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Abstract We give a heat kernel proof of the algebraic index theorem for deformation
quantization with separation of variables on a pseudo-Kähler manifold. We use nor-
malizations of the canonical trace density of a star product and of the characteristic
classes involved in the index formula for which this formula contains no extra constant
factors.
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1 Introduction

Given a manifold M , denote by C∞(M)((ν)) the space of formal Laurent series

f = νr fr + νr+1 fr+1 + · · · ,

where r ∈ Z and fi ∈ C∞(M) for i ≥ r . We call f a formal function on M . Let π
be a Poisson bivector field on M . A formal deformation quantization on the Poisson
manifold (M, π) is an associative product � on C∞(M)((ν)) given by the formula

f � g = f g +
∞∑

r=1

νrCr ( f, g). (1)

In (1) Cr are bidifferential operators on M and

C1( f, g) − C1(g, f ) = i{ f, g},

where { f, g} = π(d f ∧ dg) is the Poisson bracket corresponding to π . We assume
that a star product is normalized, i.e., the unit constant function 1 is the identity,
f �1 = 1 � f = f for any f . Given formal functions f, g on M , we denote by L�f the
operator of left multiplication by f and by R�

g the operator of right multiplication by g
with respect to the star product �, so that f �g = L�f g = R�

g f . We have [L�f , R�
g] = 0

for any f, g.
A star product can be restricted to any open setU ⊂ M . We denote byC∞

0 (U )((ν))

the space of formal functions compactly supported on U . For f = νr fr + · · · ∈
C∞
0 (U )((ν)) each function fi has compact support in U , but we do not require that

all fi , i ≥ r , have a common compact support in U .
Two star products �1 and �2 on (M, π) are equivalent if there exists a formal

differential operator

T = 1 + νT1 + ν2T2 + · · ·

on M such that

f �2 g = T−1(T f �1 Tg).

The problem of existence and classification up to equivalence of star products on
Poisson manifolds was stated in [2] and settled by Kontsevich in [21], who proved
that star products exist on an arbitrary Poisson manifold and their equivalence classes
are parametrized by the formal deformations of the Poisson structuremodulo the action
of formal diffeomorphisms.
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A heat kernel proof of the index theorem for deformation… 2095

A symplecticmanifold (M, ω−1) is equippedwith a nondegenerate Poissonbivector
field π inverse to ω−1. Fedosov gave in [8] and [9] a simple geometric construction of
star products in each equivalence class on an arbitrary symplectic manifold (M, ω−1).
The equivalence classes of star products on (M, ω−1) are bijectively parametrized by
the formal cohomology classes from

− i

ν

[
ω−1

] + H2(M)[[ν]],

as shown in [4,6,9,23].
Let � be a star product on a connected symplectic manifold (M, ω−1) of dimension

2m. There exists a formal trace density for the product � which is globally defined on
M and is unique up to a factor from C((ν)). Fedosov introduced in [8] a canonically
normalized formal trace density for the product � using local isomorphisms between
that product and the Moyal–Weyl star product. Then, in [9] he used this trace density
to state and prove the algebraic index theorem for the star product �.

In this paper we consider a canonical formal trace density μ� of the product � on
M which differs from Fedosov’s trace density by a factor from C. According to [17],
the normalization ofμ� can be described intrinsically as follows. On each contractible
open subset U ⊂ M there exists a local ν-derivation of the product � of the form

δ� = d

dν
+ A,

where A is a formal differential operator on U (see [13]). It is unique up to an inner
derivation, i.e., all such ν-derivations on U are of the form δ� + [ f, ·]�, where f ∈
C∞(U )((ν)) and [·, ·]� is the commutator with respect to the product �. The canonical
trace density μ� satisfies the equation

d

dν

∫

U
f μ� =

∫

U
δ�( f )μ� (2)

for any formal function f compactly supported onU . Equation (2) determines μ� on
U up to a factor from C which can be fixed by normalizing the leading term of μ�. In
this paper we require that this leading term be

1

m!
(

− i

ν
ω−1

)m

. (3)

If M is compact, the total volume of the canonical trace density μ� is given by
a topological formula analogous to the Atiyah–Singer formula for the index of an
elliptic operator, ∫

M
μ� =

∫

M
eθ� Â(M), (4)

where θ� is the formal cohomology class that parametrizes the equivalence class of
the star product � and Â(M) is the Â-genus of the manifold M . The class Â(M) has
a de Rham representative
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2096 A. Karabegov

det
1
2

RTM/2

sinh(RTM/2)
,

where RTM is the curvature of an arbitrary connection on T M . This statement is
called the algebraic index theorem for deformation quantization and the total volume
of the canonical trace density μ� is called the algebraic index of the star product �.
The algebraic index theorem has several different conceptual proofs. Fedosov’s proof
is based upon the methods of Atiyah and Singer. Nest and Tsygan proved in [22] the
algebraic index theorem for deformation quantization using cyclic homology and the
local Riemann–Roch theorem by Feigin and Tsygan given in [11]. Various general-
izations of the algebraic index theorem were obtained in [7,10,23–25].

Getzler gave in [12] a proof of the Atiah–Singer index theorem for a Dirac operator
based upon the ideas of Witten and Alvarez-Gaumé (see [1]). In that proof he used
symbols of pseudodifferential operators on a supermanifold. Berline, Getzler, and
Vergne wrote later a book [3] on heat kernel proofs of index theorems for Dirac
operators.

In this paper we prove the algebraic index theorem for a star product with separation
of variables on a pseudo-Kähler manifold following Getzler’s approach. Many global
geometric objects used in our proof are described locally on holomorphic coordinate
charts by coordinate-independent constructions. The proofs of a number of statements
are based on the interplay between pointwise products and star products with sepa-
ration of variables. We use normalizations of the canonical trace density and of the
characteristic classes involved in the index formula (4) for which this formula contains
no extra constant factors.

This paper is dedicated to my teacher Alexandre Aleksandrovich Kirillov on the
occasion of his 81st birthday.

2 Star products with separation of variables

Let M be a complex manifold of complex dimension m equipped with a Poisson
bivector field π . A star product � on (M, π) has the property of separation of variables
of the anti-Wick type if

a � f = a f and f � b = f b

for any locally defined holomorphic function a, antiholomorphic function b, and arbi-
trary function f , which means that

L�a = a and R�
b = b

are pointwise multiplication operators. Equivalently, the operators Cr in (1) act on the
first argument by antiholomorphic partial derivatives and on the second argument by
holomorphic ones. If there exists a star product with separation of variables on (M, π),
then the Poisson bivector π is of type (1,1) with respect to the complex structure. In
local coordinates π is expressed as follows,
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A heat kernel proof of the index theorem for deformation… 2097

π = igl̄k
∂

∂zk
∧ ∂

∂ z̄l
,

where gl̄k is the Poisson tensor corresponding to π and the Einstein summation over
repeated upper and lower indices is used.

We say that a formal differential operator A = A0 + νA1 + · · · on a manifold M
is natural if Ar is a differential operator on M of order not greater than r for all r ≥ 0.
A star product (1) is natural in the sense of [14] if the bidifferential operator Cr in (1)
is of order not greater than r in each argument for all r ≥ 1 or, equivalently, if for any
f ∈ C∞(M) the operators L�f and R�

f on M are natural. If a star product � is natural

and f = ν p f p + ν p+1 f p+1 + · · · ∈ C∞(M)((ν)) (i.e., the ν-filtration degree of f
is at least p), then the operators ν−pL�f and ν

−p R�
f are natural. It was proved in [18]

that any star product with separation of variables on a complex manifold M is natural.
Given a star product with separation of variables � on (M, π), there exists a unique

globally defined formal differential operator

I� = 1 + νI1 + ν2I2 + · · ·

on M such that for any locally defined holomorphic function a and antiholomorphic
function b,

I�(ba) = b � a.

In particular,I�a = a andI�b = b. It is called the formal Berezin transform associated
with the star product �. A star product with separation of variables can be recovered
from its formal Berezin transform. An equivalent star product �′ on (M, π) given by
the formula

f �′ g = I−1
� (I� f � I�g)

is a star product with separation of variables of the Wick type, so that

b �′ f = b f and f �′ a = f a,

where a and b are as above.

Lemma 2.1 For any local holomorphic function a and local antiholomorphic function
b we have

I�( f a) = I�( f ) � a and I�(b f ) = b � I�( f ). (5)

Proof

I�( f a) = I�( f �′ a) = I�( f ) � I�(a) = I�( f ) � a.

The second formula can be proved similarly. 	
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2098 A. Karabegov

The star product �̃ opposite to �′,

f �̃ g = g �′ f,

is a star product with separation of variables of the anti-Wick type on (M,−π). The
star product �̃ is called dual to �. Its formal Berezin transform is I�̃ = I−1

� .

In this paper we assume that a star product with separation of variables is of the
anti-Wick type unless otherwise specified.

Let � be a star product with separation of variables on (M, π). The operator C1 in
(1) written in coordinates on a local chart U ⊂ M is of the form

C1( f, g) = gl̄k
∂ f

∂ z̄l
∂g

∂zk
,

where gl̄k is the Poisson tensor corresponding to π . If π is nondegenerate, it corre-
sponds to a pseudo-Kähler form ω−1 on M . Namely, the matrix gkl̄ inverse to gl̄k is a
pseudo-Kähler metric tensor such that

ω−1 = igkl̄dz
k ∧ dz̄l

on U . If 
−1 is a potential of ω−1 on U , then

gkl̄ = ∂2
−1

∂zk∂ z̄l
. (6)

We will omit the bars over the antiholomorphic indices in the tensors gkl̄ and gl̄k . In
this paper we will use the notation

gk1...kpl̄1...l̄q = ∂ p+q
−1

∂zk1 . . . ∂zkp∂ z̄l1 . . . ∂ z̄lq

for p, q ≥ 1.
It was proved in [5,15] that star products with separation of variables exist on

an arbitrary pseudo-Kähler manifold (M, ω−1). Moreover, as shown in [15], the star
products with separation of variables of the anti-Wick type on (M, ω−1) bijectively
correspond to the closed formal (1,1)-forms

ω = ν−1ω−1 + ω0 + νω1 + · · · (7)

onM . Let � be a star product with separation of variables on (M, ω−1)with classifying
form (7). On a contractible coordinate chart U ⊂ M every closed form ωr has a
potential 
r , so that ωr = i∂∂̄
r . Then,


 := ν−1
−1 + 
0 + ν
1 + · · ·
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A heat kernel proof of the index theorem for deformation… 2099

is a formal potential of ω on U . The star product � is uniquely determined by the
property that

L�∂

∂zk

= ∂


∂zk
+ ∂

∂zk
and R�

∂


∂ z̄l
= ∂


∂ z̄l
+ ∂

∂ z̄l
(8)

for 1 ≤ k, l ≤ m. Given f ∈ C∞(U )((ν)), there exists a unique formal differential
operator A on U which commutes with the operators R�

z̄l
= z̄l and R�

∂
/∂ z̄l
for 1 ≤

l ≤ m and satisfies the condition A1 = f . It coincides with the operator L�f , A = L�f .
This property allows to reconstruct the star product � from its classifying form ω.

The Ricci form ρ on (M, ω−1) is given in local coordinates by the formula

ρ = −i∂∂̄ det(gkl).

The canonical class εM of the complex manifold M has a de Rham representative
−ρ, εM = −[ρ].

The formal cohomology class θ� that parametrizes the equivalence class of a star
product with separation of variables � on M with classifying form ω is given by the
formula

θ� = −i

(
[ω] − 1

2
εM

)
= −i

(
[ω] + 1

2
[ρ]

)
, (9)

where [ω] is the de Rham class ofω. Formula (9) was given in [16], but, unfortunately,
contained a wrong sign.

Let ω̃ be the classifying form of the star product with separation of variables �̃ on
(M,−ω−1) dual to the product �. Then,

ω̃ = −ν−1ω−1 + ω̃0 + νω̃1 + · · · .

The following construction of a local non-normalized trace density for a star product
with separation of variables �on (M, ω−1)was introduced in [17].Given a contractible
coordinate chart U ⊂ M and a potential 
 = ν−1
−1 +
0 + · · · of the classifying
formω of the product � onU , there exists a potential� = −ν−1
−1+�0+ν�1+· · ·
of the dual form ω̃ on U satisfying the equations

I�
(
∂�

∂zk

)
+ ∂


∂zk
= 0 and I�

(
∂�

∂ z̄l

)
+ ∂


∂ z̄l
= 0. (10)

The potential � is determined by Eqs. (10) up to an additive formal constant. As
shown in [17],

e
+�dzdz̄,

where dzdz̄ is a Lebesgue measure on U , is a trace density for the product � on U . In
order to canonically normalize this trace density, one can use the following explicit
local ν-derivation of the product � on U introduced in [16],

δ� = d

dν
+ d


dν
− R�

d

dν
. (11)
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2100 A. Karabegov

3 Deformation quantization on a super-Kähler manifold

In this section we recall a construction of a star product with separation of variables
on a split supermanifold from [20].

Let E be a holomorphic vector bundle of rank d over a pseudo-Kähler manifold
(M, ω−1) equipped with a possibly indefinite sesquilinear fiber metric hαβ̄ and let
�E be the corresponding split supermanifold. We identify the functions on�E with
the sections of ∧ (

E∗ ⊕ Ē∗), where E∗ and Ē are the dual and the conjugate bundles
of E , respectively.

We say that a formal function f = νr fr+· · · on�E is compactly supportedover M
if for each j ≥ r the coefficient f j is a compactly supported section of ∧ (

E∗ ⊕ Ē∗),
or, equivalently, there exists a compact K j ⊂ M such that the restriction of the function
f j to�E |M\K j vanishes.
Consider a holomorphic trivialization E |U ∼= U × C

d over an open set U ⊂ M
and denote by θα, θ̄β, 1 ≤ α, β ≤ d, the odd fiber coordinates on�E |U ∼= U ×C

0|d .
A function f on �E |U can be written as

f =
∑

0≤p,q≤d

fα1...αp β̄1...β̄q
θα1 . . . θαp θ̄ β1 . . . θ̄βq , (12)

where the coefficients fα1...αp β̄1...β̄q
∈ C∞(U ) are separately antisymmetric in the

indices αi and β j . A function (12) on �E |U is holomorphic if its coefficients are
holomorphic and satisfy fα1...αp β̄1...β̄q

= 0 for q > 0. It is antiholomorphic if its
coefficients are antiholomorphic and satisfy fα1...αp β̄1...β̄q

= 0 for p > 0.

Thefibermetric hαβ̄ on E determines a global even nilpotent function H = ν−1H−1
on �E such that locally

H−1 = hαβ̄θ
αθ̄β .

Let � be a star product with separation of variables on (M, ω−1) with classifying
form ω. It was shown in [20] that the star product � and the function H determine a
unique global star product with separation of variables ∗ on �E which is Z2-graded
with respect to the standard parity of the functions on�E and satisfies the following
property. Let U ⊂ M be any contractible coordinate chart, �E |U ∼= U × C

0|d be a
trivialization, 
 = ν−1
−1 + 
0 + · · · be a potential of the form ω on U identified
with its lift to �E |U , and

X := 
 + H = ν−1(
−1 + H−1) + 
0 + ν
1 + · · · (13)

be an even superpotential on �E |U . Then,

L ∂X
∂zk

= ∂X

∂zk
+ ∂

∂zk
, L ∂X

∂θα
= ∂X

∂θα
+ ∂

∂θα
,

R ∂X
∂ z̄l

= ∂X

∂ z̄l
+ ∂

∂ z̄l
, and R ∂X

∂θ̄β
= ∂X

∂θ̄β
+ ∂

∂θ̄β
.
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A heat kernel proof of the index theorem for deformation… 2101

Here we assume that the fiberwise Grassmann multiplication operators and partial
derivatives with respect to the odd variables θ, θ̄ act from the left, L f is the left
∗-multiplication operator by f so that L f g = f ∗ g, and R f is the graded right ∗-
multiplication operator by f , so that if f and g are homogeneous functions on �E ,
then

R f g = (−1)| f ||g|g ∗ f. (14)

In particular, L f supercommutes with Rg for any f, g. The star product ∗ on �E |U
is determined by the potential X . Given a formal function f ∈ C∞(�E |U )((ν)),
one can describe the operator L f as follows. There exists a unique formal differential
operator A on �E |U which supercommutes with the operators

Rz̄l = z̄l , Rθ̄β = θ̄ β , R ∂X
∂ z̄l

= ∂X

∂ z̄l
+ ∂

∂ z̄l
, and R ∂X

∂θ̄β
= ∂X

∂θ̄β
+ ∂

∂θ̄β

and is such that A1 = f . It coincides with the operator L f , A = L f .
Denote byI the formalBerezin transform for the product∗. It is a formal differential

operator globally defined on�E and such that

I(ba) = b ∗ a

for any local holomorphic function a and antiholomorphic function b on �E . In
particular, Ia = a and Ib = b. One can prove formulas analogous to (5) for the
operator I. For any function f ,

I( f a) = I( f ) ∗ a and I(b f ) = b ∗ I( f ). (15)

It was shown in [20] that the star product ∗ has a supertrace given by a canonically
normalized formal supertrace density globally defined on �E .

A local non-normalized supertrace density for the product ∗ can be obtained as
follows. Given a contractible coordinate chart U ⊂ M and a superpotential (13)
which determines the star product ∗ on �E |U , there exists an even superpotential

X̃ = −ν−1(
−1 + H−1) + X̃0 + ν X̃1 + · · ·

on �E |U satisfying the equations

I
(
∂ X̃

∂zk

)
+ ∂X

∂zk
= 0, I

(
∂ X̃

∂θα

)
+ ∂X

∂θα
= 0,

I
(
∂ X̃

∂ z̄l

)
+ ∂X

∂ z̄l
= 0, and I

(
∂ X̃

∂θ̄β

)
+ ∂X

∂θ̄β
= 0.

The formula
eX+X̃dzdz̄dθdθ̄ , (16)
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2102 A. Karabegov

where dzdz̄ is a Lebesgue measure on U and dθd θ̄ is a Berezin density (coordinate
volume form) on C

0|d , gives a supertrace density for the star product ∗ on �E |U ∼=
U × C

0|d . It is determined up to a multiplicative formal constant.

4 A star product on TM ⊕ �TM

In this section we fix a star product with separation of variables � with classifying
form ω on a pseudo-Kähler manifold (M, ω−1) of complex dimension m. We recall a
construction from [19] of a star product with separation of variables • on the tangent
bundle T M obtained from the product �. We use the product • to construct a star
product ∗ on the supermanifold T M ⊕ �T M which will be the main framework for
the proof of the algebraic index theorem for the star product �.

The tangent bundle T M can be identified with the cotangent bundle T ∗M via
the pseudo-Kähler metric on M . It was shown in [19] that the canonical symplectic
form on T ∗M transferred to T M via this identification is a global pseudo-Kähler
form �−1 on T M . Let U ⊂ M be a contractible coordinate chart with coordinates
zk, z̄l , 1 ≤ k, l ≤ m, and 
−1 be a potential of ω−1 on U . Denote by ηk, η̄l the
corresponding fiber coordinates on TU . Then,

∂
−1

∂zk
ηk + ∂
−1

∂ z̄l
η̄l

is a potential of �−1 on TU . Let πT M : T M → M be the natural projection. It was
shown in [19] that

�−1 := π∗
T Mω−1 + �−1

is also a global pseudo-Kähler form on T M . We denote by • the star product with
separation of variables on the pseudo-Kählermanifold (T M,�−1)with the classifying
form

� := π∗
T Mω + ν−1�−1.

If 
 is a potential of ω on U , then


 + ν−1
(
∂
−1

∂zk
ηk + ∂
−1

∂ z̄l
η̄l

)

is a potential of the form � on TU .
Denote by E the holomorphic vector bundle over T M which is the pullback of the

holomorphic tangent bundle T (1,0)M by the natural projection πT M ,

E := π∗
T M

(
T (1,0)M

)
.

We equip E with the fiber metric induced by the pseudo-Kähler metric gkl on M .
The split supermanifold �E can be identified with the total space of the bundle
T M ⊕ �T M → M . Let U ⊂ M be a coordinate chart and
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A heat kernel proof of the index theorem for deformation… 2103

TU ⊕ �TU ∼= U × C
m|m

be the corresponding trivialization. We denote as above the even fiber coordinates by
ηk, η̄l and the odd ones by θk, θ̄ l .

Let ψ = ν−1ψ−1 be a global even nilpotent function on T M ⊕�T M such that in
local coordinates

ψ−1 = θkgkl θ̄
l . (17)

As shown in [20], there is a unique star product with separation of variables ∗ on
T M ⊕ �T M ∼= �E obtained from the product • on T M and the function ψ such
that for any contractible coordinate chart U ⊂ M the product ∗ is determined on
TU ⊕ �TU by the even superpotential

X = 
 + ν−1
(
∂
−1

∂zk
ηk + ∂
−1

∂ z̄l
η̄l + gklθ

k θ̄ l
)
. (18)

We denote by L f and R f the left and the graded right ∗-multiplication operators by
a function f , respectively. The following formulas hold on TU ⊕ �TU ,

L ∂X
∂zk

= ∂X

∂zk
+ ∂

∂zk
, R ∂X

∂ z̄l
= ∂X

∂ z̄l
+ ∂

∂ z̄l
,

L ∂X
∂ηk

= ∂X

∂ηk
+ ∂

∂ηk
, R ∂X

∂η̄l
= ∂X

∂η̄l
+ ∂

∂η̄l
,

L ∂X
∂θk

= ∂X

∂θk
+ ∂

∂θk
, and R ∂X

∂θ̄l
= ∂X

∂θ̄ l
+ ∂

∂θ̄ l
. (19)

We introduce two families of operators on TU ⊕ �TU ,

Dk = gqk
∂

∂ z̄q
and D̄l = glp

∂

∂z p
, 1 ≤ k, l ≤ m.

It is known that [Dk, Dp] = 0 and [D̄l , D̄q ] = 0 for all k, l, p, q.

Proposition 4.1 Given a formal function f ∈ C∞(U )((ν)) identified with its lift to
TU ⊕ �TU, the following formulas hold,

L f =
∞∑

r=0

νr

r !
(
Dk1 . . . Dkr f

) ∂r

∂ηk1 . . . ∂ηkr
(20)

and

R f =
∞∑

r=0

νr

r !
(
D̄l1 . . . D̄lr f

) ∂r

∂η̄l1 . . . ∂η̄lr
. (21)

Proof Denote temporarily the operator on the right-hand side of (20) by A. Since A is
even, for any operator B the commutator of A and B coincides with their supercommu-
tator. Clearly, A1 = f and A commutes with the fiberwise Grassmann multiplication
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operators by the functions on TU ⊕ �TU which do not depend on the variables η
and with the operators

R ∂X
∂η̄l

= ∂X

∂η̄l
+ ∂

∂η̄l
= ν−1 ∂
−1

∂ z̄l
+ ∂

∂η̄l
and

R ∂X
∂θ̄l

= ∂X

∂θ̄ l
+ ∂

∂θ̄ l
= −ν−1gklθ

k + ∂

∂θ̄ l
.

In order to prove formula (20) it remains to show that A commutes with the operators

R ∂X
∂ z̄l

= ∂X

∂ z̄l
+ ∂

∂ z̄l
= ∂


∂ z̄l
+ ν−1 ∂

2
−1

∂ z̄l∂ z̄q
η̄q

+ν−1gpl
(
ηp + νDp) + ν−1gkpq̄θ

p θ̄q .

Since A commutes with the multiplication operators by the functions on TU ⊕�TU
which do not depend on the variables η, it suffices to prove that it commutes with
the operators ηp + νDp. We will consider a “Fourier transform” which maps the
operator ∂/∂ηk to the multiplication operator by the variable ξk and the multiplication
operator by ηk to the operator −∂/∂ξ k . This mapping extends to an isomorphism
from the algebra of polynomial differential operators in the variables ηk onto that in
the variables ξk . The operator A will be mapped to the multiplication operator by the
function {exp(νξk Dk)} f and the operator ηp + νDp will be mapped to

− ∂

∂ξp
+ νDp. (22)

It is clear that the operators {exp(νξk Dk)} f and (22) commute, which concludes the
proof of formula (20). Formula (21) can be proved similarly. 	


Denote by I the formal Berezin transform of the star product ∗.
Corollary 4.1 Given functions f, g on M identified with their lifts to T M ⊕ �T M
via the natural projection, we have

f ∗ g = f g. (23)

Also, I f = f .

Proof Formula (23) follows from (20). LetU ⊂ M be a coordinate chart and a = a(z)
and b = b(z̄) be a holomorphic and an antiholomorphic function on U , respectively,
lifted to TU ⊕ �TU . Then, formula (23) implies that

I(ba) = b ∗ a = ba.

Since I is a formal differential operator, it follows that I f = f for any function f
on M lifted to T M ⊕ �T M . 	
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Let U ⊂ M be a contractible coordinate chart. We set g := det(gkl) and denote
by log g any branch of the logarithm of g on U . Below we will calculate a supertrace
density for the star product ∗ on TU ⊕ �TU .

Lemma 4.1 The following formula holds,

θ̄q ∗
(
ν−1gkpq̄

)
∗ θ p = −ν−1gkpq̄θ

p θ̄q + gqpgkpq̄ .

Proof Using Proposition 4.1 and a formula from (19),

L ∂X
∂θs

= Lν−1gsq θ̄q = ν−1gsq θ̄
q + ∂

∂θ s
, (24)

we obtain the statement of the lemma from the calculation

θ̄q ∗
(
ν−1gkpq̄

)
∗ θ p = θ̄q ∗ (ν−1gsq) ∗ gts ∗ gkpt̄ ∗ θ p

= (ν−1gsq θ̄
q) ∗ (

gtsgkpt̄
) ∗ θ p = (ν−1gsq θ̄

q) ∗ (
gtsgkpt̄θ

p)

= (ν−1gsq θ̄
q)

(
gtsgkpt̄θ

p) + gtsgkst̄ .

	

Proposition 4.2 The even superpotential X ′ := −X + log g satisfies the following
equations.

∂X

∂zk
+ I

(
∂X ′

∂zk

)
= 0,

∂X

∂ z̄l
+ I

(
∂X ′

∂ z̄l

)
= 0,

∂X

∂ηk
+ I

(
∂X ′

∂ηk

)
= 0,

∂X

∂η̄l
+ I

(
∂X ′

∂η̄l

)
= 0,

∂X

∂θk
+ I

(
∂X ′

∂θk

)
= 0, and

∂X

∂θ̄ l
+ I

(
∂X ′

∂θ̄ l

)
= 0. (25)

Proof Using formulas (15), Proposition 4.1, and Lemma 4.1, we get that

∂X

∂zk
+ I

(
∂X ′

∂zk

)
= ν−1 ∂

2
−1

∂zk∂z p
ηp + ν−1gkq η̄

q + ν−1gkpq̄θ
p θ̄q

+I
(

−ν−1 ∂
2
−1

∂zk∂z p
ηp − ν−1gkq η̄

q − ν−1gkpq̄θ
p θ̄q + ∂ log g

∂zk

)

= ν−1 ∂
2
−1

∂zk∂z p
ηp + ν−1gkq η̄

q + ν−1gkpq̄θ
p θ̄q − ν−1 ∂

2
−1

∂zk∂z p
∗ ηp

− η̄q ∗ (ν−1gkq) + θ̄q ∗
(
ν−1gkpq̄

)
∗ θ p + gqpgkpq̄

= ν−1gkpq̄θ
p θ̄q + θ̄q ∗

(
ν−1gkpq̄

)
∗ θ p − gqpgkpq̄ = 0.
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The second equation in (25) can be proved similarly. The last four equations in (25)
follow immediately from formulas (19) and Proposition 4.1. 	


Observe that eX+X ′ = g. According to formula (16), Proposition 4.2 implies that

g dzdz̄dηdη̄dθdθ̄

is a supertrace density for the product ∗ on TU ⊕ �TU .
Denote by γ the global fiberwise (1, 1)-form on T M given in local coordinates by

the formula
γ = ν−1gkldη

k ∧ dη̄l . (26)

The global fiberwise volume form γm on T M is given locally by a scalar multiple of
ν−mgdηdη̄. We assume that dβ = dzdz̄dθdθ̄ is the globally defined canonical Berezin
density on�T M 1. We introduce a global supertrace density of the star product ∗ on
T M ⊕ �T M by the formula

μ := 1

m!
(

i

2π
γ

)m

dβ. (27)

Lemma 4.2 For any formal functions F,G on T M ⊕ �T M such that F or G is
compactly supported over T M the following identity holds,

∫
F ∗ G μ =

∫
F I−1(G)μ.

Proof It suffices to prove the lemma on a coordinate chart U ⊂ M for F ∈
(C∞

0 (TU )[θ, θ̄ ])((ν)) and G = b ∗ a, where a = a(z, η, θ) is holomorphic and
b = b(z̄, η̄, θ̄ ) is antiholomorphic on TU ⊕ �TU . Then,

∫
F I−1(G) μ =

∫
F I−1(b ∗ a) μ =

∫
Fba μ =

∫
(−1)|a|(|F |+|b|)aFbμ

=
∫
(−1)|a|(|F |+|b|)a ∗ F ∗ bμ =

∫
F ∗ b ∗ a μ =

∫
F ∗ G μ.

	

In the rest of this section we fix a contractible coordinate chart U ⊂ M and a

superpotential (18) on TU ⊕ �TU .

1 If α = f (z, z̄)dz1 ∧ · · · ∧ dzm ∧ dz̄1 ∧ · · · ∧ dz̄m is a compactly supported volume form on U , denote
by α̂ = f (z, z̄)θ1 . . . θm θ̄1 . . . θ̄m the corresponding function on �TU . Then,

∫

�TU
α̂ dβ =

∫

U
α.
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Lemma 4.3 The following identity holds,

I−1
(
dX

dν

)
= dX

dν
+ m

ν
.

Proof We have, using (15), (20), (21), and (24),

I
(
dX

dν

)
= I

(
d


dν
− 1

ν2

∂
−1

∂zk
ηk − 1

ν2
η̄l
∂
−1

∂ z̄l
+ 1

ν2
θ̄ l gklθ

k
)

= d


dν
− 1

ν2

∂
−1

∂zk
∗ ηk − 1

ν2
η̄l ∗ ∂
−1

∂ z̄l
+ 1

ν2
(θ̄ l gkl) ∗ θk = dX

dν
− m

ν
,

whence the lemma follows. 	

One can construct a local ν-derivation analogous to (11) for the star product ∗ on

TU ⊕ �TU ,

δ = d

dν
+ dX

dν
− R dX

dν
.

Theorem 4.1 For any function F ∈ (C∞
0 (TU )[θ, θ̄ ])((ν)) the following identity

holds,

d

dν

∫
F μ =

∫
δ(F) μ.

Proof We have by Lemmas 4.2 and 4.3,

∫
δ(F) μ =

∫ (
dF

dν
+ dX

dν
F − F ∗ dX

dν

)
μ

=
∫ (

dF

dν
+ dX

dν
F − FI−1

(
dX

dν

))
μ

=
∫ (

dF

dν
− m

ν
F

)
μ = d

dν

∫
F μ.

	

Remark The statement of Theorem 4.1 remains valid if the derivation δ is modified
by an inner derivation, i.e., replaced with the derivation δ + L f − R f for any f ∈
C∞(TU ⊕ �TU )((ν)).

5 The standard filtration

Let M be a complex manifold and U ⊂ M be an open subset. Denote by Pk(U ) the
space of fiberwise homogeneous polynomial functions of degree k on TU ⊕ �TU .
Then, the space P(U ) := ∏

k≥0 Pk(U ) of formal series f = f0 + f1 + · · · , where
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fk ∈ Pk(U ), can be interpreted as the space of functions on the formal neighborhood
of the zero section of the bundle TU ⊕ �TU . If U is a coordinate chart, P(U ) is
identified with C∞(U )[[η, η̄, θ, θ̄ ]]. We set Q(U ) := P(U )((ν)).

Given i ∈ Z, denote by F i (U ) the space of formal series of the form

f =
∞∑

j=i

� j/2�∑

r=−∞
νr fr, j−2r , (28)

where fr,k ∈ Pk(U ). Since F i+1(U ) ⊂ F i (U ), {F i (U )} is a descending filtration on
the space

F(U ) :=
⋃

i∈Z
F i (U ).

This filtration is induced by a grading deg such that deg ν = 2 and deg f = k for
f ∈ Pk(U ). We denote by fdeg f the filtration degree of an element f ∈ F(U ).
These filtration and grading will be called standard. We have Q(U ) ⊂ F(U ) and
set Qi (U ) := F i (U ) ∩ Q(U ). We say that an element (28) of F(U ) is compactly
supported overU if for each pair of indices r, k there exists a compact Kr,k ⊂ U such
that fr,k vanishes on

T (U\Kr,k) ⊕ �T (U\Kr,k).

We will write Q := Q(M),F := F(M), etc.
If U is a coordinate chart, a differential operator on C∞(U )[[η, η̄, θ, θ̄ ]] has coef-

ficients from that space and partial derivatives in the variables z, z̄, η, η̄, θ, θ̄ . One can
define a differential operator on the spaceP using a partition of unity subject to a cover
of M by coordinate charts. A natural formal differential operator on Q is an operator
A = A0 +νA1 +· · ·,where Ar is a differential operator of order not greater than r on
P . Since in local coordinates deg ∂/∂η = deg ∂/∂η̄ = deg ∂/∂θ = deg ∂/∂θ̄ = −1,
we see that fdeg Ar ≥ −r .

Lemma 5.1 A natural formal differential operator A on the space Q is of standard
filtration degree at least zero, A = A0+A1+· · · , where deg Ai = i . The homogeneous
component Ai is a formal differential operator of order not greater than i . It can be
written as

Ai =
i∑

r=0

νr Ai−2r
r , (29)

where deg A j
r = j . The operator A naturally extends to the space F and respects the

standard filtration.

Proof Let A = A0 + νA1 + · · · be a natural formal differential operator onQ. Since
fdeg Ar ≥ −r , we have fdeg (νr Ar ) ≥ r , whence it follows that fdeg A ≥ 0. Thus,
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we can write A = A0 + A1 + · · · , where deg Ai = i . Each differential operator
Ar , r ≥ 0, can be written as

Ar =
∞∑

j=−r

A j
r ,

where A j
r is a differential operator of order not greater than r and with deg A j

r = j .
Then, we obtain that

A =
∞∑

r=0

∞∑

j=−r

νr A j
r =

∞∑

r=0

∞∑

i=r

νr Ai−2r
r =

∞∑

i=0

i∑

r=0

νr Ai−2r
r ,

which implies (29). We see that Ai is a formal differential operator of order not greater
than i . Therefore, it acts upon the space F and raises the standard filtration degree
by i . It follows that the operator A naturally extends to this space and respects the
standard filtration. 	


Let A be a natural formal differential operator on Q and

K = ν−1K−1 + K0 + · · · (30)

be an even element ofQ treated as a multiplication operator with respect to the fiber-
wise Grassmann multiplication. Then, [K , A] is a natural operator on Q as well. We
will consider two special cases when the series

eK Ae−K :=
∞∑

n=0

1

n! (ad(K ))
n A (31)

defines a natural formal differential operator on Q.

Lemma 5.2 Let A = A0 + νA1 + · · · be a natural formal differential operator on
Q and K ∈ Q be an even element given by (30). Then, in the following two cases the
operator (31) is natural:

(i) if fdeg K ≥ 0;
(ii) if fdeg K ≥ −1 and deg Ar = 0 for all r .

Proof Since the operator A is natural, we have

eK Ae−K =
∞∑

r=0

r∑

n=0

νr

n! (ad(K ))
n Ar .

Each summand
νr

n! (ad(K ))
n Ar (32)
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is a natural differential operator. Using in case (i) that fdeg Ar ≥ −r , we see that
in both cases (i) and (i i) the filtration degree of (32) is at least r and the operator
eK Ae−K is given by a series convergent in the topology induced by the standard
filtration. It is well defined on the spaceQ, which implies the statement of the lemma.

	

Let � be a star product with separation of variables with classifying form ω on a

pseudo-Kählermanifold (M, ω−1) and∗be the star product on T M⊕�T M defined by
the local superpotentials (18) as in Sect. 4. The star product ∗ induces a star product
on Q which will be denoted by the same symbol. It was proved in [20] that a star
product with separation of variables on a split supermanifold is natural. Therefore, for
f = ν p f p + ν p+1 f p+1 +· · · ∈ Q the operators ν−pL f and ν−p R f onQ are natural,
extend to the space F , and respect the standard filtration. It follows that the operators
L f and R f extend to F as well.

Proposition 5.1 The superalgebra (Q, ∗) is a filtered algebra with respect to the
standard filtration. The space F is a filtered superbimodule over the superalgebra
(Q, ∗).
Proof It suffices to prove that the superalgebra (Q(U ), ∗) is a filtered algebra for U
a coordinate chart and F(U ) is a filtered bimodule over it. An element f ∈ C∞(U )

identified with its lift to TU ⊕�TU lies inQ(U ). One can see from formula (20) that
the operator L f leaves invariant F(U ) and all filtration spaces F i (U ). The operators
Lηk = ηk and Lθk = θk leave invariant F(U ) and increase the filtration degree by 1.
It follows from formula (20) that

θ̄ l = glk(gkq θ̄
q) = glk ∗ (gkq θ̄q).

Using formula (24) we get that

L θ̄ l = Lglk Lgkq θ̄q = Lglk

(
gkq θ̄

q + ν
∂

∂θk

)
.

Therefore, the operator L θ̄ l leaves invariant F(U ) and increases the filtration degree
by 1. We have from (19) that

L ∂X
∂zk

= ∂


∂zk
+ 1

ν

(
∂2
−1

∂zk∂z p
ηp + gkq η̄

q + gkpq̄θ
p θ̄q

)
+ ∂

∂zk
.

Using Corollary 4.1, we get that

Lgkq η̄q = gkq η̄
q + ν

(
∂


∂zk
− L ∂


∂zk

)
+ ν

∂

∂zk
+ ∂2
−1

∂zk∂z p
ηp

−ηpL ∂2
−1
∂zk ∂z p

+ gkpq̄θ
p θ̄q − θ pL�s

kp

(
gsq θ̄

q + ν
∂

∂θ s

)
, (33)

where �s
kp = gkpq̄ gq̄s is the Christoffel symbol of the Levi-Civita connection.
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Given a function f ∈ C∞(U ), we see from (20) that the operator f − L f increases
the filtration degree by 1. It follows that the operator Lgkq η̄q leaves invariant F(U )

and increases the filtration degree by 1. We have from formula (20) that

η̄l = glk(gkq η̄
q) = glk ∗ (gkq η̄q), whence L η̄l = Lglk Lgkq η̄q .

It implies that the operator L η̄l also leaves invariant F(U ) and increases the filtration
degree by 1. The elements of C∞(U )((ν)) and the variables η, η̄, θ, θ̄ generate the
algebra (Q(U ), ∗). Therefore, (Q(U ), ∗) is a filtered algebra andF(U ) is a filtered left
supermodule over (Q(U ), ∗). Similar statements can be proved for the graded right
∗-multiplication operators which imply that F(U ) is also a filtered right supermodule
over (Q(U ), ∗). 	


We will use the symbol ∗ to denote the left and the right actions of the algebra
(Q, ∗) on F . Let Jr be the right submodule of F whose elements written in local
coordinates are of the form

u = ηk Ak + θk Bk = ηk ∗ Ak + θk ∗ Bk,

where Ak, Bk ∈ F , and let Jl be the left submodule of F whose elements are locally
of the form

u = Cl η̄
l + Dl θ̄

l = Cl ∗ η̄l + Dl ∗ θ̄ l ,

where Cl , Dl ∈ F . The definitions of the submodules Jl and Jr do not depend on the
choice of local holomorphic coordinates.

6 The Lie superalgebra 〈χ, χ̃, σ 〉
Let (M, ω−1) be a pseudo-Kähler manifold and � be a star product with separation
of variables on M with classifying form ω. Recall that the function ψ = ν−1ψ−1
on T M ⊕ �T M was defined by (17). Let ∗ be the star product with separation of
variables on T M⊕�T M determined by the product � and the functionψ , as described
in Sect. 4. In the rest of this paper we will use global functions

ϕ−1, ϕ = ν−1ϕ−1, χ, χ̃, and ω̂

on T M ⊕ �T M given in local coordinates by the formulas

ϕ−1 = ηkgkl η̄
l , χ = ν−1ηkgkl θ̄

l , χ̃ = ν−1θkgkl η̄
l ,

and ω̂ = iθk
∂2


∂zk∂ z̄l
θ̄ l , (34)
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where
 is a potential of ω. Denote by σ the ∗-supercommutator of the odd functions
χ and χ̃ ,

σ = [
χ, χ̃

]
∗ .

The formal functions χ, χ̃ , and σ are formal analogues of symbols of the operators
∂̄, ∂̄∗, and of the Laplace operator, respectively, on the (0, ∗)-forms with values in a
holomorphic line bundle on M used in the heat kernel proof of the index theorem for
the Dirac operator ∂̄ + ∂̄∗ (see [3]).

Proposition 6.1 The formal functions χ and χ̃ are nilpotent with respect to the star
product ∗, χ ∗ χ = 0 and χ̃ ∗ χ̃ = 0. Equivalently, they satisfy the supercommutator
relations [χ, χ ]∗ = 0 and [χ̃ , χ̃ ]∗ = 0. The formal function σ is given by the formula

σ = ϕ + iω̂. (35)

In particular, σ ∈ Q0.

Proof Let U ⊂ M be a contractible coordinate chart. We get from formulas (24) and
(33) that in local coordinates

Lχ = χ + ηk
∂

∂θk
and L χ̃ = χ̃ + θk

(
∂


∂zk
− L ∂


∂zk

)

+ θk
∂

∂zk
+ 1

ν
θkηp

(
∂2
−1

∂zk∂z p
− L ∂2
−1

∂zk ∂z p

)
.

We see from these formulas that

χ ∗ χ = 0 and χ ∗ χ̃ = χχ̃ + ϕ. (36)

According to formula (20), for any function f ∈ C∞(U ) we have

( f − L f )χ = −(Dk f )gkq θ̄
q = − ∂ f

∂ z̄q
θ̄q and ( f − L f )χ̃ = 0.

We obtain from these formulas that

χ̃ ∗ χ = χ̃χ + iω̂ and χ̃ ∗ χ̃ = θkθ pgkpq̄ η̄
q = 0. (37)

Formula (35) follows from (36) and (37). 	

The functions χ, χ̃ , and σ form a basis in the Lie superalgebra 〈χ, χ̃, σ 〉 equipped

with the supercommutator [·, ·]∗. The element σ generates its supercenter. We define
an element S = ν−1S−1 ∈ Q such that

S−1 = −ϕ−1 + ψ−1 and thus S = −ϕ + ψ.
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The deg-homogeneous component of σ of degree zero is−S. One can show by a direct
calculation that

Lσ = 1

ν
ηkgkl η̄

l + ηk
(
∂


∂zk
− L ∂


∂zk

)

+ 1

ν
ηkηp

(
∂2
−1

∂zk∂z p
− L ∂2
−1

∂zk ∂z p

)
+ ηk

∂

∂zk
+ 1

ν
ηkgkpq̄θ

p θ̄q

− θk
(
1

ν
ηpL�s

kp
+ L ∂2


∂zk ∂ z̄l
gls

) (
gsq θ̄

q + ν
∂

∂θ s

)
. (38)

Since fdeg σ = 0, it follows from Proposition 5.1 that fdegLσ = 0 and fdegRσ = 0.
One can see from (38) that the range of the operator Lσ lies in the submodule Jr .
Similarly, the range of the operator Rσ lies in the submodule Jl . The series

e±S :=
∑

r≥0

ν−r

r ! (±S−1)
r

are well-defined elements ofF . We have deg S = deg e±S = 0. Denote by E and Ē the
global holomorphic and antiholomorphic fiberwise Euler operators on T M ⊕�T M ,
respectively. In local coordinates,

E = ηp ∂

∂ηp
+ θ p ∂

∂θ p
and Ē = η̄q

∂

∂η̄q
+ θ̄q

∂

∂θ̄q
.

Let A0 and B0 denote the deg-homogeneous components of degree zero of the oper-
ators Lσ and Rσ , respectively. One can see from (38) and the corresponding formula
for Rσ that

A0 = −S − E = e−S(−E)eS and B0 = −S − Ē = e−S(−Ē)eS . (39)

7 The subspaceK
Lemma 7.1 The following statements hold.

(i) If F ∈ Jr and Lσ F = 0, then F = 0.
(ii) If F ∈ Jl and Rσ F = 0, then F = 0.
(iii) If F ∈ Jl + Jr and (Lσ + Rσ )F = 0, then F = 0.

Proof Assume that F ∈ Jr satisfies the equation Lσ F = 0 and is nonzero. Then,
there exists p ∈ Z such that F = ∑∞

i=p F
i , where deg Fi = i and F p is nonzero. We

have A0F p = 0, where A0 is the zero degree component of Lσ . We see from (39) that

E
(
eS F p

)
= 0. (40)
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Since F p is a nonzero element of Jr , we get that eS F p is also a nonzero element of
Jr , which contradicts (40). Statements (ii) and (iii) can be proved similarly. 	


The ranges of the operators E and Ē lie in the spaces Jr and Jl , respectively. The
restriction of the operator E to Jr is invertible. Denote by E−1 : Jr → Jr its inverse.
One can define similarly the operators Ē−1 : Jl → Jl and (E + Ē)−1 : Jl + Jr →
Jl + Jr .

Lemma 7.2 Given G ∈ ker E ⊂ F and H ∈ Jr , the equation

EeS F = H (41)

has a unique solution F ∈ F such that F − G ∈ Jr ,

F = e−S(G + E−1H). (42)

Proof Clearly, (42) is a solution of (41). Assume that F is a solution of (41) satisfying
F − G ∈ Jr . Since S ∈ Jr , we have eS F − G ∈ Jr . Therefore, eS F − G = E−1H ,
which implies the uniqueness. 	


Given G ∈ ker Ē ⊂ F and H ∈ Jl , the unique solution of the equation ĒeS F = H
is F = e−S(G + Ē−1H). Also, given G ∈ C∞(M)((ν)) and H ∈ Jl + Jr , one can
find the unique solution of the equation (E + Ē)eS F = H .

Proposition 7.1 Given an element G ∈ ker E ⊂ F , there exists a unique element
F ∈ F such that

Lσ F = 0 and F − G ∈ Jr .

If G = ∑
i≥p G

i , where degGi = i and G p is nonzero, then F = ∑
i≥p F

i , where

deg Fi = i and F p = e−SG p.

Proof Assume that G = ∑
i≥p G

i and Gp is nonzero. We will be looking for F of

the form F = ∑
i≥p F

i with Fi −Gi ∈ Jr for i ≥ p. Writing Lσ = A0 + A1 + · · · ,
where deg Ai = i and A0 = e−S(−E)eS , we rewrite the equation Lσ F = 0 as the
system of equations

EeS Fk = eS
k−p∑

i=1

Ai Fk−i , k ≥ p, (43)

where the right-hand side of (43) is zerowhen k = p. The condition that F−G ∈ Jr is
equivalent to the condition that Fk −Gk ∈ Jr for all k. By Lemma 7.2, F p = e−SG p.
Since the range of each operator Ai lies inJr , the terms eS Fk for k > p can be uniquely
determined by induction from system (43) using Lemma 7.2. The solution F is unique
by Lemma 7.1. 	


One can prove similarly the following two propositions.
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Proposition 7.2 Given an element G ∈ ker Ē ⊂ F , there exists a unique element
F ∈ F such that

Rσ F = 0 and F − G ∈ Jl .

If G = ∑
i≥p G

i , where degGi = i and G p is nonzero, then F = ∑
i≥p F

i , where

deg Fi = i and F p = e−SG p.

Proposition 7.3 Given an element f ∈ C∞(M)((ν)) ⊂ F , there exists a unique
element F ∈ F such that

(Lσ + Rσ )F = 0 and F − f ∈ Jl + Jr .

If f = ∑
r≥p ν

r fr , where fr ∈ C∞(M) for r ≥ p and f p is nonzero, then F =∑
i≥2p F

i and F2p = ν pe−S f p.

Proposition 7.4 An element F ∈ F satisfies the equation

(Lσ + Rσ )F = 0 (44)

if and only if it satisfies the equations

Lσ F = 0 and Rσ F = 0. (45)

Proof Equations (45) imply (44).Assume that condition (44) holds and setG := Lσ F .
Since the operators Lσ and Rσ commute, we have

(Lσ + Rσ )G = (Lσ + Rσ )Lσ F = Lσ (Lσ + Rσ )F = 0.

Since the range of the operator Lσ lies in Jr ⊂ Jl +Jr , we obtain from part (iii) of
Lemma 7.1 that Lσ F = 0. One can prove similarly that Rσ F = 0. 	

Theorem 7.1 The following conditions on F ∈ F are equivalent:

(1) Lσ F = 0.
(2) Lχ F = 0 and L χ̃ F = 0.
(3) On any coordinate chart, L η̄l F = 0 and L θ̄ l F = 0 for all l.

Proof Clearly, (3) ⇒ (1) and (2). Also, (2) ⇒ (1) because of the supercommutation
relation

[
χ, χ̃

]
∗ = σ . Let us prove that (1) ⇒ (2). Set G := Lχ F . We have

LσG = Lσ Lχ F = Lχ Lσ F = 0.

Locally,

G = ηk Lν−1gkl θ̄ l F,
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hence G ∈ Jr . Lemma 7.1 implies that G = Lχ F = 0. The statement that L χ̃ F = 0
can be proved similarly. It remains to prove that (1), (2) ⇒ (3). Recall that ψ is the
function on T M ⊕ �T M given by (17). Assume that Lσ F = 0 and represent F as
the sum

F = F0 + F1 + · · · + Fm,

where Fi is such that eψ Fi is homogeneous of degree i in the variables θ . Inspecting
(38), one can see that the operator eψ Lσ e−ψ does not contain the variables θ̄ and is
of degree zero with respect to the variables θ . Since Lσ F = 0, it follows that

(
eψ Lσ e

−ψ
)
eψ Fi = 0 for 0 ≤ i ≤ m.

Therefore, Lσ Fi = 0 for 0 ≤ i ≤ m. Clearly, Fi ∈ Jr for i ≥ 1. By Lemma 7.1, the
equation Lσ Fi = 0 for i ≥ 1 has only the zero solution. Therefore, F = F0, so that
F̃ := eψ F does not depend on the variables θ . We have for all p that

Lν−1gpq θ̄q F = e−ψ ∂

∂θ p
eψ F = 0.

One gets from the formula θ̄ l = νglk ∗ (
ν−1gkq θ̄q

)
that

L θ̄ l F = Lνglk Lν−1gkq θ̄q F = 0.

In order to prove that L η̄l F = 0, we use that L χ̃ F = θ pLν−1gpq η̄q F = 0. We see
from (33) that the operator

eψ Lν−1gpq η̄q e
−ψ

does not contain the variables θ̄ and is of degree zero with respect to the variables θ .
Since F̃ = eψ F does not depend on the variables θ , the element

Wp := eψ Lν−1gpq η̄q F = eψ Lν−1gpq η̄q e
−ψ F̃

also does not depend on the variables θ for any p. We have

θ pWp = eψ L χ̃ F = 0,

hence Wp = 0 for all p. One can show as above that it implies that L η̄q F = 0 for all
q. 	


One can prove similarly the following theorem.

Theorem 7.2 The following equations on F ∈ F are equivalent:

(1) Rσ F = 0.
(2) Rχ F = 0 and Rχ̃ F = 0.
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(3) On any coordinate chart, Rηk F = 0 and Rθk F = 0 for all k.

For any open subsetU ⊂ M we denote byK(U ) the subspace ofF(U ) of elements
F satisfying the following equivalent conditions:

(a) (Lσ + Rσ )F = 0;
(b) Lσ F = 0 and Rσ F = 0;
(c) On any coordinate chart on U , η̄l ∗ F = θ̄ l ∗ F = F ∗ ηk = F ∗ θk = 0.

According to Proposition 7.3, for every element f ∈ C∞(U )((ν)) there exists a
unique element F ∈ K(U ) such that F − f ∈ Jl +Jr . It will be denoted by K f . The
mapping f �→ K f is a bijection from C∞(U )((ν)) onto K(U ). We set K := K(M).

Lemma 7.3 Assume that f, g ∈ C∞(M)((ν)),G ∈ F , and G − g ∈ Jl +Jr . Then,

K f ∗ G = K f ∗ g mod Jl and G ∗ K f = g ∗ K f mod Jr .

Proof One can write in local coordinates

G = g + ηk ∗ Ak + Bl ∗ η̄l + θk ∗ Ck + Dl ∗ θ̄ l

for some Ak, Bl ,Ck, Dl ∈ F . We have

K f ∗ G = K f ∗ g + K f ∗ Bl ∗ η̄l + K f ∗ Dl ∗ θ̄ l .

Therefore, K f ∗G = K f ∗ g mod Jl . The second statement can be proved similarly.
	


We introduce the following notation,

ε := K1 ∈ K.

We have ε − 1 ∈ Jl + Jr . One can prove a stronger statement.

Proposition 7.5 The element ε is such that ε − 1 ∈ Jl ∩ Jr .

Proof It follows from Proposition 7.1 that there exists a unique element F ∈ F such
that Lσ F = 0 and

F − 1 ∈ Jr . (46)

Set G := Rσ F . Since σ ∈ Jl ∩ Jr and Jr is a right submodule, we obtain from
(46) that G = Rσ F ∈ Jr . We also have that

LσG = Lσ Rσ F = Rσ Lσ F = 0.

Lemma 7.1 implies that G = Rσ F = 0, whence F ∈ K. We see from (46) that F = ε

and therefore ε − 1 ∈ Jr . One can prove similarly that ε − 1 ∈ Jl . 	
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Theorem 7.3 There exists an even element

� = ν−1�−1 + �0 + · · · ∈ Jl ∩ Jr

such that ε = e−(S+�) and fdeg � ≥ 1.

Proof It follows from Propositions 7.3 and 7.5 that ε − 1 ∈ Jl ∩ Jr , fdeg ε = 0, and
the deg-homogeneous component of ε of degree zero is e−S . Therefore, there exists
an element � ∈ F such that ε = e−(S+�), � ∈ Jl ∩ Jr , and fdeg � ≥ 1. We will
write � = �1 + �2 + · · · , where deg � i = i . We will prove by induction on i that
the ν-filtration degree of � i as at least −1. Since the star product ∗ is natural, the ν-
filtration degree of νσ is zero, and fdeg (νσ ) = 2, we get that the operator ν(Lσ + Rσ )
is natural and fdeg ν(Lσ + Rσ ) = 2. By Lemma 5.2, the operator

C := νeS(Lσ + Rσ )e
−S

is natural. Since fdeg C = 2, we can write C = C2 + C3 + · · · , where degCi = i .
By Lemma 5.1, Ci is a differential operator of order not greater than i . It follows from
Eq. (39) that

C2 = −ν(E + Ē).

The condition that (Lσ + Rσ )ε = 0 implies that (e�Ce−�)1 = 0. We rewrite this
equation as follows,

∞∑

i=2

i∑

j=0

1

j !
(
(ad �) jCi

)
1 = 0. (47)

Extracting the deg-homogeneous component of degree 3 from (47), we get

ν(E + Ē)�1 + C31 = 0.

Since the range of the operator C lies in Jl + Jr , we obtain that

�1 = −ν−1(E + Ē)−1(C31),

whence the ν-filtration degree of �1 is at least -1. Now assume that for d > 1 the
ν-filtration degree of � i is at least −1 for all i < d. Extracting the deg-homogeneous
component of degree d + 2 from (47), we get that

d+2∑

i=2

i∑

j=0

1

j !
∑

k1+···k j=d+2−i

(
ad(�k1) . . . ad(�k j )Ci

)
1 = 0. (48)

Equation (48) contains � i for i ≤ d. The only summand in (48) containing �d is

(
ad(�d)C2

)
1 = ν(E + Ē)�d .
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By the induction assumption, the other summands in (48) are of ν-filtration degree
at least zero. Since all other summands in Eq. (48) lie in Jl + Jr , the element �d is
uniquely determined by this equation and its ν-filtration degree is at least −1, which
implies the statement of the theorem. 	


8 The algebras A and B
Let (M, ω−1) be a pseudo-Kähler manifold and � be a star product with separation of
variables on M with classifying formω. In this section we fix a contractible coordinate
chart U ⊂ M . Let 
−1 and 
 be potentials of ω−1 and ω on U , respectively, gkl be
the metric tensor given by (6), and ∗ be the star product with separation of variables
on TU ⊕ �TU determined by the potential (18) written as

X = 
 + Y,

where

Y := 1

ν

(
∂
−1

∂z p
ηp + ∂
−1

∂ z̄q
η̄q + gpqθ

p θ̄q
)
.

In this section we will define two subalgebras,A and B, of the algebra (Q(U ), ∗) and
describe their action on the space K(U ).

We lift differential operators on U to TU ⊕ �TU using the trivialization TU ⊕
�TU ∼= U × C

m|m induced by the choice of local coordinates on U . Their lifts
commute with themultiplication operators by the variables η, η̄, θ, θ̄ and the operators
∂/∂η, ∂/∂η̄, ∂/∂θ, ∂/∂θ̄ .

Lemma 8.1 Given f ∈ C∞(U )((ν)), the operators

e−Y L�f e
Y and e−Y R�

f e
Y

are a left and a right ∗-multiplication operators on the space Q(U ), respectively.

Proof We have Y ∈ Q−1(U ) and fdeg L�f = fdeg R�
f = fdeg f . If the ν-filtration

degree of f is p, then, according to Lemmas 5.2 and 5.1, the even formal differential
operators ν−pe−Y L�f e

Y and ν−pe−Y R�
f e

Y are natural and act onQ(U ) andF(U ). The

operator e−Y L�f e
Y commuteswith themultiplication operators by the antiholomorphic

variables z̄, η̄, and θ̄ and the operators

e−Y
(
∂


∂ z̄l
+ ∂

∂ z̄l

)
eY = ∂X

∂ z̄l
+ ∂

∂ z̄l
, e−Y

(
∂

∂η̄l

)
eY = ∂X

∂η̄l
+ ∂

∂η̄l
,

and e−Y
(

∂

∂θ̄ l

)
eY = ∂X

∂θ̄ l
+ ∂

∂θ̄ l
.

Therefore, it is a left ∗-multiplication operator on the spaceQ(U ). Similarly, e−Y R�
f e

Y

is a right ∗-multiplication operator on Q(U ). 	
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Given f ∈ C∞(U )((ν)), we define two even elements of Q(U ),

α( f ) :=
(
e−Y R�

f e
Y
)
1 and β( f ) :=

(
e−Y L�f e

Y
)
1.

We have

Rα( f ) = e−Y R�
f e

Y and Lβ( f ) = e−Y L�f e
Y ,

whence it follows that α, β : (C∞(U )((ν)), �) → (Q(U ), ∗) are injective homomor-
phisms. Their images are subalgebras of (Q(U ), ∗) which will be denoted by A and
B, respectively.
Lemma 8.2 For f ∈ C∞(U )((ν)),

α( f ) − f ∈ Jl + Jr and β( f ) − f ∈ Jl + Jr .

Proof The lemma follows directly from the definitions of α( f ) and β( f ). 	

Lemma 8.3 Given f ∈ C∞(U )((ν)), the element α( f ) ∗-commutes with the vari-
ables η̄ and θ̄ and β( f ) ∗-commutes with η and θ .

Proof The operator R�
f commutes with the variables η̄ and θ̄ . Therefore, Rα( f ) =

e−Y R�
f e

Y commutes with the operators Rη̄l = η̄l and Rθ̄ l = θ̄ l . It follows that α( f )

∗-commutes with the variables η̄ and θ̄ . Similarly, β( f ) ∗-commutes with η and θ . 	

Corollary 8.1 The left action of the algebra A and the right action of the algebra B
on F(U ) leave K(U ) invariant.

Proof The corollary follows immediately from the definition of the space K(U ). 	

Lemma 8.4 Given f ∈ C∞(U )((ν)),

α( f ) ∗ ε = K f and ε ∗ β( f ) = K f . (49)

Proof By Proposition 7.5, ε− 1 ∈ Jl , whence α( f ) ∗ ε− α( f ) ∈ Jl ⊂ Jl +Jr . We
get from Lemma 8.2 that α( f ) ∗ ε − f ∈ Jl +Jr which, according to Corollary 8.1,
implies the first equation in (49). The proof of the second equality is similar. 	

Proposition 8.1 Given f, g ∈ C∞(U )((ν)),

α( f ) ∗ Kg = K f �g and K f ∗ β(g) = K f �g.

Proof We have

α( f ) ∗ Kg = α( f ) ∗ α(g) ∗ ε = α( f � g) ∗ ε = K f �g.

The proof of the second equality is similar. 	
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Corollary 8.2 Given f, g ∈ C∞(U )((ν)),

f ∗ Kg = f � g mod (Jl + Jr ) and Kg ∗ f = g � f mod (Jl + Jr ).

Proof Since α( f ) − f ∈ Jl + Jr , we have by Lemma 7.3 that

f ∗ Kg = α( f ) ∗ Kg = K f �g = f � g mod (Jl + Jr ).

The proof of the second statement is similar. 	

Given f ∈ C∞(U )((ν)), we denote by α̃( f ) the element of Q(U ) which does not

depend on the variables η̄, θ̄ and is such that α( f ) − α̃( f ) ∈ Jl , that is,

α̃( f ) = α( f )|η̄=θ̄=0.

We get from Lemma 8.2 that α̃( f ) − f ∈ Jr . Then, for g ∈ C∞(U )((ν)) we have

α̃( f ) ∗ Kg = α( f ) ∗ Kg = K f �g and Kg ∗ α̃( f ) = Kg ∗ f. (50)

We define similarly an element β̃( f ) := β( f )|η=θ=0 of Q(U ) which satisfies the
condition β̃( f ) − f ∈ Jl and is such that

Kg ∗ β̃( f ) = Kg ∗ β( f ) = Kg� f and β̃( f ) ∗ Kg = f ∗ Kg. (51)

Then, we introduce an element

κ( f ) := α̃( f ) + β̃( f ) − f. (52)

Proposition 8.2 Given f, g ∈ C∞(U )((ν)),

κ( f ) ∗ Kg − Kg ∗ κ( f ) = K f �g−g� f .

Proof We have from (50) and (51) that

κ( f ) ∗ Kg − Kg ∗ κ( f ) = (α̃( f ) + β̃( f ) − f ) ∗ Kg

−Kg ∗ (α̃( f ) + β̃( f ) − f ) = K f �g − Kg� f .

	


9 An evolution equation

Lemma 9.1 Given a nonzero complex number k and a nonnegative integer l, the
equation (

e−kt p(t)
)′ = e−kt t l (53)
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has a unique polynomial solution

p(t) = −1

k

l∑

r=0

(
1

k

d

dt

)r

tl . (54)

Proof Equation (53) is equivalent to the following one,

p′(t) − kp(t) = t l .

Since k �= 0, it can be rewritten as follows,

(
1 − 1

k

d

dt

)
p(t) = −1

k
tl .

Using the identity

(
1 − 1

k

d

dt

) l∑

r=0

(
1

k

d

dt

)r

= 1 −
(
1

k

d

dt

)l+1

,

we see that for the polynomial (54),

(
1 − 1

k

d

dt

)
p(t) = −1

k

(
1 −

(
1

k

d

dt

)l+1
)
t l = −1

k
tl .

Since k �= 0, the homogeneous equation

p′(t) − kp(t) = 0

has no nonzero polynomial solutions. Therefore, (54) is a unique polynomial solution
of (53). 	


We consider the solutions of the evolution equation

d

dt
F = Lσ F (55)

on the space F of the form F(t) = Fk(t) + Fk+1(t) + · · · , where k ∈ Z and
deg Fi (t) = i for i ≥ k. Each deg-homogeneous component Fi (t) of F admits an
expansion in the powers of ν,
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Fi (t) =
�i/2�∑

r=−∞
νr Fi−2r

r (t), (56)

where (E + Ē)F j
r (t) = j F j

r (t).
It follows from formula (35) that the operator Lνσ is natural and fdeg Lνσ = 2, so

that Lνσ = A2 + A3 + · · · , where deg Ai = i and A2 = −ν(E + S) = e−S(−νE)eS .
Observe that

ν
d

dt
− A2 = e−Se−tE

(
ν
d

dt

)
etEeS . (57)

Lemma 9.2 Equation (55) has a unique solution F(t) with the initial condition
F(0) = 0, the zero solution.

Proof Assume that F(t) = ∑
i≥p F

i (t) with deg Fi (t) = i and nonzero F p(t) is a
nontrivial solution of (55) with the initial condition F(0) = 0. Then,

(
ν
d

dt
− A2

)
F p = 0.

We have from (57) that

d

dt

(
etEeS F p(t)

)
= 0.

Therefore, etEeS F p(t) does not depend on t . Since F p(0) = 0, it follows that
etEeS F p(t) = 0 for all t , whence F p(t) = 0 for all t . This contradiction proves
the lemma. 	

Theorem 9.1 Equation (55) with the initial condition F(0) = 1 on the space F has
a unique solution, F(t) = F0(t) + F1(t) + . . ., where deg Fi (t) = i and

F0(t) = e(e
−t−1)S .

The component Fi (t) can be expressed as (56), where for each pair ( j, r) the function
F j
r (t) is a finite sum

F j
r (t) =

∑

k,l≥0

e−kt t l F j
r,k,l

such that (E + Ē)F j
r,k,l = j F j

r,k,l and F j
r,k,l = 0 if k = 0 and l > 0. In particular,

lim
t→∞ F(t) =

∞∑

i=0

�i/2�∑

r=−∞
νr Fi−2r

r,0,0 .

Proof We will be looking for a solution F(t) of filtration degree zero. Equation (55)
can be rewritten as the system
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(
ν
d

dt
− A2

)
Fl(t) =

l∑

i=1

Ai+2Fl−i (t), l ≥ 0, (58)

with the initial conditions F0(0) = 1 and Fl(0) = 0 for l > 0. For l = 0 the right-hand
side of (58) is zero. We have from formulas (57) and (58) that

ν
d

dt

(
etEeS Fl(t)

)
= etEeS

l∑

i=1

Ai+2Fl−i (t). (59)

Thus, etEeS F0(t) does not depend on t . Since F0(0) = 1, we have

etEeS F0(t) = eS .

It follows that

F0(t) = e(e
−t−1)S =

∞∑

k=0

1

k! νk (e
−t − 1)k(S−1)

k . (60)

We will prove the theorem by induction on i . We see from (60) that the statement
of the theorem holds for i = 0. Assume that it holds for all i < l for l ≥ 1. Since
Fl(0) = 0 for l ≥ 1, we obtain from (59) that

Fl(t) = ν−1e−Se−tE
∫ t

0
eτEeS

l∑

i=1

Ai+2Fl−i (τ )dτ. (61)

According to Lemma 5.1, the operator A j can be written as

A j =
j∑

r=0

νr A j−2r
r ,

where deg Ak
r = k. The component Fl−2r

r (t) of Fl(t) will be expressed as the sum

Fl−2r
r (t) =

∑

(i,a,b,u,v)

Fi,a,b
u,v (t), (62)

where

Fi,a,b
u,v (t) = 1

a! (−S−1)
a e−tE

∫ t

0
eτE

1

b! (S−1)
b Ai+2−2u

u Fl−i−2v
v (τ )dτ (63)

and the sum in (62) is over the tuples (i, a, b, u, v) such that

1 ≤ i ≤ l, a, b ≥ 0, v ≤
⌊
l − i

2

⌋
, 0 ≤ u ≤ i + 2, and u + v − a − b = r + 1.
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In particular, this sum is finite. According to the induction assumption, the function
Fl−i−2v
v (τ ) in (63) is a finite sum of expressions

e−kτ τ l P,

where P ∈ C∞(T M ⊕ �T M) is polynomial on fibers, k, l ≥ 0, and the condition
k = 0 implies that l = 0. Consider the contribution of one such expression to (63),

1

a! (−S−1)
a e−tE

∫ t

0
eτE

1

b! (S−1)
b
(
e−kτ τ l Ai+2−2u

u P
)
dτ. (64)

We see from (38) that for every pair (r, j), the range of the differential operator A j
r

lies in Jr . Therefore, Ai+2−2u
u P can be represented as a finite sum

Ai+2−2u
u P =

N∑

j=1

Q j

of fiberwise polynomial functions Q j such that EP = j P . Consider the contribution
of one such function Q j to (64),

1

a! (−S−1)
a e−tE

∫ t

0
eτE

1

b! (S−1)
b
(
e−kτ τ l Q j

)
dτ

= 1

a! (−S−1)
a e−tE

(∫ t

0
e(b−k+ j)τ τ ldτ

)
1

b! (S−1)
b Q j

=
(
e−(b+ j)t

∫ t

0
e(b−k+ j)τ τ ldτ

)
1

a! (−S−1)
a 1

b! (S−1)
b Q j .

Set

K (t) := e−(b+ j)t
∫ t

0
e(b−k+ j)τ τ ldτ.

If b − k + j = 0, then

K (t) = e−(b+ j)t t
l+1

l + 1
.

Since b ≥ 0 and j ≥ 1, we see that b + j ≥ 1. If b − k + j �= 0, then, according to
Lemma 9.1, there exists a polynomial p(τ ) such that

(
e(b−k+ j)τ p(τ )

)′ = e(b−k+ j)τ τ l .

It follows that

K (t) = e−kt p(t) − e−(b+ j)t p(0).
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If k = 0, then l = 0 and

K (t) = 1 − e−(b+ j)t

b + j
.

We have thus shown that all summands contributing to Fl−2r
r (t) satisfy the conditions

of Theorem 9.1. Thus, F(t) exists and satisfies the conditions of the theorem. By
Lemma 9.2, it is a unique solution of (55) with the initial condition F(0) = 1. 	

Proposition 9.1 If F(t) is the solution of Eq. (55) with the initial condition F(0) = 1
and W is an element of the Lie superalgebra 〈χ, χ̃, σ 〉, then

LW F(t) = RW F(t).

The function F(t) is a unique solution of the equation

d

dt
F(t) = Rσ F(t) (65)

with the initial condition F(0) = 1.

Proof We use the fact that σ lies in the supercenter of 〈χ, χ̃, σ 〉. Set

G(t) := (LW − RW ) F(t).

We have

d

dt
G(t) = (LW − RW )

d

dt
F(t) = (LW − RW ) Lσ F(t)

= Lσ (LW − RW ) F(t) = LσG(t)

and

G(0) = (LW − RW ) F(0) = (LW − RW ) 1 = 0.

Lemma 9.2 implies that G is the zero function, i.e., LW F(t) = RW F(t). Therefore,
F(t) is a solution of Eq. (65) with the initial condition F(0) = 1. The uniqueness of
this solution can be proved as the uniqueness in Theorem 9.1. 	

Lemma 9.3 The solution F(t) of Eq. (55) with the initial condition F(0) = 1 satisfies
the property that F(t) − 1 ∈ Jl ∩ Jr for every value of t .

Proof Since the range of the operator Lσ lies in Jr , Eq. (55) implies that

d

dt
F(t) ∈ Jr .

Since F(0) = 1, it follows that F(t)− 1 ∈ Jr . Since the range of the operator Rσ lies
in Jl , we see that Eq. (65) similarly implies that F(t) − 1 ∈ Jl . 	
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Theorem 9.2 If F(t) is the solution of the evolution equation (55) with the initial
condition F(0) = 1, then

lim
t→∞ F(t) = ε. (66)

Proof The limit in (66) exists by Theorem 9.1. Denote it temporarily by Z . It follows
from Lemma 9.3 that Z − 1 ∈ Jl ∩ Jr . To prove the theorem it remains to show that
Lσ Z = 0. We write

F(t) =
∞∑

i=0

�i/2�∑

r=−∞
νr Fi−2r

r (t),

where for each pair ( j, r) the deg-homogeneous element F j
r (t) of degree j is expressed

as a finite sum

F j
r (t) =

∑

k,l≥0

e−kt t l F j
r,k,l

such that F j
r,k,l ∈ C∞(T M ⊕ �T M) is polynomial on fibers, deg F j

r,k,l = j , and

F j
r,k,l = 0 for k = 0 and l ≥ 1. In particular,

d

dt
F j
r (t) =

∑

k>0,l≥0

e−kt (lt l−1 − ktl)F j
r,k,l .

Therefore, for any pair ( j, r) we have that

lim
t→∞

d

dt
F j
r (t) = 0.

The operator Lνσ is a natural operator of filtration degree 2. According to Lemma 5.1,

Lνσ =
∞∑

i=2

i∑

r=0

νr Ai−2r
r ,

where deg A j
r = j . Equation (55) is equivalent to the system

d

dt
Fi−2r
r =

∑

( j,k,p,q)

A j−2p
p Fk−2q

q , i ≥ 0, r ≤ �i/2�, (67)

where the summation is over the tuples ( j, k, p, q) satisfying the conditions j + k =
i + 2, p + q = r + 1, j ≥ 2, 0 ≤ p ≤ j, k ≥ 0, q ≤ �k/2�. In particular, the sum
in (67) is finite. Taking the limit as t → ∞ of both sides of (67) we obtain a system
equivalent to the equation Lσ Z = 0. It follows from Proposition 7.1 that Z = ε. 	


Let F(t) = F0(t)+F1(t)+· · · be the solution of Eq. (55) with the initial condition
F(0) = 1. According to Theorem 9.1,
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F0(t) = exp{(e−t − 1)S}.

There exists a function G(t) = G0(t)+ G1(t)+ · · · , where degGi (t) = i , such that
expG(t) = F(t), G(0) = 0, and

G0(t) = (e−t − 1)S = ν−1(e−t − 1)S−1.

Lemma 9.3 implies that G(t) ∈ Jl ∩ Jr .

Theorem 9.3 The ν-filtration degree of the function G(t) is −1.

Proof We will prove by induction on i that for every i ≥ 0 the ν-filtration degree of
the function Gi = Gi (t) is at least −1. This is true for i = 0. Assume that this is true
for i < p. Rewrite equation (55) in terms of G,

d

dt
G =

(
e−GLσ e

G
)
1. (68)

Since fdeg σ = 0, one can write Lσ = A0 + A1 + · · · , where deg Ai = i . According
to (39),

A0 = e−S(−E)eS .

Extract the component of (68) of degree p:

d

dt
G p =

⎛

⎝
∞∑

k=0

∑

i1+···+ik+l=p

(−1)k

k! (adGi1) . . . (adGik )Al

⎞

⎠ 1. (69)

The summands on the right-hand side of (69) containing Gp have all but one i j = 0
and l = 0. They add up to

( ∞∑

k=1

k
(−1)k

k! (adG0)k−1(adGp)A0

)
1 =

(
e− adG0

(− adGp)A0
)
1

=
(
(F0)−1

[
A0,Gp

]
F0

)
1 = −EGp.

Equation (69) can be written as

d

dt
G p + EGp = H p, (70)

where H p is the sum of all terms on the right-hand side of (69) which do not contain
Gp. One can rewrite (70) as follows,

e−tE
(
d

dt

)
etEGp = H p. (71)
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Since the range of the operator Lσ lies in Jr , we have that H p ∈ Jr and therefore

Gp(t) = e−tE
∫ t

0
eτEH p(τ ) dτ.

Using the induction assumption and the fact that the operator νLσ is natural, it is easy
to check that the ν-filtration degree of H p is at least −1. Therefore, the ν-filtration
degree of Gp is also at least −1, which concludes the induction proof. 	


10 Oscillatory symbols

Given an open set U ⊂ M , let P̂(U ) denote the subspace of F(U ) of elements of the
form

f =
∞∑

i=p

�i/2�∑

r=rp

νr fr,i ,

where p, rp ∈ Z and fr,i ∈ Pi−2r (U ). We set P̂ := P̂(M). One can check using
Lemma 5.1 that a natural formal differential operator on Q extended to F leaves
invariant P̂ . We define an oscillatory symbol F as an element of F which admits a
representation

F = e−hG, (72)

whereG ∈ P̂ and h is a global function on T M⊕�T M such that in local coordinates
h = ν−1hkl(z, z̄)ηk η̄l and (hkl(z, z̄)) is anm×m-matrix nondegenerate at every point
(z, z̄). We denote by O the space of oscillatory symbols in F . It is a union of linear
spacesOh of oscillatory symbols with a fixed function h. For any open subsetU ⊂ M
one can similarly define the space O(U ) of oscillatory symbols in F(U ).

Lemma 10.1 A nonzero oscillatory symbol F ∈ O has a unique representation (72).

Proof Suppose that a nonzero element F ∈ O has two representations of the form
(72),

F = e−hG = e−h̃ G̃.

Since deg h = deg h̃ = 0, we can assume that F is deg-homogeneous. Then, degG =
deg G̃ = deg F and G, G̃ are formal functions on T M ⊕�T M polynomial on fibers
whose ν-degree is bounded below and above. We obtain the equality

e−(h−h̃)G = G̃

which holds if and only if h = h̃ and G = G̃. 	
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Lemma 10.2 A natural formal differential operator A on the spaceQ extended to F
leaves invariant each spaceOh of oscillatory symbols, i.e., given an element e−hG ∈
O, there exists an element G̃ ∈ P̂ such that

A
(
e−hG

)
= e−hG̃ ∈ O.

Proof By Lemma 5.2, the operator eh Ae−h is natural and therefore leaves invariant
the space P̂ . We have G̃ = (

eh Ae−h
)
G. 	


Let h, w be global functions on T M ⊕ �T M given in local coordinates by the
formulas h = ν−1hkl(z, z̄)ηk η̄l and w = ν−1wkl(z, z̄)θk θ̄ l , where (hkl) is a non-
degenerate matrix. Assume that H ∈ Jl ∩ Jr is an even element whose ν-filtration
degree as at least −1, fdeg H = 0, and the deg-homogeneous component of H of
degree zero is h + w.

Lemma 10.3 We have e−H ∈ O.

Proof One can write

H = h + w + H̃ ,

where H̃ ∈ Q1 and the ν-filtration degree of H̃ is at least −1. Set

G := exp{−(w + H̃)}.

Since exp{−H̃} ∈ P̂ and w is nilpotent, we see that G ∈ P̂ . Now,

exp{−H} = exp{−h}G,

whence the lemma follows. 	

Proposition 10.1 For any f ∈ C∞(M)((ν)) we have K f ∈ O. For any t ≥ 0 we
have F(t) ∈ O.

Proof The proposition follows from Lemma 10.3 and Theorems 7.3 and 9.3. 	

Assume that, as above, a global function h on T M ⊕ �T M is given in local

coordinates by the formula h = ν−1hkl(z, z̄)ηk η̄l , where (hkl) is a nondegenerate
matrix at every point (z, z̄). Then, there exists a global differential operator �h on
T M ⊕ �T M given in local coordinates by the formula

�h = νhlk
∂2

∂ηk∂η̄l
,

where
(
hlk

)
is the matrix inverse to (hkl). There exists a fiberwise endomorphism�h

of the holomorphic cotangent bundle of M given in local coordinates by the formula

�h = (gklh
lp), (73)
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where gkl is the pseudo-Kähler metric tensor. Let

ζ : C∞(T M ⊕ �T M) → C∞(�T M)

denote the restrictionmapping to the zero section of the vector bundle T M⊕�T M →
�T M (we identify the zero section with �T M). In local coordinates, ζ(F) =
F |η=η̄=0. Define a global mapping

Th : P̂ → C∞(�T M)((ν))

by the formula
Th(G) := det (�h) ζ

(
e�hG

)
. (74)

Since deg (�h) = 0, the operator exp{�h} acts upon each homogeneous component of
G as a differential operator of finite order. LetG j be the deg-homogeneous component
of G of degree j . It follows that deg Th(G j ) = j . Since in local coordinates Th(G j )

does not depend on the variables η, η̄, the ν-filtration degree of Th(G j ) is bounded
below by j/2 − m, which implies that the ν-degree of Th(G) is bounded below.
Therefore, the mapping Th is well defined. One can interpret (74) as a fiberwise formal
oscillatory integral on the vector bundle T M ⊕ �T M → �T M ,

∫
e−hG

1

m!
(

i

2π
γ

)m

:= det (�h) ζ
(
e�hG

)
, (75)

where γ is given by (26). If hkl is a Hermitianmetric tensor, ν is a positive number, and
G ∈ C∞(T M ⊕ �T M) is fiberwise polynomial, then the integral in (75) converges
to the right-hand side.

Let U ⊂ M be a coordinate chart. Recall that g = det(gkl) and log g is any branch
of the logarithm of g on U . Define similarly h := det(hkl) and log h.

Theorem 10.1 Let f ∈ C∞(�TU )((ν)) and G ∈ P̂(U ). The following identities
hold true:

(1) Th ( f G) = f Th (G);

(2) Th
((

∂
∂ηp

− ν−1h pl η̄
l
)
G

)
= 0;

(3) Th
((

∂
∂η̄q

− ν−1hkqηk
)
G

)
= 0;

(4) d
dν Th (G) = Th

((
d
dν + h

ν
− m

ν

)
G

)
.

(5) ∂
∂z p Th (G) = Th

((
∂
∂z p − ∂h

∂z p + ∂
∂z p log g

)
G

)
;

(6) ∂
∂ z̄q Th (G) = Th

((
∂
∂ z̄q − ∂h

∂ z̄q + ∂
∂ z̄q log g

)
G

)
;

(7) ∂
∂θ p

Th (G) = Th
(

∂
∂θ p

G
)
;

(8) ∂

∂θ̄q
Th (G) = Th

(
∂

∂θ̄q
G

)
.

(9) ∂
∂hkl

Th (G) = Th
(− 1

ν
ηk η̄lG

)
.
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Proof Statements (1), (7), and (8) are trivial. We prove (2) as follows:

Th

((
∂

∂ηp
− 1

ν
h pl η̄

l
)
G

)
= Th

(
e−�h

(
−1

ν
h pl η̄

l
)
e�hG

)

= det (�h)
(
−ν−1h pl η̄

l
)
e�hG

∣∣∣
η=η̄=0

= 0.

Statement (3) can be proved similarly. To prove (4), we observe that

d

dν
Th (G) = Th

((
d

dν
+ ν−1�h

)
G

)
.

It remains to show that Th (�hG) = Th ((h − m)G). This identity readily follows
from items (1), (2), and (3). We prove (5) as follows:

∂

∂z p
Th (G) = ∂

∂z p

(
det (�h) e

�hG
∣∣∣
η=η̄=0

)

= det (�h)

(
∂

∂z p
log det (�h)

)
e�hG

∣∣∣
η=η̄=0

+ det (�h) e
�h

(
ν
∂hlk

∂z p
∂2G

∂ηk∂η̄l

) ∣∣∣
η=η̄=0

+ det (�h) e
�h

∂G

∂z p

∣∣∣
η=η̄=0

= Th

((
∂

∂z p
+ ∂

∂z p
log g

)
G

)

+Th

((
ν
∂hlk

∂z p
∂2

∂ηk∂η̄l
− ∂

∂z p
logh

)
G

)
.

Now it remains to show that

Th

((
ν
∂hlk

∂z p
∂2

∂ηk∂η̄l
− ∂

∂z p
logh

)
G

)
= Th

((
− ∂h

∂z p

)
G

)
.

This equality can be derived from items (1), (2), (3), and the formula

∂

∂z p
log h = hlk

∂hkl
∂z p

.

Identity (6) can be proved similarly. In order to show (9), we use the formula

∂hqp

∂hkl
= −hqkhlp

to prove that
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∂

∂hkl
log det(�h) = −hlk

and then use formulas (2) and (3). 	

This theorem justifies the interpretation of the mapping Th as a formal oscillatory

integral. Identities (2) and (3) can be obtained by integrating the formal integral in
(75) by parts and identities (4)–(9) can be obtained by differentiating it with respect
to a parameter.

Let U ⊂ M be a coordinate chart, (hkl) be a nondegenerate m × m-matrix with
elements from C∞(U ), and (αkl) be a matrix with even nilpotent elements from
C∞(U )[θ, θ̄ ]. Suppose that f is a smooth function in m2 complex variables such that
the composition

f (hkl) := f (h11, . . . , hmm)

is defined. Then, one can define the composition of f with the functions hkl + αkl
using the Taylor series of f which terminates due to the nilpotency of αkl ,

f (hkl + αkl) := e
αpq

∂
∂h pq f (hkl).

We set h := ν−1hklηk η̄l and α := ν−1αklη
k η̄l . Given e−hG ∈ O(U ), we can rewrite

it as
e−(h+α)(eαG). (76)

Also, we can define the matrix �h+α , the operator �h+α , and the mapping Th+α by
the same formulas, because the matrix (hkl +αkl) is invertible. The formal oscillatory
integral (75) should not change if we rewrite the integrand as (76). This is indeed the
case.

Lemma 10.4 Given G ∈ P̂(U ), the following identity holds:

Th+α(G) = Th
(
e−αG

)
.

Proof Using Theorem 10.1 (9), we get that

Th+α(G) = e
αpq

∂
∂h pq Th(G) = Th

(
e−αG

)
.

	

This lemmaholds true in the global settingwhen h andα are defined on T M⊕�T M

and G ∈ P̂ .
Suppose that an element e−hG ∈ O is compactly supported over M . We define a

formal integral of e−hG with respect to the density μ given in (27) as follows,

∫
e−hG μ :=

∫

�T M
Th(G) dβ.
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We want to show that this formal integral is a supertrace functional on the space of
formal oscillatory symbols O with respect to the action of the algebra (Q, ∗).

Let A be a differential operator on the space T M⊕�T M . There exists a differential
operator At , the transpose of A, on that space such that for any f, g ∈ C∞(T M ⊕
�T M) with f or g compactly supported over T M the following identity holds,

∫

T M⊕�T M
(A f ) · gμ =

∫

T M⊕�T M
(−1)| f ||A| f · (At g)μ.

The mapping A �→ At is involutive and has the property that

(AB)t = (−1)|A||B|Bt At . (77)

If A is a multiplication operator by a function with respect to the fiberwise Grassmann
product, then A = At . In local coordinates we have

(
∂

∂zk

)t

= − ∂

∂zk
− ∂

∂zk
log g;

(
∂

∂ z̄l

)t

= − ∂

∂ z̄l
− ∂

∂ z̄l
log g;

(
∂

∂ηk

)t

= − ∂

∂ηk
;
(

∂

∂η̄l

)t

= − ∂

∂η̄l
;

(
∂

∂θk

)t

= − ∂

∂θk
;
(

∂

∂θ̄ l

)t

= − ∂

∂θ̄ l
.

The mapping A �→ At induces a transposition mapping on the differential operators
on the space P . The transpose operator of a differential operator A on P will be
denoted also by At .

Proposition 10.2 Given f ∈ Q and e−hG ∈ O such that f or G is compactly
supported over M, then for any differential operator A on Q we have

∫
(A f ) · e−hG μ =

∫
(−1)| f ||A| f · At

(
e−hG

)
μ. (78)

Proof We will prove the proposition on a coordinate chart U ⊂ M . To prove (78) for
A = ∂/∂ηp we verify the identity

∫
∂ f

∂ηp
· e−hG μ = −

∫
f

∂

∂ηp

(
e−hG

)
μ.
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We have
∫

∂ f

∂ηp
· e−hG μ +

∫
f

∂

∂ηp

(
e−hG

)
μ

=
∫

e−h
((

∂

∂ηp
− ν−1h pl η̄

l
)
( f G)

)
μ

=
∫

�TU
Th

((
∂

∂ηp
− ν−1h pl η̄

l
)
( f G)

)
dβ = 0

by item (2) of Theorem 10.1. Identity (78) for A = ∂/∂η̄q follows from item (3) of
Theorem 10.1. To prove (78) for A = ∂/∂θ p we verify the identity

∫
∂ f

∂θ p
· e−hG μ = −

∫
(−1)| f | f ∂

∂θ p

(
e−hG

)
μ.

Using item (7) of Theorem 10.1, we have that
∫

∂ f

∂θ p
· e−hG μ +

∫
(−1)| f | f ∂

∂θ p

(
e−hG

)
μ

=
∫

e−h ∂

∂θ p
( f G) μ =

∫

�TU
Th

(
∂

∂θ p
( f G)

)
dβ

=
∫

�TU

∂

∂θ p
Th( f G) dβ = 0.

One can similarly verify (78) for A = ∂/∂θ̄q , ∂/∂z p, and ∂/∂ z̄q using items (8), (5),
and (6) of Theorem 10.1, respectively. Now the statement of the Proposition follows
from (77). 	

Theorem 10.2 Given f ∈ Q and e−hG ∈ O, where G is compactly supported over
M, the following identity holds,

∫
(L f − R f )

(
e−hG

)
μ = 0.

Proof The condition that μ is a trace density for the star product ∗ on T M ⊕ �T M
is equivalent to the condition that

(
L f − R f

)t 1 = 0 (79)

for any f ∈ C∞(T M ⊕ �T M)((ν)). Therefore, (79) holds for any f ∈ Q. By
Proposition 10.2,

∫
(L f − R f )

(
e−hG

)
μ =

∫
1 · (L f − R f )

(
e−hG

)
μ

=
∫ (

(L f − R f )
t1

) (
e−hG

)
μ = 0.

	


123



2136 A. Karabegov

We introduce a functional τ on the compactly supported formal functions on M by
the formula

τ( f ) :=
∫

K f μ.

It follows from Proposition 10.1 that it is well defined. Using partition of unity, Propo-
sition 8.2, and Theorem 10.2 one can show that τ is a trace functional on the algebra
(C∞(M)((ν)), �).

Theorem 10.3 Assume that the manifold M is compact and F(t) is the solution of
(55) with the initial condition F(0) = 1. Then, the identity

τ(1) =
∫

F(t) μ (80)

holds for all t ≥ 0.

Proof According to Proposition 10.1, the formal integral in (80) is well defined. Using
evolution equation (55), Proposition 9.1, and Theorem 10.2 we get

d

dt

∫
F(t) μ =

∫
Lσ F(t) μ =

∫
(Lχ L χ̃ + L χ̃ Lχ )F(t) μ

=
∫
(Lχ L χ̃ + L χ̃ Rχ )F(t) μ =

∫
(Lχ − Rχ )L χ̃ F(t) μ = 0.

Therefore, the integral in (80) does not depend on t . Now the statement of the theorem
follows from Theorem 9.2. 	


11 Identification of the trace functional τ

In this section we will prove that for any contractible open subsetU ⊂ M there exists
a constant c ∈ C such that

τ( f ) = c
∫

U
f μ�

for all f ∈ C∞
0 (U )((ν)). The local ν-derivation

δ = d

dν
+ dX

dν
− R dX

dν

for the star product ∗ on TU ⊕ �TU induces a derivation on the algebra (Q(U ), ∗)
which we also denote by δ. Moreover, the action of δ on Q(U ) extends to F(U ) so
that the Leibniz rule holds. Namely, for f ∈ Q(U ) and g ∈ F(U ),

δ( f ∗ g) = δ( f ) ∗ g + f ∗ δ(g) and δ(g ∗ f ) = δ(g) ∗ f + g ∗ δ( f ).
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We will modify the derivation δ by an inner derivation so that the resulting derivation
will leave invariant the subspace K(U ) ⊂ F(U ). Set

w = −β̃

(
d


dν

)
+ ηk β̃

(
1

ν2

∂
−1

∂zk

)

and define

δ̃ := δ + Lw − Rw.

Theorem 11.1 Given f ∈ C∞(U )((ν)), we have that

δ̃(K f ) = K δ̃� f
,

where

δ̃� = d

dν
+ d


dν
− L�d


dν

is a derivation of (C∞(U )((ν)), �).

Proof First we will prove that the space K(U ) is invariant under the action of δ̃. We
have

δ̃(η̄l) = dX

dν
∗ η̄l − η̄l ∗ dX

dν
+ w ∗ η̄l − η̄l ∗ w

= −η̄l ∗
(
d


dν
− 1

ν2
ηk
∂
−1

∂zk
+ w

)
mod Jl .

Given f ∈ C∞(U )((ν)), we get using (51) that

(
d


dν
− 1

ν2
ηk
∂
−1

∂zk
+ w

)
∗ K f

=
(
d


dν
− 1

ν2
ηk
∂
−1

∂zk
− β̃

(
d


dν

)
+ ηk β̃

(
1

ν2

∂
−1

∂zk

))
∗ K f = 0.

Thus, δ̃(η̄l) ∗ K f = 0. One can prove similarly that δ̃(θ̄ l) ∗ K f = 0. Next,

δ̃(ηk) = ηk ∗ dX

dν
− ηk ∗ dX

dν
+w ∗ ηk − ηk ∗ w = w ∗ ηk mod Jr .

Given f ∈ C∞(U )((ν)), we have using (51) that

K f ∗ δ̃(ηk) = K f ∗ w ∗ ηk

= −K f ∗ β̃
(
d


dν

)
∗ ηk = −K f � d
dν

∗ ηk = 0.
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Similarly, K f ∗ δ̃(θk) = 0. It follows that

η̄l ∗ δ̃(K f ) = η̄l ∗ δ̃(K f ) + δ̃(η̄l) ∗ K f = δ̃(η̄l ∗ K f ) = 0.

We prove along the same lines that

θ̄ l ∗ δ̃(K f ) = δ̃(K f ) ∗ ηk = δ̃(K f ) ∗ θk = 0.

Therefore, δ̃(K f ) ∈ K(U ). Now we need to find an element g ∈ C∞(U )((ν)) such
that δ̃(K f ) − g ∈ Jl + Jr . For this element we will have δ̃(K f ) = Kg . We write
explicitly

δ̃(K f ) = d

dν
K f + dX

dν
K f − K f ∗ dX

dν
+ w ∗ K f − K f ∗ w.

Since K f = f mod (Jl + Jr ) and dX
dν = d


dν mod (Jl + Jr ), it follows that

d

dν
K f + dX

dν
K f = d f

dν
+ d


dν
f mod (Jl + Jr ). (81)

By Lemma 7.3 and Corollary 8.2,

K f ∗ dX

dν
= K f ∗ d


dν
= f �

d


dν
mod (Jl + Jr ). (82)

Using (51) we get that

w ∗ K f − K f ∗ w =
(

−β̃

(
d


dν

)
+ ηk β̃

(
1

ν2

∂
−1

∂zk

))
∗ K f

−K f ∗
(

−β̃

(
d


dν

)
+ ηk β̃

(
1

ν2

∂
−1

∂zk

))

= −d


dν
∗ K f + 1

ν2
ηk ∗ ∂
−1

∂zk
∗ K f + K f � d
dν

.

Therefore, by Corollary 8.2,

w ∗ K f − K f ∗ w = −d


dν
� f + f �

d


dν
mod (Jl + Jr ). (83)

Combining (81), (82), and (83), we get

δ̃(K f ) = d f

dν
+ d


dν
f − d


dν
� f = δ̃�( f ) mod (Jl + Jr ),

which concludes the proof. 	
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Theorem 11.2 Given e−hG ∈ O(U ) such that G is compactly supported over U, the
following identity holds,

d

dν

∫
e−hG μ =

∫
δ̃
(
e−hG

)
μ.

Proof Writing δ̃ = d
dν + A, we see that Theorem 4.1 is equivalent to the fact that

(At1)μ = dμ

dν

which implies Theorem 11.2 according to Proposition 10.2. 	

Corollary 11.1 There exists a constant c ∈ C such that

τ( f ) = c
∫

U
f μ�

for any f ∈ C∞
0 (U )((ν)).

Proof By Theorem 11.1, we have

d

dν
τ( f ) = d

dν

∫
K f μ =

∫
δ̃(K f ) μ

=
∫

K δ̃�( f )
μ = τ

(
δ̃�( f )

)
,

whence the corollary follows. 	

Corollary 11.1 implies the following theorem.

Theorem 11.3 If the manifold M is connected, then there exists a constant c such
that

τ( f ) =
∫

K f μ = c
∫

M
f μ�

for all compactly supported formal functions f on M.

12 Getzler’s rescaling

In this section we use the rescaling of T M ⊕ �T M introduced by Getzler in [12].
Consider the operator λs on C∞(T M ⊕ �T M) given in local coordinates by the
formula

λs : F(z, z̄, η, η̄, θ, θ̄ ) �→ F(z, z̄, sη, sη̄, sθ, sθ̄ ).
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Given a function F on T M⊕�T M compactly supported over T M , it is easy to verify
that

∫
λs F μ

does not depend on s. An analogous statement holds also for the formal integral when
F is an oscillatory symbol.

Proposition 12.1 Given e−hG ∈ O such that G ∈ P̂ is compactly supported over
M, the formal integral

∫
λs(e

−hG) μ

does not depend on s.

Proof We have

∫
λs(e

−hG) μ =
∫

�T M
Ts2h(λsG)dβ.

Since only the component of G of bidegree (m,m) with respect to the odd variables
(θ, θ̄ ) contributes to the integral, it suffices to prove that

Ts2h(λsG) = s−2mTh(G).

Clearly, det(�s2h) = s−2m det(�h) and �s2h = s−2�h . Denote by Gk,l the compo-
nent of G of bidegree (k, l) with respect to the variables (η, η̄). Then,

ζ
(
es

−2�hλs(G)
)

=
∞∑

r=0

1

r ! (�h)
rGr,r

does not depend on s, whence the proposition follows. 	


We introduce an operator

Ls
σ := s2λ−1

s Lσ λs

and a function

G(s, t) := λ−1
s F(s2t),

where F(t) is the solution of (55) with the initial condition F(0) = 1.
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Lemma 12.1 The function G(s, t) is the unique solution of the equation

d

dt
G = Ls

σG (84)

with the initial condition G|t=0 = 1 on the space F .

Proof The lemma follows from the calculation

λs

(
d

dt
G

)
= d

dt
(λsG) = d

dt
(F(s2t))

= s2
dF

dt
(s2t) = s2Lσ F(s

2t) = s2Lσ λsG.

	

Consider the grading on the functions on T M ⊕�T M polynomial on fibers given

by the operator E + Ē . For the variables η, η̄, θ, θ̄ ,

|η| = |η̄| = |θ | = |θ̄ | = 1

(we assume that |ν| = 0). This grading induces an ascending filtration on the space of
formal differential operators onQ. The subspace of filtration degree d consists of the
operators of the form A = Ad + Ad−1 + · · · , where A j is homogeneous of degree j
with respect to the this grading. We call this grading the λ-grading, because

λs(A j )λ
−1
s = s j A j .

It follows from (20) that for f ∈ C∞(M)((ν)) the operator f − L f has the λ-filtration
degree−1.We see from (38) that the λ-filtration degree of the operator Lσ is 2. Denote
by L0

σ the homogeneous component of Lσ of λ-degree 2. We have

L0
σ = lim

s→0
Ls
σ .

The curvature R = Ru
k of the Kähler connection on M is given by the formula

Ru
k = Ru

kpq̄dz
p ∧ dz̄q , where

Ru
kpq̄ =

(
gkpb̄g

b̄agal̄q̄ − gkpl̄q̄

)
gl̄u .

In local coordinates the operator L0
σ is expressed as follows,

L0
σ = σ + R̂u

k
∂

∂ηu
, (85)

where R̂u
k := Ru

kpq̄θ
p θ̄q .

The operator Ls
σ can bewritten as a series L

s
σ = B0+sB1+· · · , where the λ-degree

of Bi is 2 − i and B0 = L0
σ .
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Theorem 12.1 The function G(s, t) is regular at s = 0.

Proof We will prove by induction on i that the deg-homogeneous component Gi of
degree i of the function G is regular at s = 0. We have Gi = λ−1

s Fi (s2t), where
Fi is the deg-homogeneous component of degree i of the function F(t). We get from
Theorem 9.1 that

G0(s, t) = exp

{
e−s2t − 1

s2
S

}
.

This function is regular at s = 0 and

G0(0, t) = e−t S .

Assume that Gi is regular at s = 0 for i < l. In Theorem 9.1 we used the notation
Lνσ = A2 + A3 + · · · , where deg Ai = i . Using that

e−Se−tEeS = exp
{
e−S(−tE)eS

}
= e−t (E+ES),

we can rewrite formula (61) as follows:

Fl(t) = 1

ν
e−t (E+ES)

∫ t

0
eτ(E+ES)

l∑

i=1

Ai+2Fl−i (τ )dτ. (86)

Applying λ−1
s to both sides of (86), we get

λ−1
s Fl(t) = 1

ν
e−t (E+s−2ES)

∫ t

0
eτ(E+s−2ES)

l∑

i=1

(λ−1
s Ai+2λs)λ

−1
s Fl−i (τ )dτ.

Replacing t with s2t and using the substitution τ = s2u, we obtain that

Gl(s, t) = 1

ν
e−t (s2E+ES)

∫ t

0
eu(s

2E+ES)
l∑

i=1

(s2λ−1
s Ai+2λs)G

l−i (s, u)du.

Since the λ-filtration degree of the operator Lνσ is 2, the operator s2λ−1
s Ai+2λs is

regular at s = 0. Therefore, by the induction assumption, Gl is also regular at s = 0,
whence the theorem follows. 	


The matrix

H(t) := et R̂ − 1

R̂
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is well defined and the elements of the matrix H(t) − t · 1 are even and nilpotent.
Theorem 12.1 implies that the function G(0, t) is a solution of the equation

d

dt
G(0, t) = L0

σG(0, t)

with the initial condition G(0, 0) = 1. It is easy to prove that this solution is unique.
Denote by h̃ the global function on T M ⊕ �T M given in local coordinates by the
formula h̃ = −ν−1Hu

k (t)gul̄η
k η̄l . A direct check shows that

G(0, t) = exp
{
i tω̂ − h̃

}
,

where ω̂ is given by (34). It follows that

G(0, t) = etϕG̃(t),

where G̃(t) ∈ P̂ , so that G(0, t) ∈ O for t �= 0. By (73),

�h̃ = −(H(t))−1 = R̂

1 − et R̂
.

Using Lemma 10.4, we can calculate the following formal oscillatory integral,

∫
G(0, t)

1

m!
(

i

2π
γ

)m

= ei tω̂ det

(
R̂

1 − et R̂

)
.

Now assume that themanifoldM is compact and connected. According to Theorem
10.3 and Proposition 12.1,

τ(1) =
∫

G(s, t) μ

for any s �= 0 and t > 0. Passing to the limit as s → 0, we obtain that

τ(1) =
∫

G(0, t) μ =
∫

�T M
ei tω̂ det

(
R̂

1 − et R̂

)
dβ

for any t �= 0. We will set t = −1. Theorem 11.3 implies that there exists a constant
c ∈ C such that

c
∫

M
μ� =

∫

�T M
e−iω̂ det

(
R̂

1 − e−R̂

)
dβ.

Since the leading term of the canonical trace density μ� is given by (3), we see that
c = 1.
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Using the fact that the Todd genus Td(M) of M has a de Rham representative

det
R

1 − e−R
,

where R is the curvature of the Kähler connection on M , we obtain the following
algebraic Riemann–Roch–Hirzebruch theorem for deformation quantization with sep-
aration of variables.

Theorem 12.2 Let � be a star product with separation of variables on a compact
connected pseudo-Kähler manifold M with classifying form ω. Then,

∫

M
μ� =

∫

M
e−i[ω] Td(M), (87)

where μ� is the canonical trace density of � and [ω] is the de Rham class of ω.

The curvature of the Kähler connection on TCM = T (1,0)M ⊕ T (0,1)M ∼=
T (1,0)M ⊕ T ∗(1,0)M is given by the matrix

[
R 0
0 −Rt

]
,

where we identify T (0,1)M and T ∗(1,0)M via the pseudo-Kähler metric on M . There-
fore, the Â-genus of M has a de Rham representative

det
R/2

sinh(R/2)
= e− 1

2 tr(R) det
R

1 − e−R
.

Now the index formula (4) follows from formulas (87) and (9) and the fact that ρ =
i tr R.
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