because ζ � ∈ Z2q , we find S0 = S2� in L2q . Similarly,
in the case of k = 1, we obtain:

S1 =
{
[ζ− 1

2 cos θ, ζ−
1
2 sin θ ] ∈ L2q

∣∣∣ θ ∈ R

}
� S1.

Suppose then that k is odd, so that k = 2� + 1. In this case, [z0, z1] ∈ S2�+1 if and
only if [ζ �z0, ζ �z1] ∈ S1. Since ζ � ∈ Z2q , it holds that S1 = S2�+1 in L2q . Notice that

ζ− 1
2 /∈ Z2q . Note also −1 /∈ {ζ �− 1

2 | � ∈ Z} since q > 0. Consequently, S0 ∩ S1 = ∅
and the lemma is proved. ��

5.2 The equivariant cohomology of L2q

The equivariant cohomology of the involutive space (L2q , τ ) can be computed by
means of the Gysin exact sequence [34, Corollary 2.11] applied to the “Real” principal
U(1)-bundle L2q → CP1 described by the (5.2).

First of all, one needs the computation of the equivariant cohomology of the space
CP1 endowed with the involution given by the complex conjugation. This space,
being a spherical conjugation complex [41], admits the following presentation of the
Z2-equivariant cohomology ring

H•
Z2

(
CP1, Z

) ⊕ H•
Z2

(
CP1, Z(1)

) � Z
[
t
1
2 , c

]
/
(
2t

1
2 , c2

)
(5.4)

where t
1
2 ∈ H1

Z2
(CP1, Z(1)) � H1

Z2
({∗}, Z(1)) � Z2 and c ∈ H2

Z2
(CP1, Z(1)) �

H2(CP1, Z) � Z are basis elements. In particular c can be understood both as the first
“Real” Chern class of the “Real” principalU(1)-bundle S2 → CP1 as well as the first
Chern class of the sameprincipalU(1)-bundlewithout additional structures. Indeed the
mapwhich forgets the “Real” structure just acts as the identity f : H2

Z2
(CP1, Z(1)) →

H2(CP1, Z). A proof of (5.4) can be derived from [34, Lemma 2.17] where the more
general case CP∞ is considered. Let us notice that the difference between the cases
CP1 andCP∞ is given by the constraint c2 = 0 in (5.4) due to the low dimensionality
of CP1. In low dimension the (5.4) reads:
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Table 1 Equivariant cohomology of the involutive space CP1 with involution given by the complex
conjugation up to degree k = 4

k = 0 k = 1 k = 2 k = 3 k = 4

Hk
Z2

(CP1, Z(1)) 0 Z2

[
t
1
2

]
Z [c] Z2

[
t
3
2

]
Z2 [tc]

Hk
Z2

(CP1, Z) Z 0 Z2 [t] Z2

[
t
1
2 c

]
Z2

[
t2
]

The generators of the groups are listed in the square brackets

Table 2 (equivariant)
Cohomology of the involutive
space (L2q , τ ) up to degree
k = 3

k = 0 k = 1 k = 2 k = 3

Hk
Z2

(L2q , Z(1)) 0 Z2 Z2q Z2 ⊕ Z2

Hk
Z2

(L2q , Z) Z 0 Z2 ⊕ Z2 Z⊕ Z2

Hk (L2q , Z) Z 0 Z2q Z

The data contained in Table 1 along with the fact that the first “Real” Chern class of
the “Real” principalU(1)-bundle L2q → CP1 has value cR1 (L2q) = 2qc can be used
in the Gysin exact sequence [34, Corollary 2.11] providing the following computation
for the equivariant cohomology of (L2q , τ ).

From the exact sequence [34, Proposition 2.3] and the data contained in Table 2
one can conclude that the map which forgets the “Real” structure induces a bijection

f : H2
Z2

(
L2q , Z(1)

) �−→ H2(L2q , Z
)
. (5.5)

Remark 5.2 (The Picard group of L2q and its “Real” structure) Equation (5.5) implies
that the Picard group of L2q and the “Real” Picard group of the involutive space
(L2q , τ ) coincide:

PicR
(
L2q , τ

) cR1� H2
Z2

(
L2q , Z(1)

) � Z2q � H2
Z2

(
X, Z(1)

) c1� Pic
(
L2q

)
.

In particular, thismeans that there are only 2q complex line bundles over L2q (up to iso-
morphisms) and each one of these can be endowedwith a unique (up to isomorphisms)
R-structure. The representatives of these line bundles can be constructed explicitly.
For k ∈ Z, we let u ∈ Z2q act on S3 × C by ((z0, z1), λ) �→ ((uz0, uz1), ukλ).
Since the action is free on the base space the quotient defines a complex line bundle
Lk → L2q (cf. [6, Proposition 1.6.1]). From the construction, it results evident that
Lk = Lk+2q and L0 = L2q × C is the trivial line bundle. Moreover, L1 provides
a basis for Pic(L2q) � Z2q in view of the fact that L1

⊗k � Lk . The R-structure on
Lk is evidently induced by the complex conjugation [(z0, z1), λ] �→ [τ(z0, z1), λ] =
[(z0, z1), λ]. �

The circleS1 with trivial involution has the cohomologygroups presented inTable 3.
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Table 3 (equivariant) Cohomology of the circle S1 with trivial involution up to degree k = 3

k = 0 k = 1 k = 2 k = 3

Hk
Z2

(S1, Z(1)) 0 Z2 Z2 Z2

Hk
Z2

(S1, Z) Z Z Z2 Z2

Hk (S1, Z) Z Z 0 0

The singular cohomology H•(S1, Z) is well known, the cohomology H•
Z2

(S1, Z) � H•(S1 × RP∞, Z)

can be computed by means of the Künneth formula, and H•
Z2

(S1, Z(1)) can be computed with the help of
the exact sequences in [34, Proposition 2.3]

Table 4 Equivariant
cohomology of the fixed point
set Lτ

2q � S1 � S1 up to degree
k = 3

k = 0 k = 1 k = 2 k = 3

Hk
Z2

(Lτ
2q , Z(1)) 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z2 ⊕ Z2

In view of Lemma 5.1, the additivity axiom in equivariant cohomology and Table 3,
one immediately gets Table 4.

The bases of H1
Z2

(L2q , Z(1)) � Z2 and H1
Z2

(Lτ
2q , Z(1)) = H1

Z2
(S0, Z(1)) ⊕

H1
Z2

(S1, Z(1)) � Z2 ⊕ Z2 are represented by the constants functions with value
−1 on L2q , S0 and S1. Hence, the homomorphism

ı∗ : H1
Z2

(L2q , Z(1))
inj.−→ H1

Z2
(Lτ

2q , Z(1))

induced by the inclusion ı : Lτ
2q → L2q is identified with the diagonal map Z2 

ε �→ (ε, ε) ∈ Z2 ⊕ Z2, and results injective. Consequently one has

Coker1
(
L2q |Lτ

2q , Z(1)
) := H1

Z2

(
Lτ
2q , Z(1)

)
/ ı∗

(
H1
Z2

(L2q , Z(1))
) � Z2.

The homomorphism

ı∗ : H2
Z2

(L2q , Z(1))
0−→ H2

Z2
(Lτ

2q , Z(1))

turns out to be trivial. This fact can be proved as follow: According to Remark 5.2
the R-line bundle L1 can be identified with the generator of H2

Z2
(L2q , Z(1)) �

PicR(L2q , τ ). Then, if one proves that ı∗(L1) = L1|S0�S1 is the trivial line bun-
dle in PicR(Lτ

2q , τ ) � PicR(Lτ
2q) then one also obtains from H2

Z2
(Lτ

2q , Z(1)) �
PicR(Lτ

2q , τ ) that ı∗ is the trivial homomorphism in cohomology. The triviality of
ı∗(L1) is a consequence of the next result.

Lemma 5.3 Let L1 → L2q be the R-line bundle over the involutive space (L2q , τ )

described in Remark 5.2 and S0 � S1 = Lτ
2q the fixed point set according to Lemma

5.1. Let L1|S j → S j be the restriction of L1 over S j , j = 0, 1. The R-line bundles
L1|S j admit global R-sections and consequently they are trivial.
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Proof The total space of the line bundle L1|S0 → S0 is described by

L1|S0 :=
{[(cos θ, sin θ), λ] | θ ∈ R, λ ∈ C

}

where the equivalence relation is given by ((cos θ, sin θ), λ) ∼ ((u cos θ, u sin θ),

u−1λ), u ∈ Z2q . The map s0 : S0 → L1|S0 defined by

s0
([cos θ, sin θ ]) := [(cos θ, sin θ), 1]

is a nowhere vanishing section. It is also “Real”, in fact

τ�(s0)
([cos θ, sin θ ]) = [

τ(cos θ, sin θ), 1
] = [

(cos θ, sin θ), 1
]

= s0
([cos θ, sin θ ]).

Inmuch of the sameway,we can describe the total space of the line bundleL1|S1 → S1
as

L1|S1 :=
{[(

e− i π
2q cos θ, e− i π

2q sin θ
)

, λ
] ∣∣∣ θ ∈ R, λ ∈ C

}
.

A nowhere vanishing section s1 : S1 → L1|S1 is given by

s1
([

e− i π
2q cos θ, e− i π

2q sin θ
])

:=
[(

e− i π
2q cos θ, e− i π

2q sin θ
)

, e+ i π
2q

]
.

Moreover, the following computation

τ�(s1)

([
e
− i π

2q cos θ, e
− i π

2q sin θ

])
=

[
τ

(
e
− i π

2q cos θ, e
− i π

2q sin θ

)
, e
− i π

2q

]

=
[(

e
i π
q e
− i π

2q cos θ, e
i π
q e
− i π

2q sin θ

)
, e
− i π

q e
+ i π

2q

]

=
[(

e
− i π

2q cos θ, e
− i π

2q sin θ

)
, e
+ i π

2q

]

= s1

([
e
− i π

2q cos θ, e
− i π

2q sin θ

])

shows that s1 is also “Real”. ��
By specializing the exact sequence (A.6) to our situation one obtains

. . . H1
Z2

(
L2q , Z(1)

) ı∗→ H1
Z2

(
Lτ
2q , Z(1)

) δ1→ H2
Z2

(
L2q |Lτ

2q , Z(1)
)

δ2→ H2
Z2

(
L2q , Z(1)

) ı∗→ H2
Z2

(
Lτ
2q , Z(1)

)
. . .

and this reduces to

0 → H1
Z2

(
L2q , Z(1)

) → H1
Z2

(
Lτ
2q , Z(1)

) δ1→ H2
Z2

(
L2q |Lτ

2q , Z(1)
)

δ2→ H2
Z2

(
L2q , Z(1)

) → 0
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in view of the properties of the maps ı∗. The last exact sequence is equivalent to the
short exact sequence

0 → Coker1
(
L2q |Lτ

2q , Z(1)
) δ1→ H2

Z2

(
L2q |Lτ

2q , Z(1)
) δ2→ H2

Z2

(
L2q , Z(1)

) → 0

and by inserting the numerical values one finally obtains

0 → Z2 → H2
Z2

(
L2q |Lτ

2q , Z(1)
) δ2→ Z2q → 0. (5.6)

Since Ext(Z2q , Z2) � Z2 the short exact sequence (5.6) implies only two possibilities:

(a) H2
Z2

(L2q |Lτ
2q , Z(1)) � Z2 ⊕ Z2q (splitting case);

(b) H2
Z2

(L2q |Lτ
2q , Z(1)) � Z4q (non-splitting case).

Proposition 5.4 The short exact sequence (5.6) is non-splitting. Therefore, it holds
true that

H2
Z2

(
L2q |Lτ

2q , Z(1)
) � Z4q .

Proof According to [22, Proposition 2.7] the group H2
Z2

(L2q |Lτ
2q , Z(1)) classifies the

pairs (L , s) whereL → L2q is a line bundle withR-structure and s : Lτ
2q → L |L

is a nowhere vanishingR-section. In the proof of Lemma 5.3, we already constructed
one of such pairs (L1, s0 � s1). The assignment Lk � L ⊗k

1 → (L ⊗k
1 , s⊗k0 � s⊗k1 )

defines a section σ : H2
Z2

(L2q , Z(1)) → H2
Z2

(L2q |Lτ
2q , Z(1)). Then σ(L

⊗2q
1 ) ∈

H2
Z2

(L2q |Lτ
2q , Z(1)) is the trivial element if and only if the short exact sequence (5.6)

is splitting. Since (e+ i π
2q )2q = −1 one immediately checks that

σ(L
⊗2q
1 ) �

(
L
⊗2q
1 , s⊗2q0 � s⊗2q1

)
� (

L0, (+1) � (−1))

where L0 � L2q × C is the trivial R-line bundle and (+1) : S0 → {+1} and (−1) :
S1 → {−1} are constant sections on S0 and S1. The pair (L0, (+1)� (−1)) generates
the image of δ1 : H1

Z2
(Lτ

2q , Z(1)) → H2
Z2

(L2q |Lτ
2q , Z(1)). Hence, σ(L

⊗2q
1 ) is non-

trivial and the short exact sequence (5.6) turns out to be non-splitting. ��

5.3 “Quaternionic” structures over L2q

To carry out the classification ofQ-bundles over L2q , wewill use the fact that this space
can be seen as the total space of anR-sphere bundle overCP1 whose Chern number is
2q. Let us start by observing thatCP1 is topologically equivalent to a (Riemann) sphere
S2. Therefore, CP1 can be represented as the union of two two-dimensional disksD2

(the two hemispheres) identified along the equator. Moreover, CP1 has the involution
given by the complex conjugation. After identifying the disk D2 with the unit ball in
C, we can endow D2 with the involution given by the complex conjugation. We will
denote this involutive space with D̃2. In this way we can represent the involutive space
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CP1 as CP1 � D̃2 ∪ D̃2. Let S1,1 := ∂D̃2 be the boundary of D̃2 with involution
given by the complex conjugation and consider the involutive space X := D̃2×S1,1 �
S1,1 where the last isomorphism is given by an equivariant homotopy. Observe that
∂X = S1,1 × S1,1 =: T0,2,0. The structure of the involutive space (L2q , τ ) can be
usefully described by means of the equivariant clutching construction that provides

L2q � X1 ∪ f X2 (5.7)

where X1 = X2 are two copies of X and the clutching function f : ∂X1 → ∂X2,
defined by f (z, λ) := (z, z2qλ), takes care of the fact that the Chern class of L2q is
2q.

The representation (5.7) results quite useful to classify vector bundles over L2q .
Let us start with the classification of line bundles. According to the content of Remark
5.2, we already know that there are only 2q different classes of complex line bundles
over L2q and each one of this classes admits a unique (up to isomorphisms) “Real”
structure. However, the result PicR(L2q , τ ) � H2

Z2
(L2q , Z(1)) � Z2q can be re-

obtained by using the equivariant clutching construction for the representation (5.7).
Since H2

Z2
(X, Z(1)) � H2

Z2
(S1,1, Z(1)) = 0 (cf. [18, eq. (5.17)]) one concludes that

X1 and X2 admit only trivial R-line bundles. This observation allows to apply the
equivariant clutching construction in the form of [18, Lemma 4.18]:

PicR
(
L2q , τ

) � [
X1, Ũ(1)

]
Z2
\[T0,2,0, Ũ(1)

]
Z2

/
[
X2, Ũ(1)

]
Z2

(5.8)

where Ũ(1) is the unitary group endowed by the involution given by the complex
conjugation and themaps [ψ j ] ∈ [X j , Ũ(1)]Z2 , j = 1, 2 act on [ϕ] ∈ [T0,2,0, Ũ(1)]Z2

by

ϕ(z, λ) �−→
(
(ψ1|∂X1)

−1 · ϕ · ( f ∗ψ2|∂X2)
)

(z, λ)

= ϕ(z, λ)
ψ2(z, z2qλ)

ψ1(z, λ)
, (z, λ) ∈ T0,2,0.

By means of the isomorphisms (cf. [18, eq. (5.9) and (5.17) and])

[
X j , Ũ(1)

]
Z2
� H1

Z2

(
X j , Z(1)

) � H1
Z2

(
S1,1, Z(1)

) � Z2 ⊕ Z

[
T0,2,0, Ũ(1)

]
Z2
� H1

Z2

(
T0,2,0, Z(1)

) � Z2 ⊕ Z
2

one can directly compute PicR(L2q , τ ) from the representation (5.8). Observe that the
bases for the summands Z are given by the projections X j → S1,1 � Ũ(1) and the
bases for the summandsZ2 are provided by the constant maps at {−1} ∈ S1,1 � Ũ(1).
With this information one can eventually verify that the map

[
X1, Ũ(1)

]
Z2
\[T0,2,0, Ũ(1)

]
Z2

/
[
X2, Ũ(1)

]
Z2
−→ Z2q
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induced by

[ϕ] �−→ deg
(
ϕ|

S̃1×{1}
)

mod. 2q

is in fact a bijection.
Now we are in the position to classify Q-bundles over (L2q , τ ). We already know

thatVec2Q(X j ) � Vec2Q(S1,1) = 0 [19, Theorem1.2 (ii)]. Hence any rank 2Q-bundles
on L2q can be constructed by gluing the trivial product bundles on X j � S1,1 along
∂X j � T0,2,0. This “Quaternionic” clutching construction leads to a formula of the
type (5.8), namely

Vec2Q
(
L2q , τ

) � [
X1, Û(2)

]
Z2
\[T0,2,0, Û(2)

]
Z2

/
[
X2, Û(2)

]
Z2

(5.9)

where Û(2) is the spaceU(2) endowed with the involution (4.9) and the maps [ψ j ] ∈
[X j , Û(2)]Z2 , j = 1, 2 act on [ϕ] ∈ [T0,2,0, Û(2)]Z2 by

ϕ(z, λ) �−→
(
(ψ1|∂X1)

−1 · ϕ · ( f ∗ψ2|∂X2)
)

(z, λ)

= ψ1(z, λ)−1 · ϕ(z, λ) · ψ2(z, z
2qλ), (z, λ) ∈ T0,2,0.

We need two technical results.

Lemma 5.5 The sequence of maps

[
X j , Û(2)

]
Z2
� [

S1,1, Û(2)
]
Z2

det−→ [
S1,1, Ũ(1)

]
Z2

deg−→ 2Z

induces an isomorphism of groups.

Proof The Z2-CW-complex structure of the involutive space S1,1 has been described
in [18, Example 4.21] and it is given by the 0-skeleton formed by two fixed 0-cells
e0± := {±1, 0} ∈ S1 ⊂ R2 to which a free 1-cell ẽ1 := {�+, �−} is attached. Here
�± := {(x0, x1) ∈ S1 | ± x1 � 0} are the two (one-dimensional) hemispheres of
S1. Let ϕ : S1,1 → Û(2) be an equivariant map. Since the fixed point set of Û(2)
coincides with SU(2) which is path-connected, we can assume that ϕ(±1) = 12 ∈
SU(2) ⊂ U(2), in view of the equivariant homotopy extension property [53]. Then,
the two restrictions ϕ± := ϕ|�± define independently elements of π1(U(2)) and the
equivariance condition implies

[
ϕ
]
Z2
� 2

[
ϕ+

] = 2
[
ϕ−

] ∈ π1
(
U(2)

)
.

Hence deg ◦ det(ϕ) ∈ 2Z is always an even integer and one has the homomorphism

deg ◦ det : [
S1,1, Û(2)

]
Z2
−→ 2Z.

This homomorphism is surjective. Let k ∈ Z and ξk : S1 → U(1) be defined by
ξk(z) := zk for all z ∈ S1 ⊂ C. It is well known that [ξk] = k as element of
π1(U(1)) � Z. Consider the map ϕ2k : S1 → U(2) defined by
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ϕ2k(z) :=
(

ξk(z) 0
0 ξk(z)

)
.

This map is evidently equivariant and deg ◦ det(ϕ2k) = 2k. The homomorphism is
also injective. For that suppose deg ◦ det(ϕ0) = 0 along with the condition ϕ0(±1) =
12 which can be assumed without loss of generality. This immediately implies that
[ϕ±0 ] = 0 in π1(U(2)), namely the two restrictions ϕ± are homotopy equivalent to the
constant maps at 12. By extending a homotopy realizing [ϕ+0 ] = 0 to a Z2-equivariant
homotopy, one concludes that also ϕ0 is equivariantly homotopy equivalent to the
constant map at 12. ��
Lemma 5.6 Let j1 : S1,1 × {1, 0} ↪→ T0,2,0 and j2 : {1, 0} × S1,1 ↪→ T0,2,0 be the
natural inclusions of the first and the second component ofT0,2,0. Then, the sequence
of maps

[
T0,2,0, Û(2)

]
Z2

det−→ [
T0,2,0, Ũ(1)

]
Z2

(j∗1 ,j∗2 )−→ [
S1,1, Ũ(1)

]
Z2
⊕ [

S1,1, Ũ(1)
]
Z2

deg−→ 2Z ⊕ 2Z,

induces an isomorphism of groups.

Proof TheZ2-CW-complex decomposition of the involutive torusT0,2,0 = S1,1×S1,1
can be derived combinatorially from that of S1,1 by exploiting the Cartesian product
structure (see [18, Example 4.22]):

• 0-celles. There are four fixed 0-celles

e0+,+ := e0+ × e0+, e0+,− := e0+ × e0−, e0−,+ := e0− × e0+, e0−,− := e0− × e0− ;

• 1-celles. There are four free 1-celles

ẽ1+,0 := e0+ × ẽ1, ẽ1−,0 := e0− × ẽ1, ẽ10,+ := ẽ1 × e0+, ẽ10,− := ẽ1 × e0− ;

• 2-celles. There are two free 1-celles

ẽ2even := ẽ1 × ẽ1, ẽ2odd := ẽ1 × τ
(
ẽ1
)
,

where τ(ẽ1) := {�−, �+} is the image of the cell ẽ1 under its involution.

Let ϕ : T0,2,0 → Û(2) be a Z2-equivariant map. Since the fixed point set of Û(2) is
SU(2) which is path-connected, we can assume that ϕ sends all the 0-cells to 12 in
view of the equivariant homotopy extension property [53]. Therefore, one concludes
that

[
j∗1 (ϕ)

]
Z2
:=

[
ϕ|

S̃1×e0+
]

Z2
� 2

[
ϕ�+,+] = 2

[
ϕ�−,+] ∈ π1

(
U(2)

)
,

[
j∗2 (ϕ)

]
Z2
:=

[
ϕ|e0+×S̃1

]

Z2
� 2

[
ϕ+,�+] = 2

[
ϕ+,�−] ∈ π1

(
U(2)

)
,

(5.10)
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where ϕ�±,± := ϕ|�±×e0± and ϕ±,�± := ϕ|e0±×�± along with e0± := (±1, 0). Since the
map ϕ is defined on the whole torus T0,2,0, it also holds that

[
ϕ�±,+] = [

ϕ+,�±],
[
ϕ�±,−] = [

ϕ−,�±] (5.11)

by homotopy deformations of the restrictions along the 2-cell which is simply con-
nected. The relations (5.10) say that the composition of maps

deg ◦ (j∗1 , j∗2 ) ◦ det : [
T0,2,0, Û(2)

]
Z2
−→ 2Z ⊕ 2Z

is well defined. This map is injective. For that let ϕ : T0,2,0 → Û(2) be a Z2-
equivariant map which sends the 0-skeleton to 12 and such that (deg ◦ (j∗1 , j∗2 ) ◦
det) : ϕ �→ 0 ⊕ 0. Then from (5.10) and (5.11) one concludes that ϕ restricted to
the 1-skeleton is Z2-equivariantly homotopy equivalent to the constant maps at 12.
Therefore, by the homotopy extension property, and without loss of generality, we
can assume that ϕ sends the 1-skeleton to 12 since from the beginning. This in turn
implies that each of the two 2-cells identifies a class in π2(U(2)) = 0. Using the
homotopy which realizes the trivialization, we can build a Z2-equivariant homotopy
which deforms ϕ to the constant map at 12. The surjectivity can be proved with the
help of the map ξk : S1 → U(1) defined by ξk(z) := zk for k ∈ Z and z ∈ S1 ⊂ C.
In fact the map ϕ2k1,2k2 : T0,2,0 → Û(2) defined by

ϕ2k1,2k2(z1, z2) :=
(

ξk1(z1)ξk2(z2) 0
0 ξk1(z1)ξk2(z2)

)
.

is Z2-equivariant and (deg ◦ (j∗1 , j∗2 ) ◦ det) : ϕ2k1,2k2 �→ 2k1 ⊕ 2k2. ��

With the help of Lemmas 5.5 and 5.6, we can finally complete the classification of
the Q-bundles over L2q .

Proposition 5.7 There is a bijection

Vec2Q
(
L2q , τ

) � PicR
(
L2q , τ

)

realized by the action of PicR(L2q , τ ) on Vec2Q(L2q , τ ) through the tensor product.
More precisely, let (E0,�0) be the trivial rank 2 Q-bundle over (L2q , τ ). Then the
map

PicR
(
L2q , τ

)  L −→ L ⊗ E0 ∈ Vec2Q
(
L2q , τ

)

realizes such a bijection. In particular, this implies that

Vec2mQ
(
L2q , τ

) � Vec2Q
(
L2q , τ

) � Z2q , ∀ m ∈ N.
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Proof By looking at the explicit representatives of thehomotopyclasses [X j , Û(2)]Z2 �
2Z and [T0,2,0, Û(2)]Z2 � 2Z⊕ 2Z constructed in Lemmas 5.5 and 5.6, one imme-
diately concludes that the map

Vec2Q
(
L2q , τ

) � [
X1, Û(2)

]
Z2
\[T0,2,0, Û(2)

]
Z2

/
[
X2, Û(2)

]
Z2

−→ 2Z/4qZ = Z2q

defined by

[ϕ] �−→ (
deg ◦ j∗1 ◦ det

)
(ϕ) mod. 4q

is bijective. The Z2-equivariant map ϕ2k,0 : T0,2,0 → Û(2) defined by

ϕ2k,0(z1, z2) :=
(

ξk(z1) 0
0 ξk(z1)

)

provides a representative Ek for the class in Vec2Q(L2q , τ ) labeled by [2k] ∈ 2Z/4qZ.

Similarly the Z2-equivariant map φk : T0,2,0 → Ũ(1) given by φk(z) = zk provides a
representativeLk for the class in PicR(L2q , τ ) represented by [k] ∈ 2Z/4qZ = Z2q .
The relation between equivariant maps ϕ2k,0(z1, z2) = φk(z1) ϕ0,0(z1, z2) corre-
sponds to the relation Ek = Lk⊗E0. Consequently, the tensor product with E0 induces
the bijection PicR(L2q , τ ) → Vec2Q(L2q , τ ) and this is compatible with the operation
of tensoringR-bundles. Finally, the equivalence Vec2mQ (L2q , τ ) � Vec2Q(L2q , τ ) is a
consequence of Proposition 3.7. ��

The following result just follows by comparing Proposition 5.4 with Proposition
5.7 (1).

Corollary 5.8 The map

κ : Vec2mQ
(
L2q , τ

) −→ H2
Z2

(
L2q |Lτ

2q , Z(1)
)
, m ∈ N.

cannot be surjective.
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Appendix A: A short reminder of the equivariant Borel cohomology

Theproper cohomology theory for the analysis of vector bundle theories in the category
of spaces with involution is the equivariant cohomology introduced by Borel in [12].
This cohomology has been used for the topological classification of “Real” vector
bundles [18] and plays also a role in the classification of “Quaternionic” vector bundles
[19,22]. A short self-consistent summary of this cohomology theory can be found in
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[18, Section 5.1], and we refer to [40, Chapter 3] and [4, Chapter 1] for a more detailed
introduction to the subject.

Since we need this tool, we briefly recall the main steps of the Borel construction.
The homotopy quotient of an involutive space (X, τ ) is the orbit space

X∼τ := X × S0,∞/(τ × θ∞). (A.1)

Here θ∞ is the antipodal map on the infinite sphere S∞ (cf. [18, Example 4.1]) and
S0,∞ is used as short notation for the pair (S∞, θ∞). The product space X × S∞
(forgetting for a moment the Z2-action) has the same homotopy type of X since S∞
is contractible. Moreover, since θ∞ is a free involution, also the composed involution
τ×θ∞ is free, independently of τ . LetR be any commutative ring (e. g. ,R, Z, Z2, . . .).
The equivariant cohomology ring of (X, τ ) with coefficients inR is defined as

H•
Z2

(X,R) := H•(X∼τ ,R).

More precisely, each equivariant cohomology group H j
Z2

(X,R) is given by the singu-

lar cohomology group H j (X∼τ ,R) of the homotopy quotient X∼τ with coefficients
in R and the ring structure is given, as usual, by the cup product. As the coefficients
of the usual singular cohomology are generalized to local coefficients (see, e. g. , [39,
Section 3.H] or [24, Section 5]), the coefficients of the Borel equivariant cohomol-
ogy are also generalized to local coefficients. Given an involutive space (X, τ ) let us
consider the homotopy group π1(X∼τ ) and the associated group ring Z[π1(X∼τ )].
Each module Z over the group Z[π1(X∼τ )] is, by definition, a local system on X∼τ .
Using this local system one defines, as usual, the equivariant cohomology with local
coefficients in Z:

H•
Z2

(X,Z) := H•(X∼τ ,Z).

We are particularly interested in modules Z whose underlying groups are identifiable
with Z. For each involutive space (X, τ ), there always exists a particular family of
local systemsZ(m) labeled bym ∈ Z. HereZ(m) � X×Z denotes theZ2-equivariant
local system on (X, τ ) made equivariant by the Z2-action (x, l) �→ (τ (x), (−1)ml).
Because the module structure depends only on the parity of m, we consider only the
Z2-modules Z(0) and Z(1). Since Z(0) corresponds to the case of the trivial action of
π1(X∼τ ) on Z one has Hk

Z2
(X, Z(0)) � Hk

Z2
(X, Z) [24, Section 5.2].

We recall the two important group isomorphisms

H1
Z2

(
X, Z(1)

) � [
X,U(1)

]
Z2

, H2
Z2

(
X, Z(1)

) � Vec1R
(
X, τ

) ≡ PicR
(
X, τ

)

(A.2)
involving the first two equivariant cohomology groups. The first isomorphism [34,
Proposition A.2] says that the first equivariant cohomology group is isomorphic to the
set of Z2-equivariant homotopy classes of Z2-equivariant maps ϕ : X → U(1) where
the involution onU(1) is induced by the complex conjugation, i. e. , ϕ(τ(x)) = ϕ(x).
The second isomorphism is due to Kahn [43] and expresses the equivalence between
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the Picard group of “Real” line bundles (in the sense of [5,18]) over (X, τ ) and the
second equivariant cohomology group of this space. There are two important results
that have been used in this work.

Lemma A.1 Let Z2 be identified with the space {±1} endowed with the free flipping
involution and X a space endowed with any involution τ . The following fact holds
true:

Hk
Z2

(Z2 × X, Z(1)) � Hk(X, Z) ∀ k � 0.

In particular, Hk
Z2

(Z2, Z(1)) = 0 for k � 1.

Proof Let g : X × Z2 → X × Z2 be a map given by g(1, x) = (1, τ (x)) and
g(−1, x) = (−1, x). Then g is a Z2-equivariant homeomorphism from the space
Z2 × X with the involution (±1, x) �→ (∓1, τ (x)) to the space Z2 × X with the
involution (±1, x) �→ (∓1, x). Hence, we can assume that the involution τ on X is
trivial from the beginning.

One has that

Hk(
Z2×X, Z

) � Hk({−1}×X, Z
) ⊕ Hk({+1}×X, Z

) � Hk(X, Z
) ⊕ Hk(X, Z

)

(A.3)
for the ordinary cohomology and

Hk
Z2

(
Z2 × X, Z

) � Hk((Z2 × X)/Z2, Z
) � Hk(X, Z

)
(A.4)

for the equivariant cohomologywith fixed coefficients. The exact sequence [34, Propo-
sition 2.3] in this special case reads

−→ Hk(X, Z
) f−→ Hk(X, Z

) ⊕ Hk(X, Z
) −→ Hk

Z2

(
Z2 × X, Z(1)

)

−→ Hk+1(X, Z
) f−→

(A.5)

where f , which originally is the homomorphism which forgets the Z2-action, acts as
the diagonal map under the identifications (A.3) and (A.4). Then f turns out to be
injective and the exact sequence (A.5) splits as

0 −→ Hk(X, Z
) f−→ Hk(X, Z

) ⊕ Hk(X, Z
) −→ Hk

Z2

(
Z2 × X, Z(1)

) −→ 0

proving the claim. ��
Thefixed point subset X τ ⊂ X is closed and τ -invariant and the inclusion ı : X τ ↪→

X extends to an inclusion ı : X τ∼τ ↪→ X∼τ of the respective homotopy quotients. The
relative equivariant cohomology can be defined as usual by the identification

H•
Z2

(
X |X τ ,Z) := H•

(
X∼τ |X τ∼τ ,Z

)
.
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Consequently, one has the related long exact sequence in cohomology

. . . −→ Hk
Z2

(
X |X τ ,Z) δ2−→ Hk

Z2

(
X,Z) r−→ Hk

Z2

(
X τ ,Z)

δ1−→ Hk+1
Z2

(
X |X τ ,Z) −→ . . . (A.6)

where the map r := ı∗ restricts cochains on X to cochains on X τ . The k-th cokernel
of r is by definition

Cokerk
(
X |X τ ,Z) := Hk

Z2

(
X τ ,Z)

/r
(
Hk
Z2

(X,Z)
)
.

Let us point out that with the same construction one can define relative cohomol-
ogy theories H•

Z2
(X |Y,Z) for each τ -invariant subset Y ⊂ X τ . If Y = Ø then

Hk
Z2

(X |Ø,Z) � Hk
Z2

(X,Z) by definition; hence, it is reasonable to put Hk
Z2

(Ø,Z) =
0 for consistency with the above long exact sequence. The case Y := {∗} of a single
invariant point is important since it defines the reduced cohomology theory

H̃ k
Z2

(
X,Z) := Hk

Z2

(
X |{∗},Z)

.

In this case, the obvious surjectivity of the map r at each step of the exact sequence
(A.6) justifies the isomorphism

Hk
Z2

(
X,Z) � H̃ k

Z2

(
X,Z) ⊕ Hk

Z2

({∗},Z)
(A.7)

When the system of coefficients is Z = Z(1) or Z = Z, equation (A.7) simplifies by
using the explicit computations [18, Section 5.1]

Hk
Z2

({∗}, Z(1)
) �

{
0 if k = 0 or k even

Z2 if k > 0 odd
(A.8)

and

Hk
Z2

({∗}, Z
) �

⎧
⎪⎨

⎪⎩

Z if k = 0

Z2 if k > 0 even

0 if k odd

. (A.9)
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