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Abstract In the setting of asymptotically anti-de Sitter spacetimes, we consider
Klein–Gordon fields subject to Dirichlet boundary conditions, with mass satisfying
the Breitenlohner–Freedman bound. We introduce a condition on the b-wave front set
of two-point functions of quantum fields, which locally in the bulk amounts to the
usual Hadamard condition, and which moreover allows to estimate wave front sets for
the holographically induced theory on the boundary. We prove the existence of two-
point functions satisfying this condition and show their uniqueness modulo terms that
have smooth Schwartz kernel in the bulk and have smooth restriction to the boundary.
Finally, using Vasy’s propagation of singularities theorem, we prove an analogue of
Duistermaat and Hörmander’s theorem on distinguished parametrices.

Keywords Quantum field theory on curved spacetimes · Asymptotically anti-de
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1 Introduction and summary of results

1.1 Introduction

The mathematically rigorous formulation of quantum field theory on globally hyper-
bolic spacetimes, established throughout the last few decades and comprehensively
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summarized in a handful of recent reviews [6,27,28,31,50,57], crucially relies on the
overcoming of difficulties caused by the generic absence of symmetries. A particu-
larly important step was the replacement of the Killing symmetry-based concept of
vacuum state by a class of physical states satisfying the so-called Hadamard condition
[26,29,60,69], and the implementation of this idea into the perturbative construction
of interacting theories [9]. The study of Hadamard states is now an active field of
research, to mention only a couple of recent works on constructive and conceptual
aspects and applications [10,13,25,30,37,76,84].

The assumption that the spacetime is globally hyperbolic narrows, however, the
range of applications, as this excludes for instance anti-de Sitter space (widely studied
in the context of the AdS/CFT correspondence [63]), even though many symmetry-
based constructions were successfully developed in that particular case, see, e.g., [1,
8,12,16,20–22,53,61,72].

The goal of the present paper is the rigorous construction of non-interacting scalar
quantum fields on asymptotically AdS spacetimes, assuming Dirichlet boundary con-
ditions at the horizon. We use the algebraic approach and propose what we call the
holographic Hadamard condition. We prove that states satisfying this condition exist
indeed and their two-point functions are unique modulo terms that are smooth in the
bulk.Moreover, aswewill see, a similar statement holds true for the induced conformal
field theory on the boundary.
Classical fields Before discussing our results in more detail let us give an overview
of results in the setting of asymptotically AdS and related spacetimes, starting with
classical fields.

The Klein–Gordon equation on anti-de Sitter was studied by Breitenlohner and
Freedman [11], who showed its solvability in a certain mass regime (cf. the work of
Yagdjian and Galstian, who found an explicit solution [89]), and by Ishibashi and
Wald [53], who described the static dynamics corresponding to different boundary
conditions. An analogous result to that of [11] for the Dirac equation was obtained by
Bachelot [2]. Solvability with Dirichlet boundary conditions in the more general case
of asymptotically AdS spacetimes was established by Holzegel [43] and reworked
by Vasy [82], who proved propagation of singularities theorems. Neumann and Robin
boundary conditions were investigated byWarnick [86], and a study of other boundary
conditions was recently performed by Holzegel, Luk, Smulevici andWarnick [41], see
also the related work of Bachelot [4] in the AdS case, and of Gannot [32] in the static
case. Applications to holography were studied by Enciso and Kamran and the higher
form Proca equation was studied in the general framework of conformal geometry by
Gover, Latini and Waldron [36]. The Klein–Gordon and Dirac equation on asymp-
totically AdS black hole spacetimes are the subject of many recent developments,
including [17,33,45,49,51,87].
Quantum fields Quantum field theory on AdS spacetime was studied by Avis, Isham
and Storey [1], who based their analysis on exact formulae for solutions (and bi-
solutions) of the Klein–Gordon equation in terms of hypergeometric functions. This
approachwas further developed in a rigorous language byBros, Epstein andMoschella
in [8].

The widespread interest in the foundations and the consequences of the AdS/CFT
correspondence [63] raised questions on how the AdS/CFT duality can be transferred
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to the ground of quantum fields, and what are its manifestations on the level of observ-
ables. This was clarified by the works of Rehren [71,72] (who proposed what is now
known as Rehren duality, cf. [73,74] for generalizations to asymptotically AdS space-
times) and Dütsch and Rehren [20–22], and was further studied by Kay and Larkin
[56] and Kay and Ortíz [58]. We also refer to the recent work of Zahn [88] for a holo-
graphic prescription with features similar to the field-theoretical AdS/CFT, though in
a different setting.

Wald [85] and Ishibashi and Wald [52,53] laid ground for the construction of
quantum fields on static asymptotically AdS by studying the classical static dynamics
and clarifying the rôle of different boundary conditions, though the full analysis was
only performed onAdS. Useful related results for the Poincaré patch of AdS, including
Strichartz estimates, were obtained by Bachelot [3] (cf. [5] for a more refined analysis
focused on de Sitter branes).

Advances on globally hyperbolic spacetimes based on the Hadamard condition
(in particular its applications in renormalization) have triggered studies of the local
behavior of two-point functions onAdS and other non-globally hyperbolic spacetimes,
using the Hadamard parametrix as main ingredient [12,16,55,61]. So far, however, no
‘microlocal’ proposal in the spirit of Radzikowski’s fundamental work [69] has been
made (though formal computations involving a wave front set condition are already
present inMorrison’swork onAdS [68]), and it is unclear how to incorporate non-static
spacetimes or holography in present local approaches.

1.2 Setup

The point of view adopted in the present paper is that while on a globally hyperbolic
spacetime, singularities of solutions of the Klein–Gordon equation (and hence of two-
point functions) are naturally describedusing thewave front set, on asymptoticallyAdS
spacetimes it is useful to use the b-wave front set, as motivated by Vasy’s propagation
of singularities theorem [82].

Let us first introduce the setup very briefly. An asymptotically AdS spacetime is a
manifold X with boundary (denoted ∂X ) equipped with a Lorentzian metric g, which
near ∂X is of the form

g = −dx2 + h

x2

for some symmetric two-tensor h with Lorentzian restriction to ∂X (see Definition 2.1
for the precise formulation). We consider the Klein–Gordon operator on (X, g),

P ··= �g + ν2 − (n−1)2
4 ,

where n ≥ 2 is the dimension of X , and we assume ν > 0 (this is the so-called
Breitenlohner–Freedman bound [11]).

One of the outcomes of [82] is the existence of Dirichlet retarded and advanced
propagators P−1± , i.e., inverses of P that solve Pu = f and u�∂X= 0 for u and f
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vanishing at, respectively, past and future infinity.We show that there is a natural space
of solutions denoted by Sol1,∞0,b (P), which in view of mapping properties of P−1± can
be characterized as the range of the following isomorphism:

P−1+ − P−1− : H−1,∞0,b,c (X)

PH1,∞
0,b,c(X)

−→ Sol1,∞0,b (P).

Here, H1,∞
0,b,c(X) (resp. H−1,∞0,b,c (X)) is the space of compactly supported distributions,

conormal with respect to the zero-Sobolev space H1
0 (X) (resp. to H−10 (X), the dual

of H1
0 (X)). These spaces are defined in (2.4), for the moment we only state their

most essential features: elements of H1,∞
0,b,c(X) are smooth in the interior X◦, belong

to L2(X, g), and possess extra regularity with respect to vector fields tangent to the
boundary (that is, ‘conormal regularity’ or ‘b-regularity’, as opposed to ‘smooth reg-
ularity’ relative to all vector fields); furthermore the ‘c’ subscript indicates that the
support is contained in a compact time interval.

Solutions in Sol1,∞0,b (P) are locally in H1,∞
0,b,c(X), and for that reason we regard them

as being ‘maximally regular’. More generally, if u is a distribution (and if it belongs
to the dual of H−1,∞0,b,c (X)), one introduces a set WF1,∞b (u) (the b-wave front set of u)

which indicateswheremicrolocallyu fails to be in H1,∞
0,b,c(X). Vasy’s theoremdescribes

then the propagation of WF1,∞b (u) given some information about b-regularity of Pu
[82]. Though in the interior of X , this locally amounts to Hörmander’s propagation
of singularities theorem, the additional feature is that singularities are reflected upon
reaching the boundary.

1.3 Main results

In this setting, analogieswith the globally hyperbolic case lead us to consider two-point
functions to be pairs of operators Λ± that satisfy:

(i) PΛ± = Λ±P = 0,

(i i) Λ+ −Λ− = i(P−1+ − P−1− ) and Λ± ≥ 0.

We say that Λ± satisfy the holographic Hadamard condition if

WF′b(Λ±) ⊂ Ṅ± × Ṅ±, (1.1)

where WF′b is an operatorial version of the b-wave front set (which is defined in
Sect. 5.1, and which is different from the operatorial b-wave front set often con-
sidered in the literature on b-calculus, although closely related), and Ṅ± are the
positive/negative energy components of the compressed bicharacteristic set Ṅ of P .
To explain it very briefly, let us first denote by g̃ the ‘desingularized’ conformally
rescaled metric x2g. The compressed bicharacteristic set Ṅ is obtained from the
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characteristic setN of �g̃ by identifying covectors with the same tangential momen-
tum but different normal momenta at ∂X . Thus, condition (1.1) is practically the same
as the Hadamard condition on globally hyperbolic spacetimes (in the formulation of
[42,78], which is equivalent to Radzikowski’s original one [69]), with the main differ-
ence being the possibility that singularities are reflected at the horizon. Indeedwe show
that (1.1) implies a more specific form of WF′b(Λ±) that captures this phenomenon.

Our main result can be stated as follows.

Theorem 1.1 (See Theorem 5.11 and Proposition 5.13) Two-point functions Λ± sat-
isfying the holographic Hadamard condition (1.1) exist and are unique modulo terms
whose Schwartz kernel is smooth in the interior X◦.

The existence is proved using an adaptation of the deformation argument of Fulling,
Narcowich and Wald [26], originally proposed for globally hyperbolic spacetimes.

Using Vasy’s propagation of singularity theorem, we also prove an analogue of
Duistermaat and Hörmander’s theorem [19] on distinguished parametrices (strictly
speaking formulated here in terms of inverses) in the present setting. Namely, we show
that there are four inverses of P which are uniquely determined modulo regularizing
terms (in the sense of b-regularity) by their primed b-wave front sets, see Theorem 5.12
for the full statement.

The crucial ingredient underpinning these results and Vasy’s work is Melrose’s b-
calculus [64,65], see “Appendix A.1” for a brief introduction. It is worth mentioning
that this formalism has been successfully applied to General Relativity and plays
an important rôle in the recently announced resolution of the Kerr-de Sitter stability
conjecture byHintz andVasy [46]. It was also recently applied toQuantumfield theory
(on asymptotically Minkowski spacetimes) [34,83,84], though in the present work it
is used in a different way.

In our terminology, the word holographic refers to additional features of two-point
functions satisfying (1.1). To explain this, let us first recall some basic aspects of the
field theoretical AdS–CFT correspondence (see [71] for a more detailed introduction),
here in the more general setup of asymptotically AdS spacetimes. A brief inspection
of the equation Pu = 0 leads one to expect that the solutions are of the form

u = xν+v+ + xν−v−, ν± = n − 1

2
± ν, (1.2)

with v− = 0 in our case since Dirichlet boundary conditions are imposed. Extend-
ing an argument due to Vasy [81,82] we show (1.2) to be true for u conormal
in x with values in distributions on ∂X , and moreover, we show that this implies
v+ ∈ C∞([0, ε)x ;D′(∂X)). This means in particular that the weighted restriction

∂+u = (x−ν+u)�∂X

is well defined. Since x−ν+u = v+ is smooth in the direction normal to the boundary,
the information about conormal regularity of u given by WF1,∞b (u) can be used to
estimate the (usual, ‘smooth’) wave front set of ∂+u.
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The field-theoretical AdS–CFT correspondence sets to promote the operation ∂+
to the level of quantum fields, and thus in terms of two-point functions, the relevant
object to study is ∂+Λ±∂∗+. We prove:

Theorem 1.2 (See Theorem 5.16) If Λ± are two-point functions satisfying the holo-
graphic Hadamard condition (1.1), then WF′(∂+Λ±∂∗+) ⊂ ±(Γ × Γ ) for some
Γ ⊂ T ∗∂X\o with Γ ∩ −Γ = ∅ (where the minus sign means multiplication by
−1 in the covariables). Furthermore, if Λ̃± is another such pair of two-point func-
tions, then ∂+(Λ̃± −Λ±)∂∗+ have smooth Schwartz kernel.

Using the terminology of generalized free fields on curved spacetimes introduced
in [75], Λ± induce boundary-to-boundary two-point functions ∂+Λ±∂∗+ that satisfy
the so-called generalized Hadamard condition (see Theorem 5.16 for a more detailed
description of the setΓ in the present case). This is in agreement withwhat one expects
basing on known properties of generalized free fields on the boundary of AdS, see,
e.g., [21].

1.4 Outlook

Themain question that arises from our results is whether the formalism of perturbative
algebraic QFT [9,15,27,47,48] can be adapted to construct interacting theories on
asymptotically AdS spacetimes and to relate them with CFTs on the boundary.

It would also be desirable to have a more direct construction of holographic
Hadamard states, for instance in the spirit of the works [37,39,54].

Another open issue are boundary conditions other that Dirichlet ones: useful hints
are provided by the recent work of Dappiaggi and Ferreira (which considers a local
Hadamard condition in the bulk) [16], as well as the works [4,24,32,41,86] which deal
with classical fields. We conjecture that in the case of Neumann and Robin boundary
conditions, a condition similar to our holographic Hadamard condition (1.1) can be
consistently formulated, with similar consequences for holography, though it is likely
that this will have to involve conormality with respect to a different space than the one
considered here (i.e., the zero-Sobolev space H1

0 (X), see the main part of the text);
some advances along those lines can be found in [32].

1.5 Plan of the paper

In Sect. 2 we introduce the geometrical setup and we recall results due to Vasy which
are essential to our analysis.

In Sect. 3 we construct the symplectic space of conormal solutions of the Klein–
Gordon equationwithDirichlet boundary conditions andprove several auxiliary results
on holography.

Section 4 discusses the particular case of static asymptotically AdS spacetimes,
in which case the classical evolution of P is shown to be directly related to a model
equation of the form ∂2t + A, with A a (positive) self-adjoint operator on a Hilbert
space.
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In Sect. 5 we introduce the operatorial b-wave front set WF′b and discuss its basic
properties. We then define two-point functions in the present setting and introduce the
holographic Hadamard condition. We prove the existence by reduction to the static
case using a deformation argument. We then give an analogue of Duistermaat and
Hörmander’s theorem, as outlined in the introduction, and study weighted restrictions
of holographic Hadamard two-point functions.

Appendix A.1 contains a brief introduction to the calculus of b-pseudodifferential
operators used throughout the paper.

2 The Klein–Gordon equation on asymptotically AdS spacetimes

2.1 Notation

If X is a smooth manifold with boundary ∂X , we denote by X◦ its interior. We denote
by C∞(X) the space of smooth functions on X (in the sense of extendability across
the boundary). The space of smooth functions vanishing with all derivatives at the
boundary ∂X are denoted by Ċ∞(X), and their dual by C−∞(X). Their compactly
supported counterparts are denoted, respectively, by C∞c (X), Ċ∞c (X), C−∞c (X).

On the boundaryless manifold ∂X we use the conventional notationD′(∂X) for the
space of distributions and E ′(∂X) for compactly supported ones.

The signature of Lorentzian metrics is taken to be (+,−, . . . ,−). Furthermore, we
adopt the convention that sesquilinear forms (·|·) are linear in the second argument.

2.2 Asymptotically AdS spacetimes

The spacetime of interest is modeled by an n-dimensional (n ≥ 2) smooth manifold
X with boundary ∂X (also called in this context the horizon), and its interior X◦ is
equipped with a Lorentzian metric g. Let x be a boundary-defining function of ∂X .
We recall at this point that given x , there existsW ⊇ ∂X , ε > 0 and a diffeomorphism
φ : [0, ε)×∂X → W such that x ◦φ agrees with the projection to the first component
of [0, ε) × ∂X . We always assume that such φ is already given and drop it in the
notation subsequently.

We employ Vasy’s definition of asymptotically AdS spacetimes [82]:

Definition 2.1 (X, g) is called an asymptotically anti-de Sitter (AdS) spacetime if
near ∂X , the metric g is of the form

g = −dx2 + h

x2
, (2.1)

with h ∈ C∞(X;Sym2T ∗X) such that with respect to some product decomposition
X = ∂X × [0, ε)x near ∂X , the restriction h�∂X is a section of T ∗∂X ⊗ T ∗∂X and is
a Lorentzian metric on ∂X .

We refer the interested reader to [32, Def. 6, Lem. 2.3] for a discussion of suf-
ficient conditions that give a metric of the form (2.1), cf. [14] for remarks on how
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asymptotically AdS spacetimes fit into the general framework of conformal geometry.
We remark that in the literature, often more restrictive definitions are considered, see,
e.g., [24,43,86].

We denote by g̃ the conformally related metric

g̃ ··= x2g,

and so g̃ = −dx2+h near ∂X . Definition 2.1 implies that ∂X is time-like with respect
to g̃, meaning that the dual metric g̃−1 of g̃ is negative definite on N∗∂X , the conormal
bundle of ∂X in X (or put differently, g̃−1(dx, dx) < 0 at ∂X ).

2.2.1 Universal cover of AdS

The basic example of an asymptotically AdS spacetime is the universal cover
(XAdS, gAdS) of anti-de Sitter space (the universal cover is needed to rule out closed
time-like curves, which would spoil the global results we are interested in, see,
e.g., [1,82]). Its interior X◦AdS is modeled by R× R

n−1 and the metric there is given
by

gAdS = (1+ r2)dt2 − (1+ r2)−1dr2 − r2dω2,

expressed here in coordinates (t, r, ω) (commonly simply referred to as ‘AdS spherical
coordinates’), valid away from r = 0, where ω are the standard coordinates on the
sphere. The change of coordinates x = r−1 allows one to compactify R

n−1 to a ball
B
n−1 and to include a boundary, ∂XAdS = {x = 0}, so that XAdS = Rt × Bn−1. This

way, a collar neighborhood of ∂XAdS can be identified with Rt × [0, 1)x × S
n−2
ω , and

the metric becomes

gAdS = (1+ x2)dt2 − (1+ x2)−1dx2 − dω2

x2

in that neighborhood, which is of the form required in Definition 2.1.

2.3 Klein–Gordon equation and b-geometry

Our main object of interest will be the Klein–Gordon operator1

P ··= �g + ν2 − (n−1)2
4 , ν > 0.

on an asymptotically AdS spacetime (X, g). In what follows we recall the notions
needed for the geometrical description of the propagation of the singularities of its
solutions. Recall that in the interior X◦, the bicharacteristics of P are the integral

1 Recall the convention (+,−, . . . ,−) for the Lorentzian signature. Throughout the paper, �g =
1√|g| ∂μ(

√|g|gμν∂ν).
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curves of the Hamilton vector field Hp of the principal symbol p restricted to the
characteristic setN = p−1({0}), see, e.g., [44]. As g̃ is conformally related to g, one
can equally well use the principal symbol p̃ of �g̃ to define the characteristic set N
and the bicharacteristics. Since g̃ is smooth down to the boundary, it makes thus sense
to redefine

N = p̃−1({0}) ⊂ T ∗X.

Turning our attention to issues arising at the boundary, we adopt the point of view
that the propagation of singularities of solutions of P is best described as taking place
in the b-cotangent bundle, as advocated by Melrose and worked out in the present
setting by Vasy. We briefly recall the relevant definitions, working in local coordinates
(x, y) = (x, y1, . . . , yn1) on X , where x is as usual a boundary-defining function of
∂X . The starting point is the observation that smooth vector fields that are tangent to
the boundary are in the C∞(X)-span of x∂x and ∂yi , i = 1, . . . , n−1, and thus can be
viewed as smooth sections of a vector bundle, denoted bT X . The b-cotangent bundle,
bT ∗X , is then defined as the dual bundle of bT X . This way, smooth sections of bT ∗X
are in the C∞(X)-span of dx

x and dyi , i = 1, . . . , n − 1.
IfU ⊂ X we denote by T ∗U X , bT ∗U X the restriction overU of the respective bundles.
Writing ξ, ζ for the covariables relative to x, y, there is a natural map � : T ∗X →

bT ∗X which in our coordinates is given by

�(x, y, ξ, ζ ) = (x, y, xξ, ζ ). (2.2)

Away from ∂X , � is a diffeomorphism that allows one to identify T ∗X◦X with bT ∗X◦X .
On the other hand, over ∂X the map � is no longer one-to-one; it defines, however,
a useful embedding of T ∗∂X into bT ∗∂X X .

The compressed characteristic set of P is

Ṅ ··= �(N ) ⊂ bT ∗X.

We use Vasy’s definition of generalized broken bicharacteristics, which is primarily
based on earlier work by Lebeau [62].

Definition 2.2 A generalized broken bicharacteristic of P (or, in short, a GBB) is a
continuous map γ : I → Ṅ defined on an interval I ⊂ R, satisfying:

lim inf
s→s0

( f ◦ γ )(s)− ( f ◦ γ )(s0)

s − s0
≥ inf

{
Hp̃(�

∗ f )(q) : q ∈ �−1(γ (s0)) ∩N }

(2.3)
for all f ∈ C∞(bT ∗X).

Over the interior X◦, � is one-to-one and thus Definition 2.2 means that in X◦,
γ is made of integral curves of the Hamilton vector field of p. In the general case,
Definition 2.2 accounts for the possibility that f ◦γ is not differentiable,which happens
as a consequence of � not being one-to-one.
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Crucially, let us stress that in Definition 2.2, γ is required to be continuous as a
map I → bT ∗X (thus, ‘in xξ ’ rather than ‘in ξ ’) and so the normal momentum is
allowed to jump. In other words, GBBs can be reflected at the boundary. We refer to
[79,80,82] for a more detailed description of GBBs, cf. [67] for the more intricate
setup of edge manifolds.

2.4 Conormal regularity

One of the essential features in Vasy’s approach to the Klein–Gordon equation on AdS
is the interplay between the class of b-differential operators Diffb(X), defined as the
algebra generated by smooth vector fields tangent to the boundary, and the algebra of
0-differential operators Diff0(X), generated by smooth vector fields vanishing on the
boundary. Using local coordinates (x, y) near ∂X , the former, Diffb(X), is C∞(X)-
generated by x∂x and ∂yi , i = 1, . . . , n. It is essential for studying conormal regularity.
On the other hand, Diff0(X) is C∞(X)-generated by x∂x and x∂yi ; this ‘degenerate’
subclass of Diffb(X) arises naturally as we have P ∈ Diff0(X) in the present setup.

We denote by (·|·)L2 the inner product of L2(X) = L2(X, g). Sometimes we
will also use the L2(X, g̃) inner product for the rescaled metric g̃ = x2g; note the
relation L2(X) = x

n
2 L2(X, g̃). Recall that if Q ∈ Diff(X) then its formal adjoint

Q∗ ∈ Diff(X) is defined by (φ1|Qφ2)L2 = (Q∗φ1|φ2)L2 for all φ1, φ2 ∈ Ċ∞c (X).
One important property of b-differential operators is that if Q ∈ Diffb(X) then the
identity (φ1|Qφ2)L2 = (Q∗φ1|φ2)L2 extends to all φ1, φ2 ∈ C∞c (X), i.e., there are no
boundary terms.

We will work in the setting of Sobolev spaces Hk,s
0,b (X), which distinguish between

regularity with respect to Diff0(X) and Diffb(X). First, if k is a non-negative integer
k, one defines

Hk
0 (X) = {

u ∈ C−∞(X) : Qu ∈ L2(X) ∀Q ∈ Diffk0(X)
}
,

where the superscript k in Diffk0(X) refers to the differential operator’s order (in the
very usual sense) and we recall that L2(X) is defined using the volume form of g. This
space is topologized using the norm

‖u‖Hk
0
= ‖u‖L2 +

∑

i

‖Qiu‖L2 ,

where {Qi }i=1,...,N is an arbitrarily chosen collection of elements of Diffk0(X) such
that at each point, at least one Qi is elliptic, see [66]. The definition generalizes to
negative integers, e.g., by letting H−k0 (X) be the dual of Hk

0 (X) (relative to the L2(X)

pairing). Then, if s ≥ 0 is an integer, Hk,s
0,b (X) is by definition

Hk,s
0,b (X) = {

u ∈ Hk
0 (X) : Qu ∈ Hk

0 (X) ∀Q ∈ Diffsb(X)
}
, (2.4)

with norm
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‖u‖Hk,s
0,b
= ‖u‖Hk

0
+

∑

i

‖Qiu‖Hk
0
,

where {Qi }i=1,...,N is an arbitrarily chosen collection of elements of Diffsb(X) such
that at each point, at least one Qi is elliptic (see “Appendix A.1”). The definition can
be extended to negative integers in such way that H−k,−s0,b (X) is the dual space of

Hk,s
0,b (X). We remark here that in the interior, say for compact K ⊂ X◦, Hk,s

0,b (K ) is

just Hk+s(K ), whereas at the boundary, Hk,s
0,b (X) distinguishes between ‘0-regularity’

and ‘b-regularity’.
One denotes by Hk,s

0,b,c(X) the subspace of compactly supported elements of

Hk,s
0,b (X), and by Hk,s

0,b,loc(X) the space of all u ∈ C−∞(X) such that χu ∈ Hk,s
0,b (X)

for all χ ∈ C∞c (X). The spaces Hk,s
0,b,c(X) and Hk,s

0,b,loc(X) are topologized in the usual

way. Namely, Hk,s
0,b,c(X) is equipped with the strongest locally convex topology such

that for all compact K ⊂ X , the embedding of Hk,s
0,b (K ) (the space of all u ∈ Hk,s

0,b (X)

supported in K ) into Hk,s
0,b,c(X) is continuous. Furthermore, the topology of Hk,s

0,b,loc(X)

is given by the seminorms ‖u‖Hk,s
0,b ,χ

= ‖χu‖Hk,s
0,b
, where χ runs over C∞c (X). The

important feature of these topologies is that a map

Λ : Hk1,s1
0,b,c (X) → Hk2,s2

0,b,loc(X)

is continuous if and only if χΛ : Hk1,s1
0,b (K ) → Hk2,s2

0,b (X) is continuous for all

K ⊂ X compact and χ ∈ C∞c (X), where χΛ acts on Hk1,s1
0,b,c (K ) via the embedding

of Hk1,s1
0,b (K ) in Hk1,s1

0,b,c (X).
Finally, we let

Hk,∞
0,b (X) ··=⋂

s H
k,s
0,b (X), Hk,−∞

0,b (X) ··=⋃
s H

k,s
0,b (X),

equipped with their canonical Fréchet space topologies, and similarly as before we
define the spaces Hk,±∞

0,b,c (X), Hk,±∞
0,b,loc(X) correspondingly.

2.5 Retarded/advanced problem and propagation of singularities theorems

Let us recall that our main object of interest is the Klein–Gordon operator

P = �g + ν2 − (n−1)2
4 , ν > 0,

on an asymptotically AdS spacetime (X, g), with Dirichlet boundary conditions at
∂X . The assumption ν > 0 will be made throughout the whole paper.

In what follows we recall results due to Vasy [82] which will be the starting point
in our analysis.

Let us denote by π : bT ∗X → X the bundle projection. Following [82], we make
the following two global assumptions:
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(TF) there exists t ∈ C∞(X) such that for every GBB γ , t ◦ π ◦ γ : R× R is either
strictly increasing or strictly decreasing and has range R;

(PT) topologically, X = Rt ×Σ for some compact manifold Σ with boundary.

From (PT) it follows that the map t : X → R is proper, which is the condition
assumed originally in [82]. We remark that the universal cover of AdS satisfies the
two conditions (TF), (PT).

Theorem 2.3 ([82, Thm. 1.6]) Assume the two hypotheses (TF) and (PT). Let t0, s ∈
R, s′ ≤ s. Suppose

f ∈ H−1,s+10,b,loc (X), supp f ⊂ {t ≥ t0}. (2.5)

Then there exists a unique u ∈ H1,s′
0,b,loc(X) that solves the retarded problem

Pu = f, supp u ⊂ {t ≥ t0}. (2.6)

Furthermore, u is in fact in H1,s
0,b,loc(X), and for all compact K ⊂ X there exists a

compact K ′ ⊂ X and a constant C > 0 such that

‖u‖H1,s
0,b (K )

≤ C‖ f ‖H−1,s+10,b (K ′).

The analogous statement for the advanced problem holds true as well.
Note that in Theorem 2.3, the Dirichlet boundary conditions are implicitly assumed

via the choice of function spaces (this essentially amounts to Ċ∞(X) being dense in
H−1,∞0,b,loc(X), and can be seen more explicitly by considering asymptotics of solutions;
see [82] or Sect. 3 for more details).

We will also need microlocal elliptic regularity and propagation of singularities
theorems, with singularities being characterized by the b-wave front set relative to
Hk
0 (X). To define the latter one needs pseudodifferential operator classesΨ s

b (X) (more
precisely, ‘classical’ ones) that generalize the b-differential operatorsDiffsb(X)of order
s. These are introduced in “Appendix A.1”. Here, without going into details, we just
recall that any A ∈ Ψ s

b (X) has a principal symbol σb,s(A), which is a function on
bT ∗X\o. Now if k is an integer2 and u ∈ Hk,−∞

0,b (X), one says that q ∈ bT ∗X\o is

not in WFk,∞b (u) if there exists A ∈ Ψ 0
b (X) such that σb,s(A) is invertible at q and

Au ∈ Hk,∞
0,b,loc(X). With this definition, in the interior of X , WFk,∞b (u) is just the usual

wave front set, i.e.,

WFk,∞b (u) ∩ T ∗X◦ =WF(u)

using the embedding of T ∗X◦ in T ∗X◦X , which is in turn identified with bT ∗X◦X . Gen-
erally over X , WFk,∞b (u) contains information about where microlocally u is not
conormal (with respect to Hk

0 (X)).
Vasy’s propagation of singularities result can be stated as follows (note that it uses

neither the (TF) hypothesis nor (PT)).

2 All relevant definitions can be easily extended to non-integer k, though.
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Theorem 2.4 ([82, Thm. 1.5]) Suppose u ∈ H1,k
0,b,loc(X) for some k ∈ R. Then

WF1,∞b (u)\Ṅ ⊂WF−1,∞b (Pu).

Moreover, the set

(
WF1,∞b (u) ∩ Ṅ )\WF−1,∞b (Pu)

is a union of maximally extendedGBBs in Ṅ \WF−1,∞b (Pu). In particular, if Pu = 0

then WF1,∞b (u) ⊂ Ṅ is a union of maximally extended GBBs.

Thus, singularities of solutions of Pu = 0 propagate along GBBs; in particular
they are reflected at the horizon.

3 Symplectic space of solutions and holography

3.1 Symplectic space of solutions

Let us denote by Hk,∞
0,b,±(X) the space of future/past supported elements of Hk,∞

0,b,loc(X),
i.e.,

Hk,∞
0,b,±(X) = {

u ∈ Hk,∞
0,b,loc(X) : supp u ⊂ {±t ≥ ±t0} for some t0 ∈ R

}
. (3.1)

Observe that by hypothesis (PT) and the above definition, the intersection of those
spaces satisfies

Hk,∞
0,b,+(X) ∩ Hk,∞

0,b,−(X) ⊂ Hk,∞
0,b,c(X), (3.2)

where we recall that the additional subscript in Hk,∞
0,b,c(X) refers to the support being

compact (note that in the present setup this means support in a compact time interval).
Theorem 2.3 entails the existence of Dirichlet retarded/advanced propagators,

denoted, respectively, P−1± , which we consider in the present context to be the unique
operators

P−1± : H−1,∞0,b,± (X) → H1,∞
0,b,±(X) (3.3)

that satisfy
PP−1± = 1 on H−1,∞0,b,± (X),

P−1± P = 1 on H1,∞
0,b,±(X).

(3.4)

Continuity properties of P−1± can be read off from the exact statement of Theorem 2.3,
which also implies that P−1± extends uniquely to a map

P−1± : H−1,−∞0,b,± (X) → H1,−∞
0,b,± (X),

where Hk,−∞
0,b,± (X) is defined in analogy to (3.1) with −∞ instead of +∞.
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The difference of the two propagators,

G ··= P−1+ − P−1− : H−1,∞0,b,c (X) → H1,∞
0,b,loc(X), (3.5)

will be called the (Dirichlet) causal propagator, in agreement with the terminology
commonly used on globally hyperbolic spacetimes (one also uses the name Pauli-
Jordan or commutator function). A natural space of solutions is given by

Sol1,∞0,b (P) ··= {u ∈ H1,∞
0,b,loc(X) : Pu = 0}.

We show that this space can be obtained as the range of G on a suitable space, and
moreover, G can be used to construct a ‘symplectic form’ on Sol1,∞0,b (P).

Proposition 3.1 The causal propagator (3.5) induces a bijection

[G] : H−1,∞0,b,c (X)

PH1,∞
0,b,c(X)

−→ Sol1,∞0,b (P). (3.6)

Moreover, i(·|G·)L2 induces a non-degenerate Hermitian form on the quotient space
H−1,∞0,b,c (X)/PH1,∞

0,b,c(X).

Proof To prove that (3.6) is well defined, one needs to check that GH−1,∞0,b,c (X) ⊂
Sol1,∞0,b (P) and that GP = 0 on H−1,∞0,b,c (X); both properties follow directly from the
relevant definitions.

Injectivity of (3.6) means that if f ∈ H−1,∞0,b,c (X) and G f = 0, then f = Pu for

some u ∈ H1,∞
0,b,c(X). Indeed, if we set u = P−1+ f , then u ∈ H1,∞

0,b,+(X) and Pu = f .

Since G f = 0, u can also be written as u = P−1− f ∈ H1,∞
0,b,−(X), and so belongs to

H1,∞
0,b,−(X) ∩ H1,∞

0,b,+(X). In view of (3.2), u ∈ H1,∞
0,b,c(X) as requested.

We now turn our attention to surjectivity of (3.6). Let χ± ∈ C∞(X) ∩ H1,∞
0,b,±(X)

(that is, χ± is a future/past supported smooth function) such that χ+ + χ− = 1. Then
any u ∈ Sol1,∞0,b (P) can be written as

u = χ+u + χ−u = P−1+ Pχ+u + P−1− Pχ−u
= P−1+ Pχ+u + P−1− P(1− χ+)u

= P−1+ Pχ+u − P−1− Pχ+u = GPχ+u. (3.7)

Since Pχ+u = −Pχ−u ∈ H1,∞
0,b,−(X) ∩ H1,∞

0,b,+(X) ⊂ H1,∞
0,b,c(X), the computation

above shows that u = Gw for some w ∈ H1,∞
0,b,c(X); this gives surjectivity of [G].

For the last claim, we need to show that (P−1+ )∗ = P−1− as sesquilinear forms

on H−1,∞0,b,c (X) (well-definiteness of the sesquilinear form induced by G and its non-

degeneracy are then easy to conclude). If f, h ∈ H−1,∞0,b,c (X), we have

( f |P−1+ h)L2 = (PP−1− f |P−1+ h)L2 = (P−1− f |PP−1+ h)L2 = (P−1− f |h)L2 ,
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where in the second equality we have used that P is formally self-adjoint, belongs to
Diffb(X) (so there are no terms supported in ∂X ), and supp P−1− f ∩ supp P−1+ h is
compact. This proves the assertion. ��

We have shown in (3.7) that if χ ∈ C∞(X) is future supported and 1 − χ is past
supported, then

G[P, χ ] = 1 on Sol1,∞0,b (X). (3.8)

For any t1 �= t2, if we choose χ that equals 1 in a neighborhood of [t2,∞) and 0 in a
neighborhood of (−∞, t1], then [P, χ ] vanishes on a neighborhood ofR\[t1, t2]. This
means that in the isomorphism (3.6) we can replace H−1,∞0,b,c (X) by H−1,∞0,b,[t1,t2](X), the

space of all f ∈ H−1,∞0,b,c (X) supported in the region of X in which t ∈ [t1, t2]. In
consequence, one obtains from (3.8) and Proposition 3.1 the time-slice property (or
time-slice axiom), which can be formulated as follows.

Proposition 3.2 The inclusion map ıt1,t2 : H−1,∞0,b,[t1,t2](X) → H−1,∞0,b,c (X) induces an
isomorphism

[ıt1,t2 ] :
H−1,∞0,b,[t1,t2](X)

PH1,∞
0,b,c(X) ∩ H−1,∞0,b,[t1,t2](X)

−→ H−1,∞0,b,c (X)

PH1,∞
0,b,c(X)

.

In other words, each equivalence class in the quotient space H−1,∞0,b,c /PH1,∞
0,b,c has

a representative that is supported in [t1, t2]. The field-theoretical interpretation of this
is that the full content of the classical field theory can be recovered from data in an
arbitrarily small time interval [t1, t2].

We note that the inverse of [ıt1,t2 ] is given by [ı−1t1,t2 ], where

ı−1t1,t2 f = [P, χ ]G f = f + ([P, χ ]G f − f ).

Indeed, ı−1t1,t2 f has the required support properties as [P, χ ]vanishes on aneighborhood
of R\[t1, t2], and v = [P, χ ]G f − f satisfies Gv = 0 and so belongs to PH1,∞

0,b,c(X).

Remark 3.3 One can view Proposition 3.1 as the construction of the classical
(non-interacting, scalar) field theory on (X, g) associated with Dirichlet boundary
conditions. We stress that although on globally hyperbolic spacetimes the standard
construction proceeds by considering the space of space-compact solutions of the
Klein–Gordon equation (i.e., those with compact intersection with a Cauchy surface,
see, e.g., [7]), in the asymptotically AdS case this is no longer a sensible choice as
solutions with initial data supported away from the boundary can reach ∂X neverthe-
less.

3.2 Boundary data and holography

We will now be interested in what happens close to the boundary, and so, for the sake
of simplicity of notation we will work on [0, ε)x × ∂X .
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Let ν± = n−1
2 ± ν be the two indicial roots of P . We assume as in the rest of the

paper ν > 0. On the other hand, the conditions (TF) and (PT) are unessential for the
results in this subsection.

We will give a distributional version of Vasy’s result on asymptotics of (approxi-
mate) solutions close to the boundary [82, Prop. 8.10]. The proof is fully analogous
to the smooth case considered in [81,82] (cf. [38] for related results in the broad
framework of conformally compact manifolds); we repeat it, however, for the reader’s
convenience. We start by the construction of approximate solutions from holographic
data.

Lemma 3.4 Suppose w ∈ C∞([0, ε)x ;D′(∂X)) and

Pxαw ∈ xα+kC∞([0, ε)x ;D′(∂X)) (3.9)

for some k ∈ N0, α > ν+ − k. Then there exists v ∈ C∞([0, ε)x ;D′(∂X)) such that

Pxαv ∈ Ċ∞([0, ε)x ;D′(∂X)), v − w ∈ xkC∞([0, ε)x ;D′(∂X)). (3.10)

Moreover, if xαw ∈ H1,∞
0,b,loc(X), then we can find v as above such that xαv ∈

H1,∞
0,b,loc(X).
The assertions above remain true if D′(∂X) is replaced by C∞(∂X).

Proof The crucial property of P that we use is that it can be written as

P = Q1 + xQ2, Q1 = (−x∂x + n − 1)x∂x + ν2 − (n−1)2
4 , Q2 ∈ Diff2b(X).

One concludes that P acting on distributions of the form xαw gives

Pxαw = cαx
αw + xα+1Q3,αw, Q3,α ∈ Diff2(X), (3.11)

where cα = α(n − 1)− α2 + ν2 − (n−1)2
4 . In particular if α = ν+ then cν+ = 0 and

(3.11) simplifies to
Pxν+w = xν++1Q3,ν+w. (3.12)

The identities (3.11–3.12) imply that if (3.9) holds true, then we can correct w by
a term xkwk ∈ xkC∞([0, ε)x ;D′(∂X)) to have

Pxα(w + xkwk) ∈ xα+k+1C∞([0, ε)x ;D′(∂X)),

namely, we set wk = −c−1α+k x−α−k Pxαw. By repeating this step for k+ 1, k+ 2, . . .
and using Borel summation, we obtain v satisfying (3.10). Moreover, if xα belongs to
H1,∞
0,b,loc(X), then by construction all the terms xα+kwk belong to H1,∞

0,b,loc(X).
The C∞(∂X) case is proved analogously. ��

Proposition 3.5 Given any w0 ∈ D′(∂X), there exists u of the form

u = xν+v, v ∈ C∞([0, ε)x ;D′(∂X)), (3.13)
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The holographic Hadamard condition on asymptotically… 2307

such that v�∂X= w0 and Pu ∈ Ċ∞([0, ε)x ;D′(∂X)). The same is true with D′(∂X)

replaced by C∞(∂X).

Proof We abbreviate C∞([0, ε)x ;D′(∂X)), respectively, C∞(X), by C∞. We observe
that

Pxν+(1x ⊗ w0) ∈ xν++1C∞

in view of (3.12). Thus, we can apply Lemma 3.4 to xν+w0 starting from k = 1, which
produces u = xν+v with the requested properties. ��

To get a converse statement, we first need another auxiliary lemma (also analogous
to [82]).

Lemma 3.6 Suppose u ∈ x�H0,s
0,b,loc(X) and Q1u = f with f ∈ x�+1H0,s−2

0,b,loc(X) for
some s ∈ R, � > −ν. If ν+ /∈ (�, �+ 1], then

u ∈ x�+1H0,s−2
0,b,loc(X).

Otherwise, u = xν+w0 + u0 with u0 ∈ x�+1H0,s−2
0,b,loc(X) and w0 ∈ Hs−2

loc (∂X), and
the map

x�H0,s
0,b,loc(X) � u �→ w0 ∈ Hs−2

loc (∂X) (3.14)

is continuous (where x�H0,s
0,b,loc(X) is topologized in the naturalway using the topology

of H0,s
0,b,loc(X)).

Proof Recall that Q1 = (−x∂x + n − 1)x∂x + ν+ν− ∈ Diff2b(X), which is actually
an ordinary differential operator in the x variable. The equation Q1u = f can be
reformulated as

u =M−1
� q(σ )−1M� f (3.15)

where q(σ ) = (σ − i(n − 1))σ + ν+ν− and M� is the shifted Mellin transform in
the x variables, i.e.,

(M� f )(σ ) =
∫ ∞

0
x−iσ−� f (x)

dx

x
, (M−1

� v)(x) = 1

2π

∫

�σ=−�

x iσ v(σ )dσ.

The poles of the meromorphic function q(σ )−1 are ν− and ν+, and so q(σ )−1M� f
has a meromorphic continuation with poles at ν−, ν+. By shifting the contour in the
inverse Mellin transform in (3.15), we can replace M−1

� by M−1
�+1, possibly at the

cost of adding residues of the form xν±w0 with w0 ∈ Hs−2
loc (∂X). Terms of the form

xν−w0 are, however, eliminated by the assumption u ∈ x�H0,s
0,b,loc(X), � > −ν. ��

Proposition 3.7 Suppose that u ∈ H0,−∞
0,b,loc(X), resp. u ∈ H0,∞

0,b,loc(X), and

Pu ∈ Ċ∞([0, ε)x ;D′(∂X)), resp. Pu ∈ Ċ∞(X). (3.16)
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Then u is of the form

u = xν+v, v ∈ C∞([0, ε)x ;D′(∂X)),

resp. v ∈ C∞([0, ε)x ; C∞(∂X)). (3.17)

Furthermore, the map u �→ v �∂X is continuous (using the H0,−∞
0,b,loc(X), resp. the

H0,∞
0,b,loc(X) topology for u and the D′(∂X), resp. C∞(∂X) topology for v).

Proof We focus on the H0,−∞
0,b,loc(X) case. Let us first suppose that u ∈ xk H0,∞

0,b,loc(X)

for some k ≥ 0, and that

Pu ∈ Ċ∞([0, ε)x ;D′(∂X)). (3.18)

Let us recall that the differential operator P can be written as

P = Q1 + xQ2, Q1 = (−x∂x + n − 1)x∂x + ν+ν−, Q2 ∈ Diff2b(X),

We have xQ2u ∈ xk+1H0,−∞
0,b,loc(X), which in view of (3.18) implies

Q1u ∈ xk+1H0,−∞
0,b,loc(X).

We use Lemma 3.6, which asserts that if ν+ /∈ (k, k + 1], one has

u ∈ xk+1H0,−∞
0,b,loc(X).

Otherwise, one concludes u = xν+w0 + u0, where

w0 ∈ D′(∂X), u0 ∈ xk+1H0,−∞
0,b,loc(X).

Since by (3.12),

Pxν+w0 ∈ xν++1C∞([0, ε)x ;D′(∂X)),

using Lemma 3.4 we obtain v0 s.t.

w0 − v0 ∈ xC∞([0, ε)x ;D′(∂X)), Pxν+v0 ∈ Ċ∞([0, ε)x ;D′(∂X)).

Thus,

u − xν+v0 ∈ xk+1H0,−∞
0,b,loc(X)+ xν++1C∞([0, ε)x ;D′(∂X)),

⊂ xk+1H0,−∞
0,b,loc(X),

P(u − xν+v0) ∈ Ċ∞([0, ε)x ;D′(∂X)).

Therefore, we can iterate the whole argument and prove this way the existence.
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In view of how v is constructed, the continuity of u �→ w0 = v�∂X is a consequence
of the continuity of the map (3.14). ��

For u ∈ xν+C∞([0, ε)x ;D′(∂X)) we denote

∂+u = (x−ν+u)�∂X , (3.19)

so that on solutions of Pu = 0, ∂+ coincides with the map u �→ v�∂X from Proposi-
tion 3.7.

We are interested in knowing what is the wave front set of ∂+u given information
about the regularity of u.

Lemma 3.8 Let q ∈ T ∗∂X and suppose B ∈ Ψ 0
b (X) is elliptic at �(q) ∈ bT ∗∂X X.

Then there exists B̃0 ∈ Ψ 0(∂X) elliptic at q and such that ∂+B = B̃0∂+ on
xν+C∞([0, ε)x ;D′(∂X)).

Proof Let B̃ = x−ν+Bxν+ . Then B̃ ∈ Ψ 0
b (X) is elliptic at �(q) (in fact, σ0(B̃) =

σ0(B), see “Appendix A.1”). Furthermore,

Bu = Bxν+v = xν+ B̃v.

Since Ψ 0
b (X) preserves C∞([0, ε)x ;D′(∂X)), B̃v ∈ C∞([0, ε)x ;D′(∂X)). A stan-

dard fact on the b-calculus (see, e.g., [64]) says that there exists B̃0 ∈ Ψ 0(∂X) elliptic
at q such that B̃0(w�∂X ) = (B̃w)�∂X . Therefore,

∂+Bu = (B̃v)�∂X= B̃0(v�∂X ) = B̃0∂+u,

which finishes the proof. ��
If Γ ⊂ bT ∗X , we use the short-hand notation Γ �∂X⊂ T ∗∂X for the intersection

Γ ∩ T ∗∂X defined by means of the embedding of T ∗∂X in bT ∗∂X X .

Proposition 3.9 Suppose u ∈ H1,−∞
0,b,loc(X) and Pu = 0. Then

WF(∂+u) ⊂ (WF1,∞b (u))�∂X . (3.20)

Proof Let �(q) ∈ bT ∗∂X and suppose �(q) /∈ WF1,∞b (u), so that there exists

B ∈ Ψ 0
b (X) elliptic at �(q) such that Bu ∈ H1,∞

0,b (X). By Proposition 3.7,

u ∈ xν+C∞([0, ε)x ;D′(∂X)).

Since B preserves xν+C∞([0, ε)x ;D′(∂X)), Bu ∈ xν+C∞([0, ε)x ;D′(∂X)). Thus,

PBu = (Q1 + xQ2)Bu ∈ xν++1C∞([0, ε)x ;D′(∂X)).
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By Lemma 3.4, there exists ũ ∈ H1,∞
0,b (X) ∩ xν+C∞([0, ε)x ;D′(∂X)) such that

Pũ ∈ Ċ∞([0, ε)x ;D′(∂X)), ∂+ũ = ∂+Bu.

Since Pũ also belongs to H−1,∞0,b (X), we have actually Pũ ∈ Ċ∞(X). We can thus
use Proposition 3.7 to conclude that ∂+ũ ∈ C∞(∂X). By Lemma 3.8, there exists B0
elliptic at q and such that ∂+B = B̃0∂+. Thus,

B̃0∂+u = ∂+Bu = ∂+ũ ∈ C∞(∂X).

This shows that q /∈WF(∂+u). ��

4 The static case

4.1 Standard static asymptotically AdS spacetime

In this section, we discuss the special class of static asymptotically AdS spacetimes,
on which it is possible to simplify the analysis of the Klein–Gordon equation by using
arguments from spectral theory.

Recall that in the setting of manifolds without boundary, in any static spacetime
there exist local coordinates (t, wi ) in which the metric g̃ takes the form

g̃ = βdt2 − g̃i jdw
idw j , (4.1)

where t is the Killing flow parameter and β, g̃i j are t-independent smooth coefficients.
In the following definition, the metric is required to be globally of the form (4.1).

Definition 4.1 An n-dimensional standard static spacetime is a Lorentzian manifold
(X◦, g̃) of the form X◦ = R×Σ◦, with Σ◦ a manifold of dimension n− 1, and such
that the metric g̃ is of the form

g̃ = βdt2 − π∗h̃,

where the static time coordinate t : X◦ → R is the canonical projection onto the
first factor, π : X◦ → Σ◦ is the canonical projection onto the second factor, h̃ is a
Riemmanian metric on Σ◦, and β ∈ C∞(Σ◦) satisfies β > 0.

We refer to [77] for a more detailed analysis of standard static spacetimes.
For the sake of brevity, we will drop π∗ in our notation.
We define below a class of asymptotically AdS spacetimes which is a subclass of

stationary ones, considered, e.g., in [32].

Definition 4.2 We say that an asymptotically AdS spacetime (X, g) of dimension n
is standard static if:

(1) X = R×Σ with Σ an n − 1 dimensional compact manifold with boundary,
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The holographic Hadamard condition on asymptotically… 2311

(2) there exists a boundary-defining function x of ∂X as in Definition 2.1 such that,
setting g̃ = x2g, (X◦, g̃) is a standard static spacetime, and moreover, denoting
by t the static time coordinate, ∂t x = 0.

We remark that if (X, g) is standard static then the global assumptions (TF), (PT)

introduced in Sect. 2.5 are automatically satisfied.
Let us discuss further implications of standard staticity. By (2), x2g = −dx2 + h

with h = βdt2 − k, where k ∈ C∞(Σ;Sym2T ∗Σ) and β ∈ C∞(Σ) are smooth
down to the boundary (since h is). Thus, k�∂Σ is a Riemannian metric and one also
concludes immediately that (∂X, h�∂X ) is a standard static Lorentzian spacetime.

Note that x�Σ (the restriction of x to any time slice) defines a boundary-defining
function for ∂Σ .Wewill write x instead of x�Σ whenever there is no risk of confusion.

Proceeding exactly as in [35, Sec. 5] and [32, Sec. 2.1], we can show that near ∂X ,
g is of the form

g = −dx2 + β(x)dt2 − k(x)

x2
, (4.2)

where [0, ε) � x �→ k(x) (resp. β(x)) is a smooth family of Riemannian metrics
(resp. smooth functions) on ∂Σ .

Definition 4.3 One says that (X, g) is even (in the sense of Guillarmou) modulo
O(x3) if near ∂X ,

h(x) = h0 + x2h1 +O(x3) (4.3)

for some metric h0 and some two-tensor h1 on ∂X .

Note that in the standard static setting, if (4.3) holds true then also the Riemannian
manifold (Σ, k) is even modulo O(x3), i.e., near ∂Σ we have

k(x) = k0 + x2k1 +O(x3)

for some metric k0 and two-tensor k1 on ∂Σ .

4.2 Klein–Gordon equation in the static model

Suppose that (X, g) is standard static and even modulo O(x3). Then near ∂X , the
Klein–Gordon operator is of the form

P = (−x∂x + n − 1+ xe(x))x∂x + x2�h + ν2 − (n−1)2
4 ,

where x �→ e(x) is a smooth family of functions such that

e(x) = xe0 +O(x2)

for some e0 ∈ C∞(∂Σ). Following [32] (with the addition of β
1
2 factors), we consider

the operator

P̃ ··= β
1
2 x−

n
2−1Px

n
2−1β

1
2 .
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2312 M. Wrochna

Recall that P is formally self-adjoint with respect to L2(X) = L2(X, g), and so
x− n

2−1Px n
2−1 is formally self-adjoint with respect to L2(X, g̃) = x− n

2 L2(X). The

β
1
2 factors are useful to eliminate the coefficient in front of ∂2t . One gets indeed that

near ∂X ,

P̃ = β
1
2 (−∂2x + (ν2 − 1

4 )x
−2 + (xe0 +O(x2))∂x +�h)β

1
2

= ∂2t + β
1
2
(− ∂2x + (ν2 − 1

4 )x
−2 + (xe0 +O(x2))∂x −�k(x)

)
β

1
2 .

By setting
P̃ =·· ∂2t + A, (4.4)

or more correctly, Av ··= e−itλ(P̃eitλv)�{λ=0} for v ∈ C∞c (Σ◦), we obtain an operator
A acting on C∞c (Σ◦). It is a positive operator in the sense of the inner product of

L2(Σ) ··= L2(Σ, dx2 + k).

For simplicity, in what follows we assume that there exists C > 0 s.t. C ≤ β ≤ C−1
and that A > 0, i.e., A is strictly positive.

Let us consider the Friedrichs extension of A (in the sense of the Hilbert space
L2(Σ)), and denote it by the same letter.

We remark that for ν ≥ 1 one expects A to be essentially self-adjoint on C∞c (Σ◦),
whereas for 0 < ν < 1 several self-adjoint extensions exist, and in both cases the
Friedrichs extension accounts for Dirichlet boundary conditions (see the analysis in
[32], cf. [3,16,53] for the case of exact AdS, and also [85] for a general argument that
explains how the Friedrichs extension corresponds to Dirichlet boundary conditions).
The essential feature of the operator A is the presence of the term−∂2x + (ν2− 1

4 )x
−2,

which has the consequence that many properties of A can be traced back to those of
the Schrödinger operator with an inverse-square potential considered on the half-line
(though here only the behavior close to x = 0 is relevant), see, e.g., [23,59] for recent
results.

The form domain of A (which equals Dom A
1
2 ) is by construction the completion

of C∞c (Σ◦) with respect to the norm

‖v‖2
A

1
2
··= (v|Av)L2(Σ) + (v|v)L2(Σ). (4.5)

Gannot studied in [32] spaces with norms that are equivalent to (4.5). In particular
it follows from [32, Lem. 3.3] (and the subsequent discussion on general manifolds)

that any u supported close to the boundary belongs to Dom A
1
2 iff it belongs to the

‘supported’ Sobolev space Ḣ1(Σ) (defined as the closure of C∞c (Σ◦) with respect to
the H1 norm on Σ).

We consider the energy space Hen = Dom A
1
2 ⊕ L2(Σ) with its norm

‖(u0, u1)‖Hen = ‖A
1
2 u0‖2L2(Σ)

+ ‖u1‖2L2(Σ)
.
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The holographic Hadamard condition on asymptotically… 2313

In this Hilbert space, the operator

H =
(
0 1
A 0

)
, Dom H = Dom A ⊕ Dom A

1
2

is self-adjoint. Using the relation between the two equations (i∂t + H)φ(t) = 0 and
(∂2t + A)u(t) = 0 (namely, φ = (u, i−1∂t u)), one concludes in the standard way the
well-posedness of the Cauchy problem

{
P̃u = 0,

(u, i−1∂t u)�t=t0= (u0, u1)
(4.6)

in u ∈ C0(Rt ;Dom A
1
2 ) ∩ C1(Rt ; L2(Σ)) for any t0 ∈ R and u0 ∈ Dom A

1
2 , u1 ∈

L2(Σ).

Proposition 4.4 Suppose (X, g) is standard static and even modulo O(x3). Sup-
pose there exists C > 0 s.t. C ≤ β ≤ C−1 and that A > 0. Then the Dirichlet
retarded/advanced propagator of P is

P−1± = x
n
2−1β−

1
2 P̃−1± β−

1
2 x−

n
2−1,

where

(P̃−1± f )(t) = ±
∫

R

θ(±(t − s))
sin((t − s)A

1
2 )

A
1
2

f (s)ds, (4.7)

θ being the Heaviside step function.

Proof Let us denote

P̃−1±,Va = x−
n
2+1β

1
2 P−1± β

1
2 x

n
2+1.

We focus on the ‘+’ case, the ‘−’ case being analogous. We want to show that

P̃−1+,Va f − P̃−1+ f = 0 (4.8)

for all f belonging to some dense subspace of x− n
2−1H−1,∞0,b,loc(X), for instance f ∈

Ċ∞c (X). Since we have

P̃(P̃−1+,Va f − P̃−1+ f ) = 0,

and P̃−1+,Va f − P̃−1+ f has vanishing Cauchy data in the past of supp f , we can conclude
(4.8) from the uniqueness of the solution of the Cauchy problem (4.6) provided that
we first check that

P̃−1+,Va f, P̃
−1+ f ∈ C0(Rt ;Dom A

1
2 ) ∩ C1(Rt ; L2(Σ)). (4.9)
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2314 M. Wrochna

Let us show the first assertion. By the mapping properties of the Dirichlet retarded
propagator P−1+ and the uniform boundedness of β and β−1,

P̃−1+,Va f ∈ x−
n
2+1H1,∞

0,b,loc(X).

From the definition of H1,∞
0,b (X) and the relation

x−n/2L2(X) = L2(X, g̃) = L2(Rt ; L2(Σ)) (4.10)

we obtain

x−
n
2+1H1,∞

0,b,loc(X) ⊂ xC∞(Rt ; L2(Σ)) ∩ C∞(Rt ; Ḣ1(Σ)). (4.11)

In view of the result mentioned below (4.5), i.e., the equivalence of Ḣ1(Σ) and

Dom A
1
2 close to the boundary, this yields the first part of (4.9).

The proof of the second assertion in (4.9) is straightforward using (4.7). ��
In the setup of Proposition 4.4, the construction of quantum fields (corresponding

to the ground state for the static dynamics) is standard, see, e.g., [18, Sec. 18.3]. For
later reference we give below a lemma on two-point functions (this terminology is
explained in the next section).

Lemma 4.5 Let (X, g) be as in Proposition 4.4 and suppose A ≥ m21 for some
m > 0. Let

Λ± = x
n
2−1β−

1
2 Λ̃±β−

1
2 x−

n
2−1,

where

(Λ̃± f )(t) =
∫

R

A−
1
2 e±i(t−s)A

1
2 f (s)ds (4.12)

for f ∈ Ċ∞c (X). Then Λ± extends to a continuous map Λ± : H−1,∞0,b,c (X) →
H1,∞
0,b,loc(X) such that Λ+ − Λ− = i(P−1+ − P−1− ) and ( f |Λ± f )L2 ≥ 0 for all

f ∈ H−1,∞0,b,c (X). Furthermore, Λ± : x n
2+1L1(Rt ; L2(Σ)) → x

n
2−1C1

bd(Rt ; L2(Σ)),

where the bd subscript refers to boundedness in t . Denoting Dt = i−1∂t ,

χ∓(Dt )Λ
± = 0 (4.13)

on x
n
2+1L1(Rt ; L2(Σ)) for all χ± ∈ C∞(R) such that χ± = 0 in a neighborhood of

±(−∞,m2] and χ± = 1 on ±[m2 + 1,∞).

Proof Using the definition of Λ̃± and P̃−1± , we can write

Λ̃± = (∂t ⊗ A−
1
2 )(P̃−1+ − P̃−1− )± i(P̃−1+ − P̃−1− ),

123
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as operators on L1(Rt ; L2(Σ)). Correspondingly, from the definition of Λ± and
Proposition 4.4 we deduce

Λ± = (∂t ⊗ x
n
2−1A−

1
2 x−

n
2+1)(P−1+ − P−1− )± i(P−1+ − P−1− ) (4.14)

on x
n
2+1L1(Rt ; L2(Σ)). To show that (4.14) defines an operator that maps continu-

ously H−1,∞0,b,c (X) → H1,∞
0,b,loc(X), in view of the mapping properties of P−1± and ∂t⊗1

it suffices to prove that

(1⊗ A−
1
2 ) : x− n

2+1H1,∞
0,b,loc(X) → x−

n
2+1H1,∞

0,b,loc(X) (4.15)

continuously. We first note that A− 1
2 maps Dom A

1
2 to Dom A and similarly,

(1⊗ A−
1
2 ) : C∞(Rt ;Dom A

1
2 )→ C∞(Rt ;Dom A). (4.16)

By [32, Lem. 3.3 & Sect. 3.10], Dom A ⊂ xL2(Σ) ∩ Ḣ1(Σ). Using this and the
relations between the various spaces stated in (4.10), we conclude

(1⊗ A−
1
2 ) : x− n

2+1H1
0,loc(X) → x−

n
2+1H1

0,loc(X). (4.17)

Furthermore, by similar arguments, (1⊗ A−1) restricts to a positive-definite bounded
operator on x− n

2+1H1
0,loc(X), the square root of which is (4.17). Thus, (4.15) can be

concluded from the boundedness statement

(1⊗ A−1) : x− n
2+1H1,∞

0,b,loc(X) → x−
n
2+1H1,∞

0,b,loc(X).

The latter follows from [32, Thm. 3] and the remark on different spaces of conormal
distributions preceding [32, Lem. 4.15].

The remaining assertions are proved by direct computations using (4.12). ��
Finally, we will need an auxiliary lemma which states that an asymptotically AdS

spacetime can be deformed to one that contains a standard static region.

Lemma 4.6 Suppose (X, g) is an asymptotically AdS spacetime and assume (TF)

and (PT). For any t2 ∈ R there exists a static asymptotically AdS spacetime (X, g′)
and t0 < t1 < t2 such that g′ equals g on {t ≥ t1} and the region {t ≤ t0} of (X, g′)
has an extension to some standard static asymptotically AdS spacetime which is even
modulo O(x3) and in which C ≤ β ≤ C−1 for some C > 0.

Proof Since X = R×Σ , we can construct gst such that (X, gst) is standard static and
even modulo O(x3), with the boundary-defining function of ∂X being defined using
the boundary-defining function of ∂Σ . We denote this boundary-defining function by
xst. Next, we define g′ = gst on {t ≤ t0} and g′ = g on {t ≥ t1}. Similarly, we set
g′ = gst on {t ≤ t0} and g′ = g on {t ≥ t1}. The definition of x ′ can be extended
to the intermediate region {t0 < t < t1} as to yield a boundary-defining function of
∂X . Then we extend the metric h′ ··= x ′2g′ to the intermediate region. By setting
g′ = (x ′)−2(−(dx ′)2 + h′) we obtain an asymptotically AdS spacetime (X, g′). ��
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5 Singularities of propagators and two-point functions

5.1 Operator b-wave front set

Let us fix some k1, k2 ∈ Z.
We denote by W−∞

b (X) the set of bounded operators from Hk2,−∞
0,b,c (X) to

Hk1,∞
0,b,loc(X). Elements of W−∞

b (X) will play the rôle of regularizing operators. Note

that Ψ−∞
b (X) ⊂W−∞

b (X).
For the sake of brevity, if E, F are topological spaces, we write Λ : E → F to

mean that Λ is continuous.
Belowwe introduce an operatorial b-wave front set which is a subset of (bT ∗X\o)×

(bT ∗X\o). As such, it gives no information about certain kinds of singularities (poten-
tially located at o× bT ∗X or bT ∗X × o), it will, however, turn out satisfactory for our
purposes.

Definition 5.1 Suppose Λ : Hk2,−∞
0,b,c (X) → Hk1,−∞

0,b,loc (X). We say that (q1, q2) ∈
(bT ∗X\o) × (bT ∗X\o) is not in WF′b(Λ) if there exist Bi ∈ Ψ 0

b (X), elliptic at qi
(i = 1, 2), and such that B1ΛB∗2 ∈W−∞

b (X).

Since WF′b(Λ) is invariant under the componentwise, fiberwise R+-action of dila-
tions, we may replace each copy of bT ∗X\o by the quotient

bS∗X ··= (bT ∗X\o)/R+
by the fiberwiseR+-action of dilations.Wewill often do sowithout stating it explicitly;
this is especially useful when discussing neighborhoods.

For B ∈ Ψ s(X) there is another natural notion of operator wave front set, denoted
here WFΨ

b (A), which describes where in bT ∗X\o the symbol of B is not of order
−∞, see “Appendix A.1” for the precise definition (we stress that we use non-standard
notation, as WF′b is usually reserved for the pseudodifferential operator b-wave front
set whichwe denote here byWFΨ

b ). There is a simple relation between the two operator
wave front sets.

Lemma 5.2 If B ∈ Ψ s(X) then WF′b(B) = {(q, q) : q ∈WFΨ
b (B)}.

Proof Let us recall that

∀ A, B ∈ Ψb(X), WFΨ
b (AB) ⊂WFΨ

b (A) ∩WFΨ
b (B).

If q1, q2 ∈ T ∗X\o and q1 �= q2, one can choose Ai elliptic at qi such that WFΨ
b (A1)∩

WFΨ
b (A∗2) = ∅. Then A1BA∗2 ∈ Ψ−∞(X) and so (q1, q2) ∈ WF′b(B). This proves

that WF′b(B) lies on the diagonal in bS∗X × bS∗X .
Suppose now q /∈ WFΨ

b (B). Then A1B ∈ Ψ−∞
b (X) for some A1 elliptic at q,

hence (q, q2) /∈WF′b(B) for any q2 ∈ T ∗X\o. This proves ‘⊂’.
On the other hand, suppose that (q, q) /∈ WF′b(B), so that there exists A1, A2

elliptic at q such that R ··= A1BA∗2 ∈ Ψ−∞
b (X). Let G be a parametrix of A∗2. Then
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there exists a neighborhood Γ ⊂ bS∗X of q such that WFb(1 − A∗2G) ∩ Γ = ∅.
Furthermore, there exists A3 elliptic at q satisfying WFΨ

b (A3) ⊂ Γ . This gives

A3A1B = A3RG + A3A1B(1− A∗2G) ∈ Ψ−∞
b (X).

Since A3A1 is elliptic at q this gives q /∈WFΨ
b (B), which proves ‘⊃’. ��

Lemma 5.3 For any q1, q2 ∈ bS∗X, (q1, q2) /∈ WF′b(Λ) if and only if there exist
neighborhoods Γi of qi such that for all Bi ∈ Ψ 0

b (X) elliptic at qi satisfying
WFΨ

b (Bi ) ⊂ Γi , i = 1, 2, B1ΛB∗2 ∈W−∞
b (X).

Proof Suppose (q1, q2) /∈WF′b(Λ), so that there exists Ai ∈ Ψ 0
b (X), i = 1, 2, elliptic

at qi , such that A1ΛA∗2 ∈ W−∞
b (X). There exists a compact neighborhood Γi of qi

on which Ai is elliptic. Therefore, there exists A
(−1)
i ∈ Ψ 0

b (X) such that

WFΨ
b (A(−1)

i Ai − 1) ∩ Γi = ∅.

Let Bi ∈ Ψ 0
b (X) be elliptic at qi and such that WFΨ

b (Bi ) ⊂ Γi . These conditions on
the wave front sets imply that

B1(A
(−1)
1 A1 − 1) ∈ Ψ−∞

b (X), (A∗2(A
(−1)
2 )∗ − 1)B∗2 ∈ Ψ−∞

b (X). (5.1)

We can write

B1ΛB∗2 = B1A
(−1)
1 A1ΛA∗2(A

(−1)
2 )∗B∗2 + B1(1− A(−1)

1 A1)ΛA∗2(A
(−1)
2 )∗B∗2

+ B1A
(−1)
1 A1Λ(1− A∗2(A

(−1)
2 )∗)B∗2

+ B1(1− A(−1)
1 A1)Λ(1− A∗2(A

(−1)
2 )∗)B∗2 .

By A1ΛA∗2 ∈ W−∞
b (X) and (5.1), all the summands belong to W−∞

b (X), hence
B1ΛB∗2 ∈W−∞

b (X).
The opposite direction is trivial. ��

Lemma 5.4 Let Λ, Λ̃ : Hk2,−∞
0,b,c (X) → Hk1,−∞

0,b,loc (X), then

WF′b(Λ+ Λ̃) ⊂WF′b(Λ) ∪WF′b(Λ̃).

Proof If (q1, q2) /∈ WF′b(Λ) and (q1, q2) /∈ WF′b(Λ̃), then by Lemma 5.3 we can
choose B1, B2 elliptic at resp. q1, q2 such that both B1ΛB∗2 and B1Λ̃B∗2 belong to
W−∞

b (X). Hence B1(Λ+ Λ̃)B∗2 belongs toW−∞
b (X) and thus (q1, q2) /∈WF′b(Λ+

Λ̃). ��
Proposition 5.5 Suppose WF′b(Λ) = ∅. Then Λ ∈W−∞

b (X).

Proof The proof is an adaptation of [79, Lem. 3.10] to the case of the operator wave
front set. It suffices to show that for any p1, p2 ∈ X there exists φ1, φ2 ∈ C∞c (X)with
φi ≡ 1 near pi such that φ1Λφ2 ∈W−∞

b (X).
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By definition of WF′b(Λ), for any q, q ′ ∈ bS∗X there exist B1,q , B2,q ′ ∈ Ψ 0
b (X)

elliptic at resp. q, q ′, such that B1,qΛB∗2,q ′ ∈W−∞
b (X). Let Γ1,q be the set on which

B1,q is elliptic.
Then {Γ1,q : q ∈ bS∗p1X} is an open cover of bS∗p1X . By compactness, we can find

a finite subcover {Γ1,q j }Nj=1. Then B1 =∑
j B

∗
1,q j

B1,q j ∈ Ψ 0
b (X) is elliptic on bS∗p1X

(this follows from σb,0(B1) being equal to
∑

j |σb,0(B1,q j )|2). In a similar way, we

construct B2 =∑
l B

∗
2,q ′l

B2,q ′l ∈ Ψ 0
b (X) elliptic on bS∗p2X . This gives

B1ΛB2 =∑
j,l B

∗
1,q j

B1,q j ΛB∗2,q ′l B2,q ′l ∈W−∞
b (X)

using that the sum is finite.
We can find a microlocal parametrix of B1 and B2, i.e., B

(−1)
i ∈ Ψ 0

b (X) such that
R1 = 1− B(−1)

1 B1 and R2 = 1− B2B
(−1)
2 satisfy WF′b(Ri )∩ bS∗pi X = ∅. This implies

that there is a neighborhood Oi of pi in X such that WF′b(Ri ) ∩ bS∗Oi
X = ∅. Let

φi ∈ C∞c (X) be such that suppφi ⊂ Oi and φi ≡ 1 near pi . We have

φ1Λφ2 = φ1B
(−1)
1 (B1ΛB2)B

(−1)
2 φ2 + φ1R1ΛB2B

(−1)
2 φ2

+ φ1B
(−1)
1 B1ΛR2φ2 + φ1R1ΛR2φ2,

where all the summands belong to W−∞
b (X), hence φ1Λφ2 ∈W−∞

b (X). ��
Thus, WF′b(Λ) = ∅ implies in particular that for any ψ1, ψ2 ∈ C∞(X) supported

away from the boundary ∂X , the Schwartz kernel ofψ1Λψ2 is smooth as a distribution
on X◦ × X◦.

In the next lemma we take k1 = −k2 =·· k.
Lemma 5.6 Suppose that Λ : H−k,−∞0,b,c (X) → Hk,−∞

0,b,loc(X) and Λ ≥ 0. If (q1, q2) ∈
WF′b(Λ) for some q1, q2 ∈ T ∗X\o then (q1, q1) ∈WF′b(Λ) or (q2, q2) ∈WF′b(Λ).

Proof Suppose (q1, q1), (q2, q2) /∈ WF′b(Λ). By Lemma 5.3 we can find Bi elliptic

at qi such that BiΛB∗i : H−k,−∞0,b,c (X) → Hk,∞
0,b,loc(X). Since H−k,−∞0,b,c (X) is dual to

Hk,∞
0,b,loc(X), this implies that

sup
f ∈U , fi∈Ui

∣∣( f |BiΛB∗i fi )L2

∣∣ <∞,

for all bounded subsets U , Ui of H
−k,−∞
0,b,c (X). Using the Cauchy-Schwarz inequality

for the positive sesquilinear form associated with Λ, we obtain

sup
fi∈Ui

|( f1|B1ΛB∗2 f2)L2 | ≤ sup
f1∈U1

( f1|B1ΛB∗1 f1)
1
2
L2 sup

f2∈U2

( f2|B2ΛB∗2 f2)
1
2
L2 <∞.

This implies that B1ΛB∗2 maps continuously H−k,−∞0,b,c (X) to Hk,∞
0,b,loc(X), and thus

that (q1, q2) /∈WF′b(Λ). ��
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5.2 Propagators and two-point functions

We now introduce the concepts relevant for non-interacting QFT (here only scalar
fields are considered) on an asymptotically AdS spacetime (X, g). We recall that
G = P−1+ − P−1− is the Dirichlet causal propagator.

Definition 5.7 We say thatΛ± : H−1,−∞0,b,c (X) → H1,−∞
0,b,loc(X) are two-point functions

if
(i) PΛ± = Λ±P = 0,

(i i) Λ+ −Λ− = iG and Λ± ≥ 0.
(5.2)

By duality, Λ± : H−1,∞0,b,c (X) → H1,∞
0,b,loc(X). These conditions ensure thus

that Λ± induce well-defined positive sesquilinear forms on the symplectic space
H−1,∞0,b,c (X)/PH1,∞

0,b,c(X). OnceΛ± are given, the standard apparatus of algebraic QFT
can be used to construct quantum fields, see, e.g., [18,57]. We emphasize that we use
the non-standard conventions borrowed from the complex formalism, see [37] for the
relation between two-point functions Λ±, states and fields.

Just as on globally hyperbolic spacetimes, one does not expect all two-point func-
tions to be physical. In the present setup we propose the following definition, which
essentially reduces to the well-established Hadamard condition in the bulk, but which
also involves conormal regularity at the boundary.

We use Definition 5.1 with k1 = 1, k2 = −1 for the primed b-wave front set.

Definition 5.8 We say that Λ± : H−1,−∞0,b,c (X) → H1,−∞
0,b,loc(X) are holographic

Hadamard two-point functions if they satisfy (5.2) and

WF′b(Λ±) ⊂ Ṅ± × Ṅ±. (5.3)

The property (5.3) will be called the holographic Hadamard condition in view of
the conormal regularity it implies.

If q1, q2 ∈ bS∗X , we write q1∼̇q2 if q1, q2 ∈ Ṅ and q1, q2 can be connected by a
generalized broken bicharacteristic.

We will need an operatorial version of Vasy’s propagation of singularities theorem.

Proposition 5.9 Let Λ : H−1,−∞0,b,c (X) → H1,−∞
0,b,loc(X) and suppose (q1, q2) ∈

WF′b(Λ). If PΛ = 0, then q1 ∈ Ṅ , and (q ′1, q2) ∈ WF′b(Λ) for all q ′1 such that
q ′1∼̇q1. Similarly, if ΛP = 0 then q2 ∈ Ṅ , and (q1, q ′2) ∈ WF′b(Λ) for all q ′2 such
that q ′2∼̇q2.
Proof For the first statement, suppose (q1, q2) /∈ WF′b(Λ). Then by definition there
exist B1, B2 ∈ Ψ 0

b (X) elliptic at, respectively, q1, q2 such that for any bounded subset

U ⊂ H−1,−∞0,b,c (X), the set B1ΛB∗2U is bounded in H1,∞
0,b,loc(X). By propagation of

singularities applied to ΛB∗2U , using the fact that the estimates underpinning Vasy’s
theorem are uniform, one deduces the existence of B ′1 ∈ Ψ 0

b (X) elliptic at q ′1 such that
B ′1ΛB∗2U is bounded in H1,∞

0,b,loc(X), hence (q ′1, q2) /∈WF′b(Λ).
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To see that the second statement is true, let us observe that if B1ΛB∗2 is regularizing
then so is B2Λ

∗B∗1 , and furthermore, Λ∗B∗1 satisfies PΛ∗B∗1 = 0. This way the proof
can be reduced to the previous case. ��

If we fix some t1, t2 ∈ R, t1 < t2, by assumption (TF) all GBBs reach the region
of X where t ∈ [t1, t2]. Thus, we obtain as an immediate corollary of Proposition
5.9 (note that by definition of WF′b, the statement below says nothing about potential
singularities located at o× bT ∗X or bT ∗X × o):

Lemma 5.10 Suppose that Λ± is a pair of two-point functions that satisfy (5.3) in
the region {t1 ≤ t ≤ t2}. Then Λ± are holographic Hadamard two-point functions,
i.e., they satisfy (5.3) everywhere.

This allows us to prove the existence of holographic Hadamard two-point functions
in analogy to the deformation argument of Fulling, Narcowich and Wald, formulated
originally in the setting of globally hyperbolic spacetimes [26].

Theorem 5.11 Suppose (X, g) is an asymptoticallyAdS spacetime and assume (TF),
(PT) and ν > 0. Then there exist holographic Hadamard two-point functions on
(X, g).

Proof We first claim that it suffices to construct a pair of operators Λ± acting on
H−1,−∞0,b,[t1,t2](X) (recall that this is the space of all H−1,−∞0,b,c (X) supported in {t1 ≤ t ≤
t2}), such that Λ± satisfy all the conditions required of holographic Hadamard two-
point functions with H−1,−∞0,b,c (X) replaced by H−1,−∞0,b,[t1,t2](X) (and with an estimate on
WF′b(Λ±) only above {t1 ≤ t ≤ t2}). Indeed, we can always continuously extend

such Λ± to H−1,−∞0,b,c (X) using Proposition 3.2 (the so-called ‘time-slice property’).
Namely, the extension is defined by

(ı−1t1,t2)
∗Λ±ı−1t1,t2 : H−1,∞0,b,c (X)→ H1,∞

0,b,loc(X), (5.4)

which then extends to H−1,−∞0,b,c (X) by duality. We can check that this is indeed a pair
of two-point functions: positivity is obvious, furthermore,

(ı−1t1,t2)
∗Λ+ı−1t1,t2 − (ı−1t1,t2)

∗Λ−ı−1t1,t2 = i(ı−1t1,t2)
∗Gı−1t1,t2 = iG

using Proposition 3.2 (or, equivalently, using the formula for ı−1t1,t2 ). The holographic
Hadamard condition is then satisfied by (5.4) in view of Lemma 5.10.

Since by the above argument, the problem of proving existence is reduced to an
arbitrary compact time interval, and we can assume without loss of generality that the
spacetime (X, g) has a standard static region {t ≤ t0}, t0 < t1, as in Lemma 4.6. We
observe that Vasy’s propagation of singularities result is unaffected if one adds to P
a smooth potential V > 0 that depends only on t ; thus, we can also assume without
loss of generality that A ≥ m2 > 0 in {t ≤ t0} (recall that the operator A was defined
Sect. 4.2).

Again, since it suffices to prove the existence in an arbitrary compact time interval,
we are reduced to doing so in a standard static region in which A ≥ m2 > 0.
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We recall that in the standard static setting we have already constructed two-point
functions, subsequently denoted by Λ±vac, such that (see Lemma 4.5)

χ∓(Dt )Λ
±
vac = 0 (5.5)

on x
n
2+1L1(Rt ; L2(Σ)) for all χ± ∈ C∞(R) such that χ± = 0 in a neighborhood of

±(−∞,m2] and χ± = 1 on ±[m2 + 1,∞). By the elliptic regularity statement of
Proposition 5.9 and Lemma 5.6,

WF′b(Λ±vac) ⊂ Ṅ × Ṅ .

Next, let q1 ∈ Ṅ∓. Let us denote by τ the covariable respective to t . We can write

χ∓(Dt )⊗ 1 = B1 + B2 + R−∞,

where B1 ∈ Ψ 0
b (X) has a symbol which coincides with χ(τ) outside of a small

neighborhoodΓ ⊂ bS∗X of {τ = 0} (chosen such that q1 /∈ Γ ), B2 is the quantization
of a ‘symbol’ supported near {τ = 0}, and R−∞ ∈ W−∞

b (X). Furthermore, we can
find B ∈ Ψ 0

b (X) elliptic at q1 such that BB2 ∈W−∞
b (X). From (5.5) one finds

BB1Λ
± = −(BB2 + BR−∞)Λ± (5.6)

on a dense subset of H−1,∞0,b,loc(X), and hence on H−1,∞0,b,loc(X). The right hand side of

(5.6) belongs to W−∞
b (X) and BB1 is elliptic at q1, therefore (q1, q2) /∈ WF′(Λ±)

for any q2 ∈ bS∗X . Since q1 ∈ Ṅ∓ was arbitrary, using Lemma 5.6 we can conclude

WF′b(Λ±vac) ⊂ Ṅ± × Ṅ±

as desired. ��

Using the propagation of singularities, we can now estimate more precisely the
b-wave front set of Λ± and of various propagators for P . Let us recall the notation
π : bT ∗X → X for the bundle projection.

Theorem 5.12 Suppose (X, g) is as in Theorem 5.11 and ν > 0. Then:

WF′b(P
−1± )\t-diag ⊂ {(q1, q2) : q1∼̇q2, ±t (πq1) > ±t (πq2)}, (5.7)

where t-diag = {(q1, q2) ∈ bS∗X×bS∗X : t (πq1) = t (πq2)}. Furthermore, suppose
that Λ± are holographic Hadamard two-point functions. Then

WF′b(Λ±) ⊂ {(q1, q2) ∈ Ṅ± × Ṅ± : q1∼̇q2 or πq1 = πq2}. (5.8)
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Moreover, setting P−1F
··= i−1Λ+ + P−1− and P−1

F
··= −i−1Λ− + P−1− , we have

WF′b(P
−1
F )\t-diag ⊂ {(q1, q2) : q1∼̇q2, and ± t (πq1) ≤ ±t (πq2) if q1 ∈ Ṅ±},

WF′b(P
−1
F

)\t-diag ⊂ {(q1, q2) : q1∼̇q2, and ∓ t (πq1) ≤ ∓t (πq2) if q1 ∈ Ṅ±}.
(5.9)

Proof From the definition of P−1± , it follows that for any (q1, q2), if ±t (πq1) <

±t (πq2), thenwe can findχ1, χ2 ∈ C∞c (X)with disjoint supports such thatχi (πqi ) �=
0, i = 1, 2, and χ1 ◦ P−1± ◦ χ2 = 0. Thus,

± t (πq1) > ±t (πq2)  ⇒ (q1, q2) /∈WF′b(P
−1± ). (5.10)

On the other hand, for any (q1, q2) ∈ WF′b(P
−1± ) such that πq1 �= πq2, by elliptic

regularity (more precisely, by Proposition 5.9 applied near πq1 to P−1± ◦ χ2, where
χ2 ∈ C∞c (X) is supported in a sufficiently small neighborhood of q2 andχ2(πq2) �= 0)
we get q1 ∈ Ṅ , and similarly q2 ∈ Ṅ .

We will now show the more precise estimate

WF′b(P
−1± ) ⊂ {(q1, q2) : q1∼̇q2 or πq1 = πq2}. (5.11)

Suppose (q1, q2) ∈ Ṅ×Ṅ does not satisfyq1∼̇q2 norπq1 = πq2. Thenwecanfindq ′1
such that q ′1∼̇q1 and±t (πq ′1) > ±t (πq2). By virtue of (5.10), (q ′1, q2) /∈WF′b(P

−1± ).
By propagation of singularities (more precisely, by Proposition 5.9 applied to P−1± ◦χ2,
with χ2 ∈ C∞c (X) supported in a sufficiently small neighborhood of q2 and such that
χ2(πq2) �= 0), (q1, q2) /∈WF′b(P

−1± ).
We now turn our attention toΛ±. SinceΛ+−Λ− = i(P−1+ −P−1− ) andWF′b(Λ+)∩

WF′b(Λ−) = ∅, we have

WF′b(Λ±) ⊂ (Ṅ± × Ṅ±) ∩ (
WF′b(P

−1+ ) ∪WF′b(P
−1− )

)
.

In view of (5.11) this yields (5.8).
Let us now estimate the wave front set of P−1F = i−1Λ+ + P−1− . Above t (πq1) >

t (πq2), the only contribution toWF′b(P
−1
F ) comes fromΛ+ and can be estimated using

(5.8). In a similar vein, we canwrite P−1F = i−1Λ−+P−1+ and so the only contribution
toWF′b(P

−1
F ) above t (πq1) < t (πq2) comes fromΛ−, which is estimated using (5.8).

This way one gets the first line in (5.9). The P−1
F

case is analogous. ��

Proposition 5.13 Suppose Λ± and Λ̃± are holographic Hadamard two-point func-
tions. Then Λ± − Λ̃± ∈W−∞

b (X).

Proof Since Λ+ −Λ− = iG = Λ̃+ − Λ̃−, we have

Λ+ − Λ̃+ = Λ− − Λ̃−. (5.12)
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The b-wave front set of the LHS of (5.12) is contained in Ṅ+ × Ṅ+, whereas the
b-wave front set of the RHS is contained in Ṅ− × Ṅ−, hence the two are disjoint.
Thus, both sides of (5.12) have in fact empty b-wave front set, and thus belong to
W−∞

b (X). ��
Proposition 5.14 Suppose P̃−1+ : H−1,−∞0,b,c → H1,−∞

0,b,loc satisfies P P̃+ = 1, P̃+P = 1
and

WF′b(P̃
−1+ )\t-diag ⊂ {(q1, q2) : q1∼̇q2, t (πq1) > t (πq2)}. (5.13)

Then P̃−1+ − P−1+ ∈W−∞
b (X).

Proof Suppose that (q1, q2) ∈ WF′b(P̃
−1+ − P−1+ ). Note that P(P̃−1+ − P−1+ ) = 0,

so q1, q2 ∈ Ṅ . By propagation of singularities, (q ′1, q2) ∈ WF′b(P̃
−1+ − P−1+ ) for all

q ′1∼̇q2, in particular (q ′1, q2) ∈ WF′b(P̃
−1+ − P−1+ ) for some q ′1 such that t (πq ′1) <

t (πq2). But this contradicts the fact that necessarily t (πq ′1) ≥ t (πq2) by (5.13)
and (5.7). This proves that the b-wave front set of P̃−1+ − P−1+ is empty and hence
P̃−1+ − P−1+ ∈W−∞

b (X). ��
In a similar vein, P−1− , P−1F and P−1

F
are characterized by their b-wave front set

uniquely modulo terms in W−∞
b (X).

5.3 Boundary-to-boundary two-point functions

Let us recall that we defined in Sect. 3.2 the ‘bulk-to-boundary’ map

∂+ : xν+C∞([0, ε)x ;D′(∂X)) → D′(∂X).

Suppose that Λ : H−1,−∞0,b,c (X) → H1,−∞
0,b,loc(X) satisfies PΛ = 0. Then by Proposi-

tion 3.7, the range Λ is in xν+C∞([0, ε)x ;D′(∂X)), and

∂+Λ : H−1,−∞0,b,c (X) → D′(X) (5.14)

is continuous. Furthermore, it restricts to a continuous map

∂+Λ : H−1,∞0,b,c (X)→ C∞(X). (5.15)

Our goal is to study the holographic data of two-point functions Λ±, formally given
by ∂+Λ±∂∗+. As it is not immediately clear how to usefully define the adjoint ∂∗+ in

the present context, instead we set for Λ : H−1,−∞0,b,c (X) → H1,−∞
0,b,loc(X) such that

PΛ = ΛP = 0,

∂+Λ∂∗+ ··= ∂+(∂+Λ∗)∗.

Since PΛ∗ = Λ∗P = 0, ∂+Λ∗ has the mapping properties as in (5.14) and (5.15),
we conclude that

∂+Λ∂∗+ : E ′(∂X) → D′(∂X)
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is continuous.
We now give an operatorial version of Proposition 5.4, which provides an estimate

on the wave front set of ∂+Λ∂∗+.
IfΓ ⊂ bT ∗X×bT ∗X , we denote byΓ �∂X×∂X the intersectionΓ ∩(T ∗∂X×T ∗∂X)

defined by means of the embedding of T ∗∂X in bT ∗∂X X .

Proposition 5.15 SupposeΛ : H−1,−∞0,b,c (X) → H1,−∞
0,b,loc(X) is continuous and PΛ =

ΛP = 0. Then

WF′(∂+Λ∂∗+) ∩ (T ∗∂X\o)× (T ∗∂X\o) ⊂WF′b(Λ)�∂X×∂X . (5.16)

Proof Suppose (q1, q2) /∈ WF′b(Λ)�∂X×∂X , so that there exists Bi elliptic at qi such
that B1ΛB∗2 ∈W−∞

b (X). By Lemma 3.8, there exists Bi,0 elliptic at qi and such that
∂+Bi = Bi,0∂+.

Since B2 preserves xν+C∞([0, ε)x ;D′(∂X)), ∂+B2Λ
∗ is well-defined. Further-

more
∂+B2Λ

∗B∗1 = B2,0∂+Λ∗B∗1 : H−1,−∞0,b,c (X) → D′(∂X) (5.17)

is continuous since ∂+Λ∗B∗1 is. Arguing exactly as in the proof of Proposition 3.9,
we can show that (5.17) has range in C∞(∂X). It follows that its dual extends to a
continuous map

B1(∂+B2Λ
∗)∗ : E ′(∂X)→ H1,∞

0,b,loc(X). (5.18)

Since P(∂+B2Λ
∗)∗ = 0, the range of (∂+B2Λ

∗)∗ is in xν+C∞([0, ε)x ;D′(∂X)) and
so ∂+(∂+B2Λ

∗)∗ : E ′(∂X)→ D′(∂X) is well-defined. The map

∂+B1(∂+B2Λ
∗)∗ = B1,0∂+(∂+B2Λ

∗)∗ : E ′(∂X)→ D′(∂X)

is continuous (since ∂+(∂+B2Λ
∗)∗ is). Furthermore, using again the argument from

the proof of Proposition 3.9 we conclude that its range is contained in C∞(∂X). Since
this map can also be expressed as

B1,0∂+(∂+B2Λ
∗)∗ = B1,0∂+(∂+Λ)∗B∗2,0 = B1,0(∂+Λ∂∗+)B∗2,0,

we conclude that

B1,0(∂+Λ∂∗+)B∗2,0 : E ′(X) → C∞(X).

This shows that (q1, q2) /∈WF(∂+Λ∂∗+). ��
Note that because of howwe definedWF′b, the estimate (5.16) gives no information

about possible singularities in o× (T ∗∂X\o) or (T ∗∂X\o)× o. In practice, however,
these can often be ruled out otherwise, as illustrated in the result below.

Theorem 5.16 Suppose (X, g) is an asymptotically AdS spacetime and assume ν >

0. If Λ± is a pair of holographic Hadamard two-point functions, then

WF′(∂+Λ±∂∗+) ⊂WF′b(Λ±)�∂X×∂X⊂ (Ṅ± × Ṅ±)�∂X×∂X . (5.19)
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Furthermore, if Λ̃± is another pair of holographic Hadamard two-point functions,
then Λ̃± −Λ± has smooth Schwartz kernel.

Proof In order to conclude (5.19) from (5.16) and the definition of holographic
Hadamard two-point functions, it suffices to prove that

WF′(∂+Λ±∂∗+) ⊂ (T ∗∂X\o)× (T ∗∂X\o).

This is easily shown using the positivity of ∂+Λ±∂∗+ in a similar vein as in Lemma 5.6,
we refer to [70] or the proof of [84, Prop. 3.1] for the precise argument.

The second statement is proved analogously to Proposition 5.13. ��

We can rephrase (5.19) in a slightly more explicit way using coordinates (x, y) on
a neighborhood U of a point on ∂X as before, with y = (y0, . . . , yn−2) coordinates
on ∂X .

The assumptions on the metric g (Definition 2.1) imply that the restriction of the
principal symbol of �g̃ to the boundary is of the form

p̃(0, y, ξ, ζ ) = −ξ2 + ζ · h−1(y)ζ,

where h is a Lorentzianmetric on ∂X . Thus, locally over the boundary, the compressed
characteristic set Ṅ is

Ṅ ∩ bT ∗∂X∩U X = {(0, y, 0, ζ ) : ζ · h−1(y)ζ ≥ 0, ζ �= 0}.

The coordinates can be further adjusted in such way that the sign of ζ0 distinguishes
between Ṅ+ and Ṅ−. With these choices, (5.19) states that

WF′(∂+Λ±∂∗+) ∩ T ∗U∂X ⊂ N±
U ×N±

U , (5.20)

where N±
U = {(y, ζ ) ∈ T ∗U∂X : ζ · h−1(y)ζ ≥ 0, ±ζ0 > 0}. This estimate can be

improved using Theorem 5.12 to account for the fact that q1 is connected with q2 by
a generalized broken bicharacteristic if (q1, q2) ∈WF′b(Λ±).

Let us point out that the estimate (5.20) allows for a larger wave front set than that of
Hadamard two-point functions on a globally hyperbolic spacetime. However, it is still
the case thatWF′(∂+Λ±∂∗+) ⊂ ±(Γ ×Γ ) for someΓ ⊂ T ∗∂X\o such thatΓ ∩−Γ =
{0} (where the minus sign means replacing (y, y′, ζ, ζ ′) by (y, y′,−ζ,−ζ ′), and
similarly for T ∗∂X ), which is the basic property used in the perturbative construction
of interacting fields [9].
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Appendix A

A.1 The b-calculus

In this appendix we briefly recall basic material on the b-pseudodifferential calculus,
following mainly [79,82]. Other useful references include [34,40,64,80], cf. [44,65]
for textbook accounts.

As in the main part of the text, X is an n-dimensional manifold with boundary ∂X .
We will use here various definitions from Sects. 2.3 and 2.4.

We denote by Ss(bT ∗X) the set of symbols of order s on bT ∗X (defined as for any
vector bundle over X ), and by Ssph(

bT ∗X) the subset of (fiberwise) poly-homogeneous
ones.

We will consider here only the one-step poly-homogeneous b-pseudodifferential
operator classes. Namely,

Ψ s
b (X) ··= Op

(
Ssph(

bT ∗X)
)+ Ψ−∞

b (X),

where Op is a suitable quantization map (given below) and Ψ−∞
b (X) is the ideal of

regularizing bΨDOs (see [65] for its precise definition, here we will only use the fact
that Ψ−∞

b (X) = ⋂
s∈R Ψ s

b (X) and that Ψ−∞
b (X) maps continuously Hk,−∞

0,b,c (X) to

Hk′,∞
0,b,loc(X) for all k, k′ ∈ Z). Over a local coordinate chartU with coordinates (x, y)

(where as usual x is a boundary-defining function), if a ∈ Ss(bT ∗X) is supported in
bT ∗K X with K ⊂ U compact, Op(a) can be defined by the oscillatory integral

Op(a)u(x, y) = (2π)−n
∫

ei((x−x ′)ξ+(y−y′)·ζ )φ
( x−x ′

x

)

× a(x, y, xξ, ζ )u(x ′, y′)dx ′ dy′ dξ dζ,

where the integral in x ′ is over [0,∞) and φ ∈ C∞c ((−1/2, 1/2)) is identically 1 near
0. This definition is then made into a global one using a partition of unity in the usual
way. Then in particular Diffsb(X) ⊂ Ψ s

b (X).
Recall that C∞(X) is the space of smooth functions on X in the sense of extendabil-

ity across the boundary, and Ċ∞(X) is the space of smooth functions on X vanishing
with all derivatives at the boundary ∂X . A standard fact says that if A ∈ Ψ s

b (X) has
properly supported Schwartz kernel, then itmaps continuously A : Ċ∞(X) → Ċ∞(X)

and A : C∞(X) → C∞(X) (and therefore such pseudodifferential operators can be
composed). Throughout the text, we assume that all the b-pseudodifferential operators
that we consider have this property: this can always be ensured by appropriate cutoffs,
which play no essential rôle here as b-pseudodifferential operators appear only as a
device to microlocalize in bT ∗X . With this assumption, if k ∈ Z and s ∈ R, one can
show that A ∈ Ψ 0

b (X) extends to a continuous map

A : Hk,s
0,b (X) → Hk,s

0,b (X), (A.1)
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see [82, Lem. 5.8] for the proof and a more precise statement on the operator norm
(recall that the spaces Hk,s

0,b (X) were defined in (2.4) in the main part of the text).
There is also a principal symbol map σb,s : Ψ s

b (X) → C∞(bT ∗X) with values in
homogeneous functions of degree s, such that σb,s

(
Ψ s−1
b (X)

) = {0}.
One denotes

Ψb(X) =⋃
s∈R Ψ s

b (X),

and S−∞(bT ∗X) =⋂
s∈R Ss(bT ∗X) for order −∞ symbols.

Let us denote by A∗ the adjoint of A ∈ Ψ s
b (X) with respect to the L2(X, g)-

inner product, defined using an arbitrary smooth pseudo-Riemannian metric g. Then
A∗ ∈ Ψ s

b (X) and σb,s(A∗) = σb,s(A). Furthermore, Ψb(X) has the structure of a
filtered algebra in the sense that if Ai ∈ Ψ

si
b (X), i = 1, 2, then A1A2 ∈ Ψ

s1+s2
b (X).

Moreover,

σb,s1+s2(A1A2) = σb,s1(A1)σb,s2(A2),

and so [A1, A2] ∈ Ψ
s1+s2−1
b (X). A less obvious fact (efficiently proved using the

so-called normal operator family, see, e.g., [79]) is that if A ∈ Ψ s
b (X), then the

commutator [xDx , A] belongs to xΨ s
b (X) rather thanmerely toΨ s

b (X). Another useful
feature of the b-calculus is that if l ∈ R and A ∈ Ψ s

b (X), then

x−l Axl ∈ Ψ s
b (X) and σs(x

−l Axl) = σs(A).

A consequence of this is that any A ∈ Ψ s
b (X) maps xC∞(X) to itself, and so (Au)�∂X

depends only on u�∂X . Thus, b-pseudodifferential operators preserve Dirichlet bound-
ary conditions.

Similarly as in the pseudodifferential calculus onmanifoldswithout boundary, there
is an operator b-wave front set3 WFΨ

b (A) ⊂ bT ∗X that indicates where in ‘phase
space’ a given pseudodifferential operator A ∈ Ψb(X) is not in Ψ−∞

b (X).

Definition A.1 For A ∈ Ψb(X), q ∈ bT ∗X\o is not in WFΨ
b (A) if q has a conic

neighborhood on which a is the restriction of a symbol in S−∞(bT ∗X).

This means in particular that WFΨ
b (A) is empty if and only if A ∈ Ψ−∞

b (X).
Furthermore, the operator b-wave front set defined in this way satisfies

WFΨ
b (A1A2) ⊂WFΨ

b (A1) ∩WFΨ
b (A2).

One says that A ∈ Ψ s
b (X) is elliptic (at q ∈ bT ∗X\o, resp. on K ⊂ bT ∗X\o) if

σb,s(A) is invertible (at q, resp. on K ). If A ∈ Ψ s
b (X) is elliptic, then there exists

A(−1) ∈ Ψ−s
b (X) such that AA(−1) − 1, A(−1)A − 1 ∈ Ψ−∞

b (X). More generally,

3 It is usually denoted by WF′b(A) in the literature, here, however, the notation WF′b(A) is reserved for the
more general operator b-wave front set defined in Sect. 5.
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suppose that K ⊂ bS∗X is compact and A ∈ Ψ s
b (X) is elliptic on K . Then there exists

a microlocal parametrix, i.e., an operator A(−1) ∈ Ψ−s
b (X) that satisfies

WFΨ
b (A(−1)A − 1) ∩ K = ∅, WFΨ

b (AA(−1) − 1) ∩ K = ∅.

Thus in particular, if A is elliptic at q ∈ bT ∗X\o then there exists A(−1) ∈ Ψ−s
b (X)

such that q /∈WFΨ
b (A(−1)A − 1) and q /∈WFΨ

b (AA(−1) − 1).
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