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Abstract By exploiting suitably constrained Zorn matrices, we present a new con-
struction of the algebra of sextonions (over the algebraically closed field C). This
allows for an explicit construction, in terms of Jordan pairs, of the non-semisimple
Lie algebra e7 1

2
, intermediate between e7 and e8, aswell as of all Lie algebras occurring

in the sextonionic row and column of the extended Freudenthal Magic Square.

Keywords Exceptional Lie algebras · Intermediate algebras · Sextonions · Zorn
matrices

Mathematics Subject Classification 17B10 · 17B25 · 17B45

1 Introduction

Thefield of composition, non-associative algebras, and relatedLie algebras, underwent
a series of interesting developments in recent times.

In [1] Deligne proposed dimension formulas for the exceptional series of complex
simple Lie algebras, whose parametrization in terms of the dual Coxeter number
was exploited further in [2] by Cohen and de Man (see also [3]). Landsberg and
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Manivel subsequently pointed out the relation between the dimension formulas and
the dimensions of the composition algebras themselves in [4]. In [1,2] it was observed
that all parameter values determining integer outputs in the dimension formulas were
already accounted for by the known normed division algebras, with essentially one
exception, intriguingly corresponding to a would be composition algebra of dimension
six, sitting between the quaternions and octonions.

This algebra, whose elements were named sextonions, was recently studied by
Westbury in [5], who pointed out the related existence of a whole new row in the
Freudenthal Magic Square. Actually, the six-dimensional algebra of sextonions had
been observed earlier as a curiosity; indeed, it was explicitly constructed in [6]. More-
over, it was used in [7] to study the conjugacy classes in the smallest exceptional Lie
algebra g2 in characteristics other than 2 or 3. The sextonions were also constructed in
[8] (cfr. Th. 5 therein), and proved to be a maximal subalgebra of the split octonions.

In [9], Landsberg and Manivel “filled in the hole” in the exceptional series
of Lie algebras, observed by Cvitanovic, Deligne, Cohen and de Man, showing
that sextonions, through the triality construction of [4], give rise to a non-simple
intermediate exceptional Lie algebra, named e7 1

2
, between e7 and e8, satisfying

some of the decomposition and dimension formulas of the exceptional simple
Lie algebras [1–4,10].

More recently, such a 190-dimensional Lie algebra e7 1
2

was also found by
Mkrtchyan in the study of the Vogel plane [11], in the context of the analysis of
the universal Vogel Lie algebra [12].

By theHurwitzTheorem [13], the real normeddivision algebras are the real numbers
R, the complex numbers C, the quaternions H and the octonions C (Cayley numbers).
Each algebra can be constructed from the previous one by the so-called Cayley-
Dickson doubling procedure [14,15].

All these algebras can be complexified to give complex algebras. These complex
algebras, respectively, are R⊗C = C, C⊗C = C⊕C, H⊗C = M2(C), C⊗C (M2
denoting a 2× 2 matrix). The three complex algebras other than C have a second real
form, denoted Cs , Hs and Cs , with the following isomorphisms holding: Cs = R ⊕ R

and Hs = M2(R). The normed division algebras are called the compact forms and the
aforementioned second real form is called the split real form. It is worth pointing out
that split real forms are composition algebras but they are not division algebras.

On the field R, the sextonions only exist in split form Ss , and they are intermediate
between the split quaternions Hs and the split octonions Cs :

Hs ⊂ Ss ⊂ Cs . (1.1)

Note that Ss does not contain the divisional quaternions H; see “Appendix A.”
Nowadays, exceptional Lie algebras have a long-standing history of applications

to physics (see, e.g., [16–25] for a partial list of results and Refs.). The relevance of
compact exceptional Lie algebras (and groups) in realizing grand unification gauge
theories and consistent string theories is well recognized. Similarly, the relevance of
non-compact real forms for the construction of locally supersymmetric theories of
gravity is well appreciated. Other frameworks include sigma models based on quo-
tients of exceptional Lie groups, which are of interest for string theory and conformal
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field theories, as well. It is here worth pointing out that that the analysis of quan-
tum criticality in Ising chains and the structure of magnetic materials such as Cobalt
Niobate has also recently (and strikingly) turned out to be related to exceptional Lie
algebras of type E (see, e.g., [26,27], respectively). Moreover, exceptional Lie alge-
bras occur in models of confinement in non-Abelian gauge theories (for instance, cfr.
[21]), as well as in a striking relation between cryptography and black hole physics,
recently discovered [28–33]. It should also be recalled that fascinating exceptional
algebraic structures arise in the description of the Attractor Mechanism for black
holes in Maxwell–Einstein supergravity theories [34–40], such as the so-called magic
exceptional supergravity [41–45].

In this context, the aforementioned, intermediate 190-dimensional Lie algebra e7 1
2

is quite novel, and applications to physics are still under investigation, even though
recent studies (cfr. e.g., [46]) intriguingly seem to connect sextonions to theories
beyond eleven-dimensional M-theory. It should also be mentioned that e7 1

2
can be

regarded as a Freudenthal triple system over the exceptional Albert algebra JO3 , along
with its automorphism algebra e7 and an extra e7-singlet generator, acting on the
Freudenthal triple system as the multiplication by a scalar; for details on the appli-
cations of Freudenthal triple systems to the study of black hole attractors in four
dimensions, cfr. e.g., [39,47–49], and Refs. therein.

In the present paper, we will apply the formal machinery introduced in [50] and
[51], as well as an explicit realization of the sextonions (over the algebraically closed
field C), in order to explicitly construct the non-semisimple Lie algebra e7 1

2
, as well

as all algebras occurring in the sextonionic row of the extended Freudenthal Magic
Square [5,9], in terms of Jordan pairs.

The plan of the paper is as follows.
In Sect. 2, we provide a realization of the sextonions in terms of nilpotents con-

structed from the traceless octonions, and recall their representation in terms of suitably
constrained Zorn matrices.

The intermediate exceptional algebra e7 1
2
is then considered in Sect. 3, which

focuses on the construction (then developed in Sects. 6, 7) of the sextonionic row
and column of the extended Magic Square, by exploiting Jordan pairs for the sexto-
nionic rank-3 Jordan algebra.

The action of g2 = Der(C) on the Zornmatrices is recalled in Sect. 4, and exploited
in Sect. 5 to determine the derivations of the sextonions, Der(S).

Then, in Sects. 6 and 7, the explicit construction of the intermediate algebras c3 1
2

(which analogously holds for a5 1
2
and d6 1

2
) and e7 1

2
is presented.

The paper is concluded by App. A, in which we prove that, on the field R, Ss does
not contain the divisional quaternions H.

2 Sextonions and their nilpotent realization

The algebra of sextonions is a six-dimensional subalgebra S of the octonions. As
mentioned above, we denote by C the algebra of the octonions over the complex field
C, whose multiplication rule goes according to the Fano diagram in Fig. 1.
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Fig. 1 Fano diagram for the
octonions’ products

If a ∈ C we write a = a0 + ∑7
j=1 a ju j where a j ∈ C for j = 1, . . . , 7 and u j for

j = 1, . . . , 7 denote the octonion imaginary units. We denote by i the imaginary unit
in C.

We introduce 2 idempotent elements:

ρ± = 1

2
(1 ± iu7)

and 6 nilpotent elements:

ε±
k = ρ±uk , k = 1, 2, 3

One can readily check that [50]:

(ρ±)2 = ρ±, ρ±ρ∓ = 0

ρ±ε±
k = ε±

k ρ∓ = ε±
k

ρ∓ε±
k = ε±

k ρ± = 0

(ε±
k )2 = 0

ε±
k ε±

k+1 = −ε±
k+1ε

±
k = ε∓

k+2 (indices modulo 3)

ε±
j ε∓

k = 0 j �= k

ε±
k ε∓

k = −ρ±

(2.1)

We can write a ∈ C as a = α+
0 ρ+ + α−

0 ρ− + α+
k ε+

k + α−
k ε−

k .
The subalgebra S ∈ C generated by ρ±, ε±

1 , ε+
2 , ε−

3 (namely a ∈ S iff α−
2 = α+

3 =
0) provides an explicit realization of the sextonions. The existence of the non-divisional
sextonionic elements can be easily understood. Indeed, in order to construct divisional
sextonions, one would need to combine a nilpotent with its complex conjugate; but,
as given by the above construction, this is not possible for ε+

2 nor for ε−
3 .
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Fig. 2 A unifying view of the
roots of exceptional Lie algebras
through Jordan pairs [50]. For
n = 8, the root diagram of e8 is
obtained

Octonions can be represented by Zorn matrices [52]. After the treatment of Sect. 3
of [51], we can represent the sextonions as a Zorn matrix, as long as A+ and A− are
C
3-vectors of the type

A+ = (a+, c+, 0) and A− = (a−, 0, c−)

Notice that A+ and A− lie on orthogonal C
3-planes sharing the line along the first

component.

3 e7 1
2

In recent papers [50,51], a unifying view of all exceptional Lie algebras in terms of a2
subalgebras and JordanPairs has been presented, and aZornmatrix-like representation
of these algebras has been introduced.

The root diagram related to this view is shown in Fig. 2, where the roots of the
exceptional Lie algebras are projected on a complex su(3) = a2 plane, recognizable
by the dots forming the external hexagon, and it exhibits the Jordan pair content of
each exceptional Lie algebra. There are three Jordan pairs (Jn3 , J

n
3), each of which lies

on an axis symmetrically with respect to the center of the diagram. Each pair doubles
a simple Jordan algebra of rank 3, Jn3 , with involution—the conjugate representation
Jn3, which is the algebra of 3×3 Hermitian matrices overA, whereA = R, C, H,C for
n = dimRA = 1, 2, 4, 8, respectively, stands for real, complex, quaternion, octonion
algebras, the four normed division algebras according to Hurwitz’s Theorem; see, e.g.,
[53]. Exceptional Lie algebras f4, e6, e7, e8 are obtained forn = 1, 2, 4, 8, respectively.
g2 (corresponding to n = −2/3) can be also represented in the same way, with the
Jordan algebra reduced to a single element. For further detail, cfr. [50].

We expand that view in this paper to include e7 1
2
[9], a Lie subalgebra of e8 of

dimension 190. If we consider the e8 root diagram (obtained in Fig. 2 for n = 8), then
the sub-diagram of e7 1

2
is shown in Fig. 3, (for n = 8, as well).
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Fig. 3 Root diagram of e7 1
2

(for n = 8)

Table 1 Third and fourth row
of the magic square

n 1 2 4 8

gI I I c3 a5 d6 e7
gI V f4 e6 e7 e8

In general, one can do the same for all algebras in the fourth and third row of the
Magic square [54,55], that we denote by gI V and gI I I , respectively (see Table 1). In
this way, the algebras in the intermediate (fourth) row of the extended Magic Square
[5,9] are explicitly constructed in terms of Jordan pairs.

We get a subalgebra of gI V , that we denote here by gI I I 12
, given by gI I I plus a

(6n+8)-dimensional irreducible representation of gI I I plus a gI I I -singlet, as shown
in Fig. 4.1

In particular, the irreps. of gI I I are symplectic (i.e.,, they admit a skew-symmetric
invariant form), and they have complex dimension 6n + 8 = 14, 20, 32, 56 for n =
1, 2, 4, 8, respectively; the algebrasgI I I 12

are their correspondingHeisenberg algebras

(denoted by H) through such an invariant tensor [9], c3 1
2

= c3•H14, a5 1
2

= a5•H20,

d6 1
2

= d6•H32, e7 1
2

= e7•H56, of complex dimension 36, 56, 99, 190.

Let us here present a brief account of the Jordan pairs for sextonions S by means
of suitable embeddings. We start with the maximal, non-symmetric embedding:

e7 ⊃ a2 ⊕ a5 (3.1)

133 = (8, 1) + (1, 35) + (3, 15) + (
3, 15

)
(3.2)

56 = (3, 6) + (
3, 6

) + (1, 20) , (3.3)

implying that:

1 There are some variations on the definition of intermediate algebra [5,9], based on the grading induced
by an highest root. Our realization of Der(S) and e7 1

2
corresponds to the algebra denoted by g′′ in the

Introduction of [9].
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Table 2 Sixth column of the
magic square

n 6

gI c3 1
2

gI I a5 1
2

gI I I d6 1
2

gI I I 12
d6 1

2
1
2

gI V e7 1
2

Fig. 4 Diagram of gI I I 12

e7 � 56 ⊃ [a2 ⊕ (a5 � 20)] � (3, 15 + 6) + (
3, 15 + 6

)
. (3.4)

Thus, the Jordan pairs for the sextonionic Jordan algebra of rank 3, Jn=6
3 , are given

by (3, 15 + 6) + (
3, 15 + 6

)
in (3.4).

In order to reconstruct the extended Magic Square [5,9], one needs also to add the
extra column shown in Table 2 [9], where a further algebra d6 1

2
1
2

= d6•H32•H44 is
introduced.

This column corresponds to the Jordan algebra that we denote by J63 of 3 × 3
Hermitian matrices over the sextonions. The new element d6•H32•H44 can be easily
seen in the diagram of Fig. 4 for n = 6: g60 = a5 1

2
is the reduced structure algebra

of J63, gI I I = d6 1
2
the super-structure algebra of J63 and finally d6 1

2
1
2

= d6 1
2
•H44 =

d6•H32•H44. Notice that the 44-dimensional representation of d6 1
2
is made of J63 ⊕

J63 ⊕ 2. Finally, the algebra e7 1
2
at the end of the column is viewed as in the diagram

of Fig. 2 for n = 6, with g60 = a5 1
2
and the subalgebra e7 represented by the same

diagram for n = 4.
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This completes the explicit construction of the relevant rows and columns (pertain-
ing to the sextonions) of the extended Magic Square2 [5,9].

4 g2 action on Zorn matrices

In our previous paper [51], we have introduced the following adjoint representation �

of the Lie algebra g2: [
a A+
A− 0

]

(4.1)

where a ∈ a2, A+, A− ∈ C
3, viewed as column and row vector, respectively.

The commutator of two such matrices reads [51]:

[[
a A+
A− 0

]

,

[
b B+
B− 0

]]

=
[ [a, b] + A+ ◦ B− − B+ ◦ A− aB+ − bA+ + 2A− ∧ B−
A−b − B−a + 2A+ ∧ B+ 0

] (4.2)

where
A+ ◦ B− = t (A+B−)I − t (I )A+B− (4.3)

(with standard matrix products of row and column vectors and with I denoting the
3 × 3 identity matrix); A ∧ B is the standard vector product of A and B, and t (a)

denotes the trace of a.
The g2 generators are [50]:

�(d±
k ) = Ek±1 k±2 (mod 3), k = 1, 2, 3

�(
√
2H1) = E11 − E22 �(

√
6H2) = E11 + E22 − 2E33

�(g+
k ) = Ek4 := e+

k �(g−
k ) = E4k := e−

k , k = 1, 2, 3
(4.4)

where Ei j denotes the matrix with all zero elements except a 1 in the {i j} position:
(Ei j )k� = δikδ j� and e

+
k are the standard basis vectors of C

3 (e−
k are their transpose).

The correspondence with the roots of g2 is shown in Fig. 5.

5 Derivations of S

We now use the representation � to get a representation of the Lie algebra of Der(S),
which indeed is a non-reductive subalgebra of g2 = Der(C).

It was shown in [5] that the map from the subalgebra of derivations of C preserving
S, that we here denote by DerC(S), to Der(S) is surjective with one-dimensional
kernel; the corresponding statement at the level of automorphism group was made in
[9].

2 It is once again worth stressing that in the present investigation, as well as in the previous papers [50,51],
we only consider complex forms of the Lie algebras.
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Fig. 5 Diagram of g2 with corresponding generators and matrix-like elements

Within our formalism, this result is achieved by restricting �(g2) to the matrices
that preserve S. One easily gets:

[
a S+
S− 0

]

: a =
⎛

⎝
a11 0 a13
a21 a22 a23
0 0 a33

⎞

⎠ , S+ =
⎛

⎝
s+
1
s+
2
0

⎞

⎠ , S− = (s−
1 , 0, s−

3 ) (5.1)

We also realize very easily that the generator corresponding to d+
1 , namely the

element E23 in �(g2), acts trivially on S, hence it can be set to 0. The commutator
(4.2) must be modified accordingly, by setting the {23} element of a equivalent to zero,
that is by replacing the standard matrix product of two matrices

a =
⎛

⎝
a11 0 a13
a21 a22 0
0 0 a33

⎞

⎠ , b =
⎛

⎝
b11 0 b13
b21 b22 0
0 0 b33

⎞

⎠ (5.2)

with the new product
a � b = ab − E22 ab E33 (5.3)

and the product S+ ◦ S− with

S+◦ S− = t (S+S−)I − t (I )(S+S− − E22S
+S−E33) (5.4)

We thus have Der(S) = a1 ⊕ C ⊕ V4, where V4 is a 4-dimensional3 (spin-3/2)
irreducible representation of a1 (as confirmed by the entry in the first column, fourth

3 This representation also characterizes a1 as the smallest Lie group “of type E7” [56], and it pertains to
the so-called T 3 model of N = 2, D = 4 supergravity.
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Fig. 6 Root diagram of Der(S)

row in the extended Magic Square; cfr. e.g., [9]). The corresponding root diagram is
shown in Fig. 6, where we have also included the axes corresponding the linear span
of the Cartan generators, represented by the matrices:

[
h1,2 0
0 0

]

: h1 =
⎛

⎝
−2 0 0
0 1 0
0 0 1

⎞

⎠ , h2 =
⎛

⎝
0 0 0
0 1 0
0 0 −1

⎞

⎠ (5.5)

Proposition 5.1 The algebra spanned by the generators corresponding to the roots
in Fig. 6 is a Lie algebra.

Proof By looking at the diagram in Fig. 5, these generators are d−
2 , d−

3 , g+
2 , g−

3 span-
ning a subspace L1 of g2, plus the generators g

±
1 , h1, h2 spanning the Lie subalgebra

L0 := a1 ⊕ C. We have [L0, L0] ⊂ L0, [L0, L1] ⊂ L1, [L1, L1] ⊂ L2 ∼ 0, where
L2 is the span of d+

1 . The notation is that of the grading with respect to h2.
We consider the g2 commutation relations among these generators and identify

d+
1 ∼ 0. We only need to prove that the Jacobi identity is consistent with this identi-
fication. Let X,Y, Z ∈ L0 ⊕ L1, then consistency must be checked in only two cases
(up to cyclic permutation):

Case 1: [X,Y ] ∝ d+
1 ;

Case 2: [[X,Y ], Z ] ∝ d+
1 .

Case 1: Consistency requires [[Y, Z ], X ] + [[Z , X ],Y ] ∼ 0. This is true if
[d+

1 , Z ] = 0, since it is true in g2. On the other hand, if [d+
1 , Z ] �= 0 then Z ∝ h2

and [Z , X ] = λX , [Z ,Y ] = λY ,since X,Y must be in L1 by hypothesis. Therefore,
[[Y, Z ], X ] + [[Z , X ],Y ] = 2λ[X,Y ] ∝ d+

1 ∼ 0.
Case 2: Both [X,Y ] and Z must be in L1. In particular either X or Y must be

in L1. Suppose X ∈ L1. Then, [Y, Z ] ∈ L1 hence we have both [X, Z ] ∼ 0 and
[[Y, Z ], X ] ∼ 0. Similarly if Y ∈ L1.

This concludes the proof ��
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6 n = 1: Matrix representation of c3 1
2

We denote by a dot the Jordan product x · y = 1
2 (xy + yx) and by t () the ordinary

trace of 3 × 3 matrices. We also set t (x, y) := t (x · y). For J13 and J23, obviously
t (x, y) = t (xy).

We use in this section the representation � of f4 in the form of a matrix introduced
in [51], restricted to the subalgebra c3 1

2
:

�(f) =
(
a ⊗ I + I ⊗ a1 s+
s− −I ⊗ aT1

)

(6.1)

where

a =
⎛

⎝
a11 0 a13
a21 a22 0
0 0 a33

⎞

⎠ , t (a) = 0, s+ =
⎛

⎝
s+
1
s+
2
0

⎞

⎠ , s− = (s−
1 , 0, s−

3 ) (6.2)

and a1 ∈ a2, aT1 is the transpose of a1, I is the 3 × 3 identity matrix, s±
i ∈ J13, i =

1, 2, 3.
The commutator is set to be:

[(
a ⊗ I + I ⊗ a1 s+
s− −I ⊗ aT1

)

,

(
b ⊗ I + I ⊗ b1 r+
r− −I ⊗ bT1

)]

:=
(
C11 C12
C21 C22

) (6.3)

where denoting by [a � b] the commutator with respect to the product (5.3)

[a � b] = a � b − b � a = [a, b] − E22[a, b]E33, (6.4)

it holds that:

C11 = [a � b] ⊗ I + I ⊗ [a1, b1] + s+ � r− − r+ � s−

C12 = (a ⊗ I )r+ − (b ⊗ I )s+ + (I ⊗ a1)r+ + r+(I ⊗ aT1 )

− (I ⊗ b1)s+ − s+(I ⊗ bT1 ) + s− × r−

C21 = −r−(a ⊗ I ) + s−(b ⊗ I ) − (I ⊗ aT1 )r− − r−(I ⊗ a1)
+ (I ⊗ bT1 )s− + s−(I ⊗ b1) + s+ × r+

C22 = I ⊗ [aT1 , bT1 ] + s− • r+ − r− • s+

(6.5)

with the following definitions (summing over repeated indices):
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s+ � r− :=
(
1
3 t (s

+
1 , r−

1 )I − (1 − (E23)i j )t (s
+
i , r−

j )Ei j

)
⊗ I

+I ⊗ ( 1
3 t (s

+
1 , r−

1 )I − s+
1 r

−
1

)

s− • r+ := I ⊗ ( 13 t (s
−
1 , r+

1 )I − s−
1 r

+
1 )

(s± × r±)i := εi jk[s±
j r

±
k + r±

k s±
j − s±

j t (r
±
k ) − r±

k t (s±
j )

−(t (s±
j , r±

k ) − t (s±
j )t (r±

k ))I ]
:= εi jk(s

±
j #r

±
k )

(6.6)

Notice that:

1. s ∈ J13 is a symmetric complex matrix;
2. writing s+ � r− := c ⊗ I + I ⊗ c1 we have that both c and c1 are traceless hence

c ia a matrix like a in (5.1), c1 ∈ a2 and r− • s+ = I ⊗ cT1
3. terms like (I ⊗a1)r+ + r+(I ⊗aT1 ) are in C

3 ⊗J13, namely they are matrix valued
vectors with symmetric matrix elements;

4. the sharp product # of J13 matrices appearing in s± × r± is a fundamental product
in the theory of Jordan Algebras [53]. It is the linearization of x# := x2 − t (x)x −
1
2 (t (x

2)− t (x)2)I , in terms of which we may write the fundamental cubic identity
for Jn3 , n = 1, 2, 4, 8:

x# ·x = 1

3
t (x#, x)I or x3 − t (x)x2 + t (x#)x − 1

3
t (x#, x)I = 0 (6.7)

where x3 = x2 ·x (notice that for J83, because of non-associativity, x
2x �= xx2 in

general).

The validity of the Jacobi identity for the algebra of matrices (6.1) with Lie product
given by (6.3–6.6) derives from the Jacobi identity for ρ(f4) proven in [51] together
with Proposition 5.1, applied to c3 1

2
by trivially extending the three grading argument.

The validity of the Jacobi identity, togetherwith the fact that the representation� fulfills
the root diagram of c3 1

2
(as can be easily seen) proves that � is indeed a representation

of c3 1
2
.

Before passing to e7 1
2
, let us point out that the cases of a5 1

2
(n = 2) and d6 1

2
(n = 4)

can be worked out in the same fashion as for c3 1
2
, starting from the representations of

e6 and e7 introduced in [51].

7 n = 8: Matrix representation of e7 1
2

We recall a few concepts and notations from [51]. We use the notation Lx z := x ·z
and, for x ∈ C

3 ⊗ J83 with components (x1, x2, x3), Lx ∈ C
3 ⊗ LJ83

denotes the
corresponding operator valued vector with components (Lx1, Lx2 , Lx3). We can write
an element a1 of e6 as a1 = Lx +∑[Lxi , Lyi ]where x, xi , yi ∈ J83 and t (x) = 0. The

adjoint is defined by a†1 := Lx −[Lx1, Lx2 ]. Notice that the operators F := [Lxi , Lyi ]
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span the f4 subalgebra of e6, the derivation algebra of J83 . (Recall that the Lie algebra
of the structure group of J83 is e6 ⊕ C.)

We remark that (a1,−a†1) is a derivation in the Jordan Pair (J83, J
8
3), and it is

useful to recall that the relationship between the structure group of a Jordan algebra
J and the automorphism group of a Jordan Pair V = (J, J ) goes as follows [57]: if
g ∈ Str(J ) then (g,U−1

g(I )g) ∈ Aut (V ). In our case, for g = 1 + ε(Lx + F), at first
order in ε (namely, in the tangent space of the corresponding group manifold) we get
U−1
g(I )g = 1 + ε(−Lx + F) + O(ε2).
Next, we introduce a product 
 such that Lx 
 Ly := Lx ·y + [Lx , Ly], F 
 Lx :=

2FLx and Lx 
 F := 2Lx F for each component x of x ∈ C
3 ⊗ J83 and y of y ∈

C
3 ⊗ J83. If we denote by [; ] the commutator with respect to the 
 product, we also

require that [F1; F2] := 2[F1, F2]. We have that, Lx 
 Ly + Ly 
 Lx = 2Lx ·y and
[F; Lx ] := F 
 Lx − Lx 
 F = 2[F, Lx ] = 2LF(x), where the last equality holds
because F is a derivation in J83.

Therefore, for f ∈ e7 1
2
, we write:

�(f) =
(
a ⊗ I d + I ⊗ a1 Ls+
Ls− −I ⊗ a†1

)

(7.1)

where a, s± are the same as in (5.1), a1 ∈ e6, I is the 3× 3 identity matrix, I d := L I

is the identity operator in LJ83
: L I Lx = Lx . Notice that I d is the identity also with

respect to the 
 product.
By extending the 
 product in an obvious way to the matrix elements (7.1), one

achieves that (I ⊗ a1) 
 Lr+ + Lr+ 
 (I ⊗ a†1) = 2L(I⊗a1)r+ and (I ⊗ a†1) 
 Lr− +
Lr− 
 (I ⊗ a1) = 2L

(I⊗a†1)r
− .

After some algebra, the commutator of two matrices like (7.1) can be computed to
read:

[(
a ⊗ I d + I ⊗ a1 Ls+
Ls− −I ⊗ a†1

)

,

(
b ⊗ I d + I ⊗ b1 Lr+
Lr− −I ⊗ b†1

)]

:=
(
C11 C12
C21 C22

)

,

(7.2)

where:
C11 = [a � b] ⊗ I d + 2I ⊗ [a1, b1] + Ls+ � Lr− − Lr+ � Ls−

C12 = (a ⊗ I d)Lr+ − (b ⊗ I d)Ls+ + 2L(I⊗a1)r+
− 2L(I⊗b1)s+ + Ls− × Lr−

C21 = −Lr−(a ⊗ I d) + Ls−(b ⊗ I d) − 2L
(I⊗a†1)r

−
+ 2L

(I⊗b†1)s
− + Ls+ × Lr+

C22 = 2I ⊗ [a†1, b†1] + Ls− • Lr+ − Lr− • Ls+ .

(7.3)
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The products in (7.3) are defined as follows:

Ls+ � Lr− :=
(
1
3 t (s

+
1 , r−

1 )I − (1 − (E23)i j )t (s
+
i , r−

j )Ei j

)
⊗ I d+

I ⊗
(
1
3 t (s

+
1 , r−

1 )I d − Ls+1 ·r−
1

− [Ls+1
, Lr−

1
]
)

Ls− • Lr+ := I ⊗ ( 13 t (s
−
1 , r+

1 )I d − Ls−1 ·r+
1

− [Ls−1
, Lr+

1
])

Ls± × Lr± := Ls±×r± = Lεi jk (s
±
j #r

±
k )

(7.4)

From the properties of the triple product of Jordan algebras, it holds that Ls+1 ·r−
1

+
[Ls+1

, Lr−
1
] = 1

2Vs+1 ,r−
1

∈ e6⊕C [51]. Moreover, one can readily check that [a†1, b†1] =
−[a1, b1]† and Lr− • Ls+ = I ⊗ (

1

3
t (s+

1 , r−
1 )I d − Ls+1 ·r−

1
− [Ls+1

, Lr−
1
])†; this result

implies that we are actually considering an algebra.
The validity of the Jacobi identity for the algebra of matrices (7.1) with Lie product

given by (7.2–7.4) derives from the Jacobi identity4 for ρ(e8) (proven in [51]), together
with Proposition 5.1, applied to e7 1

2
by trivially extending the three grading argument.

That the Lie algebra so represented is e7 1
2
is made obvious by a comparison with the

root diagram in Fig. 3.

Acknowledgements Wewould like to thankLeronBorsten andBruceWestbury for useful correspondence.

A Real forms

We use the notations of [51]. From the treatment in [51], a real form of octonions is
obtained by taking α±

0 , α±
k ∈ R. The quaternionic subalgebra generated by ρ±, ε±

1 is
obviously a split form with nilpotent ε±

1 .
Another real form is obtained by taking complex coefficients with complex conju-

gation denoted by ‘∗’ subject to the conditions:

α−
0 = (α+

0 )∗, α−
1 = −(α+

1 )∗, α−
3 = (α+

2 )∗ (A.1)

Its quaternionic subalgebra, generated by 1, u7, iu1, iu4, is also split with nilpotent
u7 + iuk, k = 1, 4. It is equivalent to the one obtained with all real coefficients, which
is generated by 1, u1, iu4, iu7 upon cyclic permutation of the indices 7, 4, 1.

Let us now restrict the Zorn matrix product [51] to the sextonions and introduce
the vectors

E1 = (1, 0, 0) E2 = (0, 1, 0) E3 = (0, 0, 1)

4 We would like to recall that the proof of the Jacobi identity given in [51] strongly relies on identities
deriving from the Jordan Pair axioms [57].
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We get:

[
α+
0 A+
A− α−

0

] [
β+
0 B+
B− β−

0

]

=
[

α+
0 β+

0 − α+
1 β−

1 (α+
0 β+

1 + β−
0 α+

1 )E+
1

(α−
0 β−

1 + β+
0 α−

1 )E−
1 α−

0 β−
0 − α−

1 · β+
1

]

+
[
0 (α+

0 β+
2 + β−

0 α+
2 + α−

3 β−
1 − α−

1 β−
3 )E+

2
(α−

0 β−
3 + β+

0 α−
3 + α+

1 β+
2 − α+

2 β+
1 )E−

3 0

]

(A.2)

The algebra generated by ρ±, ε±
1 is the quaternionic subalgebra. Its divisible real

form is obtained by setting: α−
0 = (α+

0 )∗ and α−
1 = (α+

1 )∗ and it is a real linear span
of 1, u7, u4, u1.

We now show that it is impossible to have e sextonion real algebra that has divisible
quaternions as a subalgebra. To this aim, we suppose α−

0 = (α+
0 )∗ and α−

1 = (α+
1 )∗

and take in (A.2) α+
0 = β+

0 = β+
1 = 0 - which implies α−

0 = β−
0 = β−

1 = 0.
The product (A.2) shows that the coefficients of ε+

2 and ε−
3 must be complex, hence

each coefficient, say α+
2 contains 2 real parameters a and b, and, in order to have a

six-dimensional real algebra, α−
3 viewed in R2 must be a linear transformation T of

(a, b), linearity being enforced by the linearity of the algebra.
We loosely write α+

2 = Tα−
3 . It is easy to show that T 2 = I d, namely T is

an involution. By playing with the coefficients in (A.2), we can easily obtain α+
2 =

−T 2α+
2 = −α+

2 and similarly for α−
3 , a contradiction unless α+

2 = α−
3 = 0.

This ends our proof.
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