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Abstract We show that the prequantum line bundle on the moduli space of flat SU (2)
connections on a closed Riemann surface of positive genus has degree 1. It then
follows from work of Lawton and the second author that the classifying map for this
line bundle induces a homotopy equivalence between the stable moduli space of flat
SU (n) connections, in the limit as n tends to infinity, and CP∞. Applications to the
stable moduli space of flat unitary connections are also discussed.
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1 Introduction

Let G be a simply connected compact Lie group, and let � be a closed oriented 2-
manifold of genus g > 0. In [7] Ramadas, Singer andWeitsman construct a line bundle
L over the moduli space of gauge equivalence classes of flat connectionsAF (�)/G on
a trivial G-bundle on �. This bundle possesses a natural connection, whose curvature
is a scalar multiple of Goldman’s symplectic form.

The purpose of this paper is to compute the degree (that is, the first Chern class) of
the line bundle described in [7] in the case G = SU (2). Our main theorem is

Theorem 1.1 The degree of the line bundle is 1.

As we will explain, the second integral cohomology group of the moduli space is
infinite cyclic, and the theorem implies that the first Chern class of L is a generator.
There is in fact a preferred generator (depending on the orientation of�), which agrees
with c1(L).

In view of Question 5.6 of [5], Theorem 1.1 has the following corollary:

Corollary 1.2 Let � be a closed oriented 2-manifold of genus g > 0. Let Gn be the
gauge group of the trivial SU (n)-bundle on �, and let ASU (n)

F (�) denote the space
of flat connections on this bundle. The classifying maps for the line bundles

L → ASU (n)
F (�)/Gn

induce a homotopy equivalence colimn→∞ ASU (n)
F (�)/Gn � CP∞.

It was previously shown in [5] that the stable moduli space

colimn→∞ ASU (n)
F (�)/Gn ∼= colimn→∞ Hom (π1�, SU (n))/SU (n)

is a K (Z, 2) space and hence is homotopy equivalent to CP∞. This corollary gives a
geometric viewpoint on this homotopy equivalence. InSect. 4,we also obtain a geomet-
ric viewpoint on the homotopy equivalence colimn→∞ Hom (π1�,U (n))/U (n) �
(S1)2g × CP∞ from [8].

Our computation of c1(L) in genus 1 (Sect. 3) is similar to Kirk–Klassen [4, The-
orem 2.1].1 For related work in the algebraic category, see Drezet–Narasimhan [3].

We remark that it would be interesting to extend this degree calculation to other
simply connected compact Lie groups.

2 The Chern–Simons line bundle

Let G be a simply connected, compact Lie group, equipped with a chosen faithful
representation into GL(n, C), and let g be the Lie algebra ofG (viewed as a subalgebra

1 Kirk and Klassen conclude that c1(L) = −1. The discrepancy can be explained using the footnote
regarding signs in Sect. 3 of the present article.
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ofgl(n, C)). The spaceof connections on the trivialG-bundle over�will be denotedby
A = �1(�, g), and the gauge group of this bundlewill be denoted byG = C∞(�,G).

The line bundle from [7] is defined using the Chern–Simons cocycle ( [7], p. 411)
� : A × G → C defined by

�(A, g) = exp i(CS(Ag) − CS(A)).

The Chern–Simons functional CS(A) is defined by

CS(A) = 1

4π

∫
N
Trace(AdA + 2

3
A3)

where N is a 3-manifold with boundary � and g ∈ G = C∞(�,G). We have chosen
extensions A and g of A and g (respectively) over the bounding 3-manifold N (the
existence of g relies on simple connectivity of G). It is shown in [7] that the Chern–
Simons cocycle�(A, g) is independent of the choice of these extensions. We define a
line bundle L overAF/G as a G-equivariant bundle over the space of flat connections
AF , where g ∈ G acts on A × C by

g : (A, z) �→ (Ag,�(A, g)z).

The definition of L is

L = AF ×G C.

The symplectic form �̂ on A is defined by (see [7], p. 412):

�̂(a, b) = i

2π

∫
�

Trace(a ∧ b) (1)

for a, b ∈ �1(�, g). Notice that on the affine space A, the symplectic form is a
constant quadratic form; it does not depend on choosing a point in A.

3 Degree of the Chern–Simons line bundle in genus 1

Let N be a 3-manifold with boundary �.
The symplectic form on A from (1) descends to a 2-form � on AF/G (the space

of flat connections), which is symplectic when restricted to the subspace As
F ⊂ AF

of irreducible flat connections.
The authors of [7] exhibit a unitary connection ω̂ on the prequantum line bundle

over AF :

ω̂(a) = i

4π

∫
�

Trace(A ∧ a) (2)

whose curvature is �̂. This is done on p. 412 of [7]. The proof uses the fact that the
derivative of the Chern–Simons function is
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dCSA(v) = 1

4π

(∫
N
2Trace(v ∧ FA) −

∫
�

Trace(A ∧ v)

)

for v ∈ TAA = A = �1(N , g). This follows from a straightforward calculation using
Stokes’ theorem. The above expression restricts on AF to

dCSA(v) = − 1

4π

∫
�

Trace(A ∧ v) = iω̂(v)

(recalling (2)). It is shown on p. 412 of [7] (second paragraph) that ω̂ is the pullback
of a connection ω onAF ×G C. This is demonstrated by introducing a vertical vector
field Y for the action of G and showing that

iY ω̂ = LY ω̂ = 0

so ω̂ is basic and therefore descends to a 1-form on AF/G.
For the rest of the section, we restrict toG = SU (2). Let x, y be the flat coordinates

on the genus 1 surface (see the proof of Lemma 3.1 for more details). Inside the space
A we can consider the space W of all connections of the form a dx + b dy where
a, b ∈ Lie(T ) and T = {

diag(λ, λ−1) : λ ∈ S1
}
is the diagonal maximal torus of

SU (2). Note that Lie(T ) = {x X : x ∈ R}, where X = diag(i,−i) ∈ su(2).
Now W is a subspace of A so the bundle L restricts to W as a bundle with con-

nection. This bundle is invariant under that part of the gauge group that preservesW .
This consists of (Z × Z) � Z2. Here (m, n) ∈ Z × Z is identified with the gauge
transformation (eix , eiy) �→ eimxeiny , and Z2 = {±1} is the Weyl group of SU (2).

Taking the quotient by Z × Z we get a bundle L′ on T × T = W/ (Z × Z) with a
connection ω′. We will show, via a direct computation (Lemma 3.1), that the curvature
�′ of this connection has integral equal to −4π i , and using Chern–Weil theory we
will be able to conclude that L′ has degree 2, while L has degree 1.

The computation goes as follows.

Lemma 3.1 We have ∫
T×T

�′ = −4π i.

Proof As above, let X = diag(i,−i) ∈ su(2). Then Trace(X2) = −2.
Let � be a fundamental domain for the action of Z × Z on Lie(T ) ⊕ Lie(T ).

Parameterize � by (x, y) ∈ [0, 2π ] × [0, 2π ]. Under the exponential map

exp : Lie(T ) → T,

the vector fields ∂
∂x and ∂

∂y on � are identified with the constant vector field X on T ,

so with the above formula (1) for �̂ we have that

�′
(x,y) := �′

(x,y)(
∂

∂x
,

∂

∂y
) = �̂(x,y)(

∂

∂x
,

∂

∂y
) = i

2π

∫ 2π

0

∫ 2π

0
Trace(X2)dxdy

= −4π i.
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The value of �′
(x,y) is independent of x and y, so the integral of �′ over T × T

(integrating using an area form of total area 1) is also −4π i . �
Proof of Theorem 1.1 in genus 1. By Lemma 3.1, the cohomology class [�′] ∈
H2(T × T ; R) associated with �′ is −4π iα, where

α = 1

(2π)2
[dx ∧ dy] ∈ H2(T × T ; R)

denotes the fundamental class. By Chern–Weil theory,2 we have

[�′] = −2π i c1(L′),

so c1(L′) = 2
(2π)2

[dx ∧ dy] = 2α, and L′ has degree two.
The generator ofW = Z/2Z acts on T ×T by complex conjugation on each factor,

inducing a quotient map f : T × T → (T × T )/W , and we have a homeomorphism
(T × T )/W ∼= S2. Our bundle L′ is Z2-equivariant, and it descends to the bundle
L on (T × T )/W (note here that if (z, w) ∈ T × T is fixed by W , then the action
of W on the fiber of L′ over (z, w) is trivial: this action is defined in terms of the
cocycle �(A, g), which is zero whenever g fixes A). So f ∗(L) = L′, and hence,
deg(L) = 1

deg( f ) deg(L′). An elementary calculation (e.g., using a Z2-equivariant
CW complex structure on T × T ) shows that deg( f ) = 2, completing the proof. �

The key point is that we have computed the degree on T ×T , which has a canonical
smooth manifold structure, so we can use Chern–Weil theory. The proof of Theo-
rem 1.1 in higher genus is given in Sect. 5.

4 The conjecture of Lawton and Ramras on the Chern–Simons line
bundle

Let � be a closed oriented 2-manifold of genus g > 0. Let GSU (n) = GSU (n)(�) and
GU (n) = GU (n)(�) denote the gauge groups of the trivial SU (n) andU (n)-bundles on

� (respectively), and let ASU (n)
F (�) and AU (n)

F (�) denote the spaces of flat SU (n)-
and U (n)-connections on these bundles. Define

MU (�) = colimn AU (n)
F (�)/GU (n) and MSU (�) = colimn ASU (n)

F (�)/GSU (n).

We refer to these as the stable moduli spaces of flat unitary (or special unitary) connec-
tions over �. Let Ln → ASU (n)

F (�)/GSU (n) denote the prequantum line bundle. As
n varies, these bundles are compatible with the inclusions SU (n) ↪→ SU (n + 1) and
hence induce a line bundle L∞ → MSU (�), which we call the stable prequantum
line bundle.

2 In [6, Appendix C], the Chern–Weil formula for characteristic classes is stated without signs, because
they use a version of Fubini’s theorem with signs [6, p. 304]. Since we have integrated using the usual
version of Fubini’s theorem, we need a sign in our formula for c1(L′).
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The homotopy types of the stable moduli spaces were determined in [5,8]:

MU (�) � CP∞ × (S1)2g, MSU (�) � CP∞. (3)

These results are computational and rely on the uniqueness of Eilenberg–MacLane
spaces; that is, no explicit homotopy equivalences between these spaces have been
constructed. Here we offer bundle-theoretic descriptions of these homotopy equiva-
lences.

Remark 4.1 The proof that MU (�) and MSU (�) have the homotopy types stated
above relies on an independent result showing that these spaces have the homotopy
types of CW complexes. In the unitary case, this is proven in [8, Lemma 5.7], and the
same argument works in the special unitary case.

Theorem 4.2 The classifying map

MSU (�) −→ CP∞

for the stable prequantum line bundle L∞ is a homotopy equivalence.

Proof Writing� = �′#T , where T is a torus, the quotient map induces a homeomor-
phism � → �/�′ ∼= T . Together with the inclusions SU (2) ↪→ SU (n), this induces
a map

ASU (2)
F (T )/GSU (2)(T ) −→ MSU (�),

which induces an isomorphism on H2(−; Z) by [5, Theorem 5.3]. We have shown in
the previous section that the classifying map for the bundle

L2 → ASU (2)
F (T )/GSU (2)(T )

induces an isomorphism on H2(−; Z). Since the classifying map for L∞ restricts to
a classifying map for L2, we find that the classifying map for L∞ must also induce
an isomorphism on H2(−; Z). But up to homotopy, this is a self-map of CP∞, and
any self-map of CP∞ that induces an isomorphism on H2(−; Z) is a homotopy
equivalence. �

We now turn to the unitary case. Fix generators αi , βi (i = 1, . . . , g) for π1(�)

(with
∏

i [αi , βi ] = 1). The determinant map

det : MU (�) → (S1)2g

is defined by

[A] �→ (det(ρA(α1)), det(ρA(β1)), . . . , det(ρA(αg)), det(ρA(βg))),

where A ∈ AU (n)
F (�) and ρA : π1(�) → U (n) is its holonomy representation.
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Corollary 4.3 There is a line bundle LU → MU (�) that restricts to

L∞ → MSU (�),

and if α is a classifying map for LU , then the map

MU (�)
(det,α)−−−−→ (S1)2g × CP∞

is a homotopy equivalence.

Proof Let f : MSU
�−→ CP∞ be a classifying map forL∞, and choose a homotopy

equivalenceφ : MU (�)
�−→ CP∞×(S1)2g , as in (3). LetCP∞×(S1)2g

p1−→ CP∞
be the projection, and let i : MSU (�) ↪→ MU (�) be the inclusion. By [5, Theorem
5.3], i induces an isomorphism on π2, so the composite

i1 := p1 ◦ φ ◦ i : MSU (�) −→ CP∞

induces an isomorphism on π2 and hence is a homotopy equivalence. Define

α := f ◦ i−1
1 ◦ p1 ◦ φ : MU (�) → CP∞,

where i−1
1 is a homotopy inverse to i1. Thenwehave a homotopy commutative diagram

MSU (�)
� � i ��

f

�
����

���
���

� MU (�)

α�����
���

���

CP∞

and we define LU to be the pullback, under α, of the universal bundle over CP∞.
It remains to show that (det, α) is a homotopy equivalence. Since det is split by
the inclusion of (S1)2g ∼= Hom (π1(�),U (1))/U (1) into MU (�), we see that on
fundamental groups, det∗ is a surjection between free abelian groups of rank 2g,
hence an isomorphism. Since α∗ is an isomorphism on π2, the result follows from the
Whitehead theorem (and Remark 4.1) �

5 The degree of the line bundle in higher genus

Let Lg denote the prequantum line bundle on the moduli spaceASU (2)
F (�g)/G of flat

connections on a trivial SU (2)-bundle over the genus g surface�g . We now show that
Lg has degree 1 for every genus g surface (g > 0), not just g = 1 (thereby completing
the proof of Theorem 1.1). This statement is meaningful, since we have:

Lemma 5.1 For any g ≥ 1, we have H2(ASU (2)
F (�g)/G; Z) ∼= Z.
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Proof In [5], it was proven that ASU (2)
F (�g)/G is simply connected (and a second

proof of this fact was given in [1]). Now, triviality of H1(ASU (2)
F (�g)/G; Z) implies

that H2(ASU (2)
F (�g)/G; Z) is torsion free (by the universal coefficient theorem), and

a simple direct analysis of the Poincaré polynomial of ASU (2)
F (�g)/G, as determined

by Cappell–Lee–Miller [2], shows that H2(ASU (2)
F (�g)/G; Z) has rank 1. �

A map f : �g → �h induces a map

f # : ASU (2)
F (�h)/G → ASU (2)

F (�g)/G,

and as noted in [7, Remark 3, p. 412], if f has degree 1 then ( f #)∗(Lg) = Lh . This
implies that

( f #)∗(c1(Lg)) = c1(Lh),

and taking h = 1 we find that ( f #)∗(c1(Lg)) = c1(L1) = 1 (by the result in Sect. 3).

Now Lemma 5.1 implies that c1(Lg) is a generator of H2(ASU (2)
F (�g)/G; Z). This

completes the proof of Theorem 1.1. �
Remark 5.2 The results in [5] in fact show that the map

H2(MSU (�g); Z) −→ H2(MSU (�1); Z)

is determined by

f ∗ : H2(�1) → H2(�g).

Thus, a choice of generator in H2(ASU (2)
F (�1)/G; Z) and a choice of orientations

on �1 and �g give a choice of generator in H2(ASU (2)
F (�g)/G; Z), and the above

discussion shows that this generator coincides with c1(Lg).
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