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Abstract We give a heat kernel proof of the algebraic index theorem for deformation
quantization with separation of variables on a pseudo-Kahler manifold. We use nor-
malizations of the canonical trace density of a star product and of the characteristic
classes involved in the index formula for which this formula contains no extra constant
factors.
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1 Introduction

Given a manifold M, denote by C*°(M)((v)) the space of formal Laurent series

f=V v e,

where r € Z and f; € C*°(M) fori > r. We call f a formal function on M. Let
be a Poisson bivector field on M. A formal deformation quantization on the Poisson
manifold (M, ) is an associative product x on C*°(M)((v)) given by the formula

frg=rfg+ Y VCif g ey

r=1

In (1) C, are bidifferential operators on M and

Ci(f. &) = Ci(g. /) =i{f g}

where {f, g} = m(df A dg) is the Poisson bracket corresponding to 7. We assume
that a star product is normalized, i.e., the unit constant function 1 is the identity,
f*x1=1xf = f forany f.Given formal functions f, g on M, we denote by L} the
operator of left multiplication by f and by R; the operator of right multiplication by g
with respect to the star product %, so that f xg = L‘}g = R; f.Wehave [L%, R;] =0
for any f, g.

A star product can be restricted to any open set U C M. We denote by C§°(U)((v))
the space of formal functions compactly supported on U. For f = V' f, + -+ €
Cg°(U)((v)) each function f; has compact support in U, but we do not require that
all f;,i > r, have a common compact support in U.

Two star products x; and x» on (M, ) are equivalent if there exists a formal
differential operator

T=14+vT 4+ +---
on M such that

frog=T"(Tf*xTg)
The problem of existence and classification up to equivalence of star products on
Poisson manifolds was stated in [2] and settled by Kontsevich in [21], who proved
that star products exist on an arbitrary Poisson manifold and their equivalence classes

are parametrized by the formal deformations of the Poisson structure modulo the action
of formal diffeomorphisms.
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A heat kernel proof of the index theorem for deformation... 2095

A symplectic manifold (M, w_1) is equipped with a nondegenerate Poisson bivector
field r inverse to w_1. Fedosov gave in [8] and [9] a simple geometric construction of
star products in each equivalence class on an arbitrary symplectic manifold (M, w_1).
The equivalence classes of star products on (M, w_1) are bijectively parametrized by
the formal cohomology classes from

—l; [0_1] + HA(M)I[VI],

as shown in [4,6,9,23].

Let » be a star product on a connected symplectic manifold (M, w_1) of dimension
2m. There exists a formal trace density for the product » which is globally defined on
M and is unique up to a factor from C((v)). Fedosov introduced in [8] a canonically
normalized formal trace density for the product » using local isomorphisms between
that product and the Moyal-Weyl star product. Then, in [9] he used this trace density
to state and prove the algebraic index theorem for the star product .

In this paper we consider a canonical formal trace density w, of the product » on
M which differs from Fedosov’s trace density by a factor from C. According to [17],
the normalization of 1, can be described intrinsically as follows. On each contractible
open subset U C M there exists a local v-derivation of the product  of the form

8—d~|—A
T dv

where A is a formal differential operator on U (see [13]). It is unique up to an inner
derivation, i.e., all such v-derivations on U are of the form §, + [f, -]+, where f €
C*°(U)((v)) and [, -], is the commutator with respect to the product . The canonical
trace density i, satisfies the equation

d
< / Frie = / 50 )ita %)
v Ju U

for any formal function f compactly supported on U. Equation (2) determines p, on
U up to a factor from C which can be fixed by normalizing the leading term of p,. In
this paper we require that this leading term be

1 i "
() o
m! %

If M is compact, the total volume of the canonical trace density w, is given by
a topological formula analogous to the Atiyah—Singer formula for the index of an

elliptic operator,
[ = [ edan, @

where 6, is the formal cohomology class that parametrizes the equivalence class of
the star product x and A(M ) is the A- -genus of the manifold M. The class A(M ) has
a de Rham representative
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2096 A. Karabegov

1 Rrwm/2
sinh(Ry/2)°

where Rty is the curvature of an arbitrary connection on 7M. This statement is
called the algebraic index theorem for deformation quantization and the total volume
of the canonical trace density wu, is called the algebraic index of the star product .
The algebraic index theorem has several different conceptual proofs. Fedosov’s proof
is based upon the methods of Atiyah and Singer. Nest and Tsygan proved in [22] the
algebraic index theorem for deformation quantization using cyclic homology and the
local Riemann—Roch theorem by Feigin and Tsygan given in [11]. Various general-
izations of the algebraic index theorem were obtained in [7,10,23-25].

Getzler gave in [12] a proof of the Atiah—Singer index theorem for a Dirac operator
based upon the ideas of Witten and Alvarez-Gaumé (see [1]). In that proof he used
symbols of pseudodifferential operators on a supermanifold. Berline, Getzler, and
Vergne wrote later a book [3] on heat kernel proofs of index theorems for Dirac
operators.

In this paper we prove the algebraic index theorem for a star product with separation
of variables on a pseudo-Kéhler manifold following Getzler’s approach. Many global
geometric objects used in our proof are described locally on holomorphic coordinate
charts by coordinate-independent constructions. The proofs of a number of statements
are based on the interplay between pointwise products and star products with sepa-
ration of variables. We use normalizations of the canonical trace density and of the
characteristic classes involved in the index formula (4) for which this formula contains
no extra constant factors.

This paper is dedicated to my teacher Alexandre Aleksandrovich Kirillov on the
occasion of his 81st birthday.

2 Star products with separation of variables

Let M be a complex manifold of complex dimension m equipped with a Poisson
bivector field 7. A star product x on (M, ) has the property of separation of variables
of the anti-Wick type if

ax f=afand fxb= fb

for any locally defined holomorphic function a, antiholomorphic function b, and arbi-
trary function f, which means that

Ly=aand R; =b

are pointwise multiplication operators. Equivalently, the operators C, in (1) act on the
first argument by antiholomorphic partial derivatives and on the second argument by
holomorphic ones. If there exists a star product with separation of variables on (M, ),
then the Poisson bivector m is of type (1,1) with respect to the complex structure. In
local coordinates 7 is expressed as follows,
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A heat kernel proof of the index theorem for deformation... 2097

azk

where g'¥ is the Poisson tensor corresponding to 7 and the Einstein summation over
repeated upper and lower indices is used.

We say that a formal differential operator A = Ag + vA| + - -- on a manifold M
is natural if A, is a differential operator on M of order not greater than r for all r > 0.
A star product (1) is natural in the sense of [14] if the bidifferential operator C, in (1)
is of order not greater than r in each argument for all » > 1 or, equivalently, if for any
f € C%°(M) the operators L’ and R} on M are natural. If a star product x is natural
and f = vP f, + pptl fpr1+ - € C®(M)((v)) (i.e., the v-filtration degree of f
is at least p), then the operators v=7 L} and v—7? R} are natural. It was proved in [18]
that any star product with separation of variables on a complex manifold M is natural.

Given a star product with separation of variables x on (M, 1), there exists a unique
globally defined formal differential operator

To=14v0 +v* +- -

on M such that for any locally defined holomorphic function a and antiholomorphic
function b,

Z.(ba) = b xa.
Inparticular, Z,a = a and Z,b = b.Itis called the formal Berezin transform associated
with the star product . A star product with separation of variables can be recovered

from its formal Berezin transform. An equivalent star product ¥ on (M, ) given by
the formula

f¥e=T T f*Ty)
is a star product with separation of variables of the Wick type, so that
b f=bfand f+ a = fa,
where a and b are as above.

Lemma 2.1 Forany local holomorphic function a and local antiholomorphic function
b we have

T.(fa) =L, (f) xa and Z,(bf) = b x L. (f). (&)
Proof
Z.(fa) = I.(f ¥ @) = T.(f) » T.(a) = T.(f) *a.
The second formula can be proved similarly. O
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2098 A. Karabegov

The star product * opposite to %/,
frg=g+ f.

is a star product with separation of variables of the anti-Wick type on (M, —x). The
star product * is called dual to *. Its formal Berezin transform is Z; = 7!

In this paper we assume that a star product with separation of variables is of the
anti-Wick type unless otherwise specified.

Let  be a star product with separation of variables on (M, 7). The operator C; in
(1) written in coordinates on a local chart U C M is of the form

i f 9g
C ) = Ik =] a I°

l(f 8 ) 8 le 8Zk
where g'* is the Poisson tensor corresponding to 7. If 7 is nondegenerate, it corre-
sponds to a pseudo-Kéahler form | on M. Namely, the matrix g, inverse to gFisa
pseudo-Kéhler metric tensor such that

w_y = igdz* A dZ
on U. If ®_; is a potential of w_; on U, then

2d_,
dzkazl”

8kl = (6)

We will omit the bars over the antiholomorphic indices in the tensors g;; and g*.In
this paper we will use the notation

artadp_
T 9k azkrazh . o7l

gk] .A.kpl_l l_q

for p,g > 1.

It was proved in [5,15] that star products with separation of variables exist on
an arbitrary pseudo-Kéihler manifold (M, w_1). Moreover, as shown in [15], the star
products with separation of variables of the anti-Wick type on (M, w_1) bijectively
correspond to the closed formal (1,1)-forms

w:vilw_l—i—wo—i—vwl—i—-n (7)

on M. Let x be a star product with separation of variables on (M, w_1) with classifying
form (7). On a contractible coordinate chart U C M every closed form w, has a
potential ®,, so that w, = i9d0®P,. Then,

CI)ZZU_I(I)_1+(I>0+\;Q)1+...
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A heat kernel proof of the index theorem for deformation... 2099

is a formal potential of w on U. The star product x is uniquely determined by the
property that

0P 0 0P d
L%y = — and R%, = — 8
e =5k xR =t ®
for 1 < k,l < m. Given f € C*®(U)((v)), there exists a unique formal differential
operator A on U which commutes with the operators R_, =7/ and R* for 1 <

d0/37

I < m and satisfies the condition A1 = f. It coincides w1th the operator L* A= L*

This property allows to reconstruct the star product » from its class1fy1ng form w.
The Ricci form p on (M, w—_1) is given in local coordinates by the formula

p = —idd det(gy).

The canonical class €y of the complex manifold M has a de Rham representative
—p, ey = —[pl.

The formal cohomology class 6, that parametrizes the equivalence class of a star
product with separation of variables * on M with classifying form w is given by the

formula { 1
Op = —i ([w] - §8M> =—i ([w] + E[p]) , )

where [w] is the de Rham class of w. Formula (9) was given in [16], but, unfortunately,
contained a wrong sign.

Let @ be the classifying form of the star product with separation of variables * on
(M, —w_1) dual to the product *. Then,

cb:—v_lw,1+d)o+vd)1+~- .

The following construction of a local non-normalized trace density for a star product
with separation of variables xon (M, w_1) was introduced in [17]. Given a contractible
coordinate chart U C M and a potential ® = v '®_| 4 &g + - - - of the classifying
form e of the product x on U, there exists a potential ¥ = —v ™1 ®_ | +Wy+v W+ - -
of the dual form @ on U satisfying the equations

A% 1o IV ad
T | — — =0and Z, =0. 10
<82k>+82 o (3 >+az (10

The potential W is determined by Eqs. (10) up to an additive formal constant. As
shown in [17],

e®tVdzdz,

where dzdz is a Lebesgue measure on U, is a trace density for the product x on U. In
order to canonically normalize this trace density, one can use the following explicit
local v-derivation of the product » on U introduced in [16],

o= L 9P R 11
T dv o dv &
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2100 A. Karabegov

3 Deformation quantization on a super-Kihler manifold

In this section we recall a construction of a star product with separation of variables
on a split supermanifold from [20].

Let E be a holomorphic vector bundle of rank d over a pseudo-Kéhler manifold
(M, w_1) equipped with a possibly indefinite sesquilinear fiber metric &,z and let
ITE be the corresponding split supermanifold. We identify the functions on ITE with
the sections of A (E *OE *), where E* and E are the dual and the conjugate bundles
of E, respectively.

We say thata formal function f = V" f,+- - - on I1E is compactly supported over M
if for each j > r the coefficient f; is a compactly supported section of A (E *@F *),
or, equivalently, there exists acompact K ; C M such that the restriction of the function
fjto HE|M\K_/. vanishes.

Consider a holomorphic trivialization E|y = U x C¢ over an open set U C M
and denote by 6%, 0P 1<a, B < d, the odd fiber coordinates on [TE |y = U x Cold,
A function f on ITE|y can be written as

F=3" furaysi g0 0068 6P, (12)
0<p.g=d

where the coefficients f,, , 5.5, € C*(U) are separately antisymmetric in the
indices o; and B;. A function ( 123 on ITE|y is holomorphic if its coefficients are
holomorphic and satisfy fal...ap Brf, = 0 for ¢ > 0. It is antiholomorphic if its
coefficients are antiholomorphic and satisfy f, VtpBlofy = 0 for p > 0.

The fiber metric /1,5 on E determines a global even nilpotent function H = v H_;
on ITE such that locally

H_ | = hageaéﬂ.

Let » be a star product with separation of variables on (M, w_1) with classifying
form w. It was shown in [20] that the star product x and the function H determine a
unique global star product with separation of variables * on IT1E which is Z;-graded
with respect to the standard parity of the functions on ITE and satisfies the following
property. Let U C M be any contractible coordinate chart, I[TE|y = U x C% be a
trivialization, ® = v !d_; + dy+--- be a potential of the form w on U identified
with its lift to T[TE |y, and

X:=0+H=v"(®_+H 1)+ Do+ vd + (13)

be an even superpotential on I[T1E|y. Then,

Lg%, 0 , _9X 9
ok azk - 9zk Taew  9ee  gew’
Rax=a—X—|—i andRax=aTX+i_.
a0zl azl” wF  90F 96
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A heat kernel proof of the index theorem for deformation... 2101

Here we assume that the fiberwise Grassmann multiplication operators and partial
derivatives with respect to the odd variables 6, 0 act from the left, L 7 is the left
*-multiplication operator by f so that Lyg = f * g, and Ry is the graded right *-
multiplication operator by f, so that if f and g are homogeneous functions on ITE,
then

Rpg = (—D/fllelg s f. (14)

In particular, L ¢ supercommutes with R, for any f, g. The star product * on ITE|y
is determined by the potential X. Given a formal function f € C*(I1E|y)((v)),
one can describe the operator L 7 as follows. There exists a unique formal differential
operator A on I[1E|y which supercommutes with the operators

X d X a
— 4+ and RM
az! 5

Ry =7 Rss =0P Rox = —, = — 4+ —
¢ = or % 97! 6P RIZL + REL

and is such that A1 = f. It coincides with the operator L s, A = L.
Denote by Z the formal Berezin transform for the product . It is a formal differential
operator globally defined on ITE and such that

IZba) =bxa
for any local holomorphic function a and antiholomorphic function b on ITE. In
particular, Za = a and Zb = b. One can prove formulas analogous to (5) for the
operator Z. For any function f,
I(fa)=Z(f)*xaand Z(bf) =b*xZ(f). (15)
It was shown in [20] that the star product * has a supertrace given by a canonically
normalized formal supertrace density globally defined on ITE.
A local non-normalized supertrace density for the product x can be obtained as

follows. Given a contractible coordinate chart U C M and a superpotential (13)
which determines the star product * on IT1E |y, there exists an even superpotential

X=—v 1Y@ +H )+ Xo+vX +---

on [1E|y satisfying the equations
dX ED'e dX D¢
I\ — —=0,7Z— — =0,
(azk) + 0zk <86“> + 96

. axX +ax 0. and T X N X 0
— — = VU, an —_— _— =
az! az! 968 968

eX*+X d2dzd6da, (16)

The formula
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2102 A. Karabegov

where dzdz is a Lebesgue measure on U and d0d@ is a Berezin density (coordinate
volume form) on C°%, gives a supertrace density for the star product % on [1E|y =
U x C% Tt is determined up to a multiplicative formal constant.

4 A star producton TM & ITM

In this section we fix a star product with separation of variables » with classifying
form w on a pseudo-Kéhler manifold (M, w_1) of complex dimension m. We recall a
construction from [19] of a star product with separation of variables e on the tangent
bundle 7'M obtained from the product x. We use the product e to construct a star
product * on the supermanifold T M & I1T M which will be the main framework for
the proof of the algebraic index theorem for the star product *.

The tangent bundle TM can be identified with the cotangent bundle 7*M via
the pseudo-Kéhler metric on M. It was shown in [19] that the canonical symplectic
form on T*M transferred to TM via this identification is a global pseudo-Kihler
form E_;{ on TM. Let U C M be a contractible coordinate chart with coordinates
7.1 <kl <m, and d_; be a potential of w_; on U. Denote by nk, ﬁl the
corresponding fiber coordinates on 7U. Then,

dd_, , by,
+ -
azk ! PRI

is a potential of E_; on TU. Let w7y : TM — M be the natural projection. It was
shown in [19] that

Q_|:= ”;‘Mw—l + E_4

is also a global pseudo-Kihler form on 7M. We denote by e the star product with
separation of variables on the pseudo-Kéhler manifold (7'M, 2_1) with the classifying
form

1

=
[l N

Qi=njo+v”
If & is a potential of w on U, then
_ 8<I>_1 k 8(13_1 -
d+v [ — —_—
+ < ok * PR

is a potential of the form Q on TU.
Denote by E the holomorphic vector bundle over 7 M which is the pullback of the
holomorphic tangent bundle 719 M by the natural projection 77,

E =1}, (T(I‘O)M).

We equip E with the fiber metric induced by the pseudo-Kéhler metric gg; on M.
The split supermanifold ITE can be identified with the total space of the bundle
TM@®ITM — M.Let U C M be a coordinate chart and
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A heat kernel proof of the index theorem for deformation... 2103

TU ®TITU = U x C"m

be the corresponding trivialization. We denote as above the even fiber coordinates by
nk, ﬁl and the odd ones by ok ol

Let v = v~!4/_; be a global even nilpotent function on T M @ I1T M such that in
local coordinates

Yoy =0 gul'. (17)

As shown in [20], there is a unique star product with separation of variables * on
TM & IITM = I1E obtained from the product e on 7'M and the function ¥ such
that for any contractible coordinate chart U C M the product * is determined on
TU & IITU by the even superpotential

dd_, , 9Dy
—f =
azk 07!

X = q>+u—1( it +gk,9"él>. (18)

We denote by L s and R the left and the graded right *-multiplication operators by
a function f, respectively. The following formulas hold on TU & 1T U,

L ax :%4—1 Rox :%—{—i
sk 0zk 9k em o azb o 9zl
L ax =£+i Rsx =%—i—i
T ek T e
L ax =g+i and R px zz—l—i_. (19)
wk 00k 99K’ ol 90 96!

We introduce two families of operators on TU @ I1T U,
k qk 0 N Ip 0
D*=g" —and D' =g¥—, 1 <k, <m.
az4 azP

It is known that [Dk, DP]=0and [l_)[, [)‘7] =O0forallk,1, p,q.

Proposition 4.1 Given a formal function f € C®°(U)((v)) identified with its lift to
TU & IITU, the following formulas hold,

L,-:iﬂ@"l...D"rf)L (20)

St ! ankt ... onkr

and o .
szrzo%(Dll...Dlrf) 37}118—37)1 @1)

Proof Denote temporarily the operator on the right-hand side of (20) by A. Since A is
even, for any operator B the commutator of A and B coincides with their supercommu-
tator. Clearly, Al = f and A commutes with the fiberwise Grassmann multiplication
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2104 A. Karabegov

operators by the functions on 7U @ I1TU which do not depend on the variables n
and with the operators

R ax =§+i=v7]&+iarld

o ot an! az! an!
Ryx = g + i_ = —vilg/d@k + i_
al 00l 96! 30!

In order to prove formula (20) it remains to show that A commutes with the operators

® X 9 0P 0%,
= — —_— = — Vv
ST od T e T o 9zlza "

+v g (0P +vDP) + v gipg07 01,

Since A commutes with the multiplication operators by the functions on TU & [1TU
which do not depend on the variables n, it suffices to prove that it commutes with
the operators n” 4+ vD”. We will consider a “Fourier transform” which maps the
operator 3/dn* to the multiplication operator by the variable &, and the multiplication
operator by 1* to the operator —d/d£X. This mapping extends to an isomorphism
from the algebra of polynomial differential operators in the variables 7* onto that in
the variables &. The operator A will be mapped to the multiplication operator by the
function {exp(v&; D¥)} f and the operator n” 4+ vDP will be mapped to

d
— — 4+ vD?. (22)
&,

It is clear that the operators {exp(v&k Dk)} f and (22) commute, which concludes the
proof of formula (20). Formula (21) can be proved similarly. O

Denote by 7 the formal Berezin transform of the star product .

Corollary 4.1 Given functions f, g on M identified with their lifts to TM & I1T M
via the natural projection, we have

frxg=Tre (23)
Also, Tf = f.
Proof Formula (23) follows from (20). Let U C M be a coordinate chartand a = a(z)
and b = b(z) be a holomorphic and an antiholomorphic function on U, respectively,
lifted to TU @ 1T U. Then, formula (23) implies that
I(ba) =b *a = ba.

Since Z is a formal differential operator, it follows that Z f = f for any function f
on M liftedto TM @ IIT M. O
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A heat kernel proof of the index theorem for deformation... 2105

Let U C M be a contractible coordinate chart. We set g := det(gx;) and denote
by log g any branch of the logarithm of g on U. Below we will calculate a supertrace
density for the star product « on TU @ I1TU.

Lemma 4.1 The following formula holds,
09 x (v_lgkpq> %07 = v g1,a0P07 + g1 gp .
Proof Using Proposition 4.1 and a formula from (19),

3
2 24

- - =y lo g4
L;}gg _Lv_lg;qe" =V get? +

we obtain the statement of the lemma from the calculation

09 (l)_lgkpq) % 0P =09 % (V_lgsq) * g” * 8kpr * or
= (v g5qB7) (8" g1pr) 07 = (v 8g07) * (g 84pit”)
= (Vilgsqéq) (gtsgkpt_ep) + gmgkst_'

O

Proposition 4.2 The even superpotential X' := —X + log g satisfies the following
equations.

0X X’ X X’

—+7Z|—)=0,—+Z—) =0,

azk * (sz) az! * < az! >

0X X’ X X’

—+I|—)=0,—=+I|(=—=) =0,

Ink ank on' on'

0X X’ 0X X’

—+7Z|—)=0,and =—=+I|— | =0. 25

ook T (aek) s T <ae’) )

Proof Using formulas (15), Proposition 4.1, and Lemma 4.1, we get that

X X’ 92D _ B _
+I< ) =v! L v g i 4 v gipg 0704

a7k dzk dzkozP
o, ., dlogg
L p_ 1 =4 _ =1, _ppPpq
+Z< Vg TV Skl v 8kaf0T +
92d_, - 2d_,
=yl P v lo i+ v g ,:0P07 —p! *nP
Y azkarr TV 8k Y 8kpg azkazr "

— 79 % (v grg) + 607 % (v_lgkpq) *x 0P + g1 grpa

= v gupg067 + 67 (v’]gkpz7> x 07 — g% gjpg = 0.
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2106 A. Karabegov

The second equation in (25) can be proved similarly. The last four equations in (25)
follow immediately from formulas (19) and Proposition 4.1. O

Observe that eX X' = g. According to formula (16), Proposition 4.2 implies that
g dzdzdndndeds

is a supertrace density for the product «x on 77U @ I1TU.
Denote by y the global fiberwise (1, 1)-form on 7 M given in local coordinates by
the formula
y = l)_lgk[dnk /\dr_)l. (26)

The global fiberwise volume form y™ on T M is given locally by a scalar multiple of
v " gdndij. We assume that d8 = dzdzd6d® is the globally defined canonical Berezin
density on [TTM !. We introduce a global supertrace density of the star product s on
TM & IIT M by the formula

L0\
M;:-(Ly> dg. 27)

m! \ 2w

Lemma 4.2 For any formal functions F, G on TM & IITM such that F or G is
compactly supported over T M the following identity holds,

fF*GuszI_I(G)M.

Proof 1t suffices to prove the lemma on a coordinate chartt U C M for F €
(Cgo(TU)[Q_, 0)((v)) and G = b * a, where a = a(z, n, 0) is holomorphic and
b = b(z, 1, 0) is antiholomorphic on TU & I1TU. Then,

/FI_I(G)MZ/FI_I(b*a)Mz/Fbauz/(_1)IaI(IF|+IbI)anM

=/(—1)'“|(|F|+|b‘)a*F*bu=fF*b*ausz*Gu.

O

In the rest of this section we fix a contractible coordinate chart U C M and a
superpotential (18) on T7U @ I1TU.

Mfa = f(z,2dz! A- - AdZ™ A dz! A~ A dZ™ is a compactly supported volume form on U, denote
by & = f(z,2)0'...6™@' .. 6™ the corresponding function on IITU. Then,

fnTU&dﬂ :/Ua'
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Lemma 4.3 The following identity holds,
I*l (d_X) = d_X + ﬂ
dv dv v
Proof We have, using (15), (20), (21), and (24),
dXx do 1 00 K 1,004 1 X
I\— | =7 — 0" g0
< dv ) ( dv 2 ok T 2T ez T s
do 1 00,4 k I, 0d_ I ¢ dX  m
=— - =——=x%1 — — + —(@ ¥0" = — — —,
dv w2 gk T T R v2( gi) dv v
whence the lemma follows. O

One can construct a local v-derivation analogous to (11) for the star product * on

TU @TITU,

Theorem 4.1 For any function F € (C8°(TU)[0, OD((V)) the following identity

holds,

d
v
Proof We have by Lemmas 4.2 and 4.3,
/S(F) / F + dXF F
= —_— 4 — >|<
H v v v
dF dX
:/ +—F—F71!
dv | dv
_/ dF mF . /F
- dv v = He

]

Remark The statement of Theorem 4.1 remains valid if the derivation § is modified
by an inner derivation, i.e., replaced with the derivation 6 + Ly — Ry for any f €

C®(TU & TITU)((v)).

5 The standard filtration

Let M be a complex manifold and U C M be an open subset. Denote by P (U) the
space of fiberwise homogeneous polynomial functions of degree k on TU @ I1TU.
Then, the space P(U) := szo Pr(U) of formal series f = fo + f1 + ---, where
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fr € Pr(U), can be interpreted as the space of functions on the formal neighborhood
of the zero section of the bundle TU & TITU. If U is a coordinate chart, P(U) is
identified with C*°(U)[[n, 7, 0, 011. We set Q(U) := P(U)((v)).

Given i € Z, denote by F'(U) the space of formal series of the form

oo Lj/2]
F=Y3 Vi (28)
j=i r=—00

where f,.x € Pr(U). Since FIT1(U) c F(U), {F(U)} is a descending filtration on
the space

FW) = JF .

ieZ

This filtration is induced by a grading deg such that degv = 2 and deg f = k for
f € Pr(U). We denote by fdeg f the filtration degree of an element f € F(U).
These filtration and grading will be called standard. We have Q(U) C F(U) and
set Q' (U) := F'(U) N Q(U). We say that an element (28) of F(U) is compactly
supported over U if for each pair of indices r, k there exists a compact K, x C U such
that f.x vanishes on

T(U\K,x) ® T (U\K, ).

We will write Q := Q(M), F := F(M), etc.

If U is a coordinate chart, a differential operator on C*°(U)[[n, 7, 6, 1] has coef-
ficients from that space and partial derivatives in the variables z, z, 1, 17, 0, . One can
define a differential operator on the space P using a partition of unity subject to a cover
of M by coordinate charts. A natural formal differential operator on Q is an operator
A =A9+VvA|+---, where A, is a differential operator of order not greater than r on
P. Since in local coordinates deg 8/9n = deg d/di] = degd/d0 = degd/d0 = —1,
we see that fdeg A, > —r.

Lemma 5.1 A natural formal differential operator A on the space Q is of standard
filtration degree at least zero, A = A’ + A+ .., wheredeg A’ = i. The homogeneous
component A' is a formal differential operator of order not greater than i. It can be
written as

i
Ai — ZvrAi—Zr’ (29)
r=0

where deg A{ = j. The operator A naturally extends to the space F and respects the
standard filtration.

Proof Let A = Ag+ vA| + - -- be a natural formal differential operator on Q. Since
fdeg A, > —r, we have fdeg (V" A,) > r, whence it follows that fdeg A > 0. Thus,
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we can write A = A? + A 4+ ..., where deg A’ = i. Each differential operator
Ay, r > 0, can be written as

o .
= > Al

j=—r

where Ai is a differential operator of order not greater than » and with deg Al =
Then, we obtain that

oo 00 i oo o0 [l
Z Z rAi :ZZUrA::—Zr :ZZUrA::—Zr’
r=0 j=

- r=0 i=r i=0 r=0

which implies (29). We see that A’ is a formal differential operator of order not greater
than i. Therefore, it acts upon the space F and raises the standard filtration degree
by i. It follows that the operator A naturally extends to this space and respects the
standard filtration. O

Let A be a natural formal differential operator on Q and
K=v'K_j+Ky+--- (30)

be an even element of Q treated as a multiplication operator with respect to the fiber-
wise Grassmann multiplication. Then, [K, A] is a natural operator on Q as well. We
will consider two special cases when the series

eKAe K .= Z—(ad(K)) A 31
n=0

defines a natural formal differential operator on Q.

Lemma 5.2 Let A = Ag + vA| + - -+ be a natural formal differential operator on
Qand K € Q be an even element given by (30). Then, in the following two cases the
operator (31) is natural:

(i) if fdeg K = 0;
(i) iffdeg K > —1 and deg A, = O forallr.

Proof Since the operator A is natural, we have
oo r Ur
=2 Mk,
r=0n=0 n
Each summand

%(ad(K))”Ar (32)
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is a natural differential operator. Using in case (i) that fdeg A, > —r, we see that
in both cases (i) and (ii) the filtration degree of (32) is at least r and the operator
eX Ae K is given by a series convergent in the topology induced by the standard
filtration. It is well defined on the space Q, which implies the statement of the lemma.

O

Let » be a star product with separation of variables with classifying form @ on a
pseudo-Kéhler manifold (M, w—1) and * be the star producton T M @T1T M defined by
the local superpotentials (18) as in Sect. 4. The star product * induces a star product
on Q which will be denoted by the same symbol. It was proved in [20] that a star
product with separation of variables on a split supermanifold is natural. Therefore, for
f=vPfy+vPtlf, 1 +... € Qtheoperators v "L and v~ "R on Q are natural,
extend to the space F, and respect the standard filtration. It follows that the operators
Ly and Ry extend to F as well.

Proposition 5.1 The superalgebra (Q, ) is a filtered algebra with respect to the
standard filtration. The space F is a filtered superbimodule over the superalgebra

(Q, *).

Proof 1t suffices to prove that the superalgebra (Q(U), %) is a filtered algebra for U
a coordinate chart and F(U) is a filtered bimodule over it. An element f € C*°(U)
identified with its lift to TU @ TIT U lies in Q(U). One can see from formula (20) that
the operator L ; leaves invariant F(U) and all filtration spaces F "(U). The operators
L« =n* and Ly = 6% leave invariant F(U) and increase the filtration degree by 1.

1
It follows from formula (20) that

0" = g™ (g 01) = &' % (g1y09).

Using formula (24) we get that

- d
Lgi = LgLg, g = Lgi <gkq9" + UW) .
Therefore, the operator L leaves invariant F(U) and increases the filtration degree
by 1. We have from (19) that

Lyx =

b 1 [/93%d_
X r + -
sz aZ Vv

I nd e —
ackazr T8kl + &kpg6" o >+

azk”

Using Corollary 4.1, we get that

_, 9P 9 92d_, »
Lawgiit = 8kl +v{ g = Lag )+ v+ 5 g

_ — 9
"L e, + 8kpgt"0% — 6"y (gsq9’1 + vaes) , (33

9zkozP

where F}ip = 8kpg g% is the Christoffel symbol of the Levi-Civita connection.
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Given a function f € C*°(U), we see from (20) that the operator f — L r increases
the filtration degree by 1. It follows that the operator Ly, 74 leaves invariant F(U)
and increases the filtration degree by 1. We have from formula (20) that

i7" = g™ (gkq1") = &' * (gkqi1?). whence Ly = Ly L, -

It implies that the operator L;y also leaves invariant ' (U) and increases the filtration
degree by 1. The elements of C*°(U)((v)) and the variables 1, 77, 0, ] generate the
algebra (Q(U), *). Therefore, (Q(U), %) is a filtered algebra and F (U ) is a filtered left
supermodule over (Q(U), *). Similar statements can be proved for the graded right
x-multiplication operators which imply that 7 (U) is also a filtered right supermodule
over (Q(U), *). O

We will use the symbol * to denote the left and the right actions of the algebra
(Q, %) on F. Let J, be the right submodule of F whose elements written in local
coordinates are of the form

u = Ax + 0 B = n* x A + 05 % By,

where Ay, Br € F, and let J; be the left submodule of F whose elements are locally
of the form

u:Clﬁl—i—Dlél:C[*ﬁl—i—D[*él,

where C;, D; € F. The definitions of the submodules 7; and 7, do not depend on the
choice of local holomorphic coordinates.

6 The Lie superalgebra (x, x, o)

Let (M, w_1) be a pseudo-Kéhler manifold and » be a star product with separation
of variables on M with classifying form . Recall that the function ¥ = v~y
on TM & IIT M was defined by (17). Let % be the star product with separation of
variables on 7'M @I1T M determined by the product x and the function v, as described
in Sect. 4. In the rest of this paper we will use global functions

o1, 0=v o 1, x, % and &

on TM & I1T M given in local coordinates by the formulas

o1 =n"guit, x = v ' gub', ¥ = v 0 guil,
2o -

and & = i0F ——— @', 34

dzkaz! 34
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where @ is a potential of . Denote by o the x-supercommutator of the odd functions
x and ¥,

The formal functions x, x, and o are formal analogues of symbols of the operators
9, 3*, and of the Laplace operator, respectively, on the (0, )-forms with values in a
holomorphic line bundle on M used in the heat kernel proof of the index theorem for
the Dirac operator 3 + 0* (see [3]).

Proposition 6.1 The formal functions x and x are nilpotent with respect to the star
product x, x x x = 0and ¥ * x = 0. Equivalently, they satisfy the supercommutator
relations [x, x1« = 0and [x, X1« = 0. The formal function o is given by the formula

oc=¢+id. (35)
In particular, o € Q°.

Proof Let U C M be a contractible coordinate chart. We get from formulas (24) and
(33) that in local coordinates

Ly=x+n—andL, =7 +6* (22 _ L,
1T XTI g MEEE T X ok ik

9 1 92D
k k 1
+6 ﬁ—i_;@ 77P<azkazp—L32¢L]>.

We see from these formulas that

x*x=0and x x x = xxX + ¢. (36)

According to formula (20), for any function f € C°*°(U) we have

(f = Lpx = ~(DF Praegt = L8 and (f ~ L)% =0.
We obtain from these formulas that
X*x=xx+idand 7 * § =007 grg717 = 0. (37)
Formula (35) follows from (36) and (37). O

The functions x, x, and o form a basis in the Lie superalgebra (x, x, o) equipped
with the supercommutator [-, -].. The element o generates its supercenter. We define
an element S = v—'S_; € Q such that

S_1=—¢p_1+v¢Y_1and thus S = —¢p + .
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The deg-homogeneous component of o of degree zero is —S. One can show by a direct
calculation that

L =£n"gkzﬁl+nk B—Q)—Lw
7 Vv 8Zk azk

azkazr azk

1 2D a1 _
+ ;n"np ( Lig_, ) +if— + ;nkgkpqe”é‘f

1 _ d
— ok (;anrgp + L iy gls) (gsqeq + V39s> ‘ (38)

azkaz!

Since fdeg o = 0, it follows from Proposition 5.1 that fdegL, = 0 and fdegR, = O.
One can see from (38) that the range of the operator L, lies in the submodule 7.
Similarly, the range of the operator R, lies in the submodule 7;. The series

v*r
etS =" . (£S_1)

r>0

are well-defined elements of F. We have deg § = dege®S = 0. Denote by £ and € the
global holomorphic and antiholomorphic fiberwise Euler operatorson TM & I1T M,
respectively. In local coordinates,

3 9 i 5 9
g= P Qp—a d5= n? — 9(1—_.
e T Ger A " ont T 564

Let A? and B? denote the deg-homogeneous components of degree zero of the oper-
ators L, and Ry, respectively. One can see from (38) and the corresponding formula
for R, that

Al=—s—€c=e5(-86eSand B = —§ — £ = e 5(=&)e’. (39)

7 The subspace KC

Lemma 7.1 The following statements hold.

() IfF e J-and Lo F =0, then F = 0.
(i) If F € Jyand Ro F =0, then F = 0.
i) fFe 1+ Jrand (Lo + Ry)F =0, then F = 0.

Proof Assume that F € 7, satisfies the ;quation L, F = 0 and is nonzero. Then,
there exists p € Z such that F = Z;’ip F', where deg F' = i and F? is nonzero. We
have A°FP = 0, where A" is the zero degree component of L. We see from (39) that

£ (eS FP) —0. (40)
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Since F” is a nonzero element of 7, we get that eSFP is also a nonzero element of
Jr, which contradicts (40). Statements (ii) and (iii) can be proved similarly. O

The ranges of the operators £ and £ lie in the spaces 7, and 7, respectively. The
restriction of the operator &£ to 7, is inve_rtible. Denote by £ -1, j,_ — J, its inverse.
One can define similarly the operators E~! : 7} - Frand €+ &) 1+ T —
Ji+ .

Lemma 7.2 Given G € ker £ C F and H € J,, the equation
ESF=H (41)
has a unique solution F € F such that F — G € [,
F=e%G+EH). (42)

Proof Clearly, (42) is a solution of (41). Assume that F is a solution of (41) satisfying
F — G e J,.Since S € J,, we have eSF—G e Jy. Therefore, eSF—G=E1H,
which implies the uniqueness. O

Given G € keré C Fand H € J;, the unique solution of the equation £e5 F = H
is F =e 5(G +&E7"H). Also, given G € C*(M)((v)) and H € J; + Jy, one can
find the unique solution of the equation (£ + )eSF = H.

Proposition 7.1 Given an element G € ker & C F, there exists a unique element
F € F such that

LoF=0and F — G € J,.

IfG = Zizp G', where deg G' = i and GP is nonzero, then F = Y ,_ F', where

deg F' =i and FP = e~ 5GP.

izp

Proof Assume that G =}, G' and G is nonzero. We will be looking for F of
the form F = Zin Fiwith F' — G' € J, fori > p. Writing L, = A%+ Al ...,
where deg A’ = i and A? = e=5(—&)e’, we rewrite the equation L, F = 0 as the
system of equations
k—p
EeSFF =8y " ATFF k> p, (43)
i=1
where the right-hand side of (43) is zero when k = p. The condition that F — G € J, is
equivalent to the condition that F k_Gk e 7, forall k. ByLemma7.2, FP = e SGP.
Since the range of each operator A’ liesin 7;, the terms e3> F* fork > p can be uniquely
determined by induction from system (43) using Lemma 7.2. The solution F is unique
by Lemma 7.1. O

One can prove similarly the following two propositions.
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Proposition 7.2 Given an element G € ker € C F, there exists a unique element
F € F such that

R, F=0and F — G € 7.

IfG = Zin G', where deg G' = i and G? is nonzero, then F =Y
deg F! =i and FP = ¢ 5GP

i
i>p F', where

Proposition 7.3 Given an element f € C®(M)((v)) C F, there exists a unique
element F € F such that

(Lo + R\)F=0and F — f € T, + J,.

If f = Zer V' f;, where f, € C®(M) forr > p and f, is nonzero, then F =
D izap F'and F* =vPe=S§f,

Proposition 7.4 An element F € F satisfies the equation
(Lo + Ro)F =0 (44)
if and only if it satisfies the equations
LoF =0and R, F = 0. 45)

Proof Equations (45) imply (44). Assume that condition (44) holds andset G := L, F'.
Since the operators L, and R, commute, we have

(Lo + Rs)G = (Lo + Ry)LoF = Ls(Ls + Ro)F = 0.

Since the range of the operator L, lies in J, C J; + J,, we obtain from part (iii) of
Lemma 7.1 that Ly F = 0. One can prove similarly that R, F = 0. O

Theorem 7.1 The following conditions on F € F are equivalent:

(1) L, F =0.
(2) LyF =0and L3 F = 0.
(3) On any coordinate chart, Ly F =0 and L F =0 for all .

Proof Clearly, (3) = (1) and (2). Also, (2) = (1) because of the supercommutation
relation [ x, X ], = 0. Let us prove that (1) = (2). Set G := L, F. We have

LoG=L,L,F=L,L,F =0.
Locally,
G = nkL

V’lgldélF’
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hence G € J,. Lemma 7.1 implies that G = L, F' = 0. The statement that L3 F = 0
can be proved similarly. It remains to prove that (1), (2) = (3). Recall that 1 is the
function on TM @ I1T M given by (17). Assume that L, F = 0 and represent F as
the sum

F=F+F+- -+ Fy,

where F; is such that e¥ F; is homogeneous of degree i in the variables 6. Inspecting
(38), one can see that the operator e¥ L,e~¥ does not contain the variables 6 and is
of degree zero with respect to the variables 6. Since L, F = 0, it follows that

(e"Loe V)eVF; =0for0<i <m.

Therefore, L, F; = 0 for 0 <i < m. Clearly, F; € J, fori > 1. By Lemma 7.1, the
eguation Ly F; = 0fori > 1 has only the zero solution. Therefore, F' = Fy, so that
F := e F does not depend on the variables 6. We have for all p that

9
L F=eV—¢eVF=0.
aor

vl gpg 69
One gets from the formula 6/ = vg/* x (v_lgkqéq) that

LaF = nglkLv—l F=0.

gkqéq

In order to prove that L,—]1F = 0, we use that L3 F = GPLrlgpq,—]qF = 0. We see
from (33) that the operator

w _ —
e valgpq,,qe

does not contain the variables 6 and is of degree zero with respect to the variables 6.
Since F = e¥ F does not depend on the variables 6, the element

W, = e'erlgpq,—]qF = evaflgpq,—)qe_‘pF

also does not depend on the variables 0 for any p. We have
0’W, =eVL;F =0,
hence W), = 0 for all p. One can show as above that it implies that Ljs F = O for all
q. O
One can prove similarly the following theorem.

Theorem 7.2 The following equations on F € F are equivalent:

(1) RyF = 0.
(2) RyF =0and Ry F = 0.
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(3) On any coordinate chart, R,y F = 0 and Rge F = 0 for all k.

For any open subset U C M we denote by C(U) the subspace of F(U) of elements
F satisfying the following equivalent conditions:

(@ (Lo + Ry)F =0;
(b) Lo,F =0and R, F =0, .
(c) On any coordinate charton U, 7' « F = 0! « F = F xnf = F x 6% = 0.

According to Proposition 7.3, for every element f € C*°(U)((v)) there exists a
unique element F € K(U) such that F — f € J; + J;. It will be denoted by K ¢. The
mapping f +— K is a bijection from C*°(U)((v)) onto K(U). We set K := KC(M).
Lemma 7.3 Assume that f, g € C*°(M)((v)),G € F,and G — g € J; + J;. Then,

KixG=Ky*g mod Jjand G+ Ky =g+ Ky mod J,.
Proof One can write in local coordinates
G=g+n"*«Ar+ B xi] +6F«Cy + Dy % 6"
for some Ay, B;, Ci, D; € F. We have

Kf*G:Kf*g—|-Kf*Bl*ﬁl-i-Kf*Dl*él.

Therefore, Ky %G = Ky +g mod J. The second statement can be proved similarly.
]

We introduce the following notation,
e:=K1€ek.
We have ¢ — 1 € J; + J,. One can prove a stronger statement.

Proposition 7.5 The element ¢ is such thate — 1 € J; N J,.

Proof It follows from Proposition 7.1 that there exists a unique element F € F such
that L, F = 0 and

F—-1¢€¢J,. (40)

Set G := R, F. Since 0 € J; N J, and J, is a right submodule, we obtain from
(46) that G = R, F € J,. We also have that

L;G=LsR;F =R;L,F =0.

Lemma 7.1 implies that G = R, F = 0, whence F' € K. We see from (46) that F = ¢
and therefore ¢ — 1 € J,.. One can prove similarly thate — 1 € J;. O
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Theorem 7.3 There exists an even element
x=v i +x+--- €N

such that ¢ = e~ and fdeg x > 1.

Proof It follows from Propositions 7.3 and 7.5 thate — 1 € J; N J,, fdege = 0, and
the deg-homogeneous component of & of degree zero is e ~5. Therefore, there exists
an element » € F such that e = e~ S+ » € 7N J,, and fdegx > 1. We will
write x = x' + %% + ---, where degx’ = i. We will prove by induction on i that
the v-filtration degree of x' as at least —1. Since the star product # is natural, the v-
filtration degree of vo is zero, and fdeg (vo) = 2, we get that the operator v(Ls + Ry )
is natural and fdeg v(L, + R,) = 2. By Lemma 5.2, the operator

C:=veS(Ly + Ry)e "

is natural. Since fdeg C = 2, we can write C = C? 4+ C3 + - -, where deg Cl=i.
By Lemma 5.1, C* is a differential operator of order not greater than i. It follows from
Eq.(39) that

C?=—v(E+E).

The condition that (L, + Ry)e = 0 implies that (e*Ce ™)1 = 0. We rewrite this
equation as follows,

o0 1

3 l‘ ((ad x)fc") 1=0. (47)

i=2 j=0 J:

Extracting the deg-homogeneous component of degree 3 from (47), we get
vE+Ex +C1=0.
Since the range of the operator C lies in J; + J,, we obtain that
x=—vHE+H D,
whence the v-filtration degree of x! is at least -1. Now assume that for d > 1 the

v-filtration degree of »' is at least —1 for all i < d. Extracting the deg-homogeneous
component of degree d + 2 from (47), we get that

d+2 i
1 k kjN i
Yy - ooy (ad(x‘)...ad(xf)C>1=0. (48)
i=2 j=0 J: ki+-kj=d+2—i
Equation (48) contains x' fori < d. The only summand in (48) containing %% is

(ad(xd)Cz) 1=v(E +&)x’.
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By the induction assumption, the other summands in (48) are of v-filtration degree
at least zero. Since all other summands in Eq. (48) lie in J; 4+ J, the element x4 is
uniquely determined by this equation and its v-filtration degree is at least —1, which
implies the statement of the theorem. O

8 The algebras A and B

Let (M, w_1) be a pseudo-Kihler manifold and  be a star product with separation of
variables on M with classifying form w. In this section we fix a contractible coordinate
chart U C M. Let ®_; and ® be potentials of w_; and w on U, respectively, gi; be
the metric tensor given by (6), and * be the star product with separation of variables
on TU @ TITU determined by the potential (18) written as

X=0o+Y7,

where

1 (0D 0d_; _ 5
Y = — P q 0P ).
5 ( P nt + 07 N+ &pq )

In this section we will define two subalgebras, A and B, of the algebra (Q(U), *) and
describe their action on the space IC(U).

We lift differential operators on U to TU @ I1T U using the trivialization TU @
MTU = U x C"™ induced by the choice of local coordinates on U. Their lifts
commute with the multiplication operators by the variables 7, 77, #, 6 and the operators
8/9n, 8/91, /90, 9/96.

Lemma 8.1 Given f € C®°(U)((v)), the operators
e_YL}eY and e_YR}eY

are a left and a right x-multiplication operators on the space Q(U), respectively.

Proof We have Y € Q! (U) and fdeg L} = fdeg R} = fdeg f. If the v-filtration
degree of f is p, then, according to Lemmas 5.2 and 5.1, the even formal differential
operators v_pe_YL’}eY and v‘pe_YR}eY are natural and acton Q(U) and F(U). The

operatore ™Y L‘}eY commutes with the multiplication operators by the antiholomorphic
variables z, 17, and 0 and the operators

fymy%aetﬁx+364 a(g_w+a
ozl 87! ezl ezl an! Tl oAt

_Y< 0 ) y 00X 0
and e —]e' = — + —.
26! 90! 96!

Therefore, it is a left x-multiplication operator on the space Q(U). Similarly, e ¥ R}eY
is a right s-multiplication operator on Q(U). O
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Given f € C*(U)((v)), we define two even elements of Q(U),
()= (e Rye" ) tand (/) = (e Lye" ) 1.
We have
Ro(fy = e*YR}eY and Lg(p) = e*YL}eY,

whence it follows that «, 8 : (C*°(U)((v)), x) — (Q(U), *) are injective homomor-
phisms. Their images are subalgebras of (Q(U), *) which will be denoted by A and
B, respectively.

Lemma 8.2 For f € C®°(U)((v)),

a(f)=fedi+TJrand B(f) = f € T+ TIr.

Proof The lemma follows directly from the definitions of () and B(f). O

Lemma 8.3 _Given f € C®WU)((v)), the element a(f) *-commutes with the vari-
ables n and 0 and B(f) x-commutes with n and 6.

Proof The operator R} commutes with the variables 7 and 6. Therefore, Rur) =

e " R%e” commutes with the operators Ry = i1 and Rz = 6. 1t follows that cr(f)
s-commutes with the variables 77 and 6. Similarly, 8( f) *-commutes with 7 and 6. O

Corollary 8.1 The left action of the algebra A and the right action of the algebra B
on F(U) leave KK(U) invariant.

Proof The corollary follows immediately from the definition of the space (U). O
Lemma 8.4 Given f € C®°(U)((v)),

a(f)xe=Kyrande*B(f)=Ky. 49)
Proof By Proposition 7.5, —1 € [J;, whence a(f) xe —a(f) € J1 C T+ J,. We

get from Lemma 8.2 that «(f) x ¢ — f € J; + J, which, according to Corollary 8.1,
implies the first equation in (49). The proof of the second equality is similar. O

Proposition 8.1 Given f, g € C®°(U)((v)),
a(f) % Ky = K fog and K 5 % B(g) = K fug.
Proof We have
a(f)*xKg =a(f)xa(@) xe=a(f *g)xe=Kgu.

The proof of the second equality is similar. O
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Corollary 8.2 Given f, g € C®°(U)((v)),
f*Kg=fxg mod (J;+T)and Kg* f =g+ f mod (J; + T;).
Proof Since a(f) — f € Ji + Jy, we have by Lemma 7.3 that
[*Ky=a(f)*Kg=Kfeg=fxg mod (J1 +Tr).

The proof of the second statement is similar. O

Given f € C*(U)((v)), we denote by a(f) the element of Q(U) which does not
depend on the variables 7, 6 and is such that «(f) — a(f) € Jj, that is,

a(f) =05(f)|;,=9'=0-
We get from Lemma 8.2 that @(f) — f € J,. Then, for g € C*(U)((v)) we have
a(f)x Ky =a(f)* K, =Kpugand Kg xa(f) = Kg * f. (50)

We define similarly an element E(f) = B(f)ly=e=0 of Q(U) which satisfies the
condition ,3 (f) — f € J; and is such that

Ko B(f) =Ky B(f) = Kguy and B(f) x Ky = f % K. (51)
Then, we introduce an element

k(f):=a(f)+Bf) — f (52)
Proposition 8.2 Given f, g € C*(U)((v)),

K(f)*Kg —Kgxk(f) = Kfug—gnf-
Proof We have from (50) and (51) that

K(f)* Ky — Ko % k(f) = @(f) + B(f) — f) * Kg
—Ko % @)+ B(f) — f) = Kfag — Kgur-

9 An evolution equation

Lemma 9.1 Given a nonzero complex number k and a nonnegative integer I, the
equation

(e*k’ p(t))/ = el (53)
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has a unique polynomial solution

z ,
_ I (rd)
P = kZ<kdt) L

r=0

Proof Equation (53) is equivalent to the following one,
p'@&) —kp(t) =1".

Since k # 0, it can be rewritten as follows,

LA W
kar )PV T TR

Using the identity

we see that for the polynomial (54),

poLtay 1 LA\ L
kar )P T Tk k dr Tk

Since k # 0, the homogeneous equation

p'@®) —kp(®)=0

(54)

has no nonzero polynomial solutions. Therefore, (54) is a unique polynomial solution

of (53).

We consider the solutions of the evolution equation

dF—L F
-~ °

]

(55)

on thq space F of the form F(t) = Fk(r)y + FFHL (@) + -~,.where k € 7Z and
deg F'(t) = i for i > k. Each deg-homogeneous component F'(¢) of F admits an

expansion in the powers of v,
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' 1i/2) '
Fiy= > VF, (56)

r=—00

where (€ + E)F/ (1) = jF/ (1).

It follows from formula (35) that the operator L, is natural and fdeg L,, = 2, so
that L,, = A + A3+ ..., wheredeg A’ =i and A> = —v(£ + S) = e S(—vE)eS.
Observe that

d d
v— — A2 = eS¢ <v—> e'€eS. (57)

Lemma 9.2 Equation (55) has a unique solution F(t) with the initial condition
F(0) = 0, the zero solution.

Proof Assume that F(t) = Zl> Fi(t) with deg F'(t) = i and nonzero F”(t) is a
nontrivial solution of (55) with the initial condition F(0) = 0. Then,

d
(v— — A2> FP =0.
dr

; ( € st(t))

We have from (57) that

Therefore, e'€eS F P(t) does not depend on ¢. Since FP(0) = O, it follows that
1€eS FP (t) = 0 for all ¢, whence F?(t) = 0 for all . This contradiction proves
the lemma. O

Theorem 9.1 Equation (55) with the initial condition F (0) = 1 on the space F has
a unique solution, F(t) = FO(t) + F'(t) + ..., where deg F'(t) =i and

FO(r) = €'~ DS,

The component F i(t) can be expressed as (56), where for each pair (j, r) the function
Fl @) is a finite sum

F(t)_Ze’“’ rkd

k>0

such that (€ + é)Fr{k,l = jFr{k’l and Fr{k,l =0ifk =0andl > 0. In particular,

oo i/2]
. 2
fim PO =2 2 Vg
i=0 r=—00

Proof We will be looking for a solution F (¢) of filtration degree zero. Equation (55)
can be rewritten as the system
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I
d i —i
(”a _ A2> Fly =3 A2 ), 120, (58)

i=1

with the initial conditions F*(0) = 1and F*(0) = Ofor/ > 0.For/ = 0 the right-hand
side of (58) is zero. We have from formulas (57) and (58) that

I
d t€ .S 1l t€ .S i+2 l—i
£ Fl@ ): A2 (g, 59
v (¢FSF @) ey (t) (59)
Thus, e'€eS FO(¢) does not depend on 7. Since FO(0) = 1, we have
e €eSFO(r) = &5,

It follows that

o]

FO(I) — e(e*t_l)S — Z 16'17(6—t _ l)k(Sfl)k. (60)
k=0

We will prove the theorem by induction on i. We see from (60) that the statement

of the theorem holds for i = 0. Assume that it holds for all i < [ for/ > 1. Since
F!(0) = 0 for/ > 1, we obtain from (59) that

Fl@t) = v*le*Se%/ e™eS Y A FIT (1)dr. ©1)
0 i=1

According to Lemma 5.1, the operator AJ can be written as

J
Aj — ZvrA'];—b’
r=0
where deg A]r‘ = k. The component F,l —2r(t) of F!(¢) will be expressed as the sum

FI77wy= > F4ro. (62)

(i,a,b,u,v)

where

u,v

. 1 ! 1 ] .
Fl,a,b(t) — E (—Sfl)a e—tg f efgﬁ (Sfl)b A;+2_2uFll}_l_2v(‘L')dl’ (63)
. 0 :
and the sum in (62) is over the tuples (i, a, b, u, v) such that

L
1§i§l,a,b20,v§{TIJ,Ofufi—i—Z, andu+v—a—b=r+1.
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In particular, this sum is finite. According to the induction assumption, the function
Fll,_’_2” () in (63) is a finite sum of expressions

ektlp,

where P € C*°(TM & T1T M) is polynomial on fibers, k,! > 0, and the condition
k = 0 implies that [ = 0. Consider the contribution of one such expression to (63),

I Lol |
—(=s)te /O et (s (eTHel AP ar. (64)

We see from (38) that for every pair (r, j), the range of the differential operator A{
lies in J,. Therefore, A’M+2_2” P can be represented as a finite sum

N
j+2—2
Alu-i- up _ Z Qj
j=I

of fiberwise polynomial functions Q ; such that £P = j P. Consider the contribution
of one such function Q; to (64),

1 d 1
— (_S_l)a e—[f/ efg_ (S—l)b (C_kr‘[le> dr
al o b
1 a —t&€ ! (b—k+j)t 1 1 b
= —(=S-"% e Prride ) —(S-1)" Q;
al 0 b! ’
t
— e*(b+j)l‘/ e(b7k+j)r7:ldf i (_S_l)a l (S—l)b Qj
0 al b!
Set
K(t) = e b+ /te(b_k”)frldr.
0
Ifb—k+ j=0,then
S|
K(t)=e OH

[+1

Since b > 0and j > 1, weseethatb + j > 1.If b — k 4+ j # 0, then, according to
Lemma 9.1, there exists a polynomial p(t) such that

(e(b—k+j)fp(r)>/ _ okt l
It follows that

K(t) =e X p(r) —e T p(0).
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If k =0, then/ = 0 and
1 — e—b+i1

K =
@) b+

We have thus shown that all summands contributing to Frl =27 (1) satisfy the conditions
of Theorem 9.1. Thus, F(¢) exists and satisfies the conditions of the theorem. By
Lemma 9.2, it is a unique solution of (55) with the initial condition F(0) = 1. m|

Proposition 9.1 If F(t) is the solution of Eq. (55) with the initial condition F(0) =1
and W is an element of the Lie superalgebra (x, x, o), then

LwF(t) = RwF(1).

The function F(t) is a unique solution of the equation

d
PO =R, F() (65)

with the initial condition F(0) = 1.
Proof We use the fact that o lies in the supercenter of (x, x, o). Set
G(t) := (Lw — Rw) F(1).

We have

d d

d—tG(t) = (Lw — Rw) EF(I) = (Lw — Rw) Lo F(1)

=Lo(Lw— Rw) F(t) = LoG(1)
and
G0)=(Lw—Rw) FO)=(Lw—Rw)1=0.

Lemma 9.2 implies that G is the zero function, i.e., Ly F (t) = Ryw F(t). Therefore,
F(t) is a solution of Eq. (65) with the initial condition F(0) = 1. The uniqueness of
this solution can be proved as the uniqueness in Theorem 9.1. O

Lemma 9.3 The solution F(t) of Eq.(55) with the initial condition F (0) = 1 satisfies
the property that F(t) — 1 € J; N J, for every value of t.

Proof Since the range of the operator L, lies in J;, Eq. (55) implies that

i1'7(1‘) N/
P € Jr.

Since F(0) = 1, it follows that F(t) — 1 € J,. Since the range of the operator R, lies
in J;, we see that Eq. (65) similarly implies that F'(f) — 1 € 7. m|
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Theorem 9.2 If F(t) is the solution of the evolution equation (55) with the initial
condition F(0) = 1, then
lim F(t) = s. (66)
11— 00

Proof The limit in (66) exists by Theorem 9.1. Denote it temporarily by Z. It follows
from Lemma 9.3 that Z — 1 € J; N J;. To prove the theorem it remains to show that
L,Z = 0. We write

oo |i/2]

Fy=>Y Y vF @,

=0 r=—00

where for each pair (j, r) the deg-homogeneous element F,j (t) of degree j is expressed
as a finite sum

J —kt | ]
Flay=>Y e*F/,
k,[>0

such that Fr{k’l € C®(TM & IIT M) is polynomial on fibers, deg Frj;k’l = j, and

ij’l =0fork =0and!/ > 1. In particular,

r,

d . B B .
aF;’(r): Yo et —khF!,
k>0,>0

Therefore, for any pair (j, ») we have that

d .
lim —F/ () =0.

t—oo dt

The operator L, is a natural operator of filtration degree 2. According to Lemma 5.1,

oo i
Ly = ZZVrAi'in’

i=2 r=0
where deg Al = Jj. Equation (55) is equivalent to the system

d . i _
GE= 2 M PR 20,0 < if2), (67)
(Jj.k.p.q)

where the summation is over the tuples (j, k, p, ¢) satisfying the conditions j + k =
i+2,p+q=r+1,j>20<p<=<jk=>0,9 < |k/2]. In particular, the sum
in (67) is finite. Taking the limit as ¢+ — oo of both sides of (67) we obtain a system
equivalent to the equation L, Z = 0. It follows from Proposition 7.1 that Z =¢. O

Let F(t) = FO(t)+ F'(¢)+- - - be the solution of Eq. (55) with the initial condition
F(0) = 1. According to Theorem 9.1,
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FO>t) = exp{(e™" — 1)S}.

There exists a function G () = G°(t) + G (t) + - - -, where deg G (t) = i, such that
expG(t) = F(t), G(0) =0, and

GC'Hy=@E"=DS=v e =DS_,.
Lemma 9.3 implies that G(¢) € J; N J;.

Theorem 9.3 The v-filtration degree of the function G(t) is —1.

Proof We will prove by induction on i that for every i > 0 the v-filtration degree of
the function G' = G'(¢) is at least —1. This is true for i = 0. Assume that this is true
fori < p. Rewrite equation (55) in terms of G,

%G - (e*GL(,eG) 1. (68)

Since fdeg o = 0, one can write L, = A%+ A! + ... where deg A’ = i. According
to (39),

AV = e 5 (=&)e’.
Extract the component of (68) of degree p:
—Gl’ = Z > ﬂ(ad GMy...(adGA" |1 (69)
0 .
k=0i1+-+ir+l=p

The summands on the right-hand side of (69) containing G” have all but one i; = 0
and / = 0. They add up to

(Zk (ad G*)* (ad G”)AO) (e—adG"(— ad G”)AO) 1
= (! [AO, G”] FO> 1=-£GP.

Equation (69) can be written as

d
3G +EGr = HP, (70)

where H? is the sum of all terms on the right-hand side of (69) which do not contain
GP. One can rewrite (70) as follows,

d
e 1€ (d—t) €GP = HP. (71)
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Since the range of the operator L, lies in 7, we have that H? € 7, and therefore
t
GP(t) =e ¢ f e"CHP (1) dr.
0

Using the induction assumption and the fact that the operator vL, is natural, it is easy
to check that the v-filtration degree of H? is at least —1. Therefore, the v-filtration
degree of G? is also at least —1, which concludes the induction proof. O

10 Oscillatory symbols

Given an open set U C M, let 75(U ) denote the subspace of F(U) of elements of the
form

oo |i/2]

F=03 "V fris

i=pr=rp

where p,r, € Z and f,.; € Pi_2(U). We set P = 75(M). One can check using
Lemma 5') that a natural formal differential operator on Q extended to JF leaves
invariant P. We define an oscillatory symbol F as an element of F which admits a
representation

F=e¢"G, (72)
where G € Pand hisa global function on 7 M @ I1T M such that in local coordinates
h=vlhy(z, Z)nk ﬁl and (hy(z, 7)) is an m X m-matrix nondegenerate at every point
(z, 2). We denote by O the space of oscillatory symbols in F. It is a union of linear

spaces Oj, of oscillatory symbols with a fixed function /. For any open subset U C M
one can similarly define the space O(U) of oscillatory symbols in F(U).

Lemma 10.1 A nonzero oscillatory symbol F € O has a unique representation (72).

Proof Suppose that a nonzero element F € O has two representations of the form
(72),

F=e"G= e*ﬁé.

Since degh = degfz = 0, we can assume that F' is deg-homogeneous. Then, deg G =
deg G = deg F and G, G are formal functions on T M @ I17T M polynomial on fibers
whose v-degree is bounded below and above. We obtain the equality

e hG = G

which holds if and only if » = h and G = G. O
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Lemma 10.2 A natural formal differential operator A on the space Q extended to F
leaves invariant each space Oy, of oscillatory symbols, i.e., given an element e “hG e
O, there exists an element G € P such that

A (eihG) =e "G eo.
Proof By Lemma 5.2, the operator ¢ Ae™" is natural and therefore leaves invariant

the space P. We have G = (e Ae™") G. |

Let i, w be global functions on TM & I1T M given in local coordinates by the
formulas & = v lhy(z, Z)nkﬁl and w = v lwy(z, 2)0%0, where (hy) is a non-
degenerate matrix. Assume that H € J; N J, is an even element whose v-filtration
degree as at least —1, fdeg H = 0, and the deg-homogeneous component of H of
degree zero is h + w.

Lemma 10.3 We have e % € O.
Proof One can write
H=h+w+H,
where H € Q! and the v-filtration degree of H is at least —1. Set
G :=exp{—(w + ﬁ)}.
Since exp{—ﬁ } e P and w is nilpotent, we see that G € P. Now,
exp{—H} = exp{—h}G,

whence the lemma follows. O

Proposition 10.1 For any f € C®°(M)((v)) we have Ky € O. For anyt > 0 we
have F(t) € O.

Proof The proposition follows from Lemma 10.3 and Theorems 7.3 and 9.3. O

Assume that, as above, a global function 7 on TM & IIT M is given in local
coordinates by the formula 2 = v (2, Z)nk ﬁl , where (hy;) is a nondegenerate
matrix at every point (z, z). Then, there exists a global differential operator A, on
TM & IIT M given in local coordinates by the formula

Ay = vh'k

ankant’

where (h”‘ ) is the matrix inverse to (/7). There exists a fiberwise endomorphism Aj,
of the holomorphic cotangent bundle of M given in local coordinates by the formula

Ay = (guh'), (73)
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where gy is the pseudo-Kihler metric tensor. Let
C:C®(TM®UTM) — C*(IITM)

denote the restriction mapping to the zero section of the vector bundle T M & I1TM —
I[ITM (we identify the zero section with 17 M). In local coordinates, ¢(F) =
F|y=ii=0. Define a global mapping

T, : P — CO(NIT M)((v))

by the formula
T/ (G) = det (Ap) ¢ (e G). (74)

Since deg (A) = 0, the operator exp{ A} acts upon each homogeneous component of
G as a differential operator of finite order. Let G/ be the deg-homogeneous component
of G of degree j. It follows that deg 7j,(G/) = j. Since in local coordinates T}, (G/)
does not depend on the variables 7, 1, the v-filtration degree of Th(Gj ) is bounded
below by j/2 — m, which implies that the v-degree of 7;,(G) is bounded below.
Therefore, the mapping 7}, is well defined. One can interpret (74) as a fiberwise formal
oscillatory integral on the vector bundle TM & I1TM — TITM,

Joroh (o mmomea. oo

m! \ 21

where y is given by (26). If iy is a Hermitian metric tensor, v is a positive number, and
G € C*®(TM @ TIT M) is fiberwise polynomial, then the integral in (75) converges
to the right-hand side.

Let U C M be a coordinate chart. Recall that g = det(gy;) and log g is any branch
of the logarithm of g on U. Define similarly h := det(/y;) and logh.

Theorem 10.1 Let f € C*(TITU)((v)) and G € 75(U). The following identities
hold true:

() T (fG) = fTi (G);

@ T (5 —v'hpit) G) = 0;
3) T, ((% - v_lhkan) G) —0;
@ gno =1 ((4+1

) 5571 (0) =T (3% — i
©) 5570 (6) =T (3% -
™) 5971 (G) = T (

®) 57 (G) =Ty (:5:G).

9 51=T (G) = Ty (—1n*71' G).
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Proof Statements (1), (7), and (8) are trivial. We prove (2) as follows:

0 _ —Ap 1 =/ Ap
Th ((8—[?—;]’117[77) ) —Th (e <—;hpm)e G

= det (Aj) (—v*‘h,,,ﬁl) eAhG‘n:ﬁzo —0.

Statement (3) can be proved similarly. To prove (4), we observe that

dTG—T d AL )G
ah()—h aJrU h .

It remains to show that Tj, (A, G) = T, ((h —m) G). This identity readily follows
from items (1), (2), and (3). We prove (5) as follows:

9 9 A
T (6 = 5= (det(Ah)e G‘ —n—O)

— det (Aj) (@ log det (Ah)) eAhG‘nzﬁzo

anlk 392G
det (Ap) e (v ——
+det(Ap)e <v 027 Brkor

=T 0 9 1 G
=1y 32r + 32r 0gg
+T; ont 2 9 logh )G
Ve — —— .
M\ oz anforl ~ azp OB
Now it remains to show that

antk 32 9 oh

Ih|l|(v——F—=——logh )G )=T{|—)G).
dzP dnkanl  AzP 0zP

This equality can be derived from items (1), (2), (3), and the formula

G
+det (Ap) e —
>"7=ﬂ=0 (An) 0z? In=i=0

d oh
210 g _ hlk kl
azP azp

Identity (6) can be proved similarly. In order to show (9), we use the formula

Ohy

to prove that
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3
— logdet(A,) = —h'*
oh ogdet(Ap)

and then use formulas (2) and (3). O

This theorem justifies the interpretation of the mapping 7}, as a formal oscillatory
integral. Identities (2) and (3) can be obtained by integrating the formal integral in
(75) by parts and identities (4)—(9) can be obtained by differentiating it with respect
to a parameter.

Let U C M be a coordinate chart, (hz;) be a nondegenerate m x m-matrix with
elements from C*°(U), and (o) be a matrix with even nilpotent elements from
C>®(U)[#H, 6]. Suppose that f is a smooth function in m? complex variables such that
the composition

flhi) = fhit, oo Bm)

is defined. Then, one can define the composition of f with the functions Az + o
using the Taylor series of f which terminates due to the nilpotency of oy,

o
F(hi + ) = e Tra ().

We set h := v ¥l and & := v lan 7. Givene "G € O(U), we can rewrite
it as
e~ (2 G). (76)

Also, we can define the matrix Aj44, the operator Ajy, and the mapping 7j,4 by
the same formulas, because the matrix (fx; + o) is invertible. The formal oscillatory
integral (75) should not change if we rewrite the integrand as (76). This is indeed the
case.

Lemma 10.4 Given G € 75(U ), the following identity holds:
Thia(G) = Tj (74G).

Proof Using Theorem 10.1 (9), we get that

J
Thia(G) = 7700 T(G) = Tj, (e7°G) .
O

This lemma holds true in the global setting when 4 and « are definedon T M ®I1T M
and G € P.

Suppose that an element e *G € O is compactly supported over M. We define a
formal integral of e "G with respect to the density  given in (27) as follows,

/e—hGy,::/ T (G) dB.
nrm
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We want to show that this formal integral is a supertrace functional on the space of
formal oscillatory symbols O with respect to the action of the algebra (Q, *).

Let A be a differential operator on the space T M @17 M. There exists a differential
operator A’, the transpose of A, on that space such that for any f, g € C°(TM &
[T M) with f or g compactly supported over T M the following identity holds,

/ (Af)-gu = / (DAL (Af gy,
TMITM

TMeNTM

The mapping A — A’ is involutive and has the property that
(AB)" = (—D)AIIBIgr A, (77)

If A is a multiplication operator by a function with respect to the fiberwise Grassmann
product, then A = A’. In local coordinates we have

3\’ 9 9 |
JES— = —— — —— |0 ;
dzk azk  azk &8

R I A I N
a0k ) a0k’ \apl ) ael’

The mapping A — A’ induces a transposition mapping on the differential operators
on the space P . The transpose operator of a differential operator A on P will be
denoted also by A”.

Proposition 10.2 Given f € Q and ¢™"G € O such that f or G is compactly
supported over M, then for any differential operator A on Q we have

/(Af) e "G = /(—1)‘f"A'f LA (e_hG) . (78)

Proof We will prove the proposition on a coordinate chart U C M. To prove (78) for
A = 0/9n? we verify the identity

of  hq d [ —n
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We have

3
- [ ({5~ o))
9
=/I'ITUT ((W—v lhplﬁ’> (fG)) dg =0

by item (2) of Theorem 10.1. Identity (78) for A = 9/979 follows from item (3) of
Theorem 10.1. To prove (78) for A = /967 we verify the identity

o tou=— [ (o)

Using item (7) of Theorem 10.1, we have that
3f oh / [ f\ 9 —h
G 1 ( G)
207 w+ [ (=1 a o7 M

—h
- [t aguon= [, 5 (amue)

0
=/m TG dB =0,

One can similarly verify (78) for A = 8/869, 3/3z”, and /379 using items (8), (5),

and (6) of Theorem 10.1, respectively. Now the statement of the Proposition follows
from (77). O

Theorem 10.2 Given f € Q and e "G € O, where G is compactly supported over
M, the following identity holds,

/(Lf —Ry) (e_hG> w=0.

Proof The condition that p is a trace density for the star product x on TM & I1T M
is equivalent to the condition that

(Lf—Rf)tlzo (79)

for any f € C®(TM @ NITM)((v)). Therefore, (79) holds for any f € Q. By
Proposition 10.2,

/(Lf—Rf) (c0) M:/L(Lf—Rf) (cG)
Z/((Lf—Rf)fl) (¢G) n=o.

O
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We introduce a functional T on the compactly supported formal functions on M by
the formula

T(f) = / Ky

It follows from Proposition 10.1 that it is well defined. Using partition of unity, Propo-
sition 8.2, and Theorem 10.2 one can show that 7 is a trace functional on the algebra

(C(M)((v)), %).

Theorem 10.3 Assume that the manifold M is compact and F (t) is the solution of
(55) with the initial condition F(0) = 1. Then, the identity

(1) = / F(t) (80)

holds for all t > 0.

Proof According to Proposition 10.1, the formal integral in (80) is well defined. Using
evolution equation (55), Proposition 9.1, and Theorem 10.2 we get

d
" F(t)u=/LaF(t)M=/(LXL;+L;LX)F(I)M
:/(LXL;(+LXRX)F(t),u=/(LX—RX)LXF(t)uzo.

Therefore, the integral in (80) does not depend on 7. Now the statement of the theorem
follows from Theorem 9.2. O

11 Identification of the trace functional

In this section we will prove that for any contractible open subset U C M there exists
a constant ¢ € C such that

r(f)=0fufu*

forall f € Cgc (U)((v)). The local v-derivation

for the star product x on TU @ I1TU induces a derivation on the algebra (Q(U), %)
which we also denote by 8. Moreover, the action of § on Q(U) extends to F(U) so
that the Leibniz rule holds. Namely, for f € Q(U) and g € F(U),

5(fxg) =08(f)xg+ f*5(g)andd(g* f)=25(g)* f+g*d(f).
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We will modify the derivation § by an inner derivation so that the resulting derivation
will leave invariant the subspace K(U) C F(U). Set

o= () o (as)

§:=8+ Ly — Ry.

and define

Theorem 11.1 Given f € C*°(U)((v)), we have that

§(Kp)=Ks,
where
5 d do .
T dv dv &

is a derivation of (C*°(U)((v)), ).

Proof First we will prove that the space K(U) is invariant under the action of §. We
have
S, =1 dX -/ -/ dX
S(n)=—xn —n >|<—+w>kr; —n * W
dv dv
o (d® 1 i ad_
dv  v2" 9zk

+ w) mod J;.

Given f € C*(U)((v)), we get using (51) that

do 1 00,
e K
(dv 2 ok +w)* !

do I 0P ~ (1 0d_,
(dv v277 azk _'B< > nﬂ(ﬁ azk >>*Kf20'
Thus, S(ﬁ’) * Ky = 0. One can prove similarly that §(0") * Ky = 0. Next,

5 ) dx Ky dx
S il
= v T
+w>|<17 —n *w:w*n mod ;.
Given f € C*(U)((v)), we have using (51) that
Ky S(nk) =Kpxwx nk

— kB8 et = -k k=0
=—K;xp . x1 = prde 1 =0.
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Similarly, K s * §(6%) = 0. It follows that
i «8(Kp) =0 *8(Ks)+8() * Kp =381 *Kyp)=0.
We prove along the same lines that
6!« 8(Ky)=8(Ks)xn* =8(Kp)*6F =0.

Therefore, S(Kf) € K(U). Now we need to find an element g € C*°(U)((v)) such
that S(Kf) — g € J; + J,. For this element we will have S(Kf) = K. We write
explicitly

d

- dx dX
8(Kf)=aKf+$Kf—Kf*d—v+w*Kf—Kf*w.

Since K; = f mod (7 + J;) and ?j—f = ‘cll—‘f mod (7 4+ J7,), it follows that

d dx df

By Lemma 7.3 and Corollary 8.2,

K3 k89 d G+ 82)
T f*dv_f*dv o i e (

Using (51) we get that

~ (dd ~ (1 0d_
ko (A () +7 (55

= dq)*K + ! k*aqu *Kr+ K
T dv VAANOL azk ! 0
Therefore, by Corollary 8.2,
do do
wxKr—Krxw=——xf+4+ fx— mod (J + 7). (83)
dv dv
Combining (81), (82), and (83), we get
- df
5(Ky) = o —f——*f—5 (f) mod (J1 + J),
which concludes the proof. O
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Theorem 11.2 Given e "G € O(U) such that G is compactly supported over U, the
following identity holds,

%/eihGpL:/S(e*hG) .

Proof Writing § = % + A, we see that Theorem 4.1 is equivalent to the fact that

du
A = —
(ADu =
which implies Theorem 11.2 according to Proposition 10.2. O

Corollary 11.1 There exists a constant ¢ € C such that
wh=c ru
U

forany f e Cg°(U)((v)).

Proof By Theorem 11.1, we have

d d 3
o = EfouzfﬁKf)ﬂ

= / KS*(f) n=T (g*(f)> s

whence the corollary follows. O
Corollary 11.1 implies the following theorem.

Theorem 11.3 If the manifold M is connected, then there exists a constant ¢ such
that

T(f)=/KfH=CA4fM*

for all compactly supported formal functions f on M.

12 Getzler’s rescaling
In this section we use the rescaling of TM @ I1T M introduced by Getzler in [12].
Consider the operator Ay on C*°(TM @ I1T M) given in local coordinates by the

formula

As : F(z,7,0,1,0,0) — F(z, 7,51, s, s6, s0).
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Given a function F on T M @ I1T M compactly supported over T M, it is easy to verify

that
/ AsF

does not depend on 5. An analogous statement holds also for the formal integral when
F is an oscillatory symbol.

Proposition 12.1 Given e "G € O such that G < P is compactly supported over
M, the formal integral

/ ho(@G)

does not depend on s.

Proof We have
f ds(€ "Gy = f Ty (1, G)dB.
nrm

Since only the component of G of bidegree (m, m) with respect to the odd variables
(6, 6) contributes to the integral, it suffices to prove that

T2y (AG) = s 2" Tj(G).

Clearly, det(A2;,) = s det(Ap) and Ay, = s~ 2Ay. Denote by G, the compo-
nent of G of bidegree (k, [) with respect to the variables (7, 17). Then,

o0

-2 1
¢ (¢ (6) = 30— (A G,y
=
does not depend on s, whence the proposition follows. O

We introduce an operator
LS =520 Lo ag
and a function
G(s,1) == A, F(s?D),
where F (t) is the solution of (55) with the initial condition F(0) = 1.
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Lemma 12.1 The function G (s, t) is the unique solution of the equation

d
EG =L.G (34)

with the initial condition G|;—o = 1 on the space F.

Proof The lemma follows from the calculation
w(L6) = Lo.6) = Lritn
Nt ) Ta T T
dF
= szz(szt) = s?Ly F(s%t) = s> Lo AsG.

O

Consider the grading on the functions on 77M & I1T M polynomial on fibers given
by the operator £ + £. For the variables n, 1, 6, 6,

Inl =17l =161 = 16| =1

(we assume that |[v| = 0). This grading induces an ascending filtration on the space of
formal differential operators on Q. The subspace of filtration degree d consists of the
operators of the form A = Ay + Ag—1 + - - -, where A; is homogeneous of degree j
with respect to the this grading. We call this grading the A-grading, because

A(Apry =74

It follows from (20) that for f € C°°(M)((v)) the operator f — L ; has the A-filtration
degree — 1. We see from (38) that the A-filtration degree of the operator L, is 2. Denote
by LY the homogeneous component of L, of A-degree 2. We have

LY =1lim LS.
s—0
The curvature R = R} of the Kihler connection on M is given by the formula

u _ pu P >q
R} = Rkpqdz A dz4, where

Tu

b
Ripg = (gk,,;;g “8aig — gkpiq) 8

In local coordinates the operator Lg is expressed as follows,

.0
LY=o +R!

o T (85)

where Iéz = R,’quef’éq.
The operator L, can be written as aseries L}, = Bo+sBj+- - -, where the A-degree
of B;is2 —i and By = L.
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Theorem 12.1 The function G(s, t) is regular at s = 0.

Proof We will prove by induction on i that the deg-homogeneous component G’ of
degree i of the function G is regular at s = 0. We have G' = A['F i(s2t), where
F' is the deg-homogeneous component of degree i of the function F (). We get from
Theorem 9.1 that

e — 1
G'(s.t) =exp] ———S¢.
S

This function is regular at s = 0 and
G°0,1) =e™"5.

Assume that G' is regular at s = 0 fori < [. In Theorem 9.1 we used the notation
Ly, = A> + A3 + ... where deg A’ = i. Using that

o Se—1€eS — exp {e*S(—te)eS} = e 1EFES)

we can rewrite formula (61) as follows:

1 t Lo .
Fl(t) — ;eft(EJrES) / er(8+SS) Z Al+2Flfl (T)df. (86)
0 i=1

Applying A;l to both sides of (86), we get

l
1 - ! — . )
)\;11;1(0 _ ;eft(€+s 285)/ ot (E+s 255)Z(X;IAIHAS)A;IF’*’(r)dr.
0

i=1

2

Replacing 7 with s>¢ and using the substitution 7 = s%u, we obtain that

1

1 , . .

Gl(s,1) = ;e—“fz“&”f U OTEHED N (2 A0 G (5, wydu
0 X

i=1

Since the A-filtration degree of the operator L, is 2, the operator 52)\‘;1141.-"_2)\.5 is
regular at s = 0. Therefore, by the induction assumption, G' is also regular at s = 0,
whence the theorem follows. O

The matrix
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is well defined and the elements of the matrix H(¢) — ¢ - 1 are even and nilpotent.
Theorem 12.1 implies that the function G (0, ¢) is a solution of the equation

d G(0,1) = L2G(0, 1)
dt E) - o E)

with the initial condition G (0, 0) = 1. It is easy to prove that this solution is unique.
Denote by £ the global function on TM @ 17T M given in local coordinates by the
formula h = —p~! H! (t)gu[nkﬁl. A direct check shows that

G(0,1) = exp {itd) — fz} ,
where & is given by (34). It follows that
G(0,1) =e'*G (1),

where G (1) € P, so that G(0,1) € Ofort # 0. By (73),

~

Aj=—H) ' =

1 —elR’

Using Lemma 10.4, we can calculate the following formal oscillatory integral,

/G(o,r)i iy m:e”‘?)det R
m! \ 27 1 —elR

Now assume that the manifold M is compact and connected. According to Theorem
10.3 and Proposition 12.1,

t(l):/G(s,t),u

for any s # 0 and ¢ > 0. Passing to the limit as s — 0, we obtain that

T(l):/G(O, I)IL:/ e”“A’det( R A) dﬂ
nrm 1 —elR

for any ¢t # 0. We will set t = —1. Theorem 11.3 implies that there exists a constant

¢ € C such that
. R
c/ g = / e '“ det ~ ] dB.
M nrm 1—eR

Since the leading term of the canonical trace density . is given by (3), we see that
c=1.
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Using the fact that the Todd genus Td (M) of M has a de Rham representative

det R
€ T _po

1—e R

where R is the curvature of the Kdhler connection on M, we obtain the following
algebraic Riemann—Roch-Hirzebruch theorem for deformation quantization with sep-
aration of variables.

Theorem 12.2 Let x be a star product with separation of variables on a compact
connected pseudo-Kdahler manifold M with classifying form w. Then,

/ [y = / el ram), (87)
M M

where i, is the canonical trace density of x and [w] is the de Rham class of w.

The curvature of the Kihler connection on TeM = TUOM @ TOD )y =
7101 @ 7.0 0 s given by the matrix

R 0
0 —-R'|’

where we identify 7D M and 7*(19 M via the pseudo-Kihler metric on M. There-
fore, the A-genus of M has a de Rham representative

Now the index formula (4) follows from formulas (87) and (9) and the fact that p =
itrR.
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