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Abstract We state and prove a general result establishing that T-duality, or the
Connes–Thom isomorphism, simplifies the bulk–boundary correspondence, given by
a boundarymap in K -theory, in the sense of converting it to a simple geometric restric-
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provides a clear geometric picture of the correspondence. In particular, our result holds
in arbitrary spatial dimension, in both the real and complex cases, and also in the pres-
ence of disorder, magnetic fields, and H-flux. These special cases are relevant both to
string theory and to the study of the quantum Hall effect and topological insulators
with defects in condensed matter physics.
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1 Introduction: physical motivation

A succession of insights, starting with Kane–Mele’s invariant [21,22] and cul-
minating in [14,24,52], led to an understanding and classification of topological
insulators in terms of K -theory. The connection to K -theory is particularly important
in view of earlier rigorous work on the quantum Hall effect [2,23]. These devel-
opments also provided new insight into how the K -theory of bulk and boundary
systems are related. For various reasons, it is actually closer to the spirit of con-
densed matter theory, as well as more flexible and appropriate, to use the more
general C∗-algebraic K -theory rather than the topological version [3]. The avail-
ability of C∗-algebraic machinery also opens the way to describe the same system
in different forms, using powerful tools such as T-duality and the closely related
Connes–Thom isomorphism. As we explain in this paper, especially in Appendix A,
the (topological) T-duality transform used in physical applications is precisely the
Connes–Thom isomorphism [7] composed with an isomorphism from an imprimitiv-
ity theorem.

While the geometric relationship between bulk and boundary is most simply
expressed in position space, the physics of Brillouin zones and Fermi levels is more
transparent in momentum space. T-duality is a geometric analogue of the Fourier
transform, see Sect. 2. It moves between geometric and physical descriptions similar
to the Fourier transform that flips position and momentum space in wave mechanics.
A recent series of papers has shown that the rather complicated map relating the K -
theory of the physical bulk and boundary algebras of topological insulators transforms
under T-duality into the obvious geometrical restriction map [20,32–34]. Schemati-
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T-duality simplifies bulk–boundary correspondence… 1165

cally, these results say that the following diagram commutes in many examples of
physical interest:

Position space bulk
invariant

Restriction
to bound-
ary

∼
T−duality

Momentum space bulk
invariant

bulk–
boundary
homomor-
phism

Position space boundary
invariant

∼
T−duality

Momentum space boundary
invariant

(1)

Thus, momentum space topological invariants (e.g. as defined over a Brillouin torus)
transform isomorphically under T-duality into real (position) space1 invariants, in
such a way that the bulk–boundary homomorphism becomes the simple geometric
restriction-to-boundary map.

The main result of this paper is the formalization and conceptual proof of the com-
mutativity of Diagram 1 in a very general setting. This result can then be specialized
to analyse the bulk–boundary correspondence in: (1) arbitrary spatial dimensions, (2)
in both the real and complex cases, (3) in the presence of disorder and/or magnetic
fields, and (4) in the presence of H-flux. We had previously worked in some special
subcases in which the groups of topological invariants in all four corners of diagram
1, or at least the interesting ones, are computable; then, commutativity was verified
by chasing around the diagram generator-by-generator. Getting a concrete hold of the
generators can be very useful when studying particular systems. Nevertheless, there
are situations, particularly when disorder is modelled in the mathematical description,
in which the relevant topological invariants are not easily computable. Our abstract
proof then becomes valuable and represents a significant advance compared to our
earlier results.

The physical importance of the first three cases iswell known andwas also discussed
in our earlier papers, so let us briefly elaborate on the fourth case. H-fluxes live in
degree-3 cohomology and are important in string theory, although it seldom appears
in condensed matter physics. However, as noted in [20], they can be used to describe
screw dislocations. More precisely, defects such as screw dislocations break theZ

2d+1

translation symmetry of the original (2d+1)DEuclidean lattice underlying a (2d+1)D
insulator, so that standard constructions like unit cells and Brillouin zones are not
available. This means that topological invariants in the presence of defects are not
easily defined using standard methods appealing to Bloch theory. We can circumvent
this difficulty by requiring the defects to be distributed in a regular manner, allowing
us to define topological invariants which are, in a precise sense, deformed versions of
the usual ones arising from Bloch theory [20]. Indeed, the nonisotropy introduced by

1 Quite often K R-theory groups, in the sense of Atiyah’s Real K -theory, are relevant, and these groups
are defined for spaces with involutions. Such spaces are usually called “Real spaces”, which should not be
confused with our usage of “real space” as synonymous with “position space”.
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1166 K. C. Hannabuss et al.

Fig. 1 An elementary screw dislocation oriented in the vertical direction.A circuit of horizontal translations
enclosing the dislocation ends at a lattice site, which differs from the starting point by a vertical translation.
Source: Reproduced with permission from [25, p. 786]

the defects is expected to be reflected in boundary phenomena in the form of gapless
modes localized along the dislocations [42] (Fig. 1).

There may be other applications, e.g. Dirac monopoles are known to be described
by 3-cocycles [54]. Although monopoles have proved elusive, analogues have been
created in condensed matter. Bramwell et al. have detected them through the mag-
netic Wien effect in spin ices, in particular in single crystals of cubic Dy2Ti2O7, [5],
while Ray et al. [43] have produced detailed observations in a 87Rb Bose–Einstein
condensate.

Torsion H-fluxes have appeared in condensed matter in earlier works in slightly
different contexts, by Freed–Moore [14] in the presence of symmetry and byGawedzki
[15] who considers the holonomy of a flat gerbe. In our context, possibly nontorsion
H-fluxes arise when one takes the partial T-dual, in the fibre direction, of a Heisenberg
nilmanifold (associated with screw- dislocated lattices mentioned earlier), which is
thought of as a circle bundle over a torus. The T-dual is in this case another torus, with
possibly nontorsion H-flux that is explained in Sect. 5. We mention that nontorsion
H-fluxes also arise naturally in the recent study of 4D semimetals by the second and
third authors of this paper, in [35].

Outline

Section 2 provides an overview of various T-duality transformations, applied to the
bulk–boundary correspondence in a variety of settings. The C∗-algebras for the bulk
and boundary from both the geometrical and physical perspective are defined very
generally inSect. 3. Theorem3.4 andCorollary 3.5 formalize the commutative diagram
1 in this general setting. The Dixmier–Douady classes, or H-fluxes, provide the main
focus in Sect. 4, and we prove our [20, Conjecture 2.1] in Theorem 4.1. Section 5,
which contains examples and also generalizations of the discrete Heisenberg groups
and Heisenberg nilmanifolds, that play an important role in [20] and often arise as
symmetry groups in physical systems. The example of the three-dimensional solvable
group is also worked out here. In Sect. 6, we study the bulk–boundary correspondence
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T-duality simplifies bulk–boundary correspondence… 1167

for the higher-dimensional quantum Hall effect, as well as topological insulators with
disorder in both the real and complex cases, generalizing the 2D results of [33] and
the higher-dimensional results without disorder in [34]. Appendix A explains why
Paschke’s map [37] is essentially the same as the Connes–Thom isomorphism [7],
in both the complex and real C∗-algebra cases. The Paschke map implements a T-
duality transformation in 1D, and we derive his explicit formula starting from abstract
arguments.

2 Overview of T-duality applied to bulk–boundary correspondence

Formalizing and proving commutativity of Diagram 1 is significant because it

• rigorously captures the geometric intuition behind the bulk–boundary correspon-
dence;

• simplifies the complicated (momentum space) boundary map defined at the level
of the physical C∗-algebras of observables;

• continues to hold even when the momentum space is noncommutative (as in the
IQHE), in the presence of disorder [33], in the real case (relevant for time-reversal
symmetry), and in the parametrized and twisted setting of [18,19] (relevant to
string theory in the presence of H-flux [4]).

At the mathematical level, the meta-principle expressed by the diagram naturally
generalizes a simple phenomenon already present at the level of ordinary Fourier
transforms: integration in Fourier space, which can be understood topologically as
a push-forward map, picks out the constant Fourier mode, so it is equivalent to the
Fourier transformof a “restriction-to-zero”map.A simple example of how the ordinary
Fourier transform acts on an integration map goes as follows. Write (n, nd) = n ∈ Z

d

and let ι be the inclusion of Z
d−1 ↪→ Z

d taking n �→ (n, 0). The Fourier transform,
̂: f �→ ̂f , takes a rapidly decreasing function f : Z

d → C to a smooth function
̂f : ̂Zd = T

d → C and is implemented by theSchwartz kernel P(n,k) = e2π in·k, n ∈
Z
d ,k ∈ T

d ,
̂f (k) =

∑

n

P(n,k) f (n) =
∑

n

e2π in·k f (n).

Let ∂ : ̂f �→ ∂ ̂f be integration along the dth circle in T
d . This picks out only the part

of ̂f with Fourier coefficient nd = 0, so there is a commutative diagram

f

ι∗

∼
̂

̂f

∂

ι∗ f ∼
̂

∂ ̂f

(2)

where ι∗ is simply restriction to nd = 0. Our paper studies, in particular, a very general
noncommutative geometry analogue of this phenomenon.
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1168 K. C. Hannabuss et al.

2.1 Physics and geometry of the bulk–boundary correspondence

The bulk–boundary correspondence refers, generally speaking, to the appearance of
some boundary-localized phenomenon (e.g. quantized chiral edge currents) inherited
from a corresponding bulk phenomenon (e.g. quantizedHall conductance). To account
for such a correspondence, one begins a model of the bulk-with-boundary physical
system. A natural and powerful method is to use a Toeplitz extension algebra to
“glue” together a boundary C∗-algebra of observables to a bulk C∗-algebra. Such a
construction was used to analyse the bulk–boundary correspondence in the context of
the integer quantumHall effect in [23] and generalized and explained in themonograph
[39] and Sect. 2 of [34].

The idea behind the Toeplitz extension can be sketched quite easily. In a lattice
model, a bulk Hamiltonian acts on a Hilbert space l2(Zd)⊗V , where Z

d labels lattice
sites and V ∼= C

N captures the internal degrees of freedom. Writing U y, y ∈ Z
d as

the shift operators on l2(Zd), a lattice model Hamiltonian may be written as H =
∑

y∈Zd U y ⊗ Wy , where Wy are N × N hopping matrices satisfying W ∗
y = W−y .

Let Ui , i = 1, . . . , d denote the unit translation in the i th direction, which together
generate an algebra C∗(Zd) = C∗(Ui , . . . ,Ud) isomorphic to C(Td) after Fourier
transform. Note that T

d here is a momentum space torus. Then we see that H is a
self-adjoint element of some matrix algebra over C∗(Zd), which we take as the bulk
algebra ̂B. If there is a boundary, transverse to the dth direction say, thenUd needs to
be replaced by a unilateral shift ̂Ud satisfying ̂U∗

d
̂Ud = 1, ̂Ud ̂U∗

d = 1−e,where e is
projection onto 0 in the dth component. Note that ̂Ud is no longer unitary but is instead
a Toeplitz operator, which together withU1, . . . ,Ud−1 generates a Toeplitz algebra T
as the bulk-with-boundary algebra, instead of C∗(Zd) as in the bulk algebra. The two-
sided ideal of T generated by e is a stabilized version of the algebraC∗(U1, . . . ,Ud−1)

generated by translations parallel to the boundary and is thus identified as the boundary
algebra ̂E . In summary, the Toeplitz exact sequence

0 −→ ̂E −→ T −→ ̂B −→ 0,

exhibits the bulk-with-boundary algebra T as an extension of the bulk algebra by the

boundary algebra. Associated with this sequence is a Toeplitz index map K•(̂B)
∂−→

K•−1(̂E), which maps between the K -theories (topological invariants) of the bulk
algebra and the boundary algebra.

If a Hamiltonian has Z
d translational symmetry (e.g. due to a periodic potential

provided by an atomic lattice), one traditionally defines bulk/boundary topological
invariants in quasi-momentum spaceT

d . Namely, one constructs from aZ
d -symmetric

Hamiltonian,Bloch vector bundles of single-electron states over theBrillouin torusT
d ,

which in turn define elements in the K -theory of T
d . Such vector bundles correspond

to projections in matrix algebras over the bulk algebra C∗(Zd) ∼= C(Td) described
earlier, and this extends in K -theory to K−•(Td) ∼= K•(C∗(Zd)), similarly for the
boundary algebra. The bulk-to-boundarymap ∂ is then essentially an integration (push-
forward) map along the projection T

d → T
d−1 [33,34]. This suggests [as in (2)]

that a geometric Fourier transform (T-duality) can turn ∂ into a simple geometric
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T-duality simplifies bulk–boundary correspondence… 1169

Fig. 2 Cyclotron orbits intercepted by a boundary

restriction map. In more realistic models that incorporate magnetic fields and disorder,
the Brillouin zone may be noncommutative and the analogous construction yields
elements in the K -theory of a twisted crossed product byZ

d [3]. For instance,magnetic
translations commute only up to a phase determined by the magnetic flux, and they
generate a noncommutative torus [2,23] rather than the commutative algebra C∗(Zd).

It is therefore customary to startwith the physical (momentumspace) picture involv-
ing C∗-algebras of observables and then T-dualize to obtain a geometrical picture in
real (position) space, but the exposition in this paper is a bit simpler if one starts with
the geometric picture. In any case, the intuition behind the bulk–boundary correspon-
dence in physics is largely a geometrical one. For example, in a semi-classical picture
of the IQHE, the electrons in the bulk are confined to cyclotron orbits in the plane of
the sample due to the applied perpendicular magnetic field [6]. These circular orbits
are intercepted by a geometrical boundary, leading to chiral edge currents, see Fig. 2.
The chirality of the edge phenomena also highlights a crucial necessary ingredient in
modelling bulk–boundary correspondences. Namely, although we are free to define
topological invariants for the boundary system considered on its own, it is only from
some intrinsic geometrical relationship between the boundary system and the bulk sys-
tem that we can extract a notion of chirality. Furthermore, not all possible boundary
invariants are relevant, but only those which “lift” to an invariant associated with the
bulk system.Mathematically, this says that there should be a homomorphismmapping
from bulk topological invariants to boundary ones, which need not be surjective or
injective, and which is derived in a strong sense from some geometrical data about
how the boundary is related to the bulk.

Exact sequences linking bulk and boundary algebras

Geometrically we can visualize the bulk as a sort of finite or semi-infinite closed
“cylinder” with cross section the boundary, and the interior of the bulk as the corre-
sponding open cylinder. We denote the C∗-algebras corresponding to the boundary,
the bulk, and the interior as E , B, and I, respectively. (In the simplest cases, they are
just the functions on the geometric spaces defined by their spectra.) Then, the interior,
I, may be considered as the part of the bulk algebra “vanishing” on the boundary, and
we have the exact sequence
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1170 K. C. Hannabuss et al.

0 −→ I −→ B −→ E −→ 0,

where B −→ E is the geometrical restriction-to-boundary map. Standard theory
enables us to extract from this short exact sequence, an exact hexagon of the operator
algebraic K -groups:

K0(I) −→ K0(B) −→ K0(E)

↑ ↓
K1(E) ←− K1(B) ←− K1(I).

In the settings that we are interested in, the bulk has some Z-symmetry transverse
to the boundary, so that transversal shifts do not essentially change the geometry. For
instance, one often studies Hamiltonians with the geometrical property of invariance
under translations of a lattice (atomic positions) in the bulk of a material. Then, the
geometric relationship between the interior and boundary algebras, described in detail
in the next section, means that their K -theories differ only by a degree shift, K j (I) ∼=
K j+1(E), so that

K1(E) −→ K0(B) −→ K0(E)

↑ ↓
K1(E) ←− K1(B) ←− K0(E).

(3)

From the physical perspective, the bulk and boundary algebras of observables,
denoted by ̂B, ̂E , respectively, are the T-duals (Fourier transforms) of their geometric
counterparts. (In the simplest cases, this is a “momentum space” perspective.) They
are related by the fact that ̂B and ̂E fit in an extension,

0 −→ ̂E −→ T −→ ̂B −→ 0,

where T is a Toeplitz-like algebra [53] associated with ̂E and ̂B [39]. One can show
that the K -theories of T and ̂E coincide, leading to another similar exact hexagon of
K-groups:

K0(̂E) −→ K0(̂E) −→ K0(̂B)

∂ ↑ ↓ ∂

K1(̂B) ←− K1(̂E) ←− K1(̂E),

(4)

As explained in detail in [39], the Toeplitz extension algebra T may be interpreted as
the bulk-with-boundary algebra, and the vertical connecting maps ∂ in this diagram
may be identified as the physical bulk–boundary homomorphisms.

As we explain in Sect. 3, T-duality simply interchanges the geometric and physical
perspectives B ↔ ̂B, E ↔ ̂E . So far we have not said anything detailed about the
maps in our exact hexagons, but we shall see that the geometric description is much
simpler and that the two hexagons encode the same information. In particular, the
bulk–boundary homomorphism ∂ that we are interested in becomes the geometric
restriction map under T-duality, as one might expect from heuristics.
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T-duality simplifies bulk–boundary correspondence… 1171

Table 1 Table of T-duality transformations

Topological invariant T-dual invariant T-duality transformation Physical examples

K−•(T) K−•−1(T) Fourier–Mukai
transform in 1D

Winding
mode-momentum
mode duality in
string theory

K−•(Td ) K−•−d (Td ) Fourier–Mukai
transform in d-D

Chern insulators, type
II string theories

KO−•(Td ) K R−•−d (Td , ς) Real Fourier–Mukai
transform

Time-reversal
symmetric
topological
insulators,
orientifold string
theories

K•(C(Td )) K•+d (A�) Noncommutative
T-duality

Integer quantum Hall
effect

K (O)•(IndR
d

Zd (A, α)) K (O)•+d (A �α Z
d ) Paschke–Connes–

Thom
isomorphism

Disordered
topological
insulators

K−•(X ×T
d , H);

H =
H1 + H2 + H3

K•+d (CT (YH2 , H3)H1 Connes–Thom
isomorphism,
Rieffel–Kasprzak
deformation

String theory with
H-flux, topological
insulators with
defects

The precise K -theory groups that are relevant for a given physical system vary
in complexity, and accordingly, there are T-duality transformations of varying intri-
cacy as summarized in Table 1. The first three rows had been dealt with in previous
papers [32–34]. For example, the 2D/3D Kane–Mele invariants [21,22] (for systems
with fermionic time-reversal symmetry) live in (the reduced part of) K Q0(Td , ς) ∼=
K R−4(Td , ς) with d = 2, 3, where ς is the momentum reversal involution k �→ −k,
while their T-duals live in KO−1(T3) or KO−2(T2). The Kitaev Majorana chain [24]
invariants (with particle–hole symmetry) are in K R−2(T, ς)with T-dual in KO−1(T).
In this paper, we focus on the last three rows, which subsume the first three.

3 Bulk and boundary algebras

We proceed to construct the bulk and boundary algebras E,B, as well as their T-duals
̂E, ̂B, which appear in the long exact sequences (3), (4) in the previous section. Let
L , M , and N = L ⊕ M be lattices of maximal rank in the vector spaces U ∼= R,
V ∼= R

d−1, and W = U ⊕ V ∼= R
d , with d ≥ 1. W will be associated with the

bulk, V with the boundary directions, and U ∼= R with the direction transverse to the
boundary.2

2 Although we concentrate here on the case where the boundary has codimension 1, our notation and
arguments have been written to suggest a way to include higher-codimensional boundaries. The main
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1172 K. C. Hannabuss et al.

Usually, it is only the additive group structure of the spaces and lattices, which
appears in actions as algebra automorphisms. In all the physical examples that we
will consider, E is a C∗-algebra equipped with commuting actions τ : V ∼= R

d−1 →
Aut(E) and α : L ∼= Z → Aut(E). Physically, τ is supposed to encode information
about translational symmetries parallel to the boundary3, while α encodes a transverse
L-covariance (e.g. with respect to the position of the boundary). We will often write
α
 for the action of 
 ∈ L ∼= Z, so that α will be used both for the action and for its
generator.

As already noted, an obvious way tomodel the interior would be as an open cylinder
on the boundary. We make this more precise by taking the interior algebra to be
continuous E-valued functions on (0, 1), i.e. I = C0((0, 1), E). Reflecting covariance
with respect to L , the bulk algebraB is defined to be the induced algebra IndUL (E, α), of
continuous E-valued functions on U , which satisfy the equivariance condition f (u −

) = α
[ f (u)] for u ∈ U , 
 ∈ L . (
 counts the number of lattice spacings in L .)4 An
equivalent definition of B is as a mapping torus:

Tα(E) = { f ∈ C([0, 1], E) : f (1) = α−1[ f (0)]}. (5)

There is the obvious inclusion map C0((0, 1), E)
i→ Tα(E) ∼= IndUL (E, α). There is

automatically a translation action τα of U on B = IndUL (E, α), which combines with
the action of V on E to give an action of W on B. The actions of V and W are used,
respectively, to define the T-dual boundary and bulk algebras ̂E and ̂B.

The basic set-up is summarized as follows:
Basic set-up

• U = R, V = R
d−1, W = U ⊕ V = R

d with standard lattices L = Z ⊂ U ,
M = Z

d−1 ⊂ V , N = Z
d = L ⊕ M ⊂ W .

• The geometrical boundary algebra E is a real or complex separable C∗-algebra.
• There are commuting continuous homomorphisms τ : V → Aut(E) and α : L →
Aut(E) where Aut(E) is given the topology of pointwise convergence.

• The geometrical bulk algebra B is IndUL (E, α), and so inherits from E an action
τα × τ of W = U ⊕ V ∼= R

d .
• The T-dual boundary algebra is the crossed product ̂E := E �τ V , while the T-dual
bulk algebra is ̂B := E �τα×τ W .

For notational ease, we will sometimes drop the action from the crossed product
symbol when it is understood. This basic general set-up will be specialized to physi-
cally interesting examples in later sections. Our arguments in this section work equally
well for real or complex E with appropriate modifications, so we will proceed with

Footnote 2 continued
differences lie in the parity of the K -groups linked by Connes–Thom maps and the fact that there can be
Mackey obstructions for the boundary.
3 There may be no such symmetries even if the boundary occupies n ≥ 1 dimensions; for instance, it
may not be completely straight. Generally speaking, the collection of boundary symmetries determine what
topological invariants may be associated with it, and the more symmetries there are, the more boundary
invariants are available.
4 If α defined a character of L , then the “periodicity” would give Bloch-type functions.
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T-duality simplifies bulk–boundary correspondence… 1173

the assumption that all algebras are complex C∗-algebras, for which there are two
complex K -theory groups K•(·), • ∈ Z2.

From the above set-up, we have the “geometric” short exact sequence

0 −→ I i−→ B ε−→ E −→ 0
‖ ‖

C0((0, 1), E) IndUL (E, α).

(6)

where ε : IndUL (E, α) → E is just evaluation at 0; in other words, it restricts from
the bulk to the boundary (at 0). Both I,B inherit actions of V and L from E , and, by
construction, the maps i and ε are equivariant for these actions.

The associated long exact sequence in K -theory is

K0(I)
i∗−→ K0(B)

ε∗−→ K0(E)

↑ ↓
K1(E)

ε∗←− K1(B)
i∗←− K1(I).

Since I is isomorphic to the suspension SE = C0(R, E) of E , their K -groups
agree apart from a degree shift. We also write S for the K -theory isomorphisms
S : K•(S(E)) → K•+1(E), • ∈ Z2. With this identification, we can rewrite the
diagram and the vertical connecting homomorphisms in the form

K1(E)
i∗◦S−1−→ K0(B)

ε∗−→ K0(E)

1 − α−1∗ ↑ ↓ 1 − α−1∗

K1(E)
ε∗←− K1(B)

i∗◦S−1←− K0(E).

(7)

where the subscript star indicates the induced maps on K -theory, and (α(1)−1)∗ has
been abbreviated to α−1∗ (c.f. Exercise 9.K of [53]).

We now take the crossed product of the geometric short exact sequence (6) by V
(an exact group), which acts on every term through its action on E . As in the basic
set-up, we write ̂E = E � V for the T-dual boundary algebra. The action α extends
to an action α̂ on the crossed product ̂E , and B � V ∼= IndUL (̂E, α̂), since the action τ

of V on E commutes with that of L . Similarly, I � V ∼= C0((0, 1), ̂E) ∼= S(̂E), the
suspension, so the effect of applying �V to (6) is the short exact sequence

0 −→ S(̂E)
̂i−→ IndUL (̂E, α̂)

ε̂−→ ̂E −→ 0, (8)

where the mapŝi and ε̂ extend i and ε to the crossed product algebras. We use S again
for the K -theory isomorphisms S : K•(S(̂E)) → K•+1(̂E), • ∈ Z2.

Proposition 3.1 The K -groups for IndUL (̂E, α̂) and ̂E = E � V are related by the
following long exact sequence
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K1(̂E)
̂j∗−→ K0(IndUL (̂E, α̂))

ε̂∗−→ K0(̂E)

1 − α̂−1∗ ↑ ↓ 1 − α̂−1∗

K1(̂E)
ε̂∗←− K1(IndUL (̂E, α̂))

̂j∗←− K0(̂E),

where ̂j∗ :=̂i∗ ◦ S−1. Moreover, there is a commutative diagram with exact rows:

. . .

→ K•+1(E)
1−α−1∗−→ K•(S(E))

i∗−→ K•(B)
ε∗−→ K•(E) →

φV ↓ φV ↓ φV ↓ φV ↓
→ K•+d (̂E)

S−1◦(1−α̂−1∗ )−→ K•+d−1(S(̂E))
̂i∗−→ K•+d−1(IndUL (̂E, α))

ε̂∗−→ K•+d−1(̂E) →
. . . ,

where φV : K•(∗) �→ K•+d−1(∗ � V ) denotes the Connes–Thom maps [7] for the
various actions of V .

Proof The first diagram is just the long exact sequence hexagon for (8) with K•(S(̂E))

replaced by K1−•(̂E). The second diagram expresses the fact that the Connes–Thom
map is a natural transformation compatible with suspensions [7].

By [36, Theorem 4.1] and Green’s imprimitivity theorem [10,16], the T-dual bulk
algebra ̂B = B � W can also be written as

̂B ∼= (B � V ) � U = IndUL (̂E, α) � U ∼= (̂E �α L) ⊗ K(L2(U/L)). (9)

Since the compact operatorsK do not affect the K -theory, we will regard the Connes–
Thom maps φU as isomorphisms K•+d−1(IndUL (̂E, α̂)) → K•+d(̂E �α̂ L). We also
have φW = φU ◦ φV .

Theorem 3.2 The physical T-dual bulk algebra ̂B is stably equivalent to ̂E �α̂ L, and
the physical and geometrical K -groups are related by the commutative diagram:

. . .

→ K•+1(E)
1−α−1∗−→ K•+1(E))

i∗−→ K•(B)
ε∗−→ K•(E) →

φV ↓ φV ↓ φW ↓ φV ↓
→ K•+d(̂E)

1−α̂−1∗−→ K•+d(̂E)
φU ◦̂j∗−→ K•+d(̂B)

ε̂∗◦φ
̂U−→ K•+d−1(̂E) →

. . . ,

and the physical Pimsner–Voiculescu (PV) exact sequence:

K1(̂E)
φU ◦̂j∗−→ K1(̂B)

ε̂∗◦φ
̂U−→ K0(̂E)

1 − α̂−1∗ ↑ ↓ 1 − α̂−1∗

K1(̂E)
ε̂∗◦φ

̂U←− K0(̂B)
φU ◦̂j∗←− K0(̂E).

(10)

Proof The statement about ̂B follows from (9). The first diagram is a rewriting of the
corresponding diagram in Proposition 3.1, after simplifying the suspensions, applying
φU (along with ̂B ∼stable ̂E �α̂ L), and noting that φ

̂U (with ̂U acting dually to theU )
is the inverse of φU by Takai’s duality theorem [51]. The PV exact sequence follows
from the lower line of the first diagram. ��
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Remark 3.3 In the case of real C∗-algebras, φ
̂U should be replaced by φ−1

U and the
hexagons in Theorem 3.2 should be replaced by 24-cyclic long exact sequences.

Taking account of the fact that ̂B is stably isomorphic to ̂E � L , the sequence of
K -groups in (10) is exactly the same as that in the long exact sequence for the Toeplitz
extension sequence, [23,38]

0 −→ ̂E −→ T −→ ̂E � L −→ 0

which was the original one used to derive the PV exact sequence. Explicitly, after
identifying the K -theory of T with that of ̂E , the Toeplitz long exact sequence is
another PV sequence

K1(̂E)
j∗−→ K1(̂E � L)

∂−→ K0(̂E)

1 − α̂−1∗ ↑ ↓ 1 − α̂−1∗

K1(̂E)
∂←− K0(̂E � L)

j∗←− K0(̂E),

(11)

where j is inclusion into the crossed product and ∂ is the connecting boundary map.
A natural question is whether the maps in the two hexagons (10) (the “mapping torus
PV sequence”) and (11) (the “Toeplitz PV sequence”) also agree, i.e.

ε̂∗ = ∂ ◦ φU , φU ◦ ̂j∗ = j∗, (12)

where φU is regarded as K•+d−1(IndUL (̂E, α̂)) → K•+d(̂B)
∼−→ K•+d(̂E �α̂ L).

This question is related to Paschke’s succinct distillation, [37], of a key construction
in the proof ofConnes–Thom theorem, [7].Connes had initially shown, using hisThom
isomorphism, that the K -theory of a mapping torus for a Z-algebraA is isomorphic to
the degree-shifted K -theory of the crossed product ofA byZ. This led to an alternative
derivation of the “mapping torus PV sequence” without recourse to the Toeplitz long
exact sequence and is essentially what we used to obtain (10). On the other hand,
Paschke constructs explicitly (without using Connes’ Thom isomorphisms), for each
C∗-algebra A with a L = Z action α′, isomorphisms γ •

α′ : K•(IndUL (A, α′)) →
K•+1(A�α′ L)which intertwine the “Toeplitz PV sequence” with the “mapping torus
PV sequence”.

ReplacingA ↔ ̂E and α′ ↔ α̂, the Paschke isomorphisms γ •̂
α : K•(IndUL (̂E, α̂)) =

K•(T̂α(̂E)) → K•+1(̂E �α̂ L) are exactly such that ε̂∗ = ∂ ◦ γ •̂
α and γ •̂

α ◦ ̂j∗ = j∗.
In Appendix A, we prove Theorem A.8 which says that Paschke’s intertwining map
is exactly the Connes–Thom isomorphism composed with the isomorphism from the
imprimitivity theorem; thus, ourφU , like γ •̂

α , does indeed satisfy (12).We also rederive
Paschke’s explicit formula starting from a simple axiomatic characterization of such
maps.

The discussion in this section may be summarized as:

Theorem 3.4 (c.f. [7,37].) The K -groups for the T-dual boundary algebra ̂E = E�V
and the T-dual bulk algebra ̂B = B � W ∼stable ̂E �α̂ L are related by the following
Pimsner–Voiculescu sequence
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K1(̂E)
j∗−→ K1(̂B)

∂−→ K0(̂E)

1 − α̂−1∗ ↑ ↓ 1 − α̂−1∗

K1(̂E)
∂←− K0(̂B)

j∗←− K0(̂E).

This sequence can either be obtained as the T-dual (under the V action) of the geo-
metric long exact sequence (7), or as the sequence derived from the Toeplitz extension

0 −→ ̂E −→ T −→ ̂E � L −→ 0.

In particular, we also have:

Corollary 3.5 With the assumptions on E as in the basic set-up, the following diagram
commutes,

K•(B)

ε∗

∼
TW

K•+d(̂B)

∂

K•(E)
∼
TV

K•+d−1(̂E),

where TW is T-duality with respect to the W action on B and TV is T-duality with
respect to the V action on E , implemented by the Connes–Thom isomorphisms. This
shows that T-duality interchanges the geometrical restriction map with the Toeplitz
bulk–boundary map.

4 Flux and deformations

To connect these results with [20, Conjecture 2.1], we need to consider K -theory
twisted by a Dixmier–Douady 3-form (a H-flux). There, we started with the product
bundle B = X × T

d , on which there is a 3-form H-flux H ∈ H3(B, Z). We will
assume in this section that X is locally compact second-countable Hausdorff (thus
paracompact). We regard B as a trivial principal torus bundle, with a fibrewise action
ofTd = W/N . The H -twisted K -theory of B can be identifiedwith the K -theory of the
associated stable complex continuous-trace algebra B = CT (B, H) with Dixmier–
Douady invariant H(B) = H , wherewe recall thatB is locally isomorphic toC0(B,K)

but globally twisted according to H . We can dimensionally reduce H by the Künneth
theorem, writing H = H1 + H2 + H3 where

Hj ∈ H j (X, H3− j (Td , Z)) = H j (X, Z) ⊗ H3− j (Td , Z), j = 1, 2, 3,

thus the j th component of H has j “legs” on the base X and 3− j “legs” on the fibres
T
d . Generally, there should also be a H0 term, but we assume that it vanishes so as

to avoid problems with nonassociativity when passing to the T-dual. Note that H3 is
supported entirely on the base, and we use the same symbol whether we regard it as
living on X or on a torus bundle over X . As explained in [19] (see also Sect. 5.1.1),
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B = CT (B, H) has an action of W = R
d covering the T

d action on B. Its T-dual
under this W action is the parametrized deformation quantization ̂B = CT (̂B, H3)σ ,
where the T-dual spectrum ̂BH2 is a T

d bundle over X with Chern class H2, and σ is
the parametrized deformation built out of H1.

Consider the subtorus V/M = T
d−1 ⊂ W/N . Under the inclusion ι : E =

X × T
d−1 → X × T

d = B, there is a restriction map in twisted K -theory, ι∗ :
K−•(B, H) → K−•(E, ι∗H). We can also dimensionally reduce the restricted H-
flux

ι∗H = (ι∗H)1 + (ι∗H)2 + (ι∗H)3, (ι∗H) j ∈ H j (X, Z) ⊗ H3− j (Td−1, Z),

and it is easy to see that (ι∗H) j = ι∗Hj . The T-dual of E = CT (E, ι∗H) is then
̂E = CT (̂E, H3)ι∗σ , where ̂E is a T

d−1 bundle with Chern class ι∗H2 and ι∗σ is
the restricted deformation parameter associated with ι∗H1. With the dth circle T

(d)

identified as U/L , we can identify, up to Morita equivalence, ̂B = CT (̂B, H3)σ with
a crossed product of ̂E by L [20], and then, there is a PV-boundary map ∂ : K•(̂B) →
K•+1(̂E).

The conjecture in [20], written in the above notation, has the condensed form of a
commutative diagram

K•(B)

ι∗

∼
T

K•+d(̂B)

∂

K•(E)
∼
T

K•+d−1(̂E).

For the full detailed diagram, we write ̂BH2 ≡ ̂B, ̂Eι∗H2 ≡ ̂E , and q, qa for the
respective bundle projections. We also use Td , Td−1 instead of just T to denote the T-
duality transformations with respect to T

d and T
d−1, respectively. We will now prove

our conjecture, which we present as the following theorem:

Theorem 4.1 Let X be a locally compact second-countable Hausdorff space, B =
X ×T

d , E = X ×T
d−1, ι be the inclusion E → B, H ∈ H3(B, Z), and let the T-dual

spectra ̂B, ̂E be as in the preceding paragraphs. The following diagram commutes,

K−•(B, H1 + H2 + H3)

ι∗

∼
Td

K•+d
(

CT (̂BH2 , q
∗(H3))σ

)

∂

K−•(E, ι∗H1 + ι∗H2 + H3)
∼

Td−1
K•+d−1

(

CT (̂Eι∗H2 , q
∗
a (H3))ι∗σ

)

(13)
showing that the bulk–boundary homomorphism ∂ is trivialized by T-duality in this
parametrized context.

Proof Let L = Z, M = Z
d−1, N = L ⊕ M and U = R, V = R

d−1, W = U ⊕ V
as before, and T = T

(d) = U/L , T
d−1 = V/M , T

d = W/N . By “flux generation”
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through Corollary 4.3, there is an N = L ⊕ M-action α × β on an algebra X such
that CT (E, ι∗H) = IndVM (X , β) and CT (B, H) = IndWN (X , α × β). Then E ≡
CT (E, ι∗H) has the usual translation action τβ by V which commutes with α, while
B ≡ CT (B, H) ∼= IndUL (E, α); also, B has the translation action τα × τβ of W , and
evaluation at 0 is the restriction ι∗ to E . We are thus in the situation of Corollary 3.5,
and the commutativity of (13) follows. ��

Before proving Corollary 4.3, which was used in the proof of the above Theorem,
we recall some general facts about the spectra and fluxes of induced algebras under
spectrum-preserving actions [40]. By a result of Rosenberg, [47, Corollary 2.2], [12], a
spectrum-preserving action of N = Z

d on a continuous-trace algebraX with spectrum
X is locally inner, so, for instance, n ∈ N is implemented by ad(ρ(n)) with ρ(n)

unitary on neighbourhoods. Furthermore, the induced algebra is again a continuous-
trace algebra with spectrum X×T

d as a (trivial) principalTd bundle, with the induced
R
d translation action lifting the T

d action (Proposition 3.2 of [40]). There is also a
precise relationship between the Dixmier–Douady invariants (fluxes) for X , and the
induced algebra given by Proposition 3.4 of [40]. We will only need the special case
of a Z-action, which will be iterated.

A spectrum-preserving automorphism α ∈ AutC0(X)(X ) on X is not usually glob-
ally inner; rather, Phillips and Raeburn gave an exact sequence characterizing this
failure when X is stable:

0 −→ Inn(X ) −→ AutC0(X)(X )
ζ−→ H2(X, Z) −→ 0.

Thus, the class ζ(α) ∈ H2(X, Z) measures the obstruction to realizing α as a global
inner automorphism ad(ρ). To find ζ(α) [41, Theorem 5.42], one chooses an open
covering {X j } for X such that for each x ∈ X j one can write the spectrum-preserving
transformation α = α(1) as ad(ρ j (x)). One then finds transition functions between ρ j

and ρk and proceeds exactly as in the line bundle classification to get the class ζ(α) ∈
H2(X, Z). In effect, ζ(α) is just the Chern class c1(L) of the line bundleLwhose fibre
over x ∈ X j is justCρ j (x), whose nonzero elements are precisely those implementing
α in X j , whether unitary or not. (The unitary implementers form a principal U(1)-
bundle.) Furthermore, the fluxes H(X ) ∈ H3(X, Z) and H(IndR

Z
(X , α)) ∈ H3(X ×

T, Z) are related by ([40, Corollary 3.5])

H(IndR

Z
(X , α)) = π∗

X H(X ) + z ∪ ζ(α), (14)

where πX is the projection X ×T → X , and z is the generator of H1(T) (the standard
volume form dθ if we use differential forms).

We will use these results to produce an arbitrary flux H ∈ H3(X × T
d , Z) (with

H0 = 0) by inducing from a suitable N = Z
d action on X . This gives an explicit

construction for the abstract result given in [11] Lemma8.1.We startwith the following
three basic ways to “generate flux” by induction.

M1: Let f : X → T = K (Z, 1) be a continuous function representing a class
η ∈ H1(X, Z). Define a Z

2 action β1 on C0(X,K) as follows: the first group
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generator acts on the copy ofK = K(L2(T)) at x by conjugation by the operator
of multiplication by the identity function T → T; the second generator acts by
conjugation by the operator of translation by f (x). These twooperators commute
up to a scalar, giving a projective representation of Z

2, so their adjoint actions
on K commute. Then

IndR
2

Z2 (C0(X,K), β1) ∼= CT (X × T
2, η ∪ z1 ∪ z2), (15)

where z1, z2 are the generators of H1(T(1), Z) and H1(T(2), Z), respectively.
This is basically the example in Sect. 5 of [30] (see also [31]).

M2: Let μ ∈ H2(X, Z), and let β2 ∈ AutC0(X)(C0(X,K)) such that ζ(β2) = μ.
(This exists since C0(X,K) is stable and ζ is surjective.) Then

IndR

Z
(C0(X,K), β2) ∼= CT (X × T, z ∪ μ). (16)

M3: Let H3 ∈ H3(X), then the balanced tensor product C0(X,K) ⊗X CT (X, H3)

still has spectrum X and flux H3. This is essentially Brauer multiplication (c.f.
Sect. 6.1 of [41]).

Recall that H∗(Td , Z) is isomorphic as a graded ring to the exterior algebra (over
Z) on d generators zi , i = 1, . . . , d, with H1(T(i)) = Z[zi ]. Thus, we can further
decompose each Hj in H = H1 + H2 + H3 ∈ H3(X × T

d , Z) into a Z-linear
combination of elementary tensors:

H1 =
∑

1≤k<l≤d

ηkl ∪ zk ∪ zl , ηkl ∈ H1(X, Z), (17)

H2 =
d

∑

k=1

zk ∪ μk, μk ∈ H2(X, Z), (18)

while H3 needs no further decomposition. The restrictions ι∗H1, ι
∗H2 are given by a

similar decomposition except that 1 ≤ k < l ≤ d − 1.

Proposition 4.2 (c.f.. 8.1 of [11]) Let H ∈ H3(X × T
d , Z) with vanishing H0 com-

ponent, and let X be a stable continuous-trace algebra with spectrum X and flux H3.
There is an action γ of Z

d on X such that CT (X × T
d , H) ∼= IndR

d

Zd (X , γ ).

Proof We may assume that X has a sufficiently large number of balanced tensor
product factorsC0(X,K)withK = K(L2(T)), togetherwith one factor ofCT (X, H3)

contributing the H3 flux component. Each flux component of H in (17)–(18) can be
produced by defining a suitable action of the generators of Z

d on copies of C0(X,K)

inX , using method M1 or M2 above. For example, ηkl ∪ zk ∪ zl is produced by letting
the kth and lth generators ofZ

d act nontrivially only on oneC0(X,K) factor as inM1;
similarly, zk ∪ μk is produced by letting the kth generator act on (a different copy of)
C0(X,K) as in M2. Compose all of these actions for each k to obtain d commuting Z

actions on X . The result follows from (14), (15), (16), and the fact that inducing from
Z
d to R

d is the same as iteratively inducing from Z to R. ��
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Corollary 4.3 Let H ∈ H3(X × T
d , Z) with vanishing H0 component, and let ι be

the inclusion X × T
d−1 → X × T

d . There is an action α × β of Z ⊕ Z
d−1 on a C∗-

algebra X , such that CT (X × T
d−1, ι∗H) ∼= IndR

d−1

Zd−1 (X , β) and CT (X × T
d , H) ∼=

IndR
d

Zd (X , α × β).

Remark 4.4 The concrete Z
d action γ constructed in Proposition 4.2 can be modified

by inner automorphismsofC0(X,K)without changing the resultingfluxof the induced
algebra IndR

d

Zd (X , ·). If CT (X × T
d , H) is given together with a particular R

d -action

covering that on X × T
d , there is a spectrum-preserving Z

d action γ ′ on C0(X,K) =
CT (X × {0}, H |X×{0}) by restriction, and IndR

d

Zd (X , γ ′) ∼= CT (X × T
d , H) as R

d -
algebras [11]. The actions γ ′ and γ are exterior equivalent, so the crossed products
C0(X,K) �γ ′ Z

d and C0(X,K) �γ Z
d , which are (Morita equivalent to) the T-duals

of IndR
d

Zd (X , γ ′) and IndR
d

Zd (X , γ ), are isomorphic.

5 Examples: Heisenberg and solvable groups

Consider E = IndVM (X , β), where X is a continuous-trace algebra on X , with
spectrum-preserving actions β and α of M and L , respectively; thus, E is continu-
ous trace with spectrum X × T

d−1. We assume that that the H3 flux component of E
vanishes, and then,X is stably equivalent toC0(X,K). (The continuous-trace algebras
used in Sect. 4 satisfy these conditions, for instance.) The T-dual boundary algebra is
then ̂E = IndVM (X , β) � V ∼= (X �β M) ⊗ K(L2(V/M)). The bulk algebra is

B = IndUL (E, α) ∼= IndWN (X , α × β),

and, with (α × β)(n) = ad(ρ(n)) locally, we find Mackey obstructions σ = {σx }
which corresponds to an H1 component of flux. The T-dual bulk algebra is now

̂B ∼= (̂E �α L) ⊗ K ∼= (X �α×β N ) ⊗ K,

and that is Morita equivalent to the sections of a bundle of twisted group C∗-algebras
C∗(N , σx ) over X (see also Sect. 5.1.1).

The basic example of B = T
3 = S1 × T

2, with Dixmier–Douady invariant the
volume form, was considered in detail in [20]. In this case, we have X = S1,U ∼= V ∼=
R and L ∼= M ∼= Z. The boundary algebra E has spectrum E = S1×T = T

2, and there
can be no Dixmier–Douady obstruction, since the dimension is less than 3, so it will
be Morita equivalent to C(T2). The T-dual bulk algebra ̂B is Morita equivalent to the
group C∗-algebra of a discrete Heisenberg group, which can be viewed geometrically
as a bundle of noncommutative tori over S1. The T-dual boundary algebra ̂E is the
group C∗-algebra of a Z

2 subgroup of the Heisenberg group and is isomorphic to the
algebra of functions on a 2-torus dual to T

2.

Section outline Section 5.1 contains some generalities about multipliers on Z
d and R

d

and their relationship to (abstract) Heisenberg groups. It may be skipped to get directly
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to Sect. 5.2, which deals with concrete generalizations of the above basic example to
higher dimensions. A new analogous example involving the solvable group is then
given in Sect. 5.3.

5.1 Universal Heisenberg groups and algebras

As in [20], we note that the principal role of X here is to parametrize the U(1)-valued
multipliers (or 2-cocycles) of N . Now the cohomology class [σ ] ∈ H2(G, T) of a
single multiplier σ on a separable locally compact abelian group G is characterized
by the antisymmetric bicharacter σ̃ (g1, g2) = σ(g1, g2)/σ (g2, g1), [17,26]. Note that
if σ is already an antisymmetric bicharacter, then σ̃ = σ 2.

For a vector group W , we can write the bicharacter as σ̃ = exp(2π is), where s
is a skew-symmetric bilinear form, which can be thought of as a linear functional
s ∈ ∧2

̂W on the antisymmetric tensors ∧2W such that s(w1 ∧w2) = s(w1, w2) ∈ R;
thus, H2(W, T) ∼= ∧2

̂W . Each class [σ ] ∈ H2(W, T) has a representative multiplier

σ̃
1
2 = exp(π is), which is also an antisymmetric bicharacter, corresponding to the

skew-symmetric form (w1, w2) �→ 1
2 s(w1, w2).

The Schurmultiplier (orMoore representation group) is a “universal” central exten-
sion, from which all others can be obtained, which in this case is a central extension
of W by ∧2W , given by the exact sequence

1 −→ ∧2W −→ Heis(W ) −→ W −→ 1. (19)

It is a generalized (real) Heisenberg group, Heis(W ) = W ×∧2W whose product can
be given explicitly as

(w1, p1) · (w2, p2) = (w1 + w2, p1 + p2 + w1 ∧ w2).

Each s ∈ ∧2
̂W determines a central extension Heiss(W ) of W by R: take W × R

with product

(w1, p1) · (w2, p2) = (w1 + w2, p1 + p2 + s(w1 ∧ w2)), Wi ∈ W, p j ∈ R.

Let Ks be the kernel of s. The following commutative diagram with exact rows and
columns (for nonzero s) shows how this relates to (19):

1 1
↓ ↓

1 −→ Ks ��� Ks −→ 1
↓ ↓ ↓

1 −→ ∧2W −→ Heis(W ) −→ W −→ 1
↓ s ↓ 1 × s ‖

1 −→ R −→ Heiss(W ) −→ W −→ 1
↓ ↓ ↓
1 1 1

(20)
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Although ks and s define different group extensions, up to isomorphism Heiss(W ) is
independent of which nonzero multiple of s has been chosen. If we took ks instead of
s, then the map (w, p) �→ (w, kp) gives an isomorphism of Heiss(W ) and Heisks(W )

as groups.
Just as for vector groups W , the cohomology classes [σ ] of multipliers for the

lattice group N ⊂ W are parametrized by the antisymmetric bicharacter σ̃ (n, n′) =
σ(n, n′)/σ (n′, n), and we can write σ̃ = exp(2π is) for some skew-symmetric s ∈
∧2

̂W as before. Those s which restrict to integer-valued forms on ∧2N ⊂ ∧2W
give trivial multipliers for N , and they form a lattice (∧2N )⊥ in ∧2

̂W , so we have
H2(N , T) ∼= ∧2

̂W/(∧2N )⊥ ∼= ∧2
̂N .

Remark 5.1 Simply choosing σ ′ = σ̃
1
2 as a representative multiplier for the class

labelled by σ̃ can lead to discontinuities when dealing with parametrized multipliers.
For example, when m, n ∈ N = Z

2, and X = S1 (identified with complex numbers
unit modulus), the family of multipliers {σx }x ∈ S1 with σx (m, n) = xm1n2 gives
σ̃x (m, n) = xm1n2−n1m2 . We could take the pointwise representative multipliers to be

σ ′
x (m, n) = x

1
2 (m1n2−n1m2), but x

1
2 is discontinuous, unless lifted to a double cover.

We give a construction of representative multipliers in Appendix B which avoids this
problem.

The Schur multiplier for N is a discrete Heisenberg group Heis(N ), which is a
central extension

1 −→ ∧2N −→ Heis(N ) −→ N −→ 1, (21)

with the multiplication rule

(n1, c1)(n2, c2) = (n1 + n2, c1 + c2 + n1 ∧ n2).

The central extensions of N by Z are classified by H2(N , Z) ∼= (∧2N )⊥, and a
cohomology class can be labelled by a homomorphism s : ∧2N → Z. Unlike the
vector group case, s need not be surjective onto Z. For example, s and ks have the
same kernel Ks for any 0 �= k ∈ Z, but they have different images in Z. This has
consequences for the resulting group extensions Heiss(N ), which are defined as the
central extensions

1 −→ Z −→ Heiss(N ) −→ N −→ 1,

with multiplication

(n1, c1)(n2, c2) = (n1 + n2, c1 + c2 + s(n1 ∧ n2)).
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Instead of (20), we have the commuting diagram

1 1
↓ ↓

1 −→ Ks ��� Ks −→ 1
↓ ↓ ↓

1 −→ ∧2N −→ Heis(N ) −→ N −→ 1
↓ s ↓ s′ := 1 × s ‖

1 −→ Z −→ Heiss(N ) −→ N −→ 1
↓ ↓ ↓

1 −→ Z/(Im s)
∼−−→ Heiss(N )/(Im s′) −→ 1

↓ ↓
1 1

As an example, take N = Z
d × Z

d and we write n = (a, b) ∈ Z
d × Z

d . The standard
integer Heisenberg group Heiss0(N ) is given by s0((a1, b1), (a2, b2)) = a1 · b2 ∈ Z.
It has a faithful representation, the standard representation, given by

π((a, b), c) =
⎛

⎝

1 a c
0 1d b
0 0 1

⎞

⎠ . (22)

For a nonzero integer k, the central extension Heisks0(N ) is not isomorphic as a group
to Heiss0(N ). But if we rescale to

1 −→ k−1
Z −→ k−1Heisks0(N ) −→ k−1N −→ 1,

there is an isomorphism ψk : Heiss0(N ) → k−1Heisks0(N ) given by ψk(n, c) =
(k−1n, k−1c), since

(

k−1n1, k
−1c1

) (

k−1n2, k
−1c2

)

=
(

k−1(n1 + n2), k
−1(c1 + c2) + ks0(k

−1n1, k
−1n2)

)

=
(

k−1(n1 + n2), k
−1(c1 + c2 + s0(n1, n2))

)

.

We can also consider Heiss0(k
−1N ) for the rescaled lattice k−1N = {w ∈ W : kw ∈

N }, which is

1 −→ k−2
Z −→ Heiss0(k

−1N ) −→ k−1N −→ 1

with multiplication

(

k−1n1, k
−2c1

) (

k−1n2, k
−2c2

)

=
(

k−1(n1 + n2), k
−2(c1 + c2) + s0(k

−1n1, k
−1n2)

)

=
(

k−1(n1 + n2), k
−2(c1 + c2 + s0(n1, n2))

)

,
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where the centre is now k−2
Z since s0 : ∧2(k−1N ) → k−2

Z. Then, we also have
Heiss0(N ) ∼= Heiss0(k

−1N ), with isomorphism φk given by φk(n, c) = (k−1n, k−2c).
We have therefore proved the following:

Theorem 5.2 With the above notation, we have isomorphisms

Heiss0(k
−1N ) ∼= Heiss0(N ) ∼= k−1Heisks0(N ).

From this we deduce that Heisks0(N ) is isomorphic to kHeiss0(k
−1N ), whose

elements are k(k−1n, k−2c) = (n, k−1c). This enables us to construct a matrix rep-
resentation of Heisks0(Z

2d) [20], from the standard representation π of Heiss0(Z
2d):

writing n = (a, b) ∈ Z
d ×Z

d and s0((a1, b1), (a2, b2)) = a1 ·b2 as before, we obtain
the faithful representation

πk((a, b), c) =
⎛

⎝

1 a c/k
0 1d b
0 0 1

⎞

⎠ (23)

of Heisks0(Z
2d).

With the concrete realizations (22)–(23), it is easy to see that there is an exact
sequence

1 −→ Heiss0(N ) −→ Heisks0(N ) −→ Zk −→ 1.

5.1.1 Geometric picture of Heisenberg-type algebras

We can understand Heis(N ) more geometrically by analysing the characters of its
centre ∧2N , which is H2(N , T) ∼= ∧2

̂N ∼= ∧2
T
d . Then C∗(Heis(N )) is, after stabi-

lization, a “universal bundle” A of noncommutative tori over ∧2
T
d — the fibre over

� ∈ ∧2
T
d is Morita equivalent to the noncommutative d-torus5 A�.

Theorem 5.3 ([11,18]) Suppose that B = IndWN (X , ad(ν∗)), with X = C0(X,K),
where for each x ∈ X, νx is a projective representation. Regard ν as a continuous
map X → H2(N , T). Then the T-dual algebra ̂B = B � W is Morita equivalent to
the pullback ν∗(A ).

Thus, ̂B can be visualized as a bundle of noncommutative d-tori over X .
In particular, this picture can be used to understand C∗(Heiss(N )) as follows. The

homomorphism s : ∧2N → Z induces a homomorphism on the Pontryagin duals
ν : T → ∧2

̂N ∼= H2(N , T). For N = Z
d × Z

d and surjective s0 as in the previous
subsection, ν is an injective degree-1 map onto its image circle in H2(N , T) ∼= ∧2

T
d .

Then C∗(Heiss0(N )) is Morita equivalent to a bundle of (stabilized) noncommutative
d-tori over S1 = T, pulled back from the universal bundle A under ν.

5 A� can be defined as the universal C∗-algebra generated by d unitaries U1, . . . ,Ud subject to UkU j =
exp(2π i� jk )UjUk , where we regard � as a skew-symmetric d × d matrix.
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For ks0, we have the factorization

∧2N Z Zk 0

Z

ks0

s0 ×k ,

and dually,

0 Zk T H2(N , T).

T

ν

p ,

so ν is a degree-k map from S1 = T onto its image circle. Then, C∗(Heisks0(N )) is
Morita equivalent to the pullback of the bundle for C∗(Heiss0(N )) under the k-fold
covering map p.

5.2 Heisenberg groups, nilmanifolds, and T-duality

The standard integer (matrix) Heisenberg group HeisZ(2d), d ∈ Z
+, comprises the

upper triangular matrices

⎛

⎝

1 a c
0 1d b
0 0 1

⎞

⎠ , a, b ∈ Z
d , c ∈ Z,

which has the multiplication law (a1, b1, c1) · (a2, b2, c2) = (a1 + a2, b1 + b2, c1 +
c2 + a1 · b2). (This is Heiss0(Z2d) of Sect. 5.1.) It is a subgroup of HeisR(2d) defined
by the same formula but with a, b ∈ R

d , c ∈ R. Both matrix Heisenberg groups are
central extensions,

1 −→ R −→ HeisR(2d) −→ R
2d −→ 1,

1 −→ Z −→ HeisZ(2d) −→ Z
2d −→ 1.

Let W = R
2d with w ∈ W identified with (a, b) ∈ R

d × R
d , and let ω(w1, w2) =

a1 · b2 − a2 · b1 be the standard symplectic form on W . We can also define the real
Heisenberg group HeisR(W, ω) as the set W × R equipped with the product

(w1, p1) · (w2, p2) =
(

w1+w2, p1+p2 + 1

2
ω(w1, w2)

)

, pi∈R, wi∈W, i = 1, 2.

(24)
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This is a special case of a more general construction given in Sect. 5.1. The groups
HeisR(2d) and HeisR(W, ω) can be identified by

HeisR(2d) � (a, b, c) ←→
(

(a, b), c − 1

2
a · b

)

≡ (w, p) ∈ HeisR(W ).

We shall use this identification in what follows.
Take a one-dimensional subspaceU ⊂ W and V a complementary subspaceR

2d−1.
We can regard U as a subgroup of HeisR(W, ω) by u ↔ (0, u). The restricted sym-
plectic form ω| := ω|V×V is nondegenerate only on a 2(d − 1) dimensional subspace
of V . The lift (preimage) ˜V of V in HeisR(2d) is a normal subgroup isomorphic
to HeisR(2(d − 1)) × R, and we can exhibit HeisR(2d) as a semi-direct product
HeisR(2d) ∼= ˜V � U . With L and M the standard lattices in U and V , respectively,
we also have HeisZ(2d) ∼= ˜M � L , where ˜M ∼= HeisZ(2(d − 1)) × Z is the lift of M .
In particular, we can write C∗(HeisZ(2d)) ∼= C∗( ˜M) � L and obtain its associated
PV-boundary map

∂ : K•(C∗(HeisZ(2d))) → K•+1(C
∗( ˜M)).

The quotient ˜V / ˜M = Nil(2(d − 1)) × T is a classifying space B ˜M , and there is a
fibration of HeisR(2d)/HeisZ(2d) = Nil(2d) = BHeisZ(2d) over T = BZ (in fact a
fibre bundle),

Nil(2(d − 1)) × T
ι−−→ Nil(2d) −→ T.

For k ∈ Z, k �= 0, we can use the symplectic form kω instead of ω, to obtain
the modified integer Heisenberg groups HeisZ(2d, k) and nilmanifolds Nilk(2d) =
HeisR(2d)/HeisZ(2d, k).

Consider CT (S1 × T
2d , dθ ∧ kω) where ω is the standard symplectic form on

T
2d = W/N (lifting to ω on W = R

2d as defined earlier), and dθ is the usual 1-form
on S1. The flux dθ ∧kω is of H1 type, and by the same arguments for the d = 1 case in
[30], the T-dual of CT (S1 × T

2d , dθ ∧ kω) with respect to T
2d is C∗(HeisZ(2d, k)).

In more detail, we can obtain

CT (S1 × T
2d , dθ ∧ kω) ∼= IndWN (C(S1,K), γ ),

as in Corollary 4.3, where above each x ∈ S1, there is a projective representation
νx of N with multiplier σx , and γ = Ad(νx ). Then, the T-dual is a bundle over S1

of twisted group C∗-algebras C∗(N , σx ), which is what we obtain when we decom-
pose C∗(HeisZ(2d, k)) into a twisted crossed product C∗(Z) �σ N (see also Sect.
5.1.1). Similarly, the restriction CT (S1 × T

2d−1, dθ ∧ kω|) where T
2d−1 = V/M

is induced from C(S1,K) by γ restricted to M . Its T-dual with respect to T
2d−1 is

(C∗(HeisZ(2(d−1, k)))⊗C∗(Z)) ∼= C∗( ˜M)—note that theω|-complement ofT2d−1,
which is a circle T, does not see any flux so it T-dualizes to the C∗(Z) factor.

On the other hand, as an S1 bundle over T
2d with flux dθ ∧ kω (now of purely H2

type), the T-dual ofCT (S1×T
2d , dθ ∧kω) is Nilk(2d), a principal circle bundle over
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T-duality simplifies bulk–boundary correspondence… 1187

T
2d with Chern class represented by kω. Similarly, the T-dual with respect to S1 of

CT (S1 × T
2d−1, dθ ∧ kω|) is Nilk(2(d − 1)) × T) = ˜V / ˜M , where Nilk(2(d − 1))

has Chern class supported on the subtorus T
2(d−1) on which ω| is nondegenerate (this

subtorus is the base of Nilk(2(d − 1))), while the extra T just goes along for the ride.
The nilmanifold Nilk(2d) has an action of HeisR(2d), and the symmetric imprim-

itivity theorem [45] gives a strong Morita equivalence

C(Nilk(2d)) � HeisR(2d) ∼ C(HeisR(2d)\HeisR(2d))

�HeisZ(2d, k) = C∗(HeisZ(2d, k)),

which together with the generalization of the Connes–Thom isomorphism Theorem
to HeisR(2d) ([7,13]), gives “nonabelian T-duality” (c.f. Sect. 3.3 of [20])

K−•(Nilk(2d)) = K•(C(Nilk(2d)))

THeisR(2d)∼= K•+1(C
∗(HeisZ(2d, k))).

Similarly, we have

K−•(Nilk(2(d − 1)) × T)

THeisR(2(d−1))×R∼= K•(C∗(HeisZ(2(d − 1), k)) ⊗ C∗(Z)).

With the above definitions, we have the following commutative diagram, which is
a higher-dimensional generalization of Proposition 3.3 in [20],

K−•(S1 × T
2d , dθ ∧ ω)

T1

∼

ι∗

∼
T2d

K•(C∗(HeisZ(2d)))

∂

K−•−1(Nil(2d))

THeisR(2d)

∼

ι∗

K−•−1(Nil(2(d − 1)) × T)

THeisR (2(d−1))×R

∼

K−•(S1 × T
2d−1, dθ ∧ ω|)

∼
T2d−1

T1

∼

K•+1(C∗(HeisZ(2(d − 1))) ⊗ C∗(Z))

Remark 5.4 We can also obtain a similar commutative diagram for the general-
ized integer Heisenberg groups HeisZ(2d,k) labelled by an d-tuple of integers
k = k1, k2, . . . , kn , as in [28]. Our HeisZ(2d,k) is the case where k1 = . . . = kd = k;
alternatively, we can consider the Heiss(Z2d) of Sect. 5.1 for a general s.
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5.3 Solvable groups, solvmanifolds, and T-duality

Recall (cf. [50]) that the real simply connected three-dimensional Solvable group SolR

is defined as a split R
2-extension of R,

1 −→ R
2 −→ SolR −→ R −→ 1

where R acts on R
2 by

(t, (x, y)) �→ (et x, e−t y),

that is, t ∈ R acts on R
2 as the SL(2, R) matrix

(

et 0
0 e−t

)

.

SolR can also be defined as the matrix group,

SolR =
⎧

⎨

⎩

⎛

⎝

et 0 x
0 e−t y
0 0 1

⎞

⎠

∣

∣

∣

∣

x, y, t ∈ R

⎫

⎬

⎭

.

If SolR is identified with R
3 so that (x, y) are the coordinates on the R

2-normal
subgroup, then the product is given by

(x, y, t).(x ′, y′, t ′) = (x + e−t x ′, y + et y′, t + t ′).

Then (0, 0, 0) is the identity in SolR. The inverse of (x, y, t) is (−et x,−e−t y,−t),
and one sees that the left invariant 1-forms on SolR are τ1 = e−t dx , τ2 = −etdy and
τ3 = dt . We compute that dτ1 = −dt ∧ τ1, dτ2 = dt ∧ τ2, and dτ3 = 0.

Now a general left invariant 2-form B on SolR is given by

B = 1

2

∑

�i j τi ∧ τ j = 1

2
τ t�τ

where τ is the column vector with j th component τ j , τ t is the transpose of τ and � a
skew-symmetric (3× 3) matrix. By the computations above, dB = 0, which is B is a
closed left invariant 2-form on SolR. A left invariant Riemannian metric is given by

ds2 = e2t dx2 + e−2t dy2 + dt2.

We next recall the construction of lattices in SolR, and we follow [1] closely, see
also [29]. Let K = Q(d) be a real quadratic field and let ι1, ι2 : K → R, be its two
real embeddings. Denote by L ⊂ K a lattice, with U+

L the group of totally positive
units preserving L,

U+
L = {u ∈ O∗

K
: ι j (u) ∈ R

∗+, for j = 1, 2, uL ⊂ L}.
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Denote by A a generator, so that U+
L = AZ = {An : n ∈ Z}. In the example where

L = OK is the ring of integers of K, then the generator A is a fundamental unit.
Consider the embedding of L in R

2 given by the mapping

L � 
 −→ (ι1(
), ι2(
)) ∈ R
2.

Let � = (ι1, ι2)(L). It is a lattice in R
2, and U+

L acts on � by

(ι1(
), ι2(
)) −→ (Aι1(
), A
−1ι2(
)).

Denote by V the group U+
L ; then, V ∼= Z. Consider the semi-direct product

SolZ(A) = � �A V

where the action of V = AZ on � is induced by the action by multiplication on L. As
shown in [1], these are all lattices in the solvable Lie group SolR.

The homogeneous space

SolvA = SolR/SolZ(A)

is a torus bundle over the circle,

T
2 ↪→ SolvA → T.

The cohomology of SolvA is given by (cf. [29])

H j (SolvA) =
{Z if j = 0, 3;

Z ⊕ coker(1 − A) if j = 2;
Z if j = 1.

The nontorsion generator of H2(SolvA) has representative given by τ1 ∧ τ2.
The K-theory of SolvA is given by

K j (SolvA) =
{

Z
2 ⊕ coker(1 − A) if j = 0;

Z
2 if j = 1.

With the above definitions, we have the following commutative diagram using
Appendix A,

K−•(SolvA)

ι∗

∼
T

K•+1(C∗(SolZ(A)))

∂

K−•(T2)
∼
id

K•(C(T2))
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1190 K. C. Hannabuss et al.

where we have used that C(SolvA) = IndR

Z
(C(T2)) by the above, and therefore,

the crossed product C(SolvA) � R is strongly Morita equivalent to C(T2) �A Z ∼=
C∗(SolZ(A)). The inclusion of the fibre torus ι : T

2 ↪→ SolvA induces a restriction
map ι∗. Similarly, the semi-direct product SolZ(A) = ��AV gives rise to thePimsner–
Voiculescu boundary homomorphism ∂ , where C∗(�) ∼= C(T2) is also used.

As with the Heisenberg groups, we may also obtain a similar commutative diagram
for higher-dimensional Solvable groups, but we omit the details.

6 Bulk–boundary correspondence for higher-dimensional quantum hall
effect and topological insulators with disorder

This section is concerned with the application of the abstract results in Sect. 3, to the
bulk–boundary correspondence for the higher-dimensional analogue of the quantum
Hall effect and topological insulators, generalizing the 2D case covered in [33].

Let A be a complex C∗-algebra with Z-action α. Then by Appendix A, we have
the commutative diagram,

K•(IndR

Z
(A, α))

ι∗

γ •
α

K•+1(A �α Z)

∂

K•(A)
Id

K•(A)

with γ •
α the Paschke isomorphism. We recall that the induced algebra IndR

Z
(A, α) can

be regarded as the flat fibre bundle over the circle with fibre A, that is IndR

Z
(A, α) =

R ×Z A, and ι : A → IndR

Z
(A, α) is the inclusion of a fibre. There is a R-action on

IndR

Z
(A, α) by translation. Thus, γ •

α implements circle T-duality in a modified sense
in which the circle action on the base may not lift to the total space, but does lift to an
R-action.

Now assume that α is a Z
d action onA, and write α| for the restricted Z

d−1-action.
Then A �α Z

n is an d-fold iterated crossed product by Z, and in particular, (A �α|
Z
d−1) � Z. Also, IndR

d

Zd (A) ∼= IndR

Z
(IndR

d−1

Zd−1 (A)), with the obvious actions omitted

in the notation, so there is an inclusion ι : IndR
d−1

Zd−1 (A) → IndR
d

Zd (A). Writing γ •
α for

the iterated Paschke map for the d-commuting Z-actions, one has the commutative
diagram

K•(IndR
d

Zd (A, α))

ι∗

γ •
α

K•+d(A �α Z
n)

∂

K•(IndR
d−1

Zd−1 (A, α|))
γ •
α|

K•+d−1(A �α| Z
d−1)

(25)

Alternatively, with E = IndR
d−1

Zd−1 (A, α|) and B = IndR
d

Zd (A, α), the hypotheses of
Corollary 3.5 are satisfied, and we can deduce commutativity of (25).
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Now consider a skew-symmetric matrix real d × d matrix � encoding a (scalar-
valued) twisting 2-cocycle,

(x, y) �→ exp(π i〈x,�(y)〉), x, y ∈ Z
d ,

and consider the twisted crossed product algebra A �� Z
d . By the Packer–Raeburn

stabilization trick, the adjoint map gives a canonical isomorphism (A�� Z
d) ⊗K ∼=

(A ⊗ K) � Z
d with an untwisted Z

d action on the right-hand-side which we denote
by α. Using this in (25), we get the commutative diagram,

K•(IndR
d

Zd (A ⊗ K, α))

ι∗

γ •
α

K•+d(A �� Z
d)

∂

K•(IndR
d−1

Zd−1 (A ⊗ K, α|))
γ •
α|

K•+d−1(A ��| Z
d−1).

(26)

Let A� denote the noncommutatived-torus and A�| the noncommutative (d−1)-torus,
which are twisted versions of the trivial crossed productsC�idZ

d andC�idZ
d−1. Let

C → A be an equivariant homomorphism (which is automatic if it is unital), so that
there is an induced morphism A� → A�� Z

d . By the naturality of the PV sequence
and the Paschke maps, we have the commutative diagram

K•(IndR
d

Zd (A ⊗ K))

ι∗

∼
T

K•+d (A �� Z
d )

∂

K•(IndR
d

Zd (K))
∼
T

ι∗

K•+d (A�)

∂

K•(IndR
d−1

Zd−1 (K))
∼
T

K•+d−1(A�|)

K•(IndR
d−1

Zd−1 (A ⊗ K))
∼
T

K•+d−1(A ��| Z
d−1)

where we have simply written T for the various Paschke maps, and the diagonal maps
are induced by C → A. In particular, this shows that the class in K0(A �� Z

d)

coming from the fundamental class of the noncommutative d-torus A� goes to the
class in K0(A��| Z

d−1) coming from the fundamental class of the noncommutative
(d − 1)-torus A�|, under the PV-boundary map.

Specializing to the case when A = C(�), where � is a compact Cantor set with
an action of Z

d , we get precisely the higher-dimensional analogue of Example 4,
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Sect. 4.6 in [33], generalizing the phenomenon that T-duality trivializes the bulk–
boundary correspondence in the disordered case in 2D.

Now let A be a real C∗-algebra with a Z
d -action α. Since the real version of

Paschke’s map [37] is also, up to a sign convention, the Connes–Thom isomorphism
[7] composed with an isomorphism from Green’s imprimitivity theorem, it follows
that the real version of the diagram above also commutes.

KO•(IndR
d

Zd (A))

ι∗

∼
T

K O•+d (A � Z
d )

∂

KO•(IndR
d

Zd (R))
∼
T

ι∗

K R−•−d (Td )

∂

KO•(IndR
d−1

Zd−1 (R))
∼
T

K R−•−d+1(Td−1)

KO•(IndR
d−1

Zd−1 (A))
∼
T

K O•+d−1(A � Z
d−1)

(27)

Here, T
d is the character space of Z

d with involution inherited from complex conju-
gation, and so K R−•(Td) ∼= KO•(R �id Z

d).
The physical relevance of the commutative diagrams in this section is that a Z

d

action on A = C(�) is often used to model disorder with disorder probability space
� (e.g. [39]). The twisting by � is a fundamental feature of the magnetic translations
in the integer quantum Hall effect and its higher-dimensional generalizations. Both
disorder and twisting are crucial ingredients needed to explain phenomena like plateau
in the Hall conductivity [3]. In the case of realC∗-algebras (27) says, for example, that
the bulk–boundary homomorphism for time-reversal symmetric topological insulators
is again trivialized into the geometric restriction map under real T-duality, even in the
presence of disorder. This generalizes our earlier computations in [33].
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Council via ARCDiscovery Project Grants DP150100008, FL170100020, and DE170100149, respectively.
The authors thank the Erwin Schrödinger Institute (ESI), Vienna, for its hospitality during the ESI Program
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Appendix A: Paschke’s map and the Connes–Thom isomorphism

This appendix explains why Paschke’s map [37] is, up to a sign convention,
the Connes–Thom isomorphism [7] composed with an isomorphism from Green’s
imprimitivity theorem. This result belongs to a family of ideas which can be found in
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[7–9,37] and may be known to experts, but we provide a detailed argument for the
reader’s reference. The Paschke map is explicitly defined for each Z-algebra (A, α),
whereas the Connes–Thom map is more abstractly defined. As we will see, there is an
analogous abstract characterization of the Paschke map, which determines its formula
uniquely.

Generalities on Connes–Thom isomorphism

Recall from [7] that the Connes–Thom isomorphism is a natural transformation
between the functors K•(·) and K•+1((·) � R), • ∈ Z2, i.e. it assigns to every R-
C∗-algebra (A , α) an isomorphism φ•

α : K•(A ) → K•+1(A �α R), such that for
any morphism ρ : (A , α) → (B, β), the following diagram commutes:

K•(A )

ρ∗

φ•
α

K•+1(A �α R)

(ρ�R)∗

K•(B)
φ•

β
K•+1(B �β R)

(28)

Here, ρ � R is the morphism of crossed products induced by the equivariant map ρ.
Furthermore, Connes shows that φ•

α is an isomorphism, which is determined uniquely
by this naturality property together with a normalization condition (for (A, α) =
(C, id)) and compatibility with suspensions.

The analogous axioms for Paschke’s map

If ρ : (A, α) → (B, β) is a morphism of Z-C∗-algebras (not necessarily uni-
tal), the induction functor Ind := IndR

Z
(·) gives a morphism of induced algebras

ρ̃ : Ind(A, α) → Ind(B, β) which is equivariant for the respective translation actions
τα, τβ ofR. Elements of Ind(A, α) are viewed either as bounded continuous functions
f : R → A satisfying an equivariance condition6, f (x + 1) = α( f (x)), x ∈ R, or
alternatively, continuous f : [0, 1] → A such that f (1) = α( f (0)) (the mapping
torus). The translation action τα of R on Ind(A, α) is (τα

t f )(s) = f (s + t), s, t ∈ R.
Let Sα be the suspended Z-action on SA (acting by α onA and trivially on the sus-

pension variable). Note that S(Ind(A, α)) ∼= Ind(SA, Sα) and S(A�α Z) ∼= SA�Sα

Z, and write S•
(·) for the natural suspension isomorphisms K•(·) → K•−1(S(·)).

For • ∈ Z2, let γ • be a natural transformation of the functors (A, α) �→
K•(Ind(A, α)) and (A, α) �→ K•+1(A �α Z) from Z-algebras to abelian groups,
satisfying the following three axioms:

Axiom A.1 (Normalization) If (A, α) = (C, id), then γ 0
id : K0(C(R/Z)) =

K0(C(T)) → K1(C∗(Z)) takes [1C(T)] to the (Bott) generator [b] of K1(C∗(Z))

corresponding to 1 ∈ Z regarded as an element of C∗(Z).

6 We have switched convention for induced algebras in this Appendix compared to the main text. This is
to make closer contact to Paschke’s original work, and the effect is that α−1 is replaced by α.
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Axiom A.2 (Naturality) If ρ : (A, α) → (B, β) is a morphism of Z-algebras, then the
following diagram commutes:

K•(Ind(A, α))

ρ̃∗

γ •
α

K•+1(A �α Z)

(ρ�Z)∗

K•(Ind(B, β))
γ •
β

K•+1(B �β Z)

(29)

Axiom A.3 (Suspension) γ is compatible with S in the sense that

S(•+1)
A�αZ

◦ γ •
α = γ

(•−1)
Sα ◦ S•

Ind(A,α). (30)

Proposition A.4 There is a unique γ satisfying Axioms A.1–A.3.

Proof Outline: We use a modification of Connes’ argument for the uniqueness of
φ. Axiom A.3 and Bott periodicity ensure that we only need to look at γ 0 (which
we will simply denote by γ subsequently). We need to show that γα[p] ∈ K1(A �α

Z) is uniquely determined for any projection p ≡ {pθ }θ∈[0,1] in Ind(A, α). The
basic idea is to construct a Z-action α′, exterior equivalent to α, which fixes p0.
Furthermore, the new induced algebra Ind(A, α′), with its translation action τα′

, is R-
equivariantly isomorphic to the original IndαA with a modified action τ ′, where τ ′ is
exterior equivalent to the original τα and fixes p. Thus, the projection p′ ∈ Ind(A, α′)
corresponding to p ∈ Ind(A, α) under this isomorphism is itself translation invariant
under τα′

. Then, theAxioms determinewhat γα′ [p′] has to be. Finally,we need to argue
that the modification α �→ α′ can be assumed because the above exterior equivalences
determine unique maps, consistent with the Axioms, which yield the desired γα[p]
from γα′ [p′].
Details: As in [7], we may assume without loss thatA is unital and p ∈ Ind(A, α). By
[7] Proposition 4 (c.f. [9] Lemma 10.16, [44]), we may also assume that on Ind(A, α)

there is an actionR-action τ ′, exterior equivalent to τα , whichfixes p. LetU ≡ {Ut }t∈R

be the 1-cocycle on Ind(A, α) which relates τα and τ ′ via τ ′
t = Ad(Ut ) ◦ τα

t . Thus,
{Ut }t∈R satisfies the cocycle condition and equivariance condition,

Ut1+t2 = Ut1τ
α
t2 (Ut2), Ut (1) = α(Ut (0)), t, t1, t2 ∈ R. (31)

Define the modified Z-action α′ on A via

α′
n = Ad(Un(0)) ◦ αn, n ∈ Z. (32)

We can verify, from (31), that the assignment u : n �→ Un(0) =: un, n ∈ Z defines a
unitary 1-cocycle {un}n∈Z on (A, α), i.e. um+n = umαm(un). Thus,A�α′ Z ∼= A�αZ

(a canonical isomorphism ϕu is given in Lemma A.5 later).
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Since τ ′
1 = Ad(U1)◦τα

1 fixes p, it follows that p0 := p(0) ∈ A fixed by α′. Define
the isomorphism �U : Ind(A, α) → Ind(A, α′) by

�U f (s) = Ad(Us(0))[ f (s)], s ∈ R, f ∈ Ind(A, α). (33)

We can verify that �U f does satisfy α′-equivariance and intertwines τ ′ on Ind(A, α)

with the new translation action τα′
on Ind(A, α′), i.e. (τα′

t (�U f )) = (�U (τ ′
t f )).

Observe that p′(θ) = p′
0 = p0 since p′ = �U (p) is fixed by τα′

. The homomor-
phism

ω : (C, id) → (A, α′), ω(λ) = λp′
0

is Z-equivariant, and we write ω̃ for the corresponding inflated map ω̃ : C(T) ∼=
Ind(C, id) → Ind(A, α′). Note that

(ω̃(1C(T)))(θ) ≡ ω(1C(T)(θ)) = p′
0 = p′(θ), θ ∈ [0, 1],

so p′ = ω̃(1C(T)). Then naturality and normalization mean that γα′ [p′] must be
determined by the equation

γα′ [p′] = γα′ ◦ ω̃∗[1C(T)] = (ω � Z)∗ ◦ γid[1C(T)] = (ω � Z)∗[b]. (34)

Corollary A.7 gives the details of how γ [p] is obtained from γα′ [p′]. ��

Connes’ 2 × 2 matrix trick

Lemma A.5 (c.f. [7]Lemma2)Letα, α′ be exterior equivalentZ-actions onA related
by a unitary 1-cocycle Z � n �→ un ∈ UMA. Then

κ

(

a11 a12
a21 a22

)

=
(

α(x11) α(x12)u∗
1

u1α(x21) α′(x22)

)

(35)

is a Z-action on M2(A) which restricts to α in the top-left corner and to α′ in the
bottom-right corner. Let ι, ι′ be the equivariant inclusions of A into their respective
corners in M2(A). There is a unique isomorphism ϕu : A�α Z → A�α′ Z such that

(ι′ � Z)(ϕu(y)) = Ad(

(

0 1
1 0

)

)[(ι � Z)(y)] for all y ∈ A �α Z.

Similarly, there are inclusions ι̃, ι̃′ of the induced algebras into the respective corners
of IndκM2(A). Let τα, τ ′ be the exterior equivalent R-actions on Ind(A, α) as in
the proof of Proposition A.4, related by the 1-cocycle {Ut }t∈R. A straightforward
computation shows:

Lemma A.6 Define X ∈ IndκM2(A) by

X (s) =
(

0 U∗
s (0)

Us(0) 0

)

.

Then the isomorphism �U satisfies ι̃′(�U ( f )) = Ad(X)[ι̃ f ], f ∈ Ind(A, α).
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Corollary A.7 Suppose γ satisfies Axioms A.1–A.3, and α, α′,U are as above. Then
γ •
α′ = (ϕu)∗ ◦ γ •

α ◦ (�−1
U )∗.

Proof Recall that inner automorphisms induce the identity map in K -theory. Thus,
Lemmas A.5 and A.6 show that (ι � Z)∗ = (ι′ � Z)∗ ◦ (ϕu)∗ and ι̃∗ = ι̃′∗ ◦ (�U )∗.
Using the naturality axiom, and dropping the superscript • for now,

(ι′ � Z)∗ ◦ γα′ = γκ ◦ ι̃′∗ = γκ ◦ ι̃∗ ◦ (�−1
U )∗

= (ι � Z)∗ ◦ γα ◦ (�−1
U )∗ = (ι′ � Z)∗ ◦ (ϕu)∗ ◦ γα ◦ (�−1

U )∗,

so injectivity of (ι′ � Z)∗ (see [7] Proposition 2–3) gives the required result. ��

Paschke’s isomorphisms

Paschke’s isomorphisms [37]

γ •,Paschke
α : K•(Ind(A, α)) → K•+1(A �α Z)

are first defined for unital A and • = 0 on [p], by exhibiting the existence of a path
of unitaries θ �→ wθ ∈ A such that

p(θ) = Ad(wθ )(p0), θ ∈ [0, 1]. (36)

In particular, p1 = Ad(w1)(p0). Then γ 0,Paschke
α [p] is defined to be

γ 0,Paschke
α [p] = [L∗w1 p0 + 1 − p0], (37)

where L ∈ M(A �α Z) is the unitary implementing α (i.e. α(a) = LaL∗, a ∈ A),
with this map shown to be well-defined in K -theory.7

The • = 1 case is defined by compatibility with suspensions. Since γ 0,Paschke
α may

be expressed using representative projections and unitaries (rather than their K -theory
classes), it is easy to see that the naturality Axiom A.2 is satisfied. It is also clear that
normalization Axiom A.1 is satisfied up to a minus sign.

On the other hand, there is a commutative diagram due to the Connes–Thom natural
isomorphisms,

K•(Ind(A, α))

ρ̃∗

φ•
τα

K•+1(Ind(A, α) �α R)

(ρ̃�R)∗

K•(Ind(B, β))
φ•

τβ

K•+1(Ind(B, β) �β R)

. (38)

7 There is no loss of generality in assuming that A is unital and that p is in Ind(A, α) rather than in
Ind(A, α) ⊗ Mn , see [37].
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Composing φ•
τα with the natural K -theory isomorphisms

M•+1,Green
α : K•+1(Ind(A, α) �τα R) ∼= K•+1(A �α Z)

given by the Morita equivalence Ind(A, α)�τα R ∼M.E. A�α Z (this is a special case
of Green’s imprimitivity theorem [16]), we obtain another γ satisfying Axioms A.1–
A.3: The normalization axiom follows from the fact that φτ id is an isomorphism, so
there is only one possibility (apart from a sign choice) forM0,Green

id ◦φτ id : Z[1C(T)] →
Z[b]. Compatibility with suspensions is inherited from the Connes–Thom map, while
naturality follows from naturality of implementing the Morita equivalence (see [10]
Chapter 4). By Proposition A.4, we have

Theorem A.8 The map γ •,Paschke
α : K•(Ind(A, α)) → K•+1(A �α Z) is, up to a

sign, the composition M•+1,Green
α ◦ φ•

τα .

Paschke’s unitaries and Connes’ cocycle

Given a p ∈ Ind(A, α), we may start from Connes’ cocycle {Ut }t∈R in (31) above
and obtain a path of unitaries wθ := U∗

θ (0), θ ∈ [0, 1] in A. Then w0 = 1 and

pθ = p(θ)= τα
θ (p(0))= (Ad(U∗

θ ) ◦ τ ′(p))(0) = Ad(U∗
θ (0))(p(0)) = Ad(wθ )(p0),

thus {wθ }θ∈[0,1] is precisely a Paschke path whose existence was proved in [37].
Conversely, given a Paschke path {wθ }θ∈[0,1] such that w0 = 1 and Ad(wθ )(p0) =

pθ , we can reconstruct Connes’ cocycle for the action τα on Ind(A, α) as fol-
lows. Regard p ∈ Ind(A, α) as a projection-valued function R → A through the
equivariance condition p(s) ≡ ps = α(ps−1), s ∈ R. Similarly, extend Paschke’s
w : [1, 0] �→ A to a continuous unitary function w : R � s �→ ws ∈ A by the
recursion relation ws = α(ws−1) · w1. It is easy to check that ps = Ad(ws)(p0) for
all s ∈ R and that n �→ wn defines a 1-cocycle for (A, α). The projection p0 is then
fixed by α′

n = Ad(w∗
n) ◦ α, n ∈ Z, since

α′(p0) = Ad(w∗
1)(α(p0)) = Ad(w∗

1) ◦ Ad(w1)(p0) = p0.

The assignment t �→ Ut ∈ Ind(A, α) defined by

Ut (s) = wsw
∗
s+t , s, t ∈ R (39)

is the desired Connes 1-cocycle for (Ind(A, α), τα); we can verify that each Ut is
α-equivariant and satisfies the cocycle condition. If we define the R-action τ ′ on
Ind(A, α) by τ ′

t = Ad(Ut ) ◦ (τα
t ), we find that the projection p is now fixed by τ ′.

Paschke’s formula from axioms

Recall that γ 0
α [p] can be computed by passing to α′, using γ 0

α [p] = (ϕ−1
u )∗ ◦ γ 0

α′ ◦
(�U )∗[p]. In (34), we saw that γ 0

α′ ◦ (�U )∗[p] = γ 0
α′ [p′] = (ω � Z)∗[b]. Note that
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even if A is unital, the homomorphism ω (and thus ω � Z) is nonunital in general,
so the induced map (ω � Z)∗ in K1 is slightly tricky to compute (c.f. Proposition
8.1.6 of [46]). Namely, we have to append a formal unit 1 to C(T) and A �α′ Z,
replace [b] by [1 − 1C(T) + b], then compute (ω � Z)∗ using the unital extension
(ω � Z)+ : C(T)+ → (A �α′ Z)+. This gives

((ω � Z)+)∗[1 − 1C(T) + b] = [1 + (ω � Z)(−1C(T) + b)]
= [1 − L ′ p′

0 + p′
0]

= [1 − 1A�α′Z + 1A�α′Z + L ′ p′
0 − p′

0],

and mapping back to unitaries in Ind(A, α′), we obtain

(ω � Z)∗[b] = [1 + L ′ p′
0 − p′

0] = [L ′ p0 + (1 − p0)].

Finally, recall that the isomorphismϕu implements the isomorphismA�αZ ∼= A�α′Z
induced by the exterior equivalence α′

n = Ad(w∗
n)◦αn , so it effectsw∗

1L �→ L ′. Thus,

γ 0
α [p] = (ϕ−1

u )∗ ◦γ 0
α′ ◦ (�U )∗[p] = (ϕ−1

u )∗[L ′ p0+ (1− p0)] = [w∗
1Lp0+ (1− p0)],

which, up to a sign, concides with γ 0,Paschke
α [p].

The real C∗-algebra case

A general reference for the K -theory of real C∗-algebras is [49]. The Connes–Thom
isomorphisms and Pimsner–Voiculescu exact sequence also hold for real C∗-algebras
A and real crossed products, see [48,49]. Similarly, Paschke’s map γ 0,Paschke

α still
makes sense on real Z-algebras (A, α). We can then repeat the arguments in this
appendix to obtain the real version of Theorem A.8. The only significant change is in
the normalization axiom, and in taking • ∈ Z8 rather than in Z2.

Recall that C �id Z = C∗
R
(Z) ∼= C(T; ς) where ς is the involution θ �→ −kθ on

T = ̂Z inherited from complex conjugation of characters (parametrized by θ ∈ [0, 1]),
and C(T; ς) is the real C∗-algebra of continuous functions f ∈ T → C such that
f (θ) = f (−θ). These functions are precisely the ones with real Fourier coefficients.
It is known (pp. 40 of [49]) that K1(C(T; ς)) ∼= Z[z]⊕Z2[−1C(T,ς)], where z denotes
the unitary function θ �→ e2π iθ with winding number 1. Furthermore, [z] is the Bott
element implementing (1,1) periodicity in K R-theory (c.f. Theorem 1.5.4 of [49],
Theorem 10.3 of [27]), so we also write it as [br ]. We can also identify it with the
unitary L implementing the (trivial) automorphism in R �id Z.

On the other hand, the induced algebra for (R, id) is just the continuous real-valued
functions on the circle C(T; R). It is also known that

KO0(C(T; R)) = Z[1C(T;R)] ⊕ Z2
[[PMob] − [1C(T;R)]

]

,
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where PMob is the Möbius projection in M2(C(T; R)) given by

PMob(θ) = Ad(R(θ))

(

1 0
0 0

)

= Ad

(

cos πθ − sin πθ

sin πθ cos πθ

)(

1 0
0 0

)

.

It is straightforward to compute the real Paschke map on KO0(C(T; R)). For the
constant projection 1, the Paschke path of unitaries is trivial, sowe have γ

0,Paschke
id [1] =

[L + 1− 1] = [L] = [br ]. For the Möbius projection, the Paschke path of unitaries is
wθ = R(θ), so w1 is minus the identity. Then

γ
0,Paschke
id [PMob] = [−LPMob(0) + 12 − PMob(0)]
=

[(−z 0
0 1C(T,ς)

)]

= [−z] = [−1C(T,ς)] + [z],

soγ
0,Paschke
id ([PMob]−[1C(T;R)]) = [−1C(T,ς)], i.e. the torsion generators are correctly

mapped to each other.
The normalization axiom in the real C∗-algebra case needs to be replaced by

Axiom A.9 (Normalization) If (A, α) = (R, id), then γ 0
id : KO0(C(T; R)) ∼=

KO0(T) → KO1(C∗
R
(Z)) ∼= KO1(C(T; ς)) takes [1C(T;R)] to the (Bott) gener-

ator [br ] and ([PMob] − [1C(T;R)]) to [−1C(T,ς)].
Theorem A.10 There is a unique natural transformation γ of the functors (A, α) �→
KO•(Ind(A, α)) and (A, α) �→ KO•+1(A �α Z), • ∈ Z8 , from the category of
real Z-algebras to abelian groups, which satisfy Axiom A.9 and Axioms A.2–A.3 with
K replaced by K O. Thus, the real version of Corollary A.8 holds: γ •,Paschke

α =
M•+1,Green

α ◦ φ•
τα up to a sign convention.

Appendix B: Multipliers for lattice groups

Let N = Z
d and for a multiplier σ , let σ̃ (n, n′) = σ(n, n′)/σ (n′, n) be the anti-

symmetric bicharacter labelling its class in H2(N , T). We reconstruct a canonical
representative multiplier in this class starting from σ̃ . Choose generators {e j } j∈J ,
where J is a totally ordered set, and, expanding n = ∑

j n j e j ∈ N , and n′ similarly,
we define the multiplier

σJ (n, n′) =
∏

j<k

σ̃ (e j , ek)
n j n′

k ,

which is also a bicharacter (but not antisymmetric). Then we see that

σ̃J (n, n′) = σJ (n, n′)
σJ (n′, n)

=
∏

j<k

σ̃ (e j , ek)
n j n′

k
∏

k< j

σ̃ (ek, e j )
−n j n′

k
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=
∏

j �=k

σ̃ (e j , ek)
n j n′

k

= σ̃ (n, n′).

Thus, we see that σ̃J = σ̃ , and consequently, σJ is cohomologous to σ , and so also to
any σJ ′ for any other totally ordered set J ′. We note that when N = Z

2 and J = {1, 2}
indexes the usual generators with the natural ordering, the antisymmetric bicharacter
σ̃ (n, n′) = exp(i(n1n′

2 − n2n′
1)) produces σJ (n, n′) = exp(i(n1n′

2)).
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